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1. Introduction

A complex computer system consists of billions of transistors, miles of wires, and many interactions
with an unpredictable environment. Correct results must be produced despite faults that dynamically
occur in some of these components. Many techniques have been developed for fault tolerant
computation. General purpose methods are independent of the application, yet incur an overhead cost
which may be unacceptable for massively parallel systems. Algorithm-specific methods, which can
operate at lower cost, are a developing alternative [1, 72]. This paper first reviews the general-purpose
approach and then focuses on the algorithm-specific method, with an eye toward massively parallel
processors. Algorithm-based fault tolerance has the attraction of low overhead; furthermore it addresses
both the detection and also the correction problems. The principle is to build low-cost checking and
correcting mechanisms based exclusively on the redundancies inherent in the system.

Before beginning the overview section, we anticipate a criticism of algorithm-based methods: that
existing methods (such as checkpoints and triplication) are a solution to the problem. On the contrary,
theoretical studies based on information theory have established that log(n) redundancy is adequate for
general computation. Though the details are beyond the scope of this paper, we note the key features of
these studies. To achieve reliable results on a synchronous network A of N processors which each enter a
random state with probability p, one constructs a new network Ag that reliably simulates for T steps. This
requires O(log(NT)) time redundancy (Bierman], (O (log2(NT)) space redundancy for real-time
simulation). Asynchronous computation is more difficult, yet only needs a constant delay (eB) despite
compounded delays in buffers.

These results are significantly better than the O (n) required for n-modular redundancy. Moreover, it
has been observed [91] that "errors introduced by a gate must be offset by computation performed by that
gate" since the encoding and decoding components are subject to noise. Since TMR doesn’t do this, we
have incorrect voter output with probability E+(1+2E)}+(3Z2-2Z3) where E is p(gate failure), Z is
p(incorrect input to voter).

Thus assured that significant improvements can be achieved in the construction of fault-tolerant
systems, section 1 presents the main ideas of algorithm-based fault tolerance. A broad overview of fault
tolerance, is presented in section 2. Section 3 then describes general principles of the algorithm-specific
approach, which have been derived from results in the field. Extensive technical examples are described
in section 4, for both symbolic and numeric processing. The reader who is well versed in fault tolerance
may go directly to sections 3 and 4.

The main phases of fault tolerance are detecrion and correction. Detection is the ability to discover and
diagnose faults. Problems are then corrected through methods of reconfiguration and recovery. Several
such methods are general-purpose. A common technique (called voring) runs many copies of the system
and compares the results. A second method (called checkpointing) periodically saves images of the
system's programs and data; if an error is detected by diagnostic routines, the computation can resume
from the most rece‘ntvcheckpoinL If the fault was due to a permanent hardware fault, the problem must be
corrected by manual repair or automatic reconfiguration. The voting technique masks faults so they do
not produce errors, yet requires at least three times as much hardware. Checkpointing requires fewer
resources, but may interrupt processing to save and recover data.



The general purpose methods must, in view of advances in computer architecture, be reassessed to
make use of the new breed of parallel computers. Massively parallel processors (MPP) have recently been
developed, composed of many thousands of interconnected processors, each with a small private memory
and perhaps a shared memory as well. Traditional methods, such as triplication of a 100,000 processor

machine, are unnecessary and unduly expensive. Likewise checkpointing has serious limitations, given
the latency of mass storage devices.

Systems with many processors currently avoid faults by reliance on extremely reliable components.
The mean time to failure (MTTF) would otherwise be as low as 1.5 hours for a 64K processor machine
[67]. The use of highly reliable components with very conservative design techniques, though effective,
is expensive and remains prone to occasional failures. For example, the cost of a 64K "Connection
Machine" is $3,200,000 plus $264,000/year for maintenance [96]; this partially and indirectly reflects the
cost of reliability. Nevertheless, the reliable components must be purchased for every copy of the
machine. This money could be better spent on more powerful hardware and less costly fault tolerance
mechanisms. This could be accomplished if fault tolerance were performed by software, since software
can be reproduced at nominal cost.

A software approach exploits a prominent advantage inherent to parallelism, namely that failure of one
component need not jeopardize the entire system. Less hardware investment is necessary, and the savings
can improve the market acceptance of parallel computers. It may also facilitate the construction of more
powerful hardware. There are without doubt serious technical questions about how to tap into this source
of reliability, and hence applicability of the method is presently limited to specialized applications. One
potential application area is artificial intelligence (Al), specifically search, associative retrieval, pattem
matching and update of storage structures. This is evidenced by the development of many architectures
expressly for AI[77, 120]. Other areas of applicability include adverse environments (air, desert, sea),
life-critical (medical) and high-reliability (communications, fund transfers, international databases).
Since maximizing performance is the desiderata of parallel processing, it is natural to develop the
software-based approach.

1.1. Algorithm-Based Techniques

The algorithm-based approach will be discussed in detail in sections 3 and 4. A brief preview is
presented here so the reader may contrast it with the other methods to be discussed. The goal of the
approach is to build the detection, location and correction routines from the expected algorithm behavior.
This exploits the relationships between partial results, as well as the anticipated input/output relationships.
We note that communication networks are designed with a similar approach, because the higher levels of
a communication protocol are insulated from errors at lower levels, and furthermore the low-level
protocols provide reliable service even when confronted by hardware faults.

An algorithm may provide invariants about a system precisely because it is a concise statement of what
is to be computed and how the computation should be performed. These are known to hold at certain
points during algorithm execution regardless of the specific data in the system. The knowledge of “what”
is computed allows use of domain knowledge to check the reasonableness of the results. Knowledge
about “how" to compute the result can allow development of a fault tolerant version. These algebraic and




logical relationships can be exploited to improve reliability or reduce cost through improved error
detection and fast correction. For example, in a binary search algorithm it is always the case that element

E‘-<Ej. for i<j. This property can be tested concurrently with program execution at low cost, and any
violation signals an error.

An algorithm may be augmented to use redundant storage or perform extra computation if there is
insufficient inherent redundancy to support the approach. Error-correcting codes are the most common
form of augmentation, and take the form of additional hardware (memory, processors, communication
channels) or extra data (storage caches, redundant executions). Several examples of augmentations are
given in section 4,

A second view of algorithm-based fault tolerance depends on primitive operations that work even in a
faulty environment. Programs can be defined with these primitives. The approach has been used to
support communication, agreement and mutual exclusion to shared resources. Reliable communication
(broadcast) to all processors [7, 35, 45]) and agreement by many processors (a form of extrema-finding)
[29, 39, 46, 90] provide service even in the presence of faults. A reliable broadcast is important for
communicating information between processors. Agreement algorithms are essential for tasks such as
software voting and election of a master processor (so-called "leader election"). Fault tolerant mutual
exclusion algorithms, necessary to share resources, have been developed {95].

1.2, Terminology
At this point we present a minimal amount of ierminology, including the common metrics necessary
for quantitative evaluation of a system. These terms are used throughout the literature.

A faulr indicates an internal anomalous behavior (2, 12]. An error, on the other hand, is an external
manifestation of the fault, through erroneous results "not consistent with the intention of the user” [58].
Thus an error occurs when the output differs from what it would be in the fault-free situation. A fault
might not be directly detectable (or locatabie) but its manifestations are. Clearly, fault tolerance seeks to
produce no errors even when faults occur.

Comparative performance analysis has developed several ways to measure fault tolerance. Fault
coverage, a static measure, gives the percentage of possible faults that will be detected. The dynamic
behavior is described by other measures, such as reliability, performability and availability [40].
Reliability is the probability that the machine will not fail before time ¢. Performability is the probability
that the machine will operate above some specified performance level. It is not directly related to the
performance level, and the performability may either increase or decrease as the performance level
changes. Availability is the expected value of computational capacity at time ¢, for example, the number
of processors not removed from the processing array, or the expected service delay. The goal of 100%
availability may be achievable if processing proceeds concurrently with correction, whereas a significant
delay will result if periodic interruption is needed for checkpoint or recovery [107].

The architecture may be described by a system parameterization and fault model. These concepts
provide the basis to design fault tolerance given system, by capturing the essential features of the
architecture, The key parameters describe the processors, memory and communication. These emphasize




the differences between multicomputers and massively parallel machines. Examples of the
parameterization and machine description are in figure 1-1. The massively parallel machines, equipped
with vast numbers of processors, are fundamentally different from multiprocessors.

Conservative design methods, combined with general-purpose fault tolerance, are widely accepted as
satisfactory solutions for the general class of multiprocessors shown in machines of figure 1-1. However,
the methods do not work for newer machines, such as those of 1-2, when the tasks are interactive, or
when very high availability is required. Furthermore, the latency of storage devices is increasing relative
to the speed of the CPUs, which places checkpoint methods at a further disadvantage.
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Figure 1-1: Parameterization of Parallel Systems

Processors Memory Communication
Huge Connecsion Mackins
,000.,000, (1Ke 8 cubs, asynch. rouser,
(1,000,000, small, 10 MIP) 1 Mmb:-,. (Nlnv -
Huge Sysmiic Arrey
(10,008,000, spaciaiized, (64K, 0 adjacent PEs,
1000MEP) M v
Exvanely Lerge ALY
(1. 100,000 bis arichmetic, (1Gigabyw0, 00) (none, nons, 0, 0)
o5

Figure 1-2: Parameterization of Massively Parallel Processors



2. Overview of Fault Tolerance

As stated earlier, the two phases of fault tolerance are detection and correction. The error detection
phase recognizes that an error has occurred, and may diagnose the problem by identification of the
component and the type of fault. Next, in correction, a reconfiguration subphase removes the faulry
components, and organizes the remaining hardware into a functional — and hopefully effective —

system. An ensuing recovery subphase restores whatever data may have been lost or damaged and
whatever executions had been corrupted.

2.1, Detection Phase

The behavior of circuits or programs can be monitored to determine if a fault occurs. The monitoring
method depends on the class of fault. Deterministic (or permanent) faults are due to broken hardware.
Probabilistic faults, which cannot always be detected, are of two types: transient and Byzantine. In the
transient case, a broken processor gives consistent information to all neighbors, and it is unlikely that
faults will be undetected. The Byzantine case is more difficult, since a faulty processor can give different
or deceptive information to its neighbors. Faulty components may even conspire 1o subvert the system.
Diagnostic testing of probabilistic failures is complex because the condition might clear up immediately
after producing polluted data. One general solution is to encode data at a high level and recognize a fault
when a non-codeword is encountered. A second solution employs voting among 2N+1 redundant units,
where N faults may occur. The errors of a component should be offset by the computation of the
component.

All detection techniques share the common idea of utilizing redundancy, though there is significant
variation in the form of redundancy. Five techniques are given here, which may also be used for
correction. The first two, component design and voting, operate at the signal-level to produce circuits that
withstand "adverse physical phenomena.” Next, the method of error detecting codes can be used at all
levels, including logic, data communication and computation. Algorithms and assertions, achieve fault
tolerance in the software design process.

o Fault-secure/self-testing components (Logic-level fault tolerance). Fault-secure
components employ specialized logic to monitor their own functioning. The approach builds
fault detection and location into the components, which in tum indicate if they are
functioning through an "I'm alive” indicator. The problems of fault detection and location
are solved, it would seem, because the processors themselves indicate if they are functioning
correctly. Moreover, the spread of contaminated information can be limited through suitable

designs.

High cost and imperfect design curtail the success of the fault-secure processor. The design
and construction of such devices is expensive. Self-testing processors have failed on notable
occasions [47); a faulty processor can erroneously assert its "I'm alive” signal. In response,
researchers have described special forms of fault-secure processors that are secure from
worst-case error syndromes, but at a cost of 500% hardware redundancy. This is 100
expensive for most computer users, because the cost of preventing an error may exceed the
cost of the error!

Voting (General-purpose fault tolerance). This method executes redundant copies of the
logic, program, or communication. The copies are compared at suitable intervals by a voting
circuit or program {18, 38). Reliability improves exponentially with the number of copies,
under the assumption that errors are independent and the voting circuit does not fail.
However, these assumptions are not universally valid. Coincident failure of several




processors can result from a systematic design fault, or from a transient physical condition
exceeding the tolerances of many adjacent processors.

¢ Error detecting codes (Communication, computation and storage-level fault tolerance).
Errpr codes maintain the integrity of data, which could otherwise be contaminated by errors
during storage, communication, or computation. One commonly used code is the simple
parity bits found in most computer memories. More powerful methods include Huffman
engpding and linear feedback shift registers. See [128] for a good textbook treatment of the
subject.

An error correcting code (ECC) conceptually consists of two parts, a data portion and a check
portion. The check is computed and written to memory when a data item is stored, and upon
retrieval the check is recomputed. An error is detected when the stored value differs from the
computed value. Correction of errors is possible with codes that contain additional
information [128]). Codewords are generally defined over an algebraic field for reasons of
computational efficiency.

Computation, as well as storage, can be made resilient through these codes. For example,
ECC’s can be closed under multiplication or other operations [89]. On the other hand,
symbolic algorithms present new coding problems, and the fault tolerance of these
computations has not yet received widespread attention.

Fault tolerance in the domain of symbolic retrieval by associative memories has been
achieved by special hash functions [28]. The functions map similar input values to adjacent
memory locations, where similarity is defined according to insertions and deletions (i.e.
"minimal edit distances”). If a memory cell is inaccessible, then an adjacent memory will
probably store a value which approximates the correct one. This value can be used when
exact retrieval is not necessary, for example, if the input is noisy. However, the development
of fault-tolerant representations and manipulations for arbitrary symbol structures is an open
problem. For example, it is relatively easy to define syntactic similarity, but semantic
similarity may be elusive.

¢ Algorithm Properties (Algorithm-based fault tolerance). Many algorithms have specialized
properties, as will be detailed in sections 3 and 4. For example, an a priori bound on the
norm is known for many matrix algebra routines. This can be checked at low cost. Likewise,
the relationships between nodes in a binary tree are rigorously defined by the algorithm.
Low-cost checking and correction methods can be constructed from these propertes.
Unfortunately, these tests can be expensive. In such situations, a lower cost property should
be derived, if possible.

e Assertions (Program-level fault tolerance). The algorithm definition can be augmented
through declarations or error handling routines, anticipating likely areas of faults.
Declarations are added by programmers who are familiar with the application, possible faults,
and specific fault tolerance requirements. The programmer can provide error handlers [130],
as well as acceptance tests to detect failures. A formal view of the approach associates a first
order logic predicate with each statement, and raises an exception if the predicate is false.
For example, the early work on executable assertions (74) has evolved into a language-based
approach that uses input guards in the Communicating Sequential Processes (CSP) approach,
and also a general object-oriented style of fault tolerance [20, 37). The approach currently is
being extended for fault detection [72, 104, 10S].




2.2. Correction Phase

If a problem occurs and is diagnosed, the fault tolerant system must then repair itself and deliver a

correct result. This is done by reconfiguration and recovery, although a different approach is used in
fault-masking systems that provide correct results without removing faults.

2.2.1. Reconfiguration Subphase

Reconfiguration removes the faulty components and modifies other parts of the system to provide the
required communication and computation resources. Reconfiguration can be physical or logical. In
physical reconfiguration, the system is fabricated with additional processors and switches: the
interconnection between PEs can be circuit switched to bypass faulty components.  Logical
reconfiguration, on the other hand, reroutes message traffic and alters work assignments. Carter {27] has
written an excellent survey of hardware fault tolerance.

The hardware parameterization (figure 1-1) should remain the same despite reconfiguration. The
software could thereby operate with minimal modifications, without degradation of system performance.
These goals can be achieved when there is sufficient spare capacity or components. When spare capacity
is insufficient, it may nevertheless be possible to provide only the essential functions and degrade
gracefully: an alternative is to run the task more slowly. In the example of a square processor array
without spares, a half-size array can always be formed to run the task more slowly. Altematively, logical
reconfiguration of a parallel system can change the resource allocation to ignore defective processors.

There is a tradeoff between the computational power subsequent to reconfiguration (performability),
and the time required to reconfigure (availability). Many final configurations can result from a
reconfiguration, though it may be difficult to pick one that performs well. One centralized solution
precomputes many reconfigurations based upon expected patterns of communication and computation. In
the contrasting distributed approach, each processor validates its neighbors and reconfigures locally to
produce a globally correct system. The reconfiguration scheme should not succumb to the dilemma of
minimizing the performance degradation and yet completing the reconfiguration quickly.

2.2.2. Recovery Subphase

Restoration of important data must compensate for the errors introduced by faults. The state of
important structures is usually restored to the "before-fault” instance. A weaker restoration produces a
new intermediate state, from which the algorithm generates the cormrect answer. For example, when
adding up the elements of a list, the ordering of the elements does not have to be retained, because it does
not affect the final result. Other applications are immune to some errors, in which case the recovery
criteria can be relaxed. A numeric example is integration by adaptive quadrature [94], in particular when
an error in one interval can be ignored because it will have only a vanishingly small effect on the error in
the total result. Such errors are sufficiently small to be indistinguishable from other unavoidable errors,
due to the fact that most numeric algorithms are approximations. A third aspect of recovery is the need to
adjust data and work allocations for the purpose of rebalancing the computational load.

The before-instance is usually recovered by use of techniques known as backward or forward recovery.
The backward approach saves periodic checkpoints of the process image. For recovery, the system "rolls
back" to a logically consistent checkpoint state. Costs can be significant because system operation must



be suspended during the checkpointing and because of the substantial 1O needed to copy a large program.
Checkpoints are therefore taken infrequently and substantial work may be lost when the system reverts to
an old checkpoint. The situation has improved somewhat through the development of faster logging-

based techniques, as well as the selective checkpointing of only the essential state information
[92. 101, 108, 112).

The checkpointing method has developed into message logging for parallel systems, which combines
infrequent checkpoints with a repository of every transmitted message. Since messages are the only cause
of state changes, logging the messages allows reconstruction of the state. The up-to-date data is
recovered by replaying the logged messages since the most recent checkpoint (108, 110}, and thus no
computations are lost. A potential problem of both message logging and checkpointing, is cascading
errors (the so-called "domino"” effect). Replaying one message can generate a chain of additional
messages, each generating yet more messages [24]). Cascade-free volatile logging methods provide
potential performance advantages but have not yet been rigorously analysed [55, 109].

In contrast to the backward approach, forward recovery proceeds by analysis of program state. As
described by Mili, forward recovery "uses the natural redundancy that exists between program variables
rather than duplicating the program space. In terms of execution time, no overhead is incurred unless it is
needed” [76]. The approach is appropriate if the system behavior is well understood [26] and errors can
be isolated and corrected. This forward method limits the state change, since the full state is never rolled
back. The approach requires accurate damage assessment to allow selective repair of the damaged
portions.

The greatest success of the forward approach has been in numerical domains such as signal-processing
and matrix-vector computations {1, 12, 123]. Success has also been reported for problems where the
solution technique generates redundant solutions [80], as well as for transaction processing (10]. There is,
however, some controversy about when to use forward recovery. Some researchers claim that
performance decreases because interprocess synchronization is needed to correct the fault [53]. Others,
however, find performance improvements because minor inconsistencies are allowed to develop, with
correction at the end of the computation [10].

2.3. Hardware Methods

Hardware fault tolerance provides machines that work despite anomalous behavior in some
components. The primitive hardware design should ensure the system is not disabled by a hardware fault.
This provides the sapport essential for software methods.

The essential hardware characteristics should be preserved to allow efficient continued operation. The
number and capacity of the processors and their interconnections are important because these determine
the spare processing power available for backup and reconfiguration. The interconnection topology
defines the communication paths between components. A redundant topology connects working
components even if some parts of the system fail. Fault-tolerant tree architectures (48, 68, 131] provide
hardware redundancy, whereas theoretical study shows the hypercube is well-suited for fault tolerance
due to its redundant communication paths [49). Anempirical study using the Intel hypercube is presented
in [17]. Other fault tolerant graph structures [67) include various kinds of arrays. A special issue of [EEE




Computer (June 1987) is dedicated to fault tolerant interconnection networks. Two popular topologies
include the binary tree and the n-dimensional hypercube.

When the interconnection pattemns are preserved by the reconfiguration, the software will need only
minimal modification. A notable example is reconfigurable processor arrays. These consist of a grid of
interconnected components and have the significant feature of allowing continued operation of all the
functioning components subsequent to failure of a single component. Design techniques for these arrays
include the Diogenes approach [30). In this approach, a switch extermnal to each PE provides the means to
bypass the defective components. Although the non-faulty components can be used, the algorithm may
have to adjust to retain efficiency. The major problem with the initial Diogenes approach is the delay due
to long wire lengths [124], since unmatched delays between components may decrease performance. This
difficulty is solved by algorithm modifications. One modification technique is retiming, which adds
delays to some communication links to prevent internal bottlenecks. The intemal system timing does not
change, despite the delay of bypassing defective PEs [125].

Reconfiguration should retain the critical timing and synchronity aspects of high performance parallel
processing systems. A synchronous system is bound closely to the system clock [73]), with each
processor executing the same instruction stream. These systems provide excellent performance, provided
the problem "“fits" the system. Asynchronous systems, on the other hand, allow greater independence in
both the instruction sequences and the communication pattems. Reconfiguration is easier with an
asynchronous system because timing is less important; the programs can be changed without affecting
correctness, although load balancing becomes an issue. This leads to the question of the best way to
reconfigure an asynchronous computer computer [123]. Synchronized systems include the ICL DAP, the
NASA MPP and the Goodyear STARAN. Asynchronous systems include the Intel HYPERCUBE and the BBN
Butterfly, as well as NYU UltraComputer, IBM RP3 and Columbia DADO machines.

2.4. Software Methods
Software techniques extend the hardware capabilities to build fault tolerant systems. Software can be
reproduced cheaply. Thus, it would be economical to depend on it for fault tolerance.

2.4.1. Language-Based Techniques

The first type of fault tolerance is language-based (105]. Programming tools are used to construct
programs that work even if a fault occurs, as in specialized languages that can be annotated with logical
assertions. These assertions can be processed by automatic theorem-provers to determine if the program
will run correctly in the event of hardware errors. Examples of this approach assume a volatile main
memory and a nonvolatile disk (33, 34]. Faults result from “the influence of adverse physical
phenomena,” which may affect stable storage. These errors are modelled by a special fault-operation
called DECAY. The work includes proof rules with predicates for "all-perfect” and "gracefully-degraded”
operation. Functional requirements specify the behavior, such as the ability to read/write the disk, storage
atomicity, and periodic repair (10 return the system to ali-perfect stams). Unfortunately, it has not been
extended to parallel systems. Other formal approaches are given in (19, 76, 102, 118].

The second method defines fault tolerance within a programming paradigm, such as dataflow
programming or object-oriented programming. Specifically, the dataflow programming model is side-
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effect free and describes state by tokens. The absence of side effects simplifies recovery [84, 100] simply
by encapsulating smaller substates that interact in well defined and predictable ways. State is described
by the "active unconsumed tokens" and thus reliability is achieved by keeping duplicates of these tokens.
Multiple copies are maintained in different physical processors and deleted when the primary is
consumed. Furthermore, a technique called "token chasing” can determine if a program will work
correctly even if some tokens fail to fire [8, 9]. These ideas have recently been extended with a software

engineering approach for forward error recovery using semantically equivalent abstract data types with
maximally disjoint fault spaces [81].

2.4.2. Operating System Techniques

A second form of software provides fault tolerance through a reliable virtual machine [3]). An easily
used language provides access to the machine. Unfortunately, few performance studies rigorously
address the applicability of OS techniques to massively parallel systems [113], and none have studied
interactive processing on those systems. This may be due to the fact that massive parallelism is extremely
new. There has been research, however, on specialized real-time systems for critical tasks (59, 101, 107].

A major form of OS fault tolerance is based on atomicity, where computations are executed as atomic
acrions. An atomic action has an effect on other actions only if all steps complete successfully. If the
action fails, no changes are made, and a backup process can be invoked. Atomicity can be specialized for
an application area, as in serialization theory, which applies to transaction processing. Examples of OS
fault tlerance include the CLOUDS operating system, which is based on object-oriented invocation,
running on general-purpose processors with an Ethemet interconnect and dual-ported disks. The
fundamental operations are written as recoverable object classes, with the implementation mechanism
hidden. For example, the CLASS RECOVERABLE INTEGER depends on logs written as a side effect of the
base class. Operating systems also use other approaches, such as recovery blocks [S1] and N-version

programming (5].

One means of achieving atomicity is through checkpointing and rollback, which can be done invisibly
by most fault tolerant operating systems. A contrasting approach is taken in the GUTTENBERG
[126] system, where recoverable communicating actions guarantee recovery and consistency. This work
emphasizes several general principles, including a "communication dependency relationship” that is
distinct from the data dependencies of EDEN, CLOUDS, or Nested Transactions. The GUTTENBERG system
claims to be an improvement over checkpoint methods [108) because "we contend that checkpointing all
processes involved in a reliable distributed computation in the system is an unrealistic burden on the
kernel ... [and] since behavior may be time-dependent the behavior of the second execution may not be
the same as the first.™ However, checkpoint methods have recently been improved in the form of volatile
logging [111] operating on piecewise deterministic programs. The determinism assumption addresses the
issue of time-dependency.

It will be important to see how performance of these OS methods develops. We note that these methods
cannot be utilized within individual PEs in existing MPPs simply because they have no onboard operating
system. In the case of the Connection Machine, for example, not even a runtime kemel is available.
Moreover, there is no assurance that the /O capacity of an MPP would be able to support the
checkpoint/restart algorithms. Furthermore, the diminished availability due to checkpointing or logging
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might be unacceptable.

3. Algorithm-Based Approach: General Principles

Having earlier indicated the preference for the algorithmic approach — because of potential efficiency
in parallel systems, because a small amount of hardware redundancy is adequate, and because the
program may not require modification by the user — we will now present details of the approach. This
will proceed in two parts. First is an exposition of the general principles and premises of the approach.
Then, in section 4, we demonstrate the utility of the approach through extensive examples.

No theory of applied fault tolerance has been presented in the literature [13], although an important
theoretical basis was established by von Neumann [127] and is being extended by Gacs and Pippenger
(43,44,91]. We therefore group algorithms according to discernible features of the fault tolerance
methods. This taxonomy is a step toward a theory and methodology of applied fauit-tolerance. The
features include problem structure, malleability of the solution technique, and inherent redundancies of
the domain. Explicit mention of these features should help us to understand existing fault tolerance
schemes and to develop new ones. We consider here the two domains of numeric algebra and symbolic
search.

Figure 3-1 shows that algorithms cluster into two main groups according to characteristics such as
behavior and structure. This clustering helps to select fault-tolerance methods for new algorithms,
because the algorithms within each cluster tend to share similar fault-tolerant mechanisms. Within a
well-structured mathematical domain there may be information that allows a problem-solving technique
to check its results. For example, multiplication is defined on well-ordered sets, with clearly defined
distance measures. By monitoring the change in distance during execution of the algorithm, we can
detect unexpected changes and attribute them to faults. An alternative, less-structured, example is the
non-algebraic domain of symbolic search. Often there is meager information about the relationships
between elements of the domain; worse yet, there may not be a partial evaluator to describe how close a
partial solution is to a solution node. This makes it difficult to use algorithm-based fault tolerance,
because we cannot tell if a node is on the path to a correct solution. Indeed. search is widely known as a
"weak" method precisely because there is little information about the search space. It has nevertheless
been possible to exploit some formal definitions within search problems to exploit the algorithm
approach. For example, estimates on the distribution of answers in the search space have been used in
fault tolerant search [54, 103].

The second characteristic is how well-behaved the algorithm is, i.e., whether a small perturbation in the
computation produces little or no error in the output. Many numeric algorithms are well-behaved. Small
variations in the data or intemal values do not result in a large error of the output. Although poorly
behaved numeric algorithms are known, they are rarely of interest because well-behaved altematives can
be used. On the other hand, many search algorithms are poorly behaved, since a wrong decision can
result in completely missing an answer node. Nevertheless, some well-behaved search algorithms have
been devised, including Rivest’s "adversary answering” scheme (to be discussed below). This gives the
correct answer even under worst-case error assumptions. Fault tolerant algorithms have been developed
for search of ordered data structures as well as for heuristic search through randomized backtracking.
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Figure 3-1: Clustering of Algorithms

The algorithms can also be taxonomized in a second way, according to the perspectives of malleability
and redundancy shown by the hierarchical chart of figure 3-2. Malleability describes the ease with which
the information and hardware can be restructured, and also the ability to continue functioning after a
partal loss. This contrasts with brittle machines, where the loss of a component cripples the entire
machine, or brittle computations where one factor of a product can completely change the result. Highly
malleable hardware systems include restructurable arrays and distributed systems with flexible
interconnection networks. Less malleable systems, such as the Alliant FX/8, can be reconfigured offline
to provide high availability with low hardware redundancy: the Alliant’s self-scheduling system software
can automatically adjust to the number of processors. Brittle systems require that all components are
fully functional, although frequently some malleability is provided by the ability to deconfigure defective
memory. Malleability has been discussed under many different terms in the literature; including
conformability, allocation and reallocation.

3.1. Redundancy

Figure 3-2 shows that redundancy is a key aspect of fault tolerance. Four flavors of redundancy are
presented: these are partial, invariant, full, and organizational. The first two introduce less than 100%
replication, whereas the second two require many redundant copies. An example of partial replication is
checksums in numeric problems. Replication in space and time are examples of full redundancy. We
note, critically, that no practical instrument has yet been designed to measure how "redundant” a
program is. Comparison 10 a theoretical lower-bound may help, but it does not show where the
redundancies are. It is therefore essential 1o observe the different kinds of redundancy and to develop
metrics for measuring their effectiveness, when possible.
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Figure 3-2: The Vastness of Fault Tolerance
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3.1.1. Invariants
An invariant is a constant property of a domain, algorithm, implementation, or model. It provides
partial fault coverage. Many systems test these invariants and execute corrective routines when an

invariant has to be restored. This approach brings us closer to the goal of fault tolerance that operates at
zero cost in the fault-free case.

The use of invariants suggests the following methodology for fault-tolerant programming. The key
idea is to (/) identify invariant problem features, in particular the inherent redundancies. These features
can then (2) be classified according to the faults that result in a violation of these invariants. The system
is (3) constructed to check for violations of the invariants, and (4) use corrective actions if a violation
occurs. It may be necessary to (5) augment the system by development of new invariants and redundancy
techniques. This has been demonstrated with iterative algorithms (4, 14, 97), and makes use of coding
techniques. The techniques are not widely used because the identification of redundancies is done by the
system designer. Programming tools have only recently started to receive attention (for example dataflow
analysis and VLSI design tools (8, 62]).

Invariants are the basis for the general fault tolerance approach defined by Dijkstra. He introduced
self-stabilizing programs which are guaranteed to converge to a legitimate state in a finite time. Work in
this area defines a system in formal terms, for example through formal grammars of strings that match a
characteristic regular expression. Context-sensitive rewrite rules describe the possible state transitons.
Such systems are self-stabilizing if "starting from any state, the system will reach the [distinguished]
home state.” [25] The system must also satisfy a program specification, and guarantee progress toward the
result. One domain where the approach is useful is in "mutual exclusion,” which provides exclusive
access to a shared resource passing a token between different requesters. Transient failures may induce
errors by injecting duplicate tokens into the system. A fault-tolerant distributed algorithm [25], discussed
below, shows an example of self-stabilization for the mutual exclusion problem.

The self-stabilization and other properties should be proved by the rewrite rules of the system. The
considerable advantage of formal correctness is offset by the major drawback, namely the difficulty in
developing the system description and proof. The formal description can be very difficult to write, and
the proofs must be generated manually. Moreover, an algorithm cannot currently be derived
automatically from state specifications, since this requires solution of the automatic programming
problem. Nevertheless, the approach is of considerable value when the algorithm is sufficiently simple.

We now present a perspective on the many kinds of invariants that can be used in system construction.
A domain invariant is a property of the problem, whereas an algorithm invariant is a property of the
computational method. Both describe a high-level characteristic that can be checked to provide assurance
that the computation is proceeding correctly. Extending this idea, an implementation invariant is a
property of the particular way the algorithm is programmed. A model invariant is built into the
programming methodology, such as functional or object-oriented programming.

Instances of domain invariants are described by theorems. One such theorem, due to Parseval, states
that "the sum of the squared input energies is a constant times the summed squared output energy” [4].
This gives a relationship between the input and the output values. and can be tested during program
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execution. Any violation of the invariant indicates an error. Further analysis may be necessary to decide
if the error is attributable to a hardware fault as opposed to computational errors that might result from an
ill-conditioned problem. Identification of a domain-invariant requires detailed knowledge of the problem
domain, and this formal knowledge is not known for many problems.

In contrast, the algorithm invariant depends on the formalization of the solution, not upon the problem
itself. An example of an algorithm invariant is the balance condition of a tree. Speciﬁcally', the
difference in height between the two subtrees is well defined, as is the ordering between adjacent tree
nodes. These properties can be checked periodically to ensure the system is behaving correctly.
Likewise, some matrix algorithms have a priori bounds on the values of the norms. If these bounds are
violated it indicates that an error occurred.

Implementation invariants are properties of how the algorithm is written, and are not due to the
problem itself. Checksums, in which a sequence of data values is summarized in a scalar, are basically
signatures which validate the data. An error is indicated when the checksum does not match the data.
Well-known techniques, described in [128], include Parity, Hamming, and finite field codes. Some codes
allow recovery of correct data from the errorful data, for example by augmenting a matrix with additional
rows and columns. The addition of error coding augments the data to increase redundancy, thereby
providing an invariant.

A model invariant considers either the primitive operations or the programming model. One study
with faulty primitives assumes a model of computation with a comparison operator that may lie with
probability p [98]. A correct algorithm is designed despite the errorful operations. This is based on a
study of invariant conditions, such as the number of data items examined during execution of a loop.

The invariant can be a characteristic of a programming model. This can determine the appropriate
recovery techniques. In functional systems side effects do not occur and checkpoints do not have to
maintain the full environment of each function. This is one reason for the interest in functional languages
(84], as well as graph reduction languages [32] where the behavior of a function is determined entirely by
the parameters to the function. Such function-based methods allow reassignment of processing resources,
because information is not preserved between invocations. A languages can also incorporate assertions,
which are first-order predicates that are added to the source code definition of a program. Such
augmentations are similar to Floyd-Hoare proof rules that augment programs with correctness proofs.
These are subsequently verified during program execution. Special languages have been developed to
express these assertions, complete with systematic techniques to verify the programs
(19,33, 34, 74,75,76). In object-oriented programming (for example fault-tolerant C++) the recovery
behaviors are defined on the basic data objects and are inherited by all members of the class.

In all cases it is important to note that testing an invariant does not guarantee total correctness of the
execution. Satisfaction of one invariant does not guarantee that all other invariants are also satisfied.
Furthermore, it may be too expensive to fully utilize an invariant, in which case partial fault checking
may be the only reasonable altemnative. For example, consider the problem of garbage collecting unused
memory and maintaining a list of unused storage. The invariants include the fact that no “in-use” element
should give the address of an unused block. It is infeasible to test every pointer access against a list of
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every free location, yet a suitable design choice will allow partial fault coverage. In particular, a 2 heap
garbage collector has the characteristic that all free storage migrates to a single area in memory, for
subsequent allocation according 1o a stack discipline. Partial testing of the invariant can be implemented
by checking the bounds on each access to be certain it does not reference the wrong area.

Invariants have been referred to as constraint predicates, or algorithm-oriented tests, that give
acceptable limits for the errors in a processor. These tests are constructed from the natural constraints on
the application. The metrics should evaluate the percentage of faults covered by the constraint. Such
predicates can be easily built to never erroneously identify a correct result as faulty. However, it is more
difficult to evaluate the ability of a predicate to prevent wrong results from being presented as valid. For
example, the following predicate on the computation of the surface area of an object will only prevent
grossly wrong errors. More detailed information is necessary to improve fault coverage.

Predicate Ar (area: real): Boolean:
if (area < 0) error(): else return correct;

The garbage-collection example given above is a second instance of a correctness predicate.

A major difficulty with the approach has been the lack of guidance in selection of constraint predicates,
particularly the lack of metrics to measure their effectiveness. One solution is to initially formulate the
specification based upon metrics, which are then applied to a distributed problem solver. This yields a
constraint predicate that embodies the desirable fault detection (and correction) function of the resulting
algorithm. A key issue is what metrics can be used to guide the development of constraint predicates for
general problem classes. The metrics are important because they guide the selection of features extracted
from the application, and this leads to executable assertions which compose the constraint predicate.

A basis for constraint generation is that each intermediate result should satisfy the three criteria of
progress, feasibility, and consistency. The first criteria corresponds to progress toward a goal or a final
solution. For example, an iterative algorithm may demonstrate progress through the property of a
convergence envelope, such as:

E*=|U*- U| Where U is correct, and k is the step.

IEX*1)|<||[EH| For suitable norm or measure.

Either local or global information can be the basis of the convergence tests. Global tests are more
common, but bear the additional cost of at least log(n) for communicadon alone. Local tests can
therefore be completed more quickly because they do not require communication. However, the local test
may have less information at its disposal.

In addition to convergence, the predicate should be feasible. For example, boundary conditions are
natural problem constraints frequently found in physics or engineering problems. Branch and bound
algorithms dynamically narrow the bounds on feasible solutions, during a search process. They thereby
have the feasible constraint of excluding certain values as erroneous. The third criteria, consistency
conditions, is a development method for constraints. For example, locally computed values in the
conjugate gradient algorithm must be consistent with the values received from other processors [6].
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3.1.2. Complete Redundancy

Faults can be masked out by use of duplicate components, since it is unlikely that a majority of the
units will fail simultaneously. The hardware, program and data are replicated, with voting to compare the
results. The majority answer is selected in an N-Modular-Redundant (NMR) approach. Time can be
traded for hardware through repetition of the computation at different times, in so-called time redundancy.
In both cases a voting circuit selects the answer, generally by a majority rule. The method is expensive in
hardware cost, but is inexpensive in software cost. The reliability improvement is exponential under the
assumption of independent executions.

Voting can be done continuously or periodically. In the first case, a comparison is made for every
computation (or group of logic gates). This is extremely popular for logic-level or processor-level
comparisons. However, continuous comparison is sensitive to design faults, particularly if the same
design flaw is present in each replicant. A second problem with voting is the need to keep the
components close to each other (1o minimize propagation delay); this physical adjacency makes them
potentially subject to the same physical sources of error. Third, it is suboptimal in the sense that it wastes
components and may be subject to errors nevertheless.

Periodic comparisons, in contrast, can be performed by an operating system. The system state is
transmitted by each replicant to a voting unit. A highly compressed summary of the information (known
as a "signature”) may be transmitted to avoid the expense of communicating the entire memory. This
periodic approach suffers because the systems must be in a consistent state. Synchronization and
quiesence of the subsystems should occur before comparison. This may detract from availability and
performability. Complete redundancy techniques will not be discussed further in this paper because they
are not algorithm specific.

3.2. Malleability

A system needs to reconfigure in order to sustain performance despite loss of components. Two issues
arise here. Hardware malleability requires specialized design techniques, such as redundant busses and
defect isolation. Software malleability is the capacity to modify the software (program, data and control
structure) to continue execution on the modified hardware. Malleable systems are easily reconfigured.
The primary software reconfiguration techniques symbolically formulate the computer system as a
connected graph which describes the processes, processors, and interconnections. Manipulation of the
graph into a new form, one that can tolerate loss of some vertices and edges, gives a mapping of the
software onto a fault-tolerant hardware system (50, 70, 93). Correctness is demonstrated by showing the
new mapping preserves essential properties of the initial one.

The initial graph-based approaches had to make restrictive assumptions to ensure a solution could be
obtained. For example, a process was reassigned only to a processor of the same type and capacity as the
original assignment. More recent work has relaxed these assumptions through heuristic approaches (see
page 23). Heuristic methods have had good success at reasonable cost (56, 86]; this is fortunate because
the general graph-based methods are equivalent to the NP-complete subgraph isomorphism problem. To
avoid this difficulty, new configurations can be precomputed by well-known heuristic methods [23, 31],
including dynamic programming {60].
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Matrix-based models can also describe the system. These models use matrices to represent the
resource capacity and computational requirements. They use linear algebra to manipulate the
representations through correctness-preserving equations, which restructure the system into a fault-
resilient form (see page 21). The matrix and graph methods are equivalent due to the bijection between
graphs and adjacency matrices, and thus the choice of representation is based largely on convenience.
The matrix methods are appropriate in array-oriented domains, whereas the graph methods can be used in
highly flexible domains such as networks.

4. Algorithm-Based Approach: Examples

Having reviewed the main principles of fault tolerance, we now tum our attention to examples of
algorithm-based fault tolerance. Few reports of this approach are presently available in the literature.
This is an artifact of the newness of the approach. It is a reasonable expectation that more work will be
reported as MPPs continue to be popularized.

4.1. Numerical Algorithms

Three primary methods have been developed for fault tolerance of numeric algorithms. Low-cost
verification of results is built from theorems about the expected ranges of results. The most useful
theorems state an invariant condition that cross-checks intermediate results. Such verification conditions
are not always known, and therefore we may develop new methods by fusing an algorithm with an
error-correcting code. This creates a hybrid algorithm with improved reliability, but greater cost.
Moreover, the data and fundamental operations are not always amenable to such coding techniques.
Therefore, it may be necessary to employ a more powerful technique. One such approach builds a
directed graph to describe the computation, faults, and corrective actions. This graph is manipulated to
add fault-tolerance to a system, or to measure the fault tolerance already in the system. Unfortunately,
manipulation of such a graph into an optimally fault tolerant one is generally intractable (NP-complete).
We therefore construct fault-tolerant systems that have slightly more redundant components than is
theoretically required.

4.1.1. Algebraic Invariants — Matrix Methods

A rich collecion of algebraic invariants characterizes many numeric algorithms. The invariants
provide relationships between the program states at different steps of execution. These form the building
blocks for low-cost tests that detect, locate and correct faults. System-dependent invariants give the
essential execution properties such as timing, topology and resource allocation. These invariants should
be preserved through reconfiguration to sustain system performance. The invariant may be intrinsic to the
computational method, or it may be added, as in checksums where redundancy was added. Invariants
have been developed for fault detection and recovery of QR factorization, the conjugate gradient method,
orthogonal transforms, and partial differential equations (PDE’s).

One particularly strong invariant is orthogonality. Orthogonal matrices occur in many areas, including
the solution of simultaneous linear equations. A matrix Q is said to be orthogonal [94] if QTQ=I: this is a
domain invariant. For any orthogonal matrix Q and any vector x, ||@xil,=lixll,. These two equalities can
be tested concurrently with program execution, and non-orthogonal behavior indicates a system error. An
experimental evaluation of the approach for LU decomposition (4] uses orthogonality for detection under
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various fault models. It found fault coverage as high as 90% - 100% when accurate arithmetic (32 bits)
was used, though it was as low as 70% with smaller word sizes. This approach has been used to develop

fault tolerant FFT and singular value decomposition on the hardware of VLSI arrays [16] and the Intel
hypercube [17].

A second example is solution of a linear system of equations by QR factorization, which computes a
sequence of matrices {A,}. The algorithm has nice error properties: the eigenvalues and L, nom are
constant. These properties can be checked concurrently with algorithm execution, as is done in the
Gentleman and Kung QR implementation consisting of triangular systolic arrays with two additional rows
of processors [4]. Computation and comparison of norms is achieved without affecting the systolic flow.
The hardware checkers cost about 13% extra for a 16x 16 array. Other examples include exploitation of
the iterative nature of the algorithm to do fault tolerance of LaPlace and Jacobi methods [52]. This
depends on boundary values, monoticity and local equilibrium constraints. The most recent rigorous
analysis of algorithm-based fault tolerance is based on floating point error analysis of triangularization
procedures, using a checksum scheme [69].

Unfortunately, it can be quite difficult to find or use an invariant. In particular, the obvious property
may be too expensive to use. In this situation, the derivation of a new property is a good compromise.
For example, the conjugate gradient algorithm has error correcting properties, though they are expensive
to use. A low-cost variant checks algorithm-specific properties at the end of each iteration. This
performs error-detection at a moderate time penalty of 20% by testing the orthogonality of the prior
iteration [6]). Specifically, the conjugate gradient theorem gives a checking condition that requires time
O(Ic”;). This is reduced to 0(14) by only checking the orthogonality of the new residue to the previous

vector, since this can be computed without a distributed matrix-vector product. Thus, algorithm
information is of help in control of faults.

4.1.2. Algorithm Invariants — Bypass Recovery and Extra Memory

Information about the algorithm can diminish the requirements for saving state information, as well as
the amount of lost work that we must recompute. The novel technique called bypass recovery [88] is one
example that does not repeat the computations that are lost through faults. Instead, the approach uses
algorithm properties to continue running an iterative process without restoring the lost information. The
bypass recovery method has been demonstrated for the multi-grid method of solving partial differential
equations (PDE). Such equations are solved on a near-neighbor architecture by a discretization and an
iteration processes. Discretization places a piece of the equation onto each processor. lierations consist
of local problem-solving followed by communication of the results to neighbors. The loss in accuracy
from missing a few mesh points is claimed to be small, since only one small portion is in error.
Reconfiguration adapts the algorithm subsequent to the fault, by a rediscretization process. This changes
the model around the faulty processor. Although the order of eror in the neighborhood of the fault
increases, the overall results do not change significantly. Theoretical and practical results show "the
effect of a faulty processing unit is almost negligible.” However, their analysis is not rigorous, and no
simulation results are shown. A similar self-correcting principle has been described for resistive neural
networks [57). In essence, the extra work done in each processor ensures that adequate state remains to
continue operation subsequent to loss of some processing elements. In the case of neural networks, the
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threshold behavior of neurons masks out the faults,

4.1.3. Reconfiguration of Parallel Systems

Subsequent to removal of a faulty component, it is necessary to reconfigure the system. This
reconfiguration depends on the class of machine, such as the Multiple Instruction Multiple Data (MIMD)
machine. These are composed from many — perhaps tens of thousands — fully functional autonomous
processors. Some MIMD machines can be easily reconfigured because the multiple processors can execute
independent programs. Each processor executes a different instruction stream, stores data in its local
memory or a shared memory, and communicates with other processors. The communication pattems are
defined by an interconnection topology. The local-memory model has greater promise for reliability,

compared to the shared memory machine, because an errant processor cannot easily destroy main
memory.

An algorithm-based approach to fault tolerance is appropriate for these machines running specialized
algorithms, since it is important to preserve the mapping between the algorithm and the architecture. A
fault in a MIMD machine manifests itself as a node or link failure which the system must remove.
Subsequent adjustments to the algorithm and the data allocations may be required to efficiently obtain
correct results; the processors can be individually changed because each one can execute its own
instruction stream. A centralized adjustment uses complete information about fault locations. On the
other hand, distributed reconfiguration uses local and partial information. Such strategies do not have a
single point of failure, and thus are not vulnerable to the failure of a central host. Moreover, the system
can be easily expanded because it does not have to stay within the host’s capacity. Distributed
reallocation algorithms have been discussed by Uyar, Banerjee and others.

Data reallocation is the major issue in MIMD fault tolerance, and allocation decisions should be based
on the topology. For example, the best known reconfiguration methods for generalized interconnection
networks are "uniform data distribution” (UDD) and "reduced data column” (RDC) methods. The cost of
these methods has been extensively analyzed by Uyar (121,122, 123) through a model with
parameterized communication costs. The processors must also save state by periodic checkpointing of
intermediate results to adjacent processors.

The parameters of Uyar's model includes the number of faults, the computational capacity, byte v.s.
block-oriented com:rrxurﬁgation and [/O load. The work defines several metrics, including performance
degradation, PD=2%_ 100 (where T is the time in a fault-free machine, and likewise

b4 —r:-:—-'x normal

Tfamy is the time in a faulty machine) and analyses PD under various models. This measurement is
meaningful because it shows how much the system’s performance degrades for a given task.
Performance degradation is minimized by the UDD method.

Reconfiguration is more complicated for the class of Single Instruction Multiple Data (SIMD) machines.
Many simple processors are interconnected, with every processor executing the identical instruction on
local data. Tight data synchronization allows very high performance, provided the propagation delays
between processors match the processing delays within the processors. However, it is necessary 1o adhere
to stringent timing constraints in order to achieve maximum processor utilization: otherwise cycles are
lost to communication delays. Therefore the algorithm and data must both be reconfigured. The
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reconfiguration is done by algorithm transformation techniques that preserve crucial invariants — such as
umings and algebraic properties. The primary goal is to design algorithms and architectures that must
conform to each other, even when the architecture changes dynamically.

Two effective hardware reconfiguration strategies for processor arrays are the "reduced row" (RR) and
"reduced column row" (RCR) methods. These can be implemented at reasonable cost, and maintain the
basic topology though not the system size. The RR technique always removes the entire row that contains
any defective processors. It requires hardware support in the form of one switch per processor to allow
row deconfiguration. However, this cannot preserve the array shape, and each reconfiguration removes N
processor (in an N2 size array). The second method, RCR, alternates between removal of rows and
columns. It retains the array shape, and removes fewer processors than the RR method. These
improvements result in better performability, thereby offsetting the more complex switches needed to
deconfigure columns as well as rows.

Software techniques have been developed to create new algorithms that compute the same result as the
initial algorithm, yet conform to the architectural capabilities of the reconfigurable architecture. This is
done by applicaton of a suitable sequence of correctness-preserving transformations (40, 41, 79]. In
particular, an algorithm can be manipulated into a form that will operate subsequent to RR or RCR
hardware reconfiguration. Fault tolerance is thereby achieved by simple reconfigurable hardware in
conjunction with comectness-preserving algorithm transformations. We describe here a particularly
elegant transformation method that has been developed for SIMD arrays. This approach may eventually
prove usable for non-systolic systems as well.

The approach uses linear algebra to describe the algorithms, hardware, program transformations and
reconfiguration properties. The descriptions give the patterns of data generation and use. An index set
describes the shape and activity of the processor array and algorithm. The index set of an array gives the
shape of the interconnection primitives. An augmented index set describes an algorithm, complete with
the time and location of each computation (41].

This heavy machinery is powerful enough to describe general algorithms, processor arrays and
reconfiguration techniques. By use of a six-step transformation process, the algorithm is manipulated to
fit the architecture and support the reconfiguration. The steps are:

1. Select possible transformations which are heuristically acceptable.

2. Generate all possible matrices that do not violate the dependency requirements.

3. Find all nonsingular transformations S which solve the matrix equation SD=PK. K
indicates utilization of primitive interconnections in P, D is the algorithm dependencies, and
P is the interconnection primitives.

4. Select the transformation that needs the least number of bands.

5. Map the indices 10 processors.

6. Schedule the bands, perhaps in lexigraphic order.

Formally, the processor array is defined as a tuple (J*"!.P) where /"' cZ™! is the index set of the
array and Pe 217 is a matrix of interconnection primitives (Z is the set of all integers, and / is the set
of nonnegative integers) [79). General systolic structures can be modeled with this approach, for
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example, the 8-neighbor bidirectional connections and triangular arrays. Likewise, an array algorithm
(A) is defined over an algebraic structure S is a 5 tuple A=(J*C.D X.Y), where /™ is a finite index set, C is
triples of (index set, variable, term) where the terms are operations of the structure S. The set of input
variables is X. The set D describes dependencies, which may be input dependence, output dependence
and internal dependence. Convenient matrix forms of D have been developed. An execurion is a partial

ordering, a valid execution only depends on previously computed results and an execution rule insists that
all computations in C terminate.

This language is sufficiently powerful to describe reconfigurability. An algorithm has the RR property
if the first space dimension of the dependency vector (D) is nonnegative. The dependency vector for an
algorithm with RCR property is nonnegative in both space dimensions. Thus, it is easy to check if certain
hardware implementations of the reconfiguration methods can be used. The approach to algorithm based
fault tolerance modifies the algorithm so it will conform to a robust hardware architecture.

Massively Defective Arrays

A novel approach to reconfiguration works on a "massively defective processor array" that consists of
simple cells which can (dis)connect from their neighbors. Fault tolerance of the hardware array combines
distributed self-configuration algorithms with algorithm transformations. The purpose of self-
configuration is to construct a specialized hardware structure from the defect-free computer cells. One
implementation of the defective processor array, by Lee [62], makes use of regular replicated structures
and switchable interconnects. Usable clusters are identified, organized into a spanning tree, and
connected into the desired configuration. The cells can be configured into an irregular graph. as
necessary for a general computation.

Lee’s work makes realistic assumptions about fault partterns. The size, shape and occurrences of faults
determine the patterns of processor clusters. These patterns are described by percolation theory (61] This
allowed for accurate simulation of the configuration and execution of several filtering algorithms, such as
FIR filters.

Algorithms to run on the machine are described as signal flow-graphs, which have very tight
synchronization requirements. This is problematic, because the reconfigured hardware may be unable to
satisfy the timing requirements. Lee's approach transforms the signal flow-graph into a data flow-graph,
since the latter substitutes data dependencies for time dependencies. This is done with domain-specific
methods, such as Z-transforms. The 1O relationships between variables form a digraph, and manipulation
of this graph is equivalent to manipulation of equations. The time sensitivity of systolic algorithms is
thereby avoided by producing a restricted dataflow algorithm through systematic transformations of the
systolic algorithm. The problems of implementing a full-scale dataflow architecture are also avoided,
because the result of these transformation techniques remain within the current hardware technologies.

4.1.4. General Numeric Fault Tolerance

Invariants and checksums are not a panacea. A more powerful and mechanism must be employed for
algorithms that do not fit easily into the above framework. One such approach considers the algorithm
characteristics, yet is quite general. This is based on graph-language descriptions of the architecture and
the program [12, 13, 50, 70, 71, 93]. Allocation and configuration can be described with respect to the
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graphs.

Operations upon graphs — isomorphism, path-finding, and flow analysis — have direct utlity in
augmenting a computation with error detection/correction, as well as mapping to parallel hardware and
allocating runtime resources. For example, if the algorithm graph is isomorphic to a subgraph of the
architecture, then the hardware can execute the algorithm [50]. A fault can be modeled as the loss of
nodes. The system is capable of running the program after loss of & nodes, provided that an isomorphic
subgraph always remains after the removal of any & nodes. A difficulty of the graph-theoretic approach is
that many of the problems are NP-complete, and therefore approximations must be developed. Tractable
solutions have been developed for some important special cases, notably tree and lartice structures.

The most general work builds a graph model of system components, including the computation, the
errors, and the error-checks. A check is any combination of hardware and software applied to test the
results. Bounds on the data and check nodes are developed subject to "regular” constraints on the
cardinality of the elements, and error patterns are derived subject to communication constraints.

Recent work in graph models [12] creates a general tripartite graph from three detailed source of
information: error patterns, fault subsets and checks. The initial tripartite graph is simplified into a
smaller, computationally tractable, bipartite graph with n inputs and p outputs. The graph is manipulated
under the assumption that changes reflect modifications to the entire system, and a checking graph is
thereby constructed for the simplified problem. Once modified, the bipartite graph is expanded back to a
graph of the original problem, under the assumption that the bipartite simplification preserve correctness
and is near-optimal. The result is frequently is not optimal because of the bipartite assumption. The only
exact bounds have been developed for the non-trivial special case of 2-error detection.

Approximate bounds for faulr detection can be obtained by 0/1 linear integer programming. The model
has (;) subsets corresponding to selection of g checks from n inputs. In the 0/1 formulation a value of x;

is set according to output and neighbor constraints. The a;; of the constraint matrix are 1 if and only if
the cardinality of the intersection between the i* input set with the j*# output set does not exceed the
number of allowable neighbors. The problem, minimization of ijj subject to the constraint

;3 j* %2 1, can be solved by linear programming to obtain the number of checks. Bounds for fault
location are larger, and are not considered here.

The overhead of the resulting allocation is bounded by a crude fan-in argument. If p checks are
evaluated, only a log-time fan-in tree is required as a lower-bound. An upper bound is more difficult to
evaluate because the checks could be arbitrarily complex, though a restricted checking model gives the
following bound, where fis the fan-in, g data elements, and p checks are evaluated:

dmesrlog )]
l_procJSp—‘o-f‘g—l D D
Other researchers have also considered algorithm behavior in the recovery algorithms. Since these
algorithms depend only on local information, they are not sensitive to central site failures [63, 78, 129].

For example, distributed recovery methods make local recovery decisions based on a graph that
represents the "minimal system configuration.” The graph is task-dependent, and faults are modeled as
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removal of a node from the graph. The recovery process selects a spare node adjacent to the faulty node,
and this processor will perform the work of the failed processors. If no spares are available, then the
work will migrate t0 another processor. This processor propagates the error o activate a spare node.
However, the algorithm depends on a distinguished "leader" processor. The recovery has to elect a new
leader, if a fault disables the distinguished processor. The main problems with the approach are that (a)
errors can occur where there are no spares, (b) the local reconfiguration is valid but nevertheless results in
an invalid global configuration, or (c) there is interference between multiple simultaneous
reconfiguration. Researchers avoid these problems by making the restrictive assumptions that only one
error occurs at a time, and that a unique node is responsible for it. They also assume that no faults occur
during recovery, and that recovery of multiple faults can be treated as a sequence of single faults [129].
The severity of these problems can be decreased by considering more detailed information about the
problem.

Extensions of the method consider specialized structures that have a loop or a tree configuration. This
makes explicit use of the algorithm characteristics to bound possible recovery actions, with the desirable
consequence of relaxing the restrictions on reconfiguration. The extension for systems where the
interconnection topology is a loop extends the initial structure. The basic topology is augmented by
additional nodes within a diameter <Z to construct a power graph ct ;L that is k-FT with respect to the
initial graph C,. For tree systems, one can develop necessary and sufficient conditions for fault tolerance
to be p-step k-FT with respect to R. A k-FT tree is constructed from the basic T, graph by assigning spare
nodes to k spare levels and interconnecting these spares to the root. Thus, the specialized characteristics

are key to improved fault tolerance.

4.1.5. Adding Redundancy — Checksums

Often the invariants are not strong enough to build a fault tolerant computation. In this case the
algebraic invariants can be added to a system through data redundancy, particularly for numeric
algorithms. For example, checksums operate with less than 100% additional hardware, yet provide close
to 100% fault coverage. These data level redundancies, such as include parity or checksums, are
maintained by memory accesses and arithmetic operations. Data aggregates (such as arrays) can also be
made redundant by use of row or column checksums. The difficulty is to find an encoding method that
can be computed quickly yet remains invariant over the operators of the domain. The problem has been
successfully tackled for many machines, including processor arrays (83], hypercubes (17] and volatle
memories.

Three kinds of checksums have been developed for numerical problems such as matrix-matrix,
convolution, filters and linear system solvers {1, 83]. The distinction between the many different kinds of
checksums is illustrated by the example of LU decomposition. Three ways to solve the problem are:

e Row and column checksums, which can detect but not comect errors in matrix vector
multiplication or LU-decomposition errors.

o Weighted checksums, which provide a low-cost solution to the above limitations, but suffer
from the introduction of roundoff errors.

o Weighted average checksums (WAC) which are preserved by the operations of matrix
addition, multiplication, LU-decomposition, transposition and scalar product.
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The reliability of these methods has been extensively analyzed under the assumption of a constant
number of processors [14). Comparisons were made for both theoretical and empirical results. The most
reliable method was the weighted average checksum (WAC). In contrast, the triplicated approach was less
reliable than the non-redundant algorithm, since it must use three smaller problem partitions, and hence
has a longer runtime. A refined measure shows the WAC algorithm is roughly mwice as reliable as TMR.
This result is valid for special-purpose units that run in real time without interference, using fixed-size
hardware arrays. However, the TMR method is slightly better according to the metric of mean time to first
failure (MTTF).

Checksums have been designed for high-level computations as well. Convolution algorithms, for
example, are made fault tolerant with systematic encodings [97] that "leave data symbols in an unaltered
form after manipulation by polynomial multiplication.” The advantage of the approach is simplicity of
the resulting hardware system, although the encoding is highly domain-dependent (see [97] for the
mathematical detail). This allows the fundamental convolution algorithm to execute unmodified, yet
protects against errors. A coding circuit computes parity symbols concurrently with the data
manipulations. A self-checking comparator then checks the result of the computational and parity steps.

4.2. Search Algorithms

We now tum our attention to search algorithms. The search problem is to select a specified element
from a set, where the choice is based either on an exact or an heuristic match. Researchers have
considered fault tolerance of both sequental and parallel search algorithms. Results consist of many
different algorithms, each algorithm designed under a different fault model. The variety in fault models is
a prominent reason for the many different results. A general fault model is built on Byzantine failures.
Given primitive operations that can deceptively lie up to E times, the research result is an algorithm and
complexity bounds for ordered sequential search {98]. Architecture-specific models, on the other hand,
correspond to the vulnerabilities of specific hardware systems. One such model uses a network of fail-
stop processors that never lie, but may be infinitely postponed [11, 54). Alternatively, a system crash is a
serious fault that may corrupt the system by the failure to complete updates to the the search structures
(22,42, 117). Fault tolerance requires restoration of the data structures to a consistent state. A recent
hardware development is the parallel associative memory, where the dominant faults are loss of a block of
memory, or random bit changes. We now discuss the specific fault models and the algorithms developed
for them.

4.2.1. Binary Search with Faulty Comparisons

Work by Rivest [98] solves a search problem under the theoretical model of a sequence of primitive
operations subject to faults. The problem is to select an element (or neighborhood) from an ordered set
(or function) by use of a binary search procedure. The primitive operation is to ask "yes/no" membership
questions, for example, "is the value less than x." The fault model allows up o E wrong answers, which
may attempt to deceive the algorithm. Since questions are posed sequentially, the measure of efficiency
is the number of questions, rather than the complexity of the questions or the time needed to answer them.
Since this work is somewhat theoretical, it should be mentioned that other researchers have considered
more general unreliable components [43, 44] and communication over faulty channels (119].
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In Rivest's work the redundancy is the additional queries that must be posed to compensate for the
incorrect answers. A trivial algorithm would repeat each question 2E+1 times (if E errors can occur), and
could be based upon the lower bound of log, n questions posed by bisection (binary search) with error-
free information for n elements. A surprisingly efficient "adversary answering strategy” uses only
Elog,log,n+Elog, E more comparisons than the bisection algorithm. The strategy computes a weight
for each possible element according to the number of erroneous answers that may still be supplied. At
each step the algorithm picks the next question ("is x € T") such that the "yes" and "no" weights are
closest to being equal. The significance of this result is that establishes a precise bound, which
fortunately is quite small, on the number of additional comparisons. This can have practical benefits
when questions are expensive. This work could be extended in several ways, including design of pattem
recognizers that operate under data, program, or component faults. The most serious limitations with this
approach are the requirement of an ordered domain, the sequential execution of the queries, and the
assumption that all questions are equally expensive. These restrictions are relaxed in the engineering
approaches described below.

4.2.2. Heuristic Search with Fail-Stop Processors

Fail-stop systems have the property of partial-correctness. They assume that a component either
operates correctly or does not operate at all. Thus, all available data can be completely trusted, since
failures are manifest as lost computational and storage capacity. When the broken processors Stop
providing service, the computation and data in the processor are lost. Fault tolerance routines must
efficiently complete the computation despite possible loss of programs and information. Several methods
have been developed to address the possible loss of partially complete computations. In particular, when
a stopped processor is found, the computations and data it had been working on must be reassigned.
Alternatively, some robust parallel computations produce a satisfactory answer despite loss of some
processors’ information. This is possible in some search problems because of redundancy in the search
spaces, as will be described shordy.

One difficulty with fail-stop processors is locating the faulty PEs. A centralized technique can
periodically poll the other processors. If a processor does not receive an answer to a periodic "are you
still working" message, then the requesting processor finds a new subcontractor to perform the work.
Unfortunately, it has been observed that some subtasks take a long time to complete execution [11]. This
presents the complication that it is impossible to distinguish long-running tasks from broken processors.
The use of watchdog timers establishes an ad-hoc time-bound on each subtask, and timeout indicates that
the process failed.

This simple technique suffers from the inefficiency that subprocesses created by the crashed processor
no longer have a parent to receive the answer. This is the general “orphan” problem in distributed
computation, where task T, creates task T,, which in tum creates T;. If T, crashes then the task T,
cannot return an answer. All subprocesses of the crashed processor become orphans, since there is no
parent waiting for their reply. Efficiency can be improved by keeping the orphans, rather than killing
them. The intermediate results may be salvaged by use of specialized runtime structures, such as the
dynamic call tree of subroutine invocation (64]. A "twin task" is allocated to inherit the offspring of a
crashed processor, and the necessary parent/child linkages are retained through grandparent pointers.
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The research misses several important issues. In particular, it ignores the efficiency of the parallel
implementation. For example, the analysis does not mention the branching factor. Moreover, the
programmer is required to state parallelism explicitly. Thus the algorithm properties are not fully
exploited. These issues have been addressed by other researchers. Specificaily the structure of the search
space can improve fault tolerance and efficiency. For example, if a search space is redundant there can be
several valid solutions to problem. Each parallel processor can simultaneously explore a different
plausible solution. The fault tolerant algorithm can entirely ignore the failed processor, since the other
processors can still compute an answer. Recovery of the lost work is therefore not required.

The success of this approach requires that answer-producing computations be uniformly distributed
throughout the computing device. A technique to ensure that the answers adhere to this property is called
randomization, partitioning the search space so each partition is expected to have an answer [S4]. Each
partition can be processed using only local information, making it unnecessary to maintain global data
structures! The exact randomization depends upon cutoff functions of the particular problem instance,
since these determine how deep a search will proceed before it is abandoned as futile. The initial
distribution of answers is also important. If there are good cutoff functions and uniformly distributed
answers, then randomized search trees [103] provide a method to select the next successor. In these
cases, the randomized search is as efficient as depth first search, because the cutoff functions prevent long
and fruitless searches. Randomization also helps when answers are scarce or when the cutoff function
does not prune away bad paths. In both cases, all answers must be found, because the cost of missing a
solution can be large. In this situation, selection of the next node to evaluate is made with local
information. It is efficient because there is no global information, there are neither global checkpoints or
access delays [54]). However, this presumes that faults are only omissions, not incorrect output. Also,
there cannot be global damage by the faults.

4.2.3. Ordered Search with Dictionary Machines

Search has been approached by specialized hardware. One specialized task is the dictionary task,
which is composed of a sequence of query and update operations. The query operator is quite simple,
generally the retrieval of the record that corresponds to a given value. Many architectures have been
proposed for this task, including large associative memories. The primary approach to fault tolerance is
to maintain multiple copies of the data However, recent work explores the idea of retrieval based on
hash codes for the special case of imprecisely defined access (as in vision recognition tasks, for example).
In both cases, it is important to note that data retrieval is highly data dependent. This problem cannot be
solved efficiently by systolic arrays (21] or their fault-tolerant variants. Therefore, the fault tolerance
methods for systoflc processing cannot be directly applied to the dictionary task.

Implementations of dictionary machines include tree-based architecture [15] and hypercube machines
(87, 106). A particular technique designs fault tolerance directly into the algorithms by use of two binary
tree machines (each a "half-tree"), each of which stores a complete copy of the data. A pair of redundant
root processors, one for each half-tree, issues commands to both trees. Update operations execute in both
halves. Queries retum an answer to the respective roots, which vote and signal an error if there is a
disagreement [4]. Error correction currently requires reloading the defective tree from the operational
tree. This simple s:heme has several defects.
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A major problem stems from use of a "compress” operation that rebalances each half-tree after every
update to prevent a skewed tree from growing within the half-tree. As a result, an entire subtree can
become polluted by the "compress™ operation due to propagation of errors between processors in a
subtree. The data structures do not support local correctability within a region or even within a half-tree.
Since errors must be corrected by reloading the faulty subtree from the fault-free subtree, the machine
only tolerates 1 fault between two "query” operations. Significant performance improvements would be
achieved if the software could isolate the area around the fault and then repair the damage selectively.
Parallel k-fault tolerant data structures would be an appropriate way to improve this fault tolerant
dictionary machine. Such structures will be described for sequential machines in section 4.2.4 . Even
given these difficuities, the cost for fault tolerance in the basic approach is only about 100% additional
hardware, which is better than the 3X replication necessary with a triply modular redundant (TMR)
approach. The effectiveness of their approach has not been compared with error correcting codes,
perhaps because such codes are vulnerable to transient processor faults.

A second approach to the problem considers data retrieval without update [28], where faults occur as
errors in the input key and failures in some portion of the memory. Fault-tolerant retrieval is formulated
as a constraint optimization problem, similar to a neural network. These retrieval networks are
constructed as sets of associations. For image retrieval, recall is by presentation of a stimulus vector, with
auto-associative evaluation based on the generalized inverse of the input. This is effective for retrieval of
unknown objects (such as images) embedded in heavy noise. For text retrieval, the use of hashing
methods has the property that memory corruption results in only a modest decrease in retrieval
performance. This is largely because the memory is sparse. However, the authors have not reported
details of the hash functions, and their work does not consider large databases. It seems that use of
well-protected error-correcting codes would be a more direct way to solve the problem.

4.2.4. Crash Resistance — Ordered Storage Structures

Robust data structures — such as crash-resilient binary trees [117] and AVL trees (36] — improve the
reliability of sequential systems. Several principles form the foundation for this work. Known
relatonships (such as orderings) between data elements can be exploited for fault detection. Additional
links are added [22, 99, 115, 114}, to make the structure crash-resistant. Algorithms operate on the
redundant data structures to perform multiple traversals, and an error is detected if the traversals indicate
different data orderings. The error can then be comrected by voting among the multiple traversals to
determine the majority result. Error detectable and correctable search trees require only 1 more probe per
search than the underlying balancing technique [82].

As an exampie of fault tolerant data structures, the k-spiral list achieves a theoretical lower bound on
correctability by use of a data portion and k links. K-/ links point forward to different successor
elements, and one points back to a predecessor. A link can be changed atomically, yet several changes
are required to insert or delete an element. If the processor crashes during these updates, it is necessary to
recover the error-free before instance from the errorful after instance. The correctability of such a
structure is described formally; if ¢, components are changed in the new node, c, other changes are made,
p pointers are added to the new node, and r errors occur:

"For an instance in main storage, recovery by an r-correction routine from a crash during an insertion
operation can be guaranteed iff (a) c; +c, S2r+ 1 0r (b) c,S2r+ 17
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Since this bound cannot always be achieved, a weaker condition is needed. For example, in the
chained and threaded binary tree, deletion first uses a sequence of rotate operations to move the node into
a leaf position, and then deletes the leaf [117). A partially complete deletion cannot be "undone” within
the tight bounds given above. Fortunately, a relaxed correctability theorem produces a satisfactory
algorithm. Instead of producing the before instance, it is satisfactory to make a new instance that will
produce the right answer when the crashed operation is reapplied. Rotations conform to this definition
because they retain the inorder sequence of the tree. Moreover, this correctable structure is resilient to a
greater number of errors, under the assumption that only one error occurs within a bounded number of
components [116]. Thus, fault tolerant algorithm design modifies the original algorithm so it functions
correctly despite faults,

These ideas have recently been extended to searching a B-tree where several indices have been
corrupted (42]. However, robust parallel data structures have not yet been described in the literature.
Nevertheless, the above approach should be parallelizable for dictionary machines or text-search
applications (such as [106}).

A second extension is to create resilient execution structures to maintain execution information about
the dynamic structure of a parallel system, since they can be used to recover from execution faults [65].
Although these structures do not depend upon the algorithm properties, the ability to construct these
representations depends upon the programming paradigm. In particular, under the functional paradigm,
programs do not destructively modify data, and they are furthermore deterministic in the sense that the
same functions and parameters determine a unique function output. Therefore, a dynamic graph of
parameters represents a state which can be monitored by simple numbering techniques. This resilient
execution structure can be manipulated into a consistent state without extensive "undo” operations.

In summary, the method of algorithm-based fault tolerance is motivated by the working examples
described above, and additionally by problems with the other approaches. Neverthless, some readers may
prefer the traditional general-purpose fault-tolerance, due to the greater difficulty of designing for the
algorithmic method. However, there are many specialized cases where the general-purpose cannot
provide the necessary performance.

Despite the attraction of general-purpose methods they can suffer from performance degradation,
attributable to the overhead of redundancy management methods such as synchronization and voting [59].
This can even introduce real-time errors. Non-deterministic choices in NMR systems can cause problems
with voting methods unless special attention ensures that all replicants make same choice [85].

The overhead of checkpoint methods is a serious problem for interactive or real-time tasks. It has been
observed that it takes 19 seconds to checkpoint a system of 1000 ethemet-connected miCroprocessors,
with an additdonal 20 seconds to recover [113]. This is satisfactory for a general noninteractive fault-
tolerant environment, but it is too slow for high-availability systems. Fault detection uses redundant
subnetworks, with signature-voting to detect inconsistencies, and checkpoints for recovery. The major
problem with the approach is the need to quiese each subsystem prior to voting, so the error-free states
will be identical. This also demands deterministic subsystems. Because it takes 20 seconds to freeze and
checkpoint the network, these operations can only be performed every half hour. Hence the system may
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lose up to 30 minutes of computation if it must revert to a checkpoint! The 20 second delays and the 30
minute work loss should be improved. Algorithm-specific approaches are one promising means to solve
these problems.

5. Conclusion

This paper has presented a variety of approaches of fault tolerance, with an eye towards massively
parallel computer systems. The method is not general, and has thus far been applied only to specialized
problems. It results in significant performance advantages when it is applicable. Research is underway to
improve the generality of the approach, though the three-pronged approach of predicates, program
analysis and program transformations.

This paper has described important characteristics of algorithms and has cited research where these
properties were utilized t0 reduce the cost fault tolerance. The method of using characteristics of
algorithms, applications and architectures has been studied through a dozen examples. These are
summarized in figure 5-1, which shows the invariants, the costs and the method by which they work. The
key point of the figure is that algorithm invariants are exploited to achieve low-cost fault tolerance in
many cases. This is done by finding an invariant property and building fault tolerance around the
property. One such invariant is the ordering of the data elements. As shown in the first line of the figure
("faulty comparisons"), the method of adversary answering exploits the characteristic of "yes/mo"
membership questions. Likewise, the sixth line ("dictionary machines") shows use of a similar invariant,
where the fault-tolerance method is to vote between the two subtrees.

The primary difficulty is finding the invariants. Although some "generic" methods are known, such as
checkpoints and checksums, in general a painstaking analysis must be performed to determine these
properties. There as an opportunity for major technological advances in the form of automated analysis
tools. These might include dataflow compilers combined with token-managers, or dynamic programming
formulations that determine the cheapest way to retain the necessary amount of redundancy. An area of
particular interest is parallel processing of Al systems on MPPs. Little work has been done in the area, but
the power of Al, when delivered on an MPP, suggests this will become more commonplace in the coming
years. It is therefore appropriate to consider the application characteristics in development of fault
tolerance for these systems.
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