Solving the Depth Interpolation Problem
on a Parallel Architecture
with Efficient Numerical Methods

Cues- 35%-33

Dong Jae Choi

Department of Computer Science
Columbia University

ABSTRACT

Solving the Depth Interpolation Problem
on a Parallel Architecture
with Efficient Numerical Methods

Dong Jae Choi

Many constraint propagation problems in early vision, including depth interpolation, can be cast
as solving a large system of linear equations where the resulting matrix is symmetric and positive
definite (SPD). Usually, the resulting SPD matrix is sparse. We solve the depth interpolation
problem on a parallel architecture, a fine grained SIMD machine with local and global
communication networks. We show how the Chebyshev acceleration and the conjugate gradient
methods can be run on this parallel architecture for sparse SPD matrices. Using an abstract
SIMD model, for several synthetic and real images we show that the adaptive Chebyshev
acceleration method executes faster than the conjugate gradient method, when given near optimal

initial estimates of the smallest and largest eigenvalues of the iteration matrix.

We extend these iterative methods through a multigrid approach, with a fixed multilevel
coordination strategy. We show again that the adaptive Chebyshev acceleration method executes
faster than the conjugate gradient method, when accelerated further with the multigrid approach.
Furthermore, we show that the optimal Chebyshev acceleration method performs best since this
method requires local computations only, whereas the adaptive Chebyshev acceleration and the

conjugate gradient methods require both local and global computations.

Table of Contents
1. Introduction
1.1 Three Disciplines
1.2 Perspective on Parallel Computation
1.3 Acceleration of Execution Speed
1.4 Overview of Thesis
2. The Depth Interpolation Problem
2.1 Nature and Significance of the Problem
2.2 Previous Work
2.2.1 Work done by Grimson
2.2.2 Work done by Terzopoulos
2.2.2.1 Visible Surface Representation
2.2.2.2 The Continuous Form of the Problem
2.2.2.3 Discretization of the Problem
2.2.2.4 Properties of the System Matrix
2.2.2.5 The Multigrid Relaxation Method
2.2.3 Related Work
2.2.4 Significance of Current Work
3. Architectural Background
3.1 SIMD Machines
3.1.1 Massively Parallel Processor
3.1.2 NON-VON Supercomputer
3.1.3 Connection Machine
3.2 Model of SIMD Computation

3.2.1 Requirements on the Architecture from the Application

3.2.2 Derivation of Abstract Basic SIMD Models
3.2.3 A Global Summation Algorithm

3.2.4 Derivation of Abstract Extended SIMD Models

3.3 Conclusion and Summary
4. Iterative Methods
4.1 Adaptive Chebyshev Acceleration Method
4.1.1 Basic Iterative Methods
4.1.1.1 Jacobi Method
4.1.1.2 Gauss-Seidel Method
4.1.2 Extrapolated Method
4.1.3 Optimal Chebyshev Acceleration Method
4.1.4 Adaptive Chebyshev Acceleration Method
4.1.5 Parallelization
4.1.5.1 Pre-computation Stage
4.1.5.2 Iteration Stage
4.1.5.3 Space Complexity Analysis
4.1.5.4 Time Complexity Analysis
4.2 Conjugate Gradient Method
4.2.1 Steepest Descent Method
4.2.2 Conjugate Gradient Method
4.2.3 Parallelization
4.2.3.1 Pre-computation Stage
4.2.3.2 Iteration Stage
4.2.3.3 Space Complexity Analysis
4.2.3.4 Time Complexity Analysis
4.3 Multigrid Method
4.3.1 Multilevel Equations
4.3.1.1 Interlevel Computation
4.3.2 Multilevel Coordination Schemes

COO TN LN

i

4.3.3 Parallelization 71

4.3.3.1 Pre-computation Stage 72
4.3.3.2 Space Complexity Analysis 73
4.3.3.3 Time Complexity Analysis of Intralevel Computation 73
4.3.3.4 Time Complexity Analysis of Interlevel Computation 74
4.4 Conclusion and Summary 76
5. Numerical Results 81
5.1 Overall Discussions of Images and Iterative Methods 81
5.1.1 Root Mean Square Error 81
5.1.2 Iterative Methods 82
5.1.3 Kinds of Images Used 82
5.1.3.1 Synthetic Images 83
5.1.3.2 Real Images 83
5.2 Discussion on Estimate of Extreme Eigenvalues 84
5.3 Experiments on Synthetic Images 93
5.3.1 Single-grid Algorithms on the Finest Grid 93
5.3.1.1 Experiments on a Floating Plane 93
5.3.1.2 Experiments on a Cylinder 97
5.3.1.3 Experiments on a Sphere 97
5.3.2 Multigrid Algorithms 102
5.3.2.1 Experiments on a Cylinder 102
5.3.2.2 Experiments on a Sphere 115
5.4 Experiments on Real Images 124
5.4.1 Multigrid Algorithms 125
5.4.1.1 Experiments on Actual Range Data from a Quasi-spherical 125

Object
5.4.1.2 Experiments on Actual Range Data from a Soda Can 130
5.5 Implementation Experiences 135
5.6 Conclusion and Summary 137
6. Conclusion and Future Directions 139
6.1 Contributions 139
6.2 Implementation Restrictions 140
6.3 Extension of Current Research Work 140
6.4 Future of Parallel Architecture for Image Processing 143
I. The Appendix 146
I.1 Algorithm 6-4.1. 146
I.1.1 Listing of Algorithm 6-4.1. 146
I1.1.2 Overlapped Execution 148
I.2 Listing of SIMD Programs 154
I.3 Supplementary Numerical Results 165
I.3.1 Other Numerical Values 165

1.3.2 Sample Traces of Multigrid Algorithm (Fixed Scheme) 170

Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 2-4;
Figure 2-5:
Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 4-1:
Figure 4-2:
Figure I-1:
Figure 1-2:
Figure I-3:
Figure I-4:
Figure I-5:

Figure 1-6:

List of Figures
The Plate Molecules for Node (i, J)
The Depth Constraint Molecule
Orientation Constraint Molecules
The Interior Node Molecule

An Example of a Boundary Node Molecule

Inorder Labeled Binary Tree

Mesh Labeling at Leaf Level

Mesh Labeling at Coarse Level
Typical Multigrid Organization
Multigrid Algorithm (Fixed Scheme)
Complete Listing of Algorithm 6-4.1

Part of NON-VON Instructions (Extension Included)
Address Map (Adaptive Chebyshev Acceleration Method)
Pre-computation Stage (Computation of Matrix Coefficients)

Iteration Stage (Computation
Multiplication)
Schedule of Grids on Four Levels

of

Matrix-Vector

i1

12
15
15
16
16
26
26
26
67
70
153
155
157
162
164

171

Table 5-18:
Table 5-19:
Table 5-20:
Table 5-21:
Table 5-22:

Table 6-1:
Table 6-2:
Table I-1:
Table 1-2:

Table 1-3:
Table 1-4:

Table 1-5:
Table 1-6:

Table 1I-7:

Normalized Number of Iterations on Fine/Coarse Levels
(sphere : 2% density)
Number of Iterations on Fine/Coarse Levels (sphere : range
data)
Normalized Number of Iterations on Fine/Coarse Levels
(sphere : range data)
Number of Iterations on Fine/Coarse Levels (soda can : range
data)
Normalized Number of Iterations on Fine/Coarse Levels
(soda can : range data)
Speed-up Factors of Multigrid Approach
Execution Time of Multigrid Algorithms (in machine cycles)
Other Results (plane)
Other Results (plane : with more accurate initial estimates of
mg and M)
Trace of Multigrid Algorithm (Conjugate Gradient Method)
Result of Iterations on the Finest Level Only (Conjugate
Gradient Method)
Trace of Multigrid Algorithm (Adaptive Chebyshev
Acceleration Method)
Result of Iterations on the Finest Level Only (Adaptive
Chebyshev Accel. Method)
Trace of Multigrid Algorithm (Gauss-Seidel Method)

120
127
128
132
133
141
141
168
169

178
178

181
181
184

Table 3-1:
Table 3-2:
Table 3-3:
Table 3-4:
Table 4-1:
Table 4-2:
Table 4-3:
Table 4-4:

Table 4-5;
Table 4-6:

Table 4-7:
Table 4-8:

Table 4-9:

Table 4-10:
Table 4-11:
Table 4-12:
Table 5-1:
Table 5-2:

Table 5-3:
Table 5-4:

Table 5-5:
Table 5-6:
Table 5-7:
Table 5-8:
Table 5-9:
Table 5-10:
Table 5-11:

Table 5-12:

Table 5-13:
Table 5-14:

Table 5-15:
Table 5-16:

Table 5-17:

List of Tables
Speed of Typical MPP Qperations
Communication Bandwidth of the CM
Speed of Typical Operations for Abstract Model Machine
(Model I)
Speed of Typical Operations for Abstract Model Machine
(Model II)
Storage Space Used (Adaptive Chebyshev Acceleration
Method)
Operations in Local Computation (Adaptive Chebyshev
Acceleration Method)
Operations in Global Computation (Adaptive Chebyshev
Acceleration Method)
Summary of Operations (Adaptive Chebyshev Acceleration
Method)
Operations in Local Computation (Weighted Jacobi Method)
Operations in Local Computation (Optimal Chebyshev
Acceleration Method)
Storage Space Used (Conjugate Gradient Method)
Operations in Local Computation (Conjugate Gradient
Method)
Operations in Global Computation (Conjugate Gradient
Method)
Summary of Operations (Conjugate Gradient Method)
Restriction (simple injection) and Prolongation Operations
Restriction (local averaging) and Proiongation Operations
Change of Estimates of Extreme Eigenvalues (Algorithm 6-5.1)
Effects of Errors in Initial Estimates of Extreme Eigenvalues
(Algorithm 6-5.1)
Change of Estimates of Extreme Eigenvalues (Algorithm 6-4.1)
Effects of Errors in Initial Estimates of Extreme Eigenvalues
(Algorithm 6-4.1)
Number of Iterations (plane)
Normalized Number of Iterations (plane)
Number of Iterations (cylinder)
Normalized Number of Iterations (cylinder)
Number of Iterations (sphere)
Normalized Number of Iterations (sphere)
Number of Iterations (sphere with depth and orientation
constraints)
Normalized Number of Iterations (sphere with depth and
orientation constraints)
Number of Iterations on Fine/Coarse Levels (cylinder)
Normalized Number of Iterations on Fine/Coarse Levels
(cylinder)
Number of Iterations on Fine/Coarse Levels (sphere : 15%
density)
Normalized Number of Iterations on Fine/Coarse Levels
(sphere : 15% density)
Number of Iterations on Fine/Coarse Levels (sphere : 2%
density)

v

101
101
103
103

107
109

117
118
119

1. Introduction

1.1 Three Disciplines

This thesis is interdisciplinary research across three areas: computer vision, numerical analysis,
and parallel computer architectures. As such, we believe it is representative of a necessary
approach to a broad range of sensor-related computational problems: they must be solved
accurately, and they must be solved efficiently; but standard algorithms on standard conventional

machines used to fail to perform satisfactorily.

Many middle-level constraint propagation computer vision problems, including depth
interpolation, can be cast as solving a large system of linear equations with a symmetric positive
definite (SPD) matrix. Usually, the resulting SPD matrix is sparse. We are interested in solving

this problem in a computationally efficient way.

Many current iterative methods employ only local information in the matrix. Even when global
information is used, it is done in an indirect fashion. We study the more efficient iterative
methods well known in numerical analysis. In particular, we investigate those methods where

global information in the matrix is obtained in adaptive fashion.

Secondly, we explore whether these efficient iterative methods can be run on a family of
emerging parallel architectures, thus fully exploiting the computational power provided by these
machines. We first define the architectural need imposed by our application and then show the
implementation of the algorithms on a parallel architecture step by step. As a result of analysis,
we predict how fast the algorithms will run and how much storage space they will require. But
the other side of the coin is that, even with the most powerful hardware available now, we
demonstrate how slowly this one particular problem in computer vision will run, (even not
mentioning the whole vision task which is so easily and unconsciously performed by the human

visual system.)

88

1.2 Perspective on Parallel Computation

In general, in the development of parallel machines, three perspectives on the machine should
progress together. First, there is the research work on theoretical models of parallel computation.
Second, there is the actual implementation of parallel hardware, based on existing technology and
the accompanying development of software environments, high and low level languages, new
programming techniques, and various software tools. Lastly, there is the development of the
algorithms that can best utilize the new parallel machines. In fact, the urgent need of efficient

execution of application programs often initiates the whole process of research and development.

Our research can be scrutinized under this theoretical framework. We have developed a model of
computation for the single instruction multiple data (SIMD) class of machines imposed by our
application need. Secondly, we have the algorithms; in our case, the efficient numerical methods,
which we analyze for space and time complexity of parallel computation. Finally, we discuss the
resultant advantage on actual execution of application, presenting numerical results and

predictions of enhanced performances.

Our work contributes to a particular family of parallel machines, (SIMD architectures with local
and global communication networks;) to the area of image processing, (the depth interpolation
problem;) and more generally, to smoothness constraint propagation problems in early vision and

other related sensing.

1.3 Acceleration of Execution Speed
We also present a survey of the iteration methods with particular stress on the execution speed.
We start with wide classifications and narrow the scope until we reach the particular result we

have achieved. This survey also pulls together numerical analysis and parallel computation.

First, we address the issue of execution on digital computers against analog processing on an
analog mechanism. Digital processing has several advantages: flexibility, precision, and stability
in terms of both maintenance and repeatability. But its problem is speed. We deal mainly with
digital computation in our work, but we return to analog computation in a section of the last

chapter where we will discuss the possible image processing hardware in future.

Second, we address the choice of using a serial method that can be run only on the sequential
machines against a parallel method that can be run on a parallel architecture as well. The Gauss-
Seidel method is a typical example of much used serial methods, which converges when the
matrix is SPD. There are variations of it, such as the successive overrelaxation or the symmetric
successive overrelaxation methods, which speed up the iteration process further on a seral
machine. The Jacobi method is a first choice for the parallel method, but it is slower than the
Gauss-Seidel method when executed on the sequential machines and it converges only under
restricted conditions, (for example, when the matrix is irreducible with weak diagonal dominance,
which happens to be not satisfiable in the depth interpolation problem.) However, there are still
other more powerful methods, such as the Chebyshev and the conjugate gradient, which can be
run also in a parallel fashion, These methods are indeed very powerful, and they are provably
optimal, but they require global information. Naturally, our choice is on parallel methods.
Specifically, we have worked on the adaptive Chebyshev acceleration, which is a variation of the
Chebyshev, and the conjugate gradient methods. Even though the adaptive Chebyshev
acceleration method uses the slow Jacobi as the underlying basic iterative method, it is faster than
the conjugate gradient method when started with more accurate initial estimate of the largest and
smallest eigenvalues of the iteration matrix, that is, with more accurate global information.
Furthermore, when good estimates of the largest and smallest eigenvalues are available, we can
use the optimal Chebyshev acceleration method, which takes less execution time since global

computations needed to obtain better estimates of the eigenvalues are eliminated.

Third, the iteration methods can be accelerated further using a multigrid approach, where several
coarse and fine grids of various resolutions are employed. The execution at coarse levels is faster
but of limited precision, while at fine levels we have ordinarily slower response but finer details
are obtained. Through executing many iterations on the coarser levels as far as possible, at least
in the initial stages, the iteration process is speedied up. Others have tried the multigrid approach
with the Gauss-Seidel method as the underlying iterative relaxation method; in our approach, we
investigate the multigrid approach with two methods mentioned above, which are more natrally
parallel, but use global information in the matrix. Here, we observe similar accelerations through

the adoption of multigrid approach. Often, the degree of improvement is less dramatic since our

methods are already powerful enough for the execution on the finest level only.

Lastly, we mention the parallel implementation issue again. The execution of the powerful
numerical methods on a chosen parallel architecture, the SIMD machines with local and global
communication networks, will be analyzed in detail both in terms of space and time complexity.
The Connection Machine with a floating point accelerator unit, possibly of double precision
arithmetic, is a good choice to run these algorithms efficiently. We shall provide the necessary
technical guidance and relevant comparisons on the matter of machine selection, but our main
concentration will be in a more idealized setting. That is, a tree machine with multiple mesh
connections of different resolutions is nearly equivalent in power to a pyramid machine, and
naturally it can execute this kind of matrix iteration problems in the fastest way imaginable. Such
an idealized architecture will be used as the main vehicle and one particular abstract SIMD model

based on this topology will be used extensively throughout our work.

1.4 Overview of Thesis

Chapter 2 examines the depth interpolation problem in detail. The formulation of the problem
leads to solving a large system of linear equations with a SPD matrix, The previous work on this
problem and other related work are reviewed. We will show how, as an evolutionary process, our

approach can solve the same problem in a computationally efficient way.

Chapter 3 discusses three machines from the SIMD architecture family. An abstract model of
SIMD computation whose features are drawn from the three SIMD machines is derived. The
architectural features needed to solve a large system of linear equations with the sparse SPD
matrices are elaborated further. The generalized abstract model which provides the power of the

pyramid machine is then studied.

Chapter 4 introduces two computationally efficient methods that are well known in numerical
analysis. The parallelization of the computatons on a SIMD architecture is given and the
computational and the communication cost of the computations are analyzed based on the SIMD
model derived in Chapter 3. To this moment, the main focus is on the efficient execution at the

finest level. Then, the multigrid method is reviewed to show eventually how two efficient

methods can be run faster by employing several levels of the resolution.
Chapter 5 looks at numerical results and compares them,
Chapter 6 reviews the contributions made and suggests possible future directions.

The Appendix contains program listings and supplementary numerical results.

2. The Depth Interpolation Problem
In this chapter, we start the discussion of the depth interpolation problem in the context of early
vision. We then describe the work done by Grimson [Grim 81] and Terzopoulos (Terz 84).!

After discussion of further related work, we present the significance of our research.

2.1 Nature and Significance of the Problem

Visual processing has been formulated as a series of computational stages. According to Marr
[Marr 82], perhaps the researcher most responsible for the popularity of this framework, each
stage consists of a logically cohesive computation that takes as input some visual representation

and produces as output a new representation, a more complete and useful description of the visual

world.

Early vision is the set of processes that recover the physical properties of 3D surfaces from 2D
images. The examples of early vision processes are edge detection, binocular stereo, structure
from motion, shape from texture, shape from shading, optical flow, surface reconstruction, and so

on.

Marr’s framework of early vision is characterized by at least three major processing stages. The
first stage transforms the intensity representations of the retina into a primary representation,
called the primal sketch. Changes in the physical properties of surfaces almost always give rise
to intensity changes in the images, and it is at the level of the primal sketch that the locations of
these changes are made explicit. In the second processing stage, special processes, such as those
concemed with stereo and analysis of motion, infer information about the shapes of surfaces from
the contents of the primal sketch. Since inferences can typically be made only at those locations
which have been marked in the primal sketch, so the information generated is sparse, and is

1
collected into sparse representations of surface shape that are referred to as the raw 25— D sketch.

The final stage is one of full surface reconstruction in which the sparse representations are

1
transformed into a full 25— D sketch containing explicit information about surface shape at all

'Boult's dissertation [Boul 86] provides another good review on the research done by Grimson and Terzopoulos. For
his critical analysis, see his chapter 7.

points in the scene, consistent with our perception.

Human perception is a vivid one of dense and coherent surfaces in depth. This suggests that there
exists a middle level visual process that transforms the scattered information into a dense surface
representation. The low level visual processes provide several visual cues to reconstruct the
visible surfaces. One low level visual process, stereo, generates depth only at scattered edge
points; another process, shape from texture, generates orientation at texel points that may be
scattered as well. Given these sparse constraints, a depth interpolation process would compute

the depth of the visible surfaces at every point explicitly.
2.2 Previous Work

2.2.1 Work done by Grimson
Grimson formulated one approach to the depth interpolation problem and studied it in the

restricted context of depth constraints from stereopsis (Grim 81].

There is evidence that the human visual system detects intensity changes over a range of
resolutions through the use of up to five independent, spatial-frequency-tuned, bandpass channels.
Grimson proposed that before reconstruction begins, the multiple, sparse depth representations

1

that are output through the different bandpass channels can be combined into a single raw 25—-D
1

sketch in a way which maintains consistency across all scales. The raw 25-D sketch then

contains sparse depth information at the finest resolution possible. Next, a single reconstruction

1 .
process operating at this finest level generates a unique full 25—D sketch representing depth

information at high resolution.

The input to the interpolation process consisted of the zero-crossings? of the convolved image,
with depth information computed along zero-crossing contours. These contours tend to be
scattered at random rather than distributed uniformly. In general, any one of a multitude of

widely varying surfaces could fit the explicit conditions, the depth or surface orientation values

2Zero-crossings mark the sign changes of a bandpass filtered image.

imposed along the zero-crossing contours. The implicit conditions were that the surface should

not impose any zero-crossing contours other than those which appeared in the convolved image.

Grimson suggested an ‘‘interpolation’’ method. He suggested that given a set of scattered depth
constraints corresponding to points along the zero-crossing contours of the primal sketch, the

surface which best fits the known constraints is that which passes through the known points

exactly and minimizes the expression,3

[] 0?2002+)% axaly,
referred to as the quadratic variation of the surface v.4 The interpolation approach is preferred.
provided the known observations are exact. But since we have noise in practice, different
approaches such as smoothing seem to be better; Terzopoulos uses smoothing only.
Nevertheless, if we use very stiff ‘‘spring constants’’ to constrain the surface with the known

values, then we return to the interpolation approach again.

In the implementation, Grimson was concerned with biological feasibility, which was important if
one was to describe a model of the human visual system. A set of algorithmic criteria was stated

as follows [Grim 81, p. 163].

e Parallelism : The need to process large amounts of input data in short amounts of
time implies the use of computations that can be implemented in a parallel manrer,
using a large number of interconnected processors.

e Local support : If the number of processors involved in the computation is large, it
becomes infeasible to connect each one to all of the others. Rather, there should only
be local connections between the processors. Here, local means not only that the
number of connections be small, but also that since the information being processed
has a two-dimensional plane as an underlying coordinate system, the connections
should also be local in a spatial sense.

e Uniformity : If it is possible, though not as critical as the first two, an algorithm that
utilizes parallel networks of identical processors will be favored over other
algorithms.

¥The subscripts indicate partial differentiation. For example, v, = % and vy = g

4 Actually, Grimson investigated both interpolation and approximalion methods [Grim 81, p. 177]. He suggested that
the conjugale gradient algorithm is appropriate for the case of approximating the surface, by requiring that the surface
minimize an objective function (the quadratic variation) and pass near, but not necessarily through, the known points.
He suggested also that the gradient projection algorithm is appropriate for the case of interpolating the surface, by
requiring that the surface minimize an objective function (the quadratic variation) and pass exactly through the known

points.

He used the gradient projection method to find an interpolated surface but slow convergence rates
were observed in his work. For illustrated examples, it took 500-1000 iterations to reach the
stopping condition. But it was indicated that a multigrid implementation might require only

25-50 iterations [Grim 83, p. 67].

2.2.2 Work done by Terzopoulos

Terzopoulos worked further on depth interpolation problem [Terz 84). He proposed a
computational theory of visible-surface representations and developed a visible-surface
reconstruction process for generating them. Instead of Grimson'’s ‘‘interpolation’’ approach, he
proposed an ‘‘approximation’’ method where the discrete potential energy functional associated
with the surface is minimized. In his formulation, known depth constraints, or orientation

constraints, or both, contribute as spring potential energy terms.

2.2.2.1 Visible Surface Representation
The physical model for surface reconstruction by Terzopoulos can be described as follows [Terz

84, p. 35].
» The implicit surface smoothness constraint is modeled by a thin, flexible plate.

* Ideal springs constrain the thin plate with explicit constraints; i.e., either depth
measurements, Or orientation measurements, or both classes of constraints.

» To handle discontinuities, the smoothness imposed by the thin plate is relaxed locally

* free boundaries are introduced along surface depth discontinuities and

* patches of thin plates are joined by membrane strips along surface orientation
discontinuities.

2.2.2.2 The Continuous Form of the Problem

Mathematical problems for which the existence, uniqueness, or stability of solutions cannot be
guaranteed a priori are said to be ill-posed. Ill-posed problems cannot be solved in general,
without imposing some additional restrictions on possible solutions. Through a number of
systematic approaches, notably the regularization methods [Tikh 77], ill-posed problems can be
solved by reformulating them as variational principles that are effectively computable. Unlike the
original problems, the variational principle formulations are well-posed in the sense that a

solution exists, is unique, and depends continuously on the data.

10

Terzopoulos’ analysis [Terz 84, p. 73] reveals that the minimal sets of conditions under which the

visible surface reconstruction problem is well-posed for a single surface patch are
« three noncolinear depth constraints, or

« two depth constraints as well as a single p or a single ¢ orientation constraint, or
» a single depth constraint as well as a single p and a single ¢ constraint, or

» a single p and a single g constraint with the center of gravity of the surface fixed,

where p and g are x and y components of the surface normal.

Since the visual processing of natural scenes readily yields many such constraints, the problem

can be considered as being well-posed in general.

Many visible surface reconstruction algorithms rely on the minimization of discrete functionals
associated with the surface. The ones Grimson and Terzopoulos used are given by the summation
of the discrete potential energy functional for thin plate, the discrete functional for depth

constraints, and the discrete functional for orientation constraints,

The continuous form of the surface reconstruction problem is transformed to yield the simplified
approximate energy functional E4(v*), where the region (the projection of a surface patch to
two-dimensions on the retina) has been divided into identical square elements E with sides of

length A through a uniform tessellation 4,

A = 0% + ER0Y) + BV,
where

0" = %EEZJJE (V)2 + 2002 + (v,)? dxdy,

BN =5 T B DAwy)-dayl

(I;J j)

B =1 S o, Dy -pay?
(x -,yj)e p (Ii'yj)

1 h 2

i %,) @

11

where D denotes the set of points in the region at which the scattered depth information is
present, and P and @ are the set of points at which p and ¢ measurements are available. The

values of o and B are given by the spring constants.
Gpyp) (x;0)

i)
Terzopoulos applied the finite element method for the discretization instead of the finite difference

method, an older technique. He used a nonconforming finite element [Terz 84, p. 77).

2.2.2.3 Discretization of the Problem
Since the function is convex, to obtain the minimum, we set to zero its partial derivatives with
respect to each of the displacements u".'J. for node (i,). The minimizing vector of displacements,

" is equal to the unique solution of a large system of linear equations:
Ahub = ph,

The nonzero coefficients of each equation is specified as summations of computational molecules
that denote multiplications of nodal variables by scalars. In the presence of constraints and
discontinuities, a set of computational molecules computes the nonzero coefficients of the linear
system by local computations involving simple multiplications and additions of nodal variables in
a specified spatial arrangement. Terzopoulos uses four set of computational molecules, plate
molecules, depth constraint molecules, orientation constraint molecules, and membrane

molecules.

The plate molecules are shown in Figure 2-1. The circles, or computational atoms, denote (h?
times) the nonzero coefficients of the nodal variables. Node (i, j) is indicated by a double circle

in each molecule.

When a node is sufficiently distant from either constraints or discontinuities, only the plate
molecules contribute. This gives the following nodal equation which relates u?J. for an interior

node (i,), to the nodal variables of the other nodes:

-0 OO
Oa9,
&

OO

5

56

2026

02020

02020

Figure 2-1: The Plate Molecules for Node (i, 1)5

Staken from [Terz 84, p. 90]

13

2071 uj; ¢))

: 2 (o h h h
1A (upyj + iy j + Uiy + Uyjy)

2k h h h
+ QIR WUy ¥ Mg jr ¥ B gy T Mje)

2 h h A
+ (LR Uigj + Uipgy + Uijp + Uijen)

= 0.

The nodal equation can be represented by a nodal molecule as illustrated in Figure 2-4. Note that

the interior node molecule is obtained by summing the plate molecules in Figure 2-1.

The effects of depth constraints are represented by the depth constraint molecule shown in Figure
2-2. If node (i, j) is constrained with the depth constraint value d‘f' i then the nodal equation for
this node is obtained by summing the depth constraint molecule with the plate molecules. Now,
the nodal equation for depth constrained interior node is given by

20/ K2 + B} uj; @

h
i+l

A K
Uyt)

- B/H) (U + U

h

2 .} A h
+ QIR Uy oy + Mo ¥ gy ¥ B)

2 h h h h

= B4

The value for ﬁfj is dependent on A but independent of (i, j) and is given by B = Y/ h2, where Y4
is constant. The value employed by Terzopoulos for ¥y, is either .5 or 2.0 in most cases. He used

also B* = ¥,/ h, where y, varies from .1 10 2.0. [See chapter 5 for a further discussion of B~.]

The effects of orientation constraints are represented by the orientation constraint molecules
shown in Figure 2-3. For instance, if node (i-1, ;) is p constrained then the nodal equation for
node (i, j) is obtained by summing the upper left orientation constraint molecule in Figure 2-3

with the plate molecules. Now, the nodal equation for interior node (i, /) is given by

14

0/ K + of] (4hD) ul; ®)

2 ¢k h h A
= B/A) (U yj + Uy + Uiy + Up)

h

2 gk A R
+ QTR Uy oy + Mgy + U ey By)

+ (1/h? - of, ACLD) uigy + (1/h?) (“ﬁz.j + “?j-z + Ui

= (o ,;/ @) pLy .

The value for on;'j is dependent on A but independent of (i, j) and is given by o = Y, / h, where vy,

is constant. The usual value employed by Terzopoulos for A is 4.0. [Again see chapter 5.]

Note that at nodes where the effects of constraints exist, both the right and the left hand side of

the nodal equations are modified as in equation (2) and (3). We will return to this later in section

4.1.3 when we discuss estimation of eigenvalues of the iteration matrix.

Smoothness constraints are inapplicable at a depth discontinuity. The depth discontinuities are
treated as free boundaries. Consider a boundary node that is sufficiendy near a depth
discontinuity. Whenever a depth discontinuity node coincides with any constituent atoms of a
plate or constraint molecule associated with the boundary node, that molecule is prohibited from
taking part in the summation giving rise to the nodal equation. Suppose that the shape of the
region is a square and consider a boundary node at the corner of the square. The nodal equation
for this boundary node (ignoring constraints) is given by

@/ 1) u;)

A A
- (4/hY) (i1 * Yijer)

+ QR ()

+ (LB (Ul + Ul

= 0.

Figure 2-5 illustrates this boundary node (marked as a double circle) which is near depth
discontinuity nodes (marked by X's). In this example, only three computational molecules from

the set in Figure 2-1 participate in the construction of the nodal equation.

ﬂh dh

n L5 At V9]

Figure 2-2: The Depth Constraint Molecule®

a
C RN 02020
- 4h3

A : A
a"—l J A Apitrg
Pi-1;s 2n Pty

ah‘,_l e :;:,'“,.‘H o
T - x
- 4Ah 4h?

A A
ah‘j—l A a".}+l A
2h i 2k

Figure 2-3: Orientation Constraint Molecules’
The upper left molecule is used only if (i-1, /) € P, the upper right only if (i+1,)) € P,
b the lower left only if (i, j-1) € Q, and the lower right only if (i, j+1) € Q.

81aken from [Terz 84, p. 92}

Tiaken from [Terz 84, p. 93]

Figure 2-4: The Interior Node Molecule®

Figure 2-5: An Example of a Boundary Node Molecule®

8taken from [Terz 84, p. 91]

%taken from [Terz 84, p. 99]

16

17

2.2.2.4 Properties of the System Matrix

Definition 1: A real matrix A is symmerric and positive definite (SPD) if A is
symmetric and if (v, Av) > 0 for every nonzero vector vl

Because of the symmetric nature of the computational molecules, it can be easily shown that the
resulting matrix is symmetric for any regional shapes. Furthermore, Terzopoulos shows the

stronger result that the matrix generated is SPD {Terz 84, p. 100] :
The finite element method has bestowed computationally desirable properties upon the system

matrix, including sparseness, bandedness, symmetry, and positive definiteness.
In general, the depth interpolation problem is easier to solve when we have denser constraints.
This statement can be given an informal, though quantitative, interpretation. Consider the
restricted case of the depth constraints only. We can derive then the relation between the density

of the depth constraints and the positive definiteness of the system matrix as follows.

The matrix A” can be broken down as the sum of two matrices: A" = A: + B*. The coefficients

of the matrix A: are contributed by the plate molecules, while those of the matrix B" are

contributed by the depth constraint molecule. Suppose that we have ufj = ¢ forevery node (i,)

where c is an arbitrary constant, i.e., the considered image is a plane of constant depth. We have
(uh, Ahuh) = (u", A:uh) + (uh. Bhuh).

For this special image, (u". A: u") = 0 since ¢2 can be factored out. [As an exercise, substitute

Wt = (cc ... c)T into the left hand side of the equation (1) or (4).] Since B'isa diagonal

matrix where the coefficient is given by

b = { B* if I=m and this node is depth constrained
Im .
0 otherwise,

where 8" = (b for 1 < I, m < n. Here, nis the number of nodes in a depth continuous region.
By factoring out ¢2, it can be easily shown that (u", ;4 u") is proportional to the number of depth
constrained nodes in the region. Thus, the matrix A" becomes increasingly ill-conditioned as the

density of the depth constraints gets sparser.

The matrix A" is also sparse. Even for interior nodes which are sufficiently distant from a

T

10Given two vectors v and w of R®, the inner product (v, w) of the vector v with w is defined by (v, w) = v* w where

vT denotes the transpose of the vector v.

18

boundary, they interact with only 12 neighbors, all of them at most only 2 nodes away, as
illustrated in Figure 2-4. For nodes near discontinuities, even fewer neighboring nodes are

involved.

2.2.2.5 The Multigrid Relaxation Method

Terzopoulos used a multigrid method [Bran 77] with the Gauss-Seidel relaxation method at each
relaxation sweep to speed up the convergence rate. These multiresolution iterative algorithms are
suited for implementation on massively parallel networks of simple, locally-connected

processors; we shall discuss the multigrid method in full detail in section 4.3,

2.2.3 Related Work
It is shown that two iterative methods, the Chebyshev and the conjugate gradient methods, are

provably optimal in terms of computational complexity [Trau 84].

Lee investigated the Chebyshev method on several low level vision problems [Lee 85]. For shape
from shading [Ikeu 81] and optical flow [Hom 81] problems, previous researchers used the

Gauss-Seidel method, which is slow.

Lee observed that the original matrices were not SPD and converted them to SPD. Furthermore,
he derived the lower and upper bounds of the smallest and largest eigenvalues of the matrix, two
quantities that are essential for the Chebyshev method. Due to the simplicity of the matrix
involved, he could estimate these extreme eigenvalues, prior to major computation, i.e., before

matrix iterations are started.

2.2.4 Significance of Current Work

We have discussed the depth interpolation problem at length, in technical detail. Here, we
present the significance of our work, comparing it with existing works. We start the comparison
with the most recent work and discuss technicalities again, but also discuss the bigger issues

associated with our work.

One difficulty associated with the Chebyshev method used by Lee is that it needs good estimates

of the largest and smallest eigenvalues of the underlying matrix. Unless this matrix is sufficiently

19

structured, it may be analytically impossible to get good estimates [Golu 85]. In this thesis we
shall study the adaptive Chebyshev acceleration method where the estimates of the extreme
eigenvalues are adaptively improved. We shall study also the conjugate gradient method!! where

the iterative process is not started with any initial global information.

These two iterative methods are numerically efficient but they require global information during
the computational process. How can we get global information and also efficiently compute it?
In other words, what kind of computational structure can support the computational requirement
of these highly efficient numerical methods? The problem here is a straightforward one-to-one
mapping of algorithms to computer architecture. Another related question is, if some computer
architecture provides the convenient facilities to compute global information, then why we do not
take full advantage of these capabilities? With the support of hardware, the implementation of

these algorithms becomes quite easy.12

In our study, we follow the Terzopoulos' formulation on visible surface reconstruction and use
the matrix derived by him. However, we present an alternative depth interpolation process using
theoretically better iterative methods, which speed convergence and are amenable to certain

classes of parallel computers.

This aspect of the problem reminds us of Marr’s discussion about three levels at which an
information processing device is understood [Marr 82, p. 24]. At the top level, we have the
abstract computational theory of the device. At the middle level, the focus is on the
representation and algorithm, used to implement the computational theory. At the bottom level,
we are concemed with the details of how the algorithm and representation are realized physically
- the neural networks in case of the human visual system or the computer architecture for the
machine vision. From this point of view, the theoretical developments by Grimson and

Terzopoulos were much influenced by the human visual system, partly because of the wide

INote that the conjugate gradient method was already studied by Grimson for the approximation approach and
mentioned by Terzopoulos as well.

12The adoption of our approach through the bottom-up thinking process might be a sort of reformulation of the
problem. In [Mins 86, p. 144], we have : "We often self-impose assumptions that make our problem more difficult,
and we can escape from this only by reformulating those problems in ways that give us more room.”

20

discrepancies between the high performance of the human visual system and the low performance
of the machine vision system, and partly by the top-down way of their thinking. This may have

led them to insist too much closeness to human visual system even at the implementation level.

Our study was deeply influenced by the hardware implementation issue. In particular, a
particular parallel architecture, a fine grained SIMD machine with local and global
communication networks, tumed out to meet our need. First, this family of machines is
increasingly available. Second, all necessary computational requirement, including the

computation of global information, can be met.!3

In this work, we study two efficient numerical methods and their implementation on the parallel
architecture chosen. With this partial result, we examine again the issue of computational
efficiency raised by Terzopoulos. He used the Gauss-Seidel method in his implementation of
multigrid method. Here, we apply two highly efficient and other methods to multigrid approach.
Again, we analyze the additional computational requirement and the implementation detail on

this parallel architecture.

In one sense, our study deals mainly with the bottom level hardware implementation issue and
can be designated as further refinement on works done by Grimson and Terzopoulos. But the
other aspect of our study is a bit more general. Traditionally, a lot of work in computer vision
using the parallel machines, in particular, the SIMD class of machines, have been in the area of
low-level vision. Our work extends the research into middle-level vision. As a concrete
cxample, we have solved the depth interpolation problem. But our solution, the efficient
execution of the sparse SPD matrix iterations on a parallel architecture, can be applied to other

middle-level machine vision tasks as well as to other general areas such as map making.

In chapter 4, we shall review rigorously the mathematical theory behind the iterative methods and
discuss the implementation of them on a parallel architecture. Before doing that, we shall discuss

this particular parallel architecture in next chapter.

13We shall describe shortly the requirement on architecture more formally in next chapter, at section 3.2.1.

21

3. Architectural Background

3.1 SIMD Machines
Three single-instruction multiple-data stream (SIMD) machines are reviewed to illustrate the
architectural background concepts that motivated the design of these machines for the eventual

use in general Al and in particular in computer vision.

In computer vision problems, we have tremendous amounts of data, either raw data itself or the
properties derived thereof, such as the depth. The conventional von Neumann machines suffer
from two aspects. They have the famous ‘‘von Neumann bottleneck’’ between processor and
memory [Back 78]. Also, serial processing offered by conventional machines or even moderately
accelerated processing, such as from pipeline architectures, provide only limited processing
power.14 For a large number of low- and middle- level computer vision problems, we need
identical processing repeatedly on whole or part of data. Therefore, concurrent, fine grained

SIMD processing is a natural one for this kind of task.

Data are supplied usually in two-dimensional fashion, for instance, 1024 x 1024 images. The
mesh communication is a local communication scheme that matches the natural structure of such
data. In all three systems we review, we assume therefore SIMD processing and mesh

communications.

In addition to these common characteristics, interesting features from each system are
emphasized. First, we review the MPP, particularly stressing the arithmetic computational
processing capability. Secondly, we discuss NON-VON, emphasizing its global communication
capability, which is implemented with the tree topology. Thirdly, we discuss the Connection

Machine, noting its more general (albeit more costly to implement) global communication

“The PIPE is one of the most powerful image processing engines ever developed [Aspe 87). It is a special-purpose
machine for real time low-level vision consisting of eight processing stages connected in a pipelined fashion. As an
example of algorithms developed on the PIPE, see the convolution algorithms reported in (Stew 86].

The Warp Systolic Array is another high-performance highly parallel pipeline processor. In current implementation,
10 processors are connected in a linear topology, but they are also interconnected with crossbar switches. This machine
is designed as an execution vehicle for systolic algorithms and has a high interceil bandwidth of 80 M bytes/sec. Some
programs developed for computer vision application are 100 x 100 matrix multiplication, 512 x 512 FFT, 3 x 3
convolution, and the Hough transform.

capability, which is implemented with the boolean n-cube topology.

Though the problem tackled in this thesis does not require symbolic processing capabilities yet,
we have to note that these capabilities will be needed as well either for high level computer vision
problems or for general Al kind of tasks on top of computer vision. From this aspect, it is quite
worthwhile to observe that efficient support of symbolic Al data representations, particularly, the
predicate calculus in NON-VON or the semantic networks in Connection Machine, were

considered from the beginning of the design phase of these machines.

3.1.1 Massively Parallel Processor
The Massively Parallel Processor (MPP) is organized of three basic components: a sequential

controller, parallel array of processing elements (PEs), and a staging memory [Batc 83], [Pott 85].

The parallel array of PEs is interconnected in a 128 x 128 square mesh. It is possible for 128
columns of 1-bit data to be moved from/to staging memory to/from the parallel array. Each PE
can communicate with its four neighbors. In MPP, each PE can send a bit to its neighbor in a
single machine cycle, where the nominal machine cycle time is 100 nanosecond. On chip, the

PEs are connected in a 2 by 4 mesh.

Each PE is a bit-serial unit, and contains five 1-bit registers and a 1-bit ALU which can perform
boolean and arithmetic operations. Each PE is also connected to an off-chip random access
memory storing 1024 bits. Since this address bus can be expanded up to 16 address lines, the PE
memory can be expanded to 65,536 bits per PE.

Each PE has also a shift register whose depth can be set, under program control, from 2 to 30.
With this shifter, floating point operations, such as aligning floating point fractions or
nomalizing floating point results, can be processed quite efficiently. For example, for a parallel
array unit of size 128 x 128, the actual execution speed of 470 million addition operations per
second, 291 million multiplication operations per second, and 165 million division operations per

second have been reported with 32-bit floating point data format as shown in Table 3-1.

In the MPP, a lot of engineering effort has been spent on the staging memory. It is a large

23

multidimensional-access memory. It is divided into main-stager, an input sub-stager, and an
output sub-stager; words are 64-bit wide in main-stager and single bit wide in sub-stager. Staging
memory buffers the data between the parallel array and a front-end computer; it can also reformat

data.

It has been shown that the MPP provides very powerful support for certain image processing
operations like the Fast Fourier Transform (FFT) which requires communication between pixels
or points located far apart in the image. The staging memory allowed data to be permuted and

routed at high speed rates to array memory for computation of FFT’s of varying size and

precision.
Operations Execution speed (millions of operations per second)
8-bit 16-bit 32-bit
integers integers floating point
Addition, Subtraction 6553 3343 470
Multiplication 1861 538 291
Division 1545 484 165

Table 3-1: Speed of Typical MPP Operations!?

1513ken from {Gilm 83, p. 166]

3.1.2 NON-VON Supercomputer

In NON-VON, each PE contains a on-chip memory (a 64 word 1-bit RAM and a 64 word 8-bit
RAM), five 1-bit registers, five 8-bit registers, an 8-bit ALU, and two special combinatorial
networks, called the I/O switch and the RESOLVE circuit [Shaw 84a].

The I/O switch is a matrix of pass transistors that routes data between the two internal buses and
the three inter-PE communication buses (parent, left child, and right child) in the course of
executing inter-PE communication instructions. Depending on the particular instruction, these
switches may be configured in such a way as to support parent/child tree communications or

left/right linear neighbor communications.

Any global communication from the bottom to the top of the tree can be performed by a sequence

of level by level tree communications from the leaf to the top.

Supported by the tree communication capability, machine vision applications using hierarchical
representations like quadtrees were developed [Huss 84]. The algorithms developed span
different levels of computer vision tasks. They include image correlation, connected component
labeling, the computation of geometric properties, and the Hough transform. Furthermore, the
conducted research proposed two enhancements missing in original NON-VON architecture.

These additions, part of later NON-VON architecture, are described below.

First, multiplication capability has been enhanced by combining the already existing 8-bit adder
and shifter with a newly added barrel shifter. Two 8-bit numbers can be multiplied to produce

16-bit result in 28 cycles, about 7.0 microseconds, assuming a 250 nanosecond cycle time.

Second, the original communication paradigms supported by I/O switch, level by level tree
communication between parent and children or one-dimensional array communication between
left and right linear neighbors, did not support the local communication need of two-dimensional
pixel arrays. The communication capability has been enhanced with mesh connections at leaf
level of tree; leaf nodes account for half of the PEs in the system. Since mesh communication
instructions are provided, NON-VON can perform all computations that require local cellular

communications as efficiently as other machines can do.

25

Here, a labeling scheme that incorporates leaf mesh on binary tree is illustrated. Inorder labeled
binary tree is shown in Figure 3-1. In quadtree representation, often used to represent region in
machine vision, a node has four sons, labeled NW, NE, SW, and SE. In one particular algorithm
that constructs a quadtree from a binary image, pixels are traversed recursively in NW, NE, SW,
and SE order starting from the smallest block to progressively bigger ones [Same 80]. The same
sequence is used to construct leaf mesh from leaf PEs of binary tree. Resulting mesh labeling at
the leaf level is shown in Figure 3-2. This mesh labeling scheme can be easily extended to any
number of coarse levels above the finest one at the leaf, due to the recursive nature of labeling

algorithm. The mesh labeling at the coarse level just above the leaf is shown in Figure 3-3.

In terms of the execution speed, the instruction can be divided into three groups. All intemnal
instructions and mesh communication instructions are executed in one machine cycle. All tree
communication instructions involving data transfer between adjacent tree levels are executed in
two machine cycles. Linear neighbor communication instructions and the RESOLVE instruction,
where PEs even not at adjacent tree levels communicate with each other in a single instruction

execution time, takes three machine cycles to complete execution.

The other applications developed on NON-VON includes the work on database and the
production system [Shaw 84b]. In particular, [Hillyer 86] investigated the algorithms,
performance analyses, and simulation results for the execution of database queries and production

systems on NON-VON.

3.1.3 Connection Machine

In the first prototype of the Connection Machine (CM), there are 65,536 PEs [Hill 86]. Each PE
contains 8 general purpose 1-bit registers, 4,096 bits of extermal memory, and a simple serial
arithmetic logic unit. Each chip contains 16 PEs and one router unit which sends global
communication messages through a packet switching network. The processor/router chip runs at

a clock rate of 4 MHz. The topology of the communication network is a boolean n-cubel® with a

16A boolean n-cube is an a dimensional cube; each vertex of the cube has a single neighbor in each of n orthogonal
directions in n dimensional space. There are 2" vertices in a boolean n-cube and each vertex is connected to n other
vertices, one in each dimension.

16
/ \
/ \
/ \
8 24
\ /
\ /
12 20
/ \ / \

10 14

Figure 3-1: Inorder Labeled Binary Tree

1 3 9 11
5 7 13 15
17 19 25 27

21 23 29 31

Figure 3-2: Mesh Labeling at Leaf Level

4 12

20 28

Figure 3-3: Mecsh Labeling at Coarse Level

26

27

router at each vertex. On chip, the PEs are connected in a 4 by 4 square mesh, with each PE
connected to its four nearest neighbors. This two-dimensional mesh pattern is extended across

multiple chips into a larger mesh. The mesh communication system does not involve the router.

In the second prototype of the CM released recently, the size of the external memory was
extended from 4K to 64K bits and a floating point arithmetic accelerator of single or double
precision was added [TMC 87a]. The new prototype can be equipped with a fast frame buffer

and can achieve I/O transfer rates of 320 Mbytes per second.

The flexibility of the global packet switching communication network supports irregular and
dynamic communication patterns as well as regular ones. But the speed of the network
communication mechanism is much slower than the mesh connections. Compared to the
bandwidth of the mesh communication, the bandwidth of the packet switching communication is
much smaller, roughly 1000 times smaller for the worst case and 30 times smaller for the typical

case as shown in Table 3-2.

Two low level programming methodologies for programming the CM were presented in [Chri

84].

1. n-cube Model: Several low level operations can take advantage of the specific
topology of the communication network, a boolean n-cube. This model exploits the
fact that the fastest communication is between neighbors in the boolean n-cube.

2. Tree Model: This programming methodology deals with algorithms for binary trees
of processors in the CM. It is used to support a graphical abstraction with arbitrary
fan out, such as semantic networks. Two types of trees are considered:

» Calculated Trees: The address of the parent and two children of a branch are
calculated as a function of the address of the branch. Calculated trees are
usually projected onto some other topology so that it can be treated as a tree.
For example, a binary tree can be imposed on the boolean n-cube.

» Explicit Trees: The address of the parent and children of a branch are stored
explicidy by the branch. The advantage of explicit trees is that they can be
manipulated quite easily.

For the high level languages, paraliel versions of C and LISP have been developed [TMC 86]. In
the LISP implementation, storages should be reclaimed through the garbage collection process. It

is interesting that the Connection Machine supports the parallel consing as a primitive operation,

where free cells are consed in parallel by exploiting the boolean n-cube topology [Chri 84, p. 49].

28

The utilization of several communication modes of the Connection Machine in implementing a
set of low and intermediate level vision modules are reported in [Litt 86] and [Litt 87]. The
implemented modules comprise edge detection, Hough transforms, and connected component
labeling. And a variety of geometrical algorithms were designed for the Connection Machine,
including several convex hull algorithms.

Classes of Permutations Communication speed (bits per second)
Worst Case 3.2x 107
Typical Case 1.0 x 10°
2-D Pattemn 3.3x 1010
FFT Pattern 5.0x 1010

Table 3-2: Communication Bandwidth of the CM!7

3.2 Model of SIMD Computation

3.2.1 Requirements on the Architecture from the Application
As we will see in next chapter, a parallel architecture to support the particular structure of our

application demands the following characteristics:!8
» fine grained,
¢ SIMD,

71aken from [Hill 86, p. 71]

1$When we compare the characteristics proposed here with the set of algorithmic criteria proposed by Grimson (see
section 2.2.1), we see that ours is quite similar to, or has grown nanurally out of, Grimson's criteria.

¢ local communication,

¢ global communication.

Many of the operations ought to be performed simultaneously on a subset of nodes properly
chosen at each moment. Identical operations are carried out upon the data at each selected node.

This first property naturally leads to a fine grained processor and a SIMD mode of execution.

Secondly, the matrix involved is sparse. In particular, in the depth interpolation problem even an
interior node far removed from the region boundary interacts only with 12 neighboring nodes.
Therefore, mesh interconnections between nodes are sufficient for handling all the local

communication needs for matrix-vector multiplication.

Thirdly, what is needed as well is a fast global summary capability. In the iterative methods that
were investigated, we need to compute various vector norms, a matrix norm, and inner products.
This global communication need can be met well by any global network mechanisms, for

instance, the tree topology or the boolean n-cube topology, superimposed on the underlying mesh.

3.2.2 Derivation of Abstract Basic SIMD Models
In this section, we derive two abstract models of SIMD computation. Various features of these

abstract models will be extracted separately from the SIMD machines we have reviewed before.

The tme complexity analysis of parallel machines involves two factors: the intemal
computational speed of each PE and the communication speed to move around data between the

PEs.

The computational speed of each PE depends on the complexity of the hardware circuitry built
into it. In computer vision applications, we have a tremendous amount of data to be processed.
Therefore, it forces the designer to design each PE as simply as possible to accommodate more
and more PEs. Nevertheless, we need good computational capability as well, such as the floating

point calculations as required in this application.

One such PE design which made effort to meet these computational requirements is that of the

MPP. We took the numbers of 32-bit floating point execution speed from Table 3-1 and

30

converted them into equivalent machine cycles in Table 3-3. We took into account the 128 x 128

square mesh size and 100 nanosecond machine cycle time of the MPP.

In MPP (as in NON-VON and Connection Machine) mesh communication instructions, which
handle local communications, execute in a single machine cycle. We assumed a single bit data
path between PEs, and that floating point data is moved from the memory of one PE to the other
PE's memory. For the transfer of each bit, we assumed a 5 machine cycle sequence: broadcast a
source address, read a bit, send it through the mesh connection, broadcast a destination address,
and then write it. Therefore, for 32-bit floaling point data, it will take 160 machine cycles for

completion.

For our global communication needs, we assumed the tree topology of NON-VON. We assumed
that the instructions which carry out the tree communications between adjacent levels execute in
2 machine cycles following the experience of the NON-VON chip and prototype system design
and implementation efforts. We assumed again a single bit data path between PEs. For the
transfer of each bit, we assumed a 6 machine cycle sequence: broadcast a source address, read a
bit, send it through the tree connection, broadcast a destination address, and then write it.

Therefore, for 32-bit floating point data, it will take 192 machine cycles for completion.

Our discussion is summarized in Table 3-3. We will make extensive use of this model of SIMD

computation in later chapters.!?

For global communication, we could have also assumed the topology of the Connection Machine,
where global communication is handled by the boolean n-cube topology. When the number of
the communications bandwidth for the FFT Pattern in Table 3-2 is converted into equivalent
machine cycles, we get 63, i.e., it will take 63 machine cycles to move a single bit to the cube
neighbor. In the Connection Machine, there is a single bit data path between chips. We took into

account the 256 x 256 square mesh size, the 4 MHz clock, and 4,096 routers. For 32-bit floating

19The speed of operations for our abstract model machine can be compared with the timings for the recent prototype
of the Connection Machine, reported in tables of [Liu 87, p. 18] and [TMC 87a, p. 60]. For arithmetic operations on
single precision floating point numbers, addition, subtraction, and multiplication take 25 microseconds while division
takes 66.7 microseconds. For mesh communication, NEWS access of 32-bit tekes 80 microseconds.

31

point data, it will take 2,016 machine cycles. The rcason why we have such big numbers
compared to the ones we have derived before with the tree topology is that the messages arce

delivered across each dimension in sequence for every petit cycle in the Connection Machine.

When we replace the tree topology with the boolean n-cube topology, we get another abstract
model of SIMD computation. This one is shown in Table 3-4. We will call the model in Table
3-3 as Model I and the other in Table 3-4 as Model II.

3.2.3 A Global Summation Algorithm

An example is analyzed in detail to illustrate the power of the abstract SIMD models we have
derived. Suppose that we have a s X s mesh and that s is some power of 2, i.e., s = 2* for some k.
We want to compute the global sum of 32-bit floating point numbers at selected nodes of square
mesh. For the sake of the simplicity, we assume that every node is enabled. In fact, this simple
global summation algorithm tumns out to be the part of the computation required for the
calculation of a L,-norm of a vector or an inner product of two vectors. For the vector
calculation, we assume that each element of the vector is stored at the same address in the

memory of each PE.

First, the tree topology is assumed for global communications and the Model I is applied to carry
out the analysis of computational and communication cost associated with this algorithm. We
assume that the square mesh is located at the leaf of the tree. As shown in Figure 3-1, PEs at the
leaf of the tree account for the half of PEs in the tree, i.c., there are total of 2521 PEs in the
tree. The summation proceeds from the tree level just above the leaf to the top of the tree in
following fashion: select PEs of current tree level, get data from left child, get data from right
child, add these two data to get a sum, and then transfer control to the level just above.
Throughout the computation, identical instructions are executed concurrently for the PEs of the
same tree level. For each tree level, we have two data moves and one addition operations. At the
end we have the global sum at the root node of the tree and the data from the root PE is read out
to host computer. This operation requires one more data move. Since the number of levels is
(log, s?), it takes 2 (log, s?) + 1 tree communications and (log, s?) addition operations. By

multiplying the number of operations by the number of machine cycles defined in Table 3-3, we

Addition, Subtraction
Multiplication
Division

Mesh Communication
Mesh Communication
Tree Communication

Tree Communication

32-bit fl. point
32-bit fl. point
32-bit fl. point
1 bit
32-bit fl. point
1 bit

32-bit fl. point

Execution speed (machine cycles)

160
2

192

Table 3-3: Speed of Typical Operations for Abstract Model Machine (Mode! I)

Addition, Subtraction
Muldplication
Division

Mesh Communication

Mesh Communication

Boolean n-cube Communication

Boolean n-cube Communication

32-bit fl. point
32-bit fl. point
32-bit fl. point
1 bit
32-bit fl. point
1 bit

32-bit fl. point

63
2016

Table 3-4: Speed of Typical Operations for Abstract Model Machine (Model 11)

33

get the total number of machine cycles, (2 x 192 + 348) % (log , s2) +192. For the 128 x 128

mesh, the total number of machine cycles is 10440, substituting s with 128.

Now, the boolean n-cube topology is assumed for global communications and the Model II is
applied. To make our analysis simpler, it is assumed that each PE can talk directly to all of its
own cube neighbors, i.e., global communication capability of the boolean n-cube is available at
the PE level. Since we have s? PEs the size of the cube is (log, s%). The summation proceeds in
following fashion fori =0, 1, ..., (log, s2)—1: select PEs whose i-th bit in address is O, get
data from my cube neighbor whose i-th address bit is different from me, add the data obtained
from my cube neighbor to my own in order to get a sum, and then transfer control for next
address bit. At each step, we have one data move and one addition operations. At the end we
have global sum at the PE whose address is 0 and data of this PE is read out to host computer.
This operation requires one more data move. In summary, it takes (log, 5%) + 1 boolean n-cube
communications and (log, s?) addition operations. By multiplying the number of operations by
the number of machine cycles defined in Table 3-4, we get the total number of machine cycles,
(2016 + 348) x (log, s2) +2016. For the 128 x 128 mesh, the total number of machine cycles is
35112,

In summary, we can point out two aspects of the computation regardless of the particular
topology employed. First, the communication pattern is quite regular and there is no collisions.
Second, two summation algorithms are good from the point of view of the roundoff error
analysis. The roundoff errors due to floating point arithmetic are smaller. Summing by pair leads
to an error with a small cumulative constant (= Iogzsz) whereas standard summing up on a

serial machine has a constant = s2.

The global summation algorithm was analyzed in detail. In a likewise manner, the other global
operations such as counting, average, minimum, maximum, logical OR, and logical AND can be

exccuted in O (log , 5) ime as well.

34

3.2.4 Derivation of Abstract Extended SIMD Models
The pyramid machine, where several possible VLSI designs of this machine is proposed in [Dyer
81], can efficiently perform many quadtree and pyramid algorithms.20

In one organization of the pyramid machine, each node is connected to nine neighbors - its father
processor on the level above it, its four son processors on the level below it, and its four nearest
neighbors on its own level. This scheme can be conveniently implemented on a tree machine.
Instead of a single mesh connection at the leaf of the tree, the mesh connections can be extended

to every other tree levels from the leaf. [See the labeling schemes in Figure 3-1, 3-2, and 3-3.]

Now, the basic model described in section 3.2.2 can be generalized to include multiple mesh

connections of different resolutions.

The mapping between each node and its four sons will be interpreted in two ways. In the first
case, there is no special distinctions between its sons. In the second case, we think of mesh
connections at two adjacent levels in terms of coarse and fine resolutions. Suppose that the node
at coarse level is assigned with the (image) coordinate (x;, yj). Then the coordinates of its four son
nodes can be assigned as follows: (x,-,yj) for NW child, ((x;+x;,,)/2, y}.) for NE child,
(x, O +¥;,) / 2) for SW child, and ((x; +x;,,) /2, (¥; +¥;, ;) / 2) for SE child. This assignment will
be used later when we implement multigrid methods. [See Figure 4-1 and the equation (67) in

section 4.3.]

Though we shall discuss the implementation of the multigrid method on a machine with the tree
topology and multiple mesh connections, a realization of coarse and fine levels on a machine with
the boolean n-cube topology, for example, the Connection Machine, is considered briefly. Since
no separate physical PEs exist for the coarse level PEs, not like as in the pyramid and the tree

machine, the coarse level PEs should be mapped to the finest level PEs.2!

A simple scheme proposed here requires the doubling of the storage space allocated and handles

205ee [Dyer 79] for a theoretical description of many of these algorithms.

21Recall our discussion in section 3.2.3. Suppose that we have 2 s x s mesh. For the tree topology, there are
252 - 1 PEs in the system. But for the boolean n-cube topology, there are just 2 PEsin the system.

35

up 10 4 coarse levels above the finest level. Suppose that the node at NW child position is
assigned with the coordinate (x,, yj). Then the nodes at coarse levels having (x‘.,yj) as their
coordinates are mapped to NW, NE, SE, and SW positions. For example, refer back to Figure
3-1, 3-2, and 3-3. PE4 is mapped to PE1 and PE16 is mapped to PE3. Under this arrangement,
the communication between the adjacent fine and coarse levels are handled using a simple mesh
communication instruction, except between the finest and the coarse level just above it where the
interlevel communication is done by the moves to different memory locations in the same PEs.
For the intralevel communication at the level /, where / is 1 for the coarsest and L for the finest
level, the data is sent through the mesh connections to the nodes 2.~/ distances away. For
example, refer back to Figure 3-1, 3-2, and 3-3. The intralevel communication from PE4, which
is mapped to PEI, to PE12, which is mapped to PE9, is done by sending data from PE1 to PE9
via PE3.

In the pyramid machine and the tree machine with the multiple mesh connections, the intralevel
communication at any level takes same amount of time because of the available physical
connections. However, even though the mesh communication instructions can be executed in a

single machine cycle, the length of the physical wire is longer at coarser levels.??

3.3 Conclusion and Summary

In this chapter, we reviewed three SIMD machines, the Massively Parallel Processor, the NON-
VON Supercomputer, and the Connection Machine. = We stressed the arithmetic and
communication need to execute the efficient numerical methods, in our case, the adaptive
Chebyshev acceleration and the conjugate gradient methods, for the iterations of the sparse SPD
matrices, which are encountered frequently in several processes in early vision. We derived the
abstract SIMD models to support the computational requirement and applied them to the global
summation algorithm as an exercise. We analyzed the time taken for execution of this algorithm.
In next chapter, we shall apply the basic and extended models to numerical methods in order to

analyze the space and time complexity of the computation.

22Needless 1o say, the length of the physical wire is much more longer for any global communication networks,
whether the supporting topology is tree or boolean n-cube. -

36

We can always underestimate the heavy need of number crunching in early vision. The eventual
introduction of the floating point arithmetic hardware in the Connection Machine testifies to this

point.

We extended the basic SIMD model to handle the multigrid method as well. The iterations on the
finest level only with either of two efficient methods improve already the computational
efficiency greatly, compared with the slow methods, such as the Gauss-Seidel. But the multigrid
mode of execution of these efficient and other methods on several coarse and fine levels speeds
up the iteration process further. In the next chapter, we will review the mathematical theory
behind the iterative methods and discuss the parallel implementation aspect of them under the

abstract models of parallel computation developed in this chapter.

37

4. Iterative Methods
We review the well developed mathematical theory behind the iterative methods of numerical
analysis and then discuss the parallel implementation of algorithms on a particular parallel

architecture, a fine grained SIMD machine with local and global communication networks.

The single theoretical assumption we make for the adaptive Chebyshev acceleration and the
conjugate gradient methods is that the matrix is SPD. In the parallel implementation, we require
another assumption that the matrix is sparse for practical reasons. Note that these two

assumptions are applicable to, but independent of, the depth interpolation problem itself.

4.1 Adaptive Chebyshev Acceleration Method

The derivation of the adaptive Chebyshev acceleration method when applied to any SPD matrix is
shown first along with the introduction to basic iterative methods. Our discussion is based on
[Youn 81] and in many places uses his equations and development. We show further how the
adaptive Chebyshev acceleration method for sparse SPD matrices, where the Jacobi method is

chosen as the underlying basic iterative method, can be run on a chosen parallel architecture.

4.1.1 Basic Iterative Methods
In section 2.2.2.3, the depth interpolation problem has been cast as solving a set of linear

equations,
Au=b &)

where A is a given n X n SPD matrix and b is a given n X 1 vector.

Using one of several known basic iterative methods, the equation (5) can be solved by the

following iterative process
u(i+1) - Gu(‘).q.k' i=012, ... ©)

where G is the iteration matrix for the method and k is an associated vector.

We assume that
G=I1-QA, k=0 @)
for some nonsingular matrix Q. The assumptions of (7) together with the fact that A is

nonsingular imply that « is a solution to the related system

38
(-Gu =k (®)
if and only if o is also the unique solution to (5), i.e., ot = A-1p,

An iterative method (6) whose related system (8) has a unique solution a which is the same as the
solution of (5) is said to be completely consistent. Suppose that {u{?) is the sequence of iterates
determined by (6). Then complete consistency implies that if the sequence {4} converges to

some vector i, then @ = o

The iterative method (6) is convergent if for any initial approximation 4 the sequence u(V, 12,
... determined by (6) converges to the unique solution a = A"lb. A necessary and sufficient
condition for convergence is that S(G) < 1.0 where the spectral radius S(G) of the real matrix G is

defined as the maximum of the absolute values of the eigenvalues of G.

The error vector £() = () — o satisfies the relation
ed = GigO, ®

Therefore, we have
IIE“)IIB < IIG"IIB IIE(O)IIB- (10)

Thus, IIG‘IIB gives a measure by which the norm of the error has been reduced after i iterations.

The average rate of convergence for a basic iterative method (6) is defined by [Youn 81, p. 20]

R(G) = -(1/n(og, IIG‘II;;)- an
It can be shown that if S(G) < 1.0, then

lim (IG" = S(G). (12)
Hence lhc‘;sy:nptotic rate of convergence is defined by

R_(G) = ilim R{(G) = - (log, S(G)). (13)

Frequently we refer to R_(G) as the rate of convergence. We see that as S(G) approaches 1.0, the
rate of convergence decreases. Small values of S(G) (that is, S(G) positive and near zero) gives a

high convergence rate.

There are several well known basic iterative methods; the Jacobi, the Gauss-Secidel, the
successive overrelaxation (SOR), and the symmetric successive overrelaxation (SSOR) methods.

However, methods other than these basic iterative methods are used in practice because of the

39

slow convergence rates of the basic iterative methods. The rates of convergence can be
accelerated by two major classes of accelerations: polynomial acceleration methods or
nonpolynomial acceleration methods. Note that the multigrid method is one of the

nonpolynomial acceleration methods.

Before we proceed to discuss two basic iterative methods, some properties of real symmetric

matrices are reviewed [Youn 81, p. 4].

Theorem 2: If the n X n matrix A is real and symmetric, then
1. the eigenvalues A, i =1, ..., n, of A are real, and

2. there exists a set of n real eigenvectors {£0) of A, i.e.,
a. AED=0ED, =1, ... ,n,

b. {E(} is a basis for the associated vector space, i.e., (€0} is a set of n
linearly independent vectors, and

c. (ED,EDy = {(1) if i=j

otherwise .

When the eigenvalues of the matrix A are real, we let m(A) and M(A) denote, respectively, the
smallest and largest eigenvalues of the matrix A. Furthermore, if the matrix A is symmetric, then
for any nonzero vector v,

m(A) £ (v,Av)/(v,v) S M(A).

4.1.1.1 Jacobi Method

The Jacobi method is defined by
n
a, ul*" = -3 ‘a‘.Ju}’) +b, i=12n (14)
j=ljei

whereA=(a‘-J«) andb=(b)forl <i,j<n

Hence, the iteration matrix G is related to the matrix A by

o= 0 if i=] 15
8ij {—a,-_,-/au otherwise, 15
where G = (g,-_,-).

The vector k is related to the vector b by

where k = (k).

The Jacobi method is convergent if and only if S(G) < 1.0. It can be shown that S(G) < 1.0, for

40
example, if the matrix A is irreducible with weak diagonal dominance [Youn 81, p. 25].

In our depth interpolation problem, the largest eigenvalue of G, M(G), is less than 1.0 since the
Jacobi method is symmetrizable. (The formal definition of the symmetrization property and its
associated results will be described shortly in next section.) However, the smallest eigenvalue of

G, m(G), is less than — 1.0.8 Therefore, the Jacobi method itself is not convergent.

Nevertheless, the Jacobi method can be employed as the underlying iterative method of any
polynomial acceleration methods. In such a case, it offers two nice aspects from the point of
view of parallel computation. First, as shown in the equation (14), the Jacobi method displaces
old values with new values simultaneously. Therefore the computational step where the matrix
iteration computation is performed using the Jacobi method may be parallelized. This
observation was utilized in our implementation of the adaptive Chebyshev acceleration method
where the entire steps of the computations have been parallelized. Second, as shown in the
equation (15), the sparsity of the iteration matrix G is preserved. Both aspects lead to efficient

parallel computation, described in detail later.

4.1,1.2 Gauss-Seidel Method
The Gauss-Seidel method is defined by

n
a;; flﬂ) E a4 J(l”) 4 J(’) + b, =12n)
1

j=i+
When A is SPD, it can be shown that the Gauss-Seidel method always converges [Youn 81, p.
27).

In our depth interpolation problem, the Gauss-Seidel method always converges because A is SPD.
This method has the advantﬁge of being easy 1o implement and can serve as a quick and dirty
solution. But it suffers from two aspects. Its convergence rate is rather slow and the method is

inherently serial, thus not amenable to parallel computation.

233ee the numerical result in section 5.2. There, m(G) is estimated to be close to —2.2.

41

4.1.2 Extrapolated Method
For most of the acceleration methods, it is not necessary that the basic iterative method (6) be

convergent. Normally, it is sufficient that the method be symmetrizable in the following sense.

Definition 3: The iterative method (6) is symmetrizable if for some nonsingular matrix
W the matrix W({/ — G)W-! is SPD. Such a matrix W is called a symmetrization matrix.

With this definition, we have the following results [Youn 81, p. 21].

Theorem 4: If the iterative method (6) is symmetrizable, then
1. the eigenvalues of G are real,

2. the largest eigenvalue M(G) of G is less than 1.0, and

3. the set of eigenvectors for G is a basis for the associated vector space.

The symmetrization property need not imply convergence. If the iterative method (6) is
symmetrizable, then the eigenvalues of G are less than 1.0 but not necessarily less than 1.0 in
absolute value. Hence, the iterative method is not always convergent. However, there always
exists a so-called extrapolated method based on the iterative method (6) which is convergent

whenever the basic iterative method is symmetrizable.

The extrapolated method applied to the iterative method (6) is defined by
WD = yGu + k) + (1 - pu® = G + vk, (18)

where

Here v is a parameter that is often referred to as the "extrapolation factor.” If the basic iterative
method is symmetrizable, then the optimum value ¥ for v, in the sense of minimizing S(Gy. is
given by

Y = 2/2-M(G)-m(G)). (20)

Moreover, it easily follows that
S(Ggp = M(G)-m(G)/(2-MG)-m(G)) < 1. 21

Thus, the optimum extrapolated method is convergent.

In general, the Jacobi and the SSOR methods are symmetrizable while the Gauss-Seidel and the
SOR methods are not. When the matrix A is SPD, the Jacobi method is symmetrizable with

42

W = D2 where D is a diagonal matrix whose diagonal elements are taken from the matrix A.

When the basic iterative method is Jacobi, the extrapolated method is also called as the weighted
or damped Jacobi method. [See the multigrid literature [Brig 87, p. 10] or the discussion in [Terz
84, p. 108].] Note that with y= 1 we have the original Jacobi iteration method.

The Jacobi method is chosen as the underlying basic iterative method in this work since it is

much simpler than the SSOR method, another symmetrizable basic iterative method.

4.1.3 Optimal Chebyshev Acceleration Method

The polynomial acceleration method, which involves the formation of a new vector sequence
from linear combinations of the iterates obtained from the basic iterative method (6), is one of the
approaches used to accelerate the rates of convergence of the basic iterative methods. With

Chebyshev acceleration method, we assume again that the basic iterative method (6) is

symmetrizable.

Consider a vector sequence {u)} determined by
Do = Q4G w9 - @),

where Q(G) = g,/ +q; G+ -~ + q‘..‘.G" is the matrix polynomial such that
;
q;:; =1, i=01,....
,-Zb Y

Furthermore, the virtual spectral radius of Q{G) is defined by

S(QLG) = M 9] (22)
mG) S A S M(G)

The virtual average rate of convergence for a polynomial acceleration method is defined by

RAQLG)) = —(1/)(log,S(QLG))), (23)

and provided the limit exists, the virtual asymptotic rate of convergence is given by

R _(QLG)) = lim R(Q{G)). (24)

i — oo

We seek the particular polynomial acceleration method which is obtained by choosing the matrix

polynomial sequence {Q{G)} such that {§(Q‘(G))}. i=1,2, ...,is minimized.

43

The Chebyshev polynomial of degree i is defined by the recurrence relation
To® = 1,
T\(@) = &
Tin® = 28T -T;_1(®). izl

Let P{A) be defined in terms of Chebyshev polynomials as
P) = T;(g(M)/T;(g(1)).

where
gA) = @A —-M(G) - m(G)) / (M(G) - m(G)).

It now follows that the polynomial PA) is the unique polynomial which satisfies
max |PAA)| = max QM) (25)

mG) S A S MG) | m(G) S A < M(G)

We refer to the polynomial acceleration method based on P{G) as the optimal Chebyshev

acceleration method which has the form

80 = Gu + k—u®, (26)

w*D = po (8D + uDy + (1 - py ulh, Q27)
where

Y =2/2-MG)-mG)), 28)

pp =1

py = 1/(1-.509),

Pieg = 1/(1-250%p), 22, (29)
and

= (M(G) - m(G)) / 2 - M(G) - m(G)). (30)

We now examine the convergence rate of the optimal Chebyshev acceleration method. After a
small amount of algebra, we obtain the virtual spectral radius of P{G) as

S(PAG)) = 2r% /(1 +), (31)
where

r=0-v1-02)/(+V1-02). (32)

44

Thus from (23) and (31), the average virtual rate of convergence for the optimal Chebyshev

acceleration method is

RAPAGY = - S(og, 1) - Ltog, 2 (33

and the asymptotic rate of convergence defined by (24) is

R_(P{G)) = —%(loger). (34)

From (33) and (34), it easily follows that RTi(P‘(G)) < Ew(P‘(G)) for all finite {. In fact, it can
be shown that R{P{G)) is an increasing function of i. However, many iterations are often
required before the asymptotic convergence is achieved. For example, if we have ¥ = 0.1 after i
iterations, then the average virtual convergence rate for these { iterations is only about one-half of

its value for later iterations when the asymptotic convergence rate is achieved.

We can compare the optimum Chebyshev acceleration method with the optimum extrapolated
method defined by the equation (18). For the optimum extrapolated method, we have by the

equation (21) that
R.Gm) = —log,o. (35)

For & close to 1.0, we can show that

R (PLG)) ~ V2VR_(Gp). (36)

Thus, the optimum Chebyshev acceleration method is an order of magnitude faster than the

optimum extrapolated method.

The convergence rate of the optimal Chebyshev acceleration method is fastest when the largest
eigenvalue, M(G), and the smallest eigenvalue, m(G), of the iteration matrix G for the related
basic method are known. In Lee’s work mentioned in section 2.2.3, he estimated the lower and
upper bounds of the smallest and largest eigenvalues, although he worked on the Chebyshev

method, not on the Chebyshev acceleration method.

In the depth interpolation problem, it is impossible to estimate the bounds of eigenvalues a priori
due to the flexible nature of the matrix. For example, at nodes where the depth constraints exist,

both the right- and the left-hand side of the matrix equation, Au = b, are modified, as seen in the

45

equation (2). Since the matrix G is related to the matrix A by the equation (15), m(G) and M(G)
depend only on the left-hand side of the original equation (5). Therefore, m(G) and M(G) depend
on the number of depth continuous nodes in the region, the shape of the region, and the
distribution of the constraints. However, m(G) and M(G) do not depend on the actual values of
the constraints, since the constraint values appear on the right-hand side of the equation (5) only.
Furthermore, m(G) and M(G) depend also on the choice of the values for the parameters B# and

o, [For example, see the equations (2) or (3).]

In general, the optimal estimates of the m(G) and M(G) are not known a priori but can be

computationally determined by using the adaptive Chebyshev acceleration method.

4.1.4 Adaptive Chebyshev Acceleration Method
When estimates mg and Mg are used for m(G) and M(G), respectively, the adaptive Chebyshev

acceleration method has the form

8D = GuD + k — u®, 3D

wD = p. (8D + u®y + (1 - p,, pulD, (3%)
where

Y= 2/Q-Mg—my), (39)

py = 1, if p=02

pp = 1/(1-.505), if p=1,

Pps1 = 1/(1-250g%p). if p22, (40)
and

Because the basic iterative method is symmetrizable, we have the inequality M(G) < 1.0. Under
the adequately general assumption of mg < Mg < 1.0 and mg < m(G), it can be shown that the
asymptotic rate of convergence of the adaptive Chebyshev acceleration method is an increasing

function of Mg for Mg < M(G). Also, the asympiotic rate of convergence is relatively insensitive

% Here, p is the degree of the Chebyshev polynomial currently being used.

46

to the estimate mg as long as mg < m(G). For example, if M(G) is close to 1.0 and m(G) < —1.0,
then mg need satisfy only (m(G) — mg) /|m(G)| < 0.1 in order that the increase in the number of
iterations using mg be less than 4%. But using an estimate mg which is considerably less than
m(G) may significantly increase the number of iterations required for convergence. However,

iterative divergence may result if mg does not satisfy mg < m(G).

In the adaptive procedure, a test is made during each iteration to determine whether or not the
acceleration parameters currently being used are satisfactory. If the present parameters are
judged unsatisfactory, the adaptive procedure then gives new improved estimates for the optimum

acceleration parameters.

We implemented two adaptive Chebyshev acceleration procedures as given in [Youn 81]. In one
algorithm (Algorithm 6-4.1 [Youn 81, p. 107]), the initial estimate of mg is input and is not
changed throughout computation. The estimate Mg is updated upward and converges to M(G)
from below. In the other algorithm (Algorithm 6-5.1 {Youn 81, p. 117]), estimates of both
eigenvalues are updated. When the initial m is too high, it is adjusted downward. If not, it is not
changed. The other estimate, Mg, is updated in the same fashion as in the previous algorithm. As

both values approach their true values, the algorithm's rate of convergence increases.

We shall use several different vector and matrix norms. The definition of the L,- and L_- vector

norms that we use are the following:

M, = w2 = (T 1v'?, 42)
j=1
Ml = max v (43)

We also use a matrix norm

IGll, = . nzlax (z Ig;JI)- (44)
ceeem

i=1,2,

Under the stronger assumption of mg < Mg < M(G) < 1.0 and mg < m(G), one of the ways to
compute the initial estimate of m(G) is by computing a reasonable lower bound based on the
matrix norm; that is, m(G) 2 - |G|l [Youn 81, p. 63]. The assumption that Mg < M(G) can be
satisfied easily. All that is required is that the initial estimate of Mg being smaller than M(G).

47

The iterations are to be terminated whenever some norm of the error vector becomes sufficienty
small. In the adaptive Chebyshev acceleration method, the pseudoresidual vector 8 defined by

the equation (37) is related to the error vector) by
3 = (G -neH. (45)

Under the stronger assumption of mg < Mg < M(G) < 1.0 and mg < m(G), it can be shown that

for any Lg-norm [Youn 81, p. 70]
Lm (18lg / 1IeVllg) = 1 -M(G). (46)
[]

Thus, provided that i is sufficiently large and the current estimate Mg is approximately equal to

M(G), we have
le@lg = II5(°IIB/(1 -Mp). CY))

Often, a relative error measure is desired rather than an absolute error measure; i.e., to terminate

the iterative process whenever
®
[ECTN

lledl,
where { is the desired accuracy.

< g, (48)

Using (47) and the approximation |lcly, = ”“(M)"n' we obtain the termination test
le®lly 1 1391
lodl, 1=Mg |lu®Dl

(49

Usually, the L, -norm should be the L_-norm or the same Lg-norm used to measure e®,

4.1.5 Parallelization
The parallelization of the adaptive Chebyshev acceleration computation is now discussed in
detail. The computation proceeds in two stages: pre-computation and a sequence of iterations

until the convergence is reached.

As the model of computation for the discussion given in this section, we are assuming the abstract
SIMD model we derived before in section 3.2.2. Specifically, we are referring back to the model
in Table 3-3, where we have the mesh connection for the local communication and the tree
connection superimposed on the underlying mesh for the global communication. In following

discussion, we assume that the size of the mesh at the bottom of the tree is s X s.

48

4.1.5.1 Pre-computation Stage

At the pre-computation stage, we compute the matrix A using a set of computational molecules in
SIMD fashion with four types of given inputs: depth discontinuities, depth constraints, orientation
discontinuities, and orientation constrainis. For each node, it computes the necessary
multiplication factors for each of 12 neighboring nodes and itself. The right-hand side vector b is
also computed at this time. Once the matrix A is computed, an initial estimate of mg can be also
computed. The tree connections are used to calculate the L_-norm of G, ||Gl|.., and mg might be
initialized with the negated L_-nom, — ||G]|,,. The initial estimate of Mg can be simply set to 0.0

when a better estimate is not available.

4.1.5.2 Iteration Stage
At each iteration, computation goes through several steps. Here, the attention is focused on the
calculation of the next iterate where all the matrix-vector multiplication and other vector
operations are performed. The computations are (Algon’thm 6-4.1 [Youn 81, p. 107)2):

¢ 30 = GuD + k — u®;

o compute 189, 13g;

o ulit) = p. (¥8D + u® + (1 — p,,PuEN;

o compute [N, .

The vector norm [|8D||, is computed for parameter estimation, while ||8(i)||B and llu(i*l)lln are

computed for the iteration termination test.

Computation of ui*1) is straightforward. Each node stores each element of the vectors so that a
simple SIMD execution will update each one, independent of other nodes. No communication is
needed. It would appear that storage is needed for each of the vectors w1, 4, and uG+D),
However, upon closer inspection it is easy to see that storage for only two vectors is required and

that the elements of these vectors need not be moved each iteration.

Calculation of the Ly-norm of 8, the Lg-norm of 8 or the L -norm of u(*!) are handled well

using any global communication network. We assume here the tree topology for the global

BComplete listing of Algorithm 6-4.1 is given in Figure I-1 of Appendix, with further explanation on parameter
estimation.

49

communication. Usually, the LB~norm or the L, -nomn is either a L,-norm or a L_-norm. When
the L,-norm is needed, every element in each PE is multiplied with itself. The summation of
squared numbers is carried out from the bottom to the top of the tree, one level at a time26. The
square root of the final resulting sum obtained at the top is the value desired. When the size of
the mesh at the bottom of the tree is s X s, the entire process takes O (log, 5) steps. When the
L_-norm is desired, each PE calculates the absolute value of the element in it2?. Then each PE
located at non-leaf level of the tree compares two values coming from its own two sons and
retains the bigger one. Both the comparison and the retaining of the biggest value is similarly
carried out from the bottom to the top of the tree. The single value obtained at the top is the

L_-norm desired. This too is a O (log , 5) process.

Finally, we are left with the calculation that involves the matrix-vector multiplication operation?8,
Computation of the pseudoresidual vector 3@ can be done in SIMD fashion using mesh
interconnections only. The only step remaining at this point is the computation of matrix-vector
multiplication term, Gu®. In section 4.1.1.1, we have already seen that the Jacobi method is
parallel (i.e., it simultaneously displaces old values with new values). Therefore, iterations based
on the Jacobi method can be carried out in SIMD fashion with mesh interconnections to assemble
current depth values of neighboring nodes. Furthermore, all the coefficients that contribute to this
assembly are in the form
8= —ajlay

since i is not equal to j. Since the factor in denominator, g;, is common to all neighboring nodes,
division by it is done only once, as the last step. By using the Jacobi method, neither explicit
pre-computation of the matrix G nor any particular sophisticated ordering of matrix elements is

needed. Put in other words, only local computation supported by the mesh topology is all that

26We have carried out the detailed analysis of the global summation algorithm in section 3.2.3. There, we analyzed
the algorithm with two global communication networks, i.e., the first ime with the tree topology and then with the
boolean ncube topology.

2'The calculation of the absolute value is a constant operation when we deal directly with the representation of the
floating point numbers. This operation just clears the sign of the fraction part 1o 0.

2The lower level detail of the SIMD implementation of this operation will be elaborated further in section 1.2 of
Appendix.

50

needed to multiply the vector u(? by the matrix G.2%

4.1.5.3 Space Complexity Analysis
Under our SIMD model of computation, each PE is provided with the fixed amount of memory.
The space analysis shows the amount of memory to be allocated during the execution of the

particular application.

The storage space needed in each PE is shown in Table 4-1.30 The space allocated is divided into
three groups. The first group is for the input vectors to the depth interpolation process, i.e.,
discontinuities and constraints informations. The second group is for the iteration matrix and its
associated vector. The last group is for the output and other vectors which are updated at every
iteration step. In the adaptive Chebyshev acceleration method, we need the space for three

vectors, 40D, 1D, and 80,

We analyzed the storage space requirement under general case, for example, when both the depth
and the orientation constraints exist. But the simplification is possible when the depth constraints

are present only.3!

For this restricted case, the input to the depth interpolation process consists of the depth
discontinuities and constraints only. In Table 4-1, the input vectors are reduced to 2 flags and 1

floating point number.

Figure 24 shows the weighting factors for neighboring nodes of an interior node. But this figure depicts another
important point which applies to any node. We can easily see that the depth value of any neighboring node can be
brought in (in order to be multiplied by an appropriate weighting factor) through the execution of only one or two mesh
communication instructions.

30A complete address map is given in Figure I-3 of section 1.2 of Appendix.

3For instance, consider the depth constraints data from the stereo or laser rangefinder.

51

The coefficients of the matrix are stored in a form where 1/ A2 is factored out.32 [See Figure 2-4
and the discussions in the section 1.2 of Appendix.] For the restricted case of the depth
constraints only, the coefficients which are contributed by four nodes at [0.2], [0,-2], [2,0], and
[-2,0] are always 1.0, if they exist at all. [Refer to Figure 2-4 again.] Therefore, these four

floating point numbers need not be stored. The marking of 4 corresponding flags is enough.

To summarize, we need 16 1-bit flags and 20 floating point numbers. Assuming 32 bits for the
floating point number representation, we need 656 bits per PE. For the restricted case of the

depth constraints only, we need 15 flags and 14 floating point numbers.

Description Flag (1-bit) Floating Point (32-bit)
Input Vectors 3 3
[teration Matrix and Vector 13 14
Output and Other Vectors 0 3

Table 4-1: Storage Space Used (Adaptive Chebyshev Acceleration Method)

32For all three iterative methods, factoring out by a constant, 1 / k2, does not affect the computation. In the adaptive
Chebyshev acceleration method, we use the Jacobi as the underlying basic iterative method. For the iteration matrix G,
the coefficient for every non-diagonal element is given by &j= —a; / a; ;. Since the coefficients of the A matrix are
divided by another on the right-hand side, factoring out by a constant does not matter. In the conjugate gradient
method, we adjusted every diagonal element of the matrix A to 1.0 in order 1o make the method converge. [Sce the
discussion in section 4.2.3.2.] Since the division, g; -/a‘-"., is later done to pre-adjust the matrix A, storing coefficients
after factoring out by a constant does not matter for this method as well. Finally, the Gauss-Seidel method is defined

by the equation (17). In order to compute the ug“l), all the terms on the right-hand side of the equation are divided by
a; , i.e., the division “iJ/ a;; is encountered again.

52

4.1.5.4 Time Complexity Analysis

The paralle] computations are analyzed in further detail in terms of basic operations and shown in
three tables. In Table 4-2, we show local computations which require intemal computations
carried out inside of the PE or optionally using the mesh communication with nearby neighbors.
The computations of two vectors, 8 and u@*D), fall into this group. The matrix-vector
multiplication, Gu{), which is an embedded step of the computation for the vector 8, is

presented under a separate column,

In Table 4-3, we show global computations which require tree communications for the global
summary and other internal computations carried out prior to or during the global summary. The

computations of three vector norms are put in this group.

In Table 4-4, we show the number of operations in local and global computations and then totals
for each operation. Under the column designated ‘‘TOTAL’’, the number of operations are
multiplied by the number of machine cycles which were defined before in Table 3-3. In
summary, the total number of machine cycles required for each iteration of the adaptive
Chebyshev acceleration method is given by 4392 x (log, s) + 17712, For the tree with 128 x 128

square mesh at the leaf, the total number of machine cycles is 48456.

The significance of the derived number is two-fold. First, it gives a rough estimate of the
execution time. At the current stage of development, 100 nanoseconds is a reasonable machine
cycle time for a typical SIMD machine. Therefore, prediction of execution time for an iteration
of a particular method is possible. In next section, we shall carry out similar time complexity
analysis for the conjugate gradient method as well. Second, when we compute the actual number
of iteration steps, the overall performance comparison of the different iterative methods is

possible.

The total time derived should be regarded as a lower bound. We analyzed the most time-
consuming part only, i.e., the calculations and data moves associated with the floating point data
items. We did not add up every detail of our implemented program. For example, we counted
neither 1-bit marking and other SIMD operations, nor the processing of the scalar variables in the

host processor. Nevertheless, the lower bound is not too low since the execution for SIMD part

53

and the host processor can be overlapped.33

In the restricted case of the depth constraints only, a slightly faster execution is possible. In the
matrix-vector multiplication Gu(®, a shifted-in depth value from each neighbor is continually
multiplied by a corresponding pre-stored coefficient and added to an intermediate sum. For the
restricted case, four coefficients are always 1.0, if they exist at all. Thus, four multiplication
operations can be eliminated. However, note that the division q; J/ a;; can be done in the pre-
computation stage for the general case. But this division operation should be performed at each

iteration step for the restricted case.

In Table 4-2, to compute Gu® and 8@, for multiplication and division operations, we need 8 and
1 of them instead. In Table 44, we have 11 multiplication and 1 division operations for local
computations but there is no change for global computations. The total number of machine
cycles per iteration step is given by 4392 X (log, 5) + 16453. For the tree with 128 x 128 square
mesh at the leaf, the total number is 47197,

Before concluding this section, we discuss the time complexity analysis of the related iterative
methods. When good estimates of m(G) and M(G) are available, say, through prior
experimentation of the adaptive Chebyshev acceleration method, we can use them for m(G) and
M(G). In this case, we can use either the optimal Chebyshev acceleration or the weighted Jacobi
methods. Since the initial estimates are used with no further improvements to the end, more
iteration steps might be needed. On the other hand, we do not compute the vector norms
associated with the parameter estimation. Thus, in the parallel execution of these methods the

global connections are not used and each iteration step takes less amount of time.

For the weighted Jacobi method, the equation (18) can be rewritten as
MG 78(‘7 +u®, (50)

using the definition of the pseudoresidual vector in the equation (26). [Compare the equation (50)
with that of the optimal Chebyshev acceleration method, the equation (27).)

3For further details, see section I.1.2 of Appendix.

54

In Table 4-5, we show the analyzed result of the computations for the weighted Jacobi method.
The total number of machine cycles for this method is 15099. In Table 4-6, we show similar
result for the optimal Chebyshev acceleration method. The total number of machine cycles is
16573, slightly bigger than that of the weighted Jacobi method,3* but significantly smaller than
that of the adaptive Chebyshev acceleration method. In the restricted case of the depth
constraints only, a slightly faster execution is also possible for two methods. The total number of
machine cycles are 13840 and 15314 for the weighted Jacobi and the optimal Chebyshev

acceleration methods, respectively.

We did not include the global computations associated with the iteration termination test in Table
4-6. There are three justifications for this decision. As explained already, by doing this, we can
dispense with the global connections. Furthermore, we have not included the termination tests for
other methods, for instance, the weighted Jacobi or the conjugate gradient methods. Lastly, when
these methods are used under the multigrid approach, different termination tests are used for all

methods.

4.2 Conjugate Gradient Method
The conjugate gradient method is well known in numerical analysis and its description can be
found in many standard textbooks and papers, for example, in [Youn 81}, [Golu 85], and [Wozn

80]. Here, we follow the description given in [Wozn 80].

We show the conjugate gradient algorithms for the solution of a large system of linear
36

Ax = b &)

equations

where A is an n X n SPD matrix and b is an n X 1 vector,

3Recall that in the depth interpolation problem a node may interact with up to 12 neighbors. The term Gu‘), which
is a part of the §©) computation common to both methods, dominates the computational cost. Thus, the incremental
cost incurred for the optimal Chebyshev acceleration method is small. In other problems where a node interacts with
fewer neighbors, the relative portion of the incremental cost will be higher.

%Tn this section, we use x instead of u to denote the depth vector following the notations in [Wozn 80]. After this
section, we will use both of them.

Operations Gu® 50 u(i+D)
Addition, Subtraction 12 14 2
Multiplication 12 12 3
Division 0 0 0
Mesh Communication 16 16 0
Tree Communication 0 0 0

Table 4-2: Operations in Local Computation (Adaptive Chebyshev Acceleration Method)

Operations 181, 118Dy 1Dy
Addition, Subtraction 2(log s) 2(log s)
Multiplication 1 0
Division 0 0
Mesh Communication 0 0
Tree Communication 4(log s) + 1 4(ogs)+1

Table 4-3: Operations in Global Computation (Adaptive Chebyshev Acceleration Method3?)

Operations local global TOTAL (machine cycles)
Addition, Subtraction 16 6(log s) (6(log s) + 16) x 348
Multiplication 15 1 16 X 563
Division 0 0 0x993
Mesh Communication 16 0 16 x 160
Tree Communication 0 12(log s) + 3 (12(log s) + 3) x 192

Table 4-4: Summary of Operations (Adaptive Chebyshev Acceleration Method)

35We assume the base of log is 2 unless stated otherwise.

Operations 50
Addition, Subtraction 14
Multiplication 12
Division 0
Mesh Communication 16
Tree Communication 0

56

TOTAL (machine cycles)

15 %348
13 x 563
0x993
16 x 160

0x192

Table 4-5: Operations in Local Computation (Weighted Jacobi Method)

Operations 8M
Addition, Subtraction 14
Multiplication 12
Division 0
Mesh Communication 16
Tree Communication 0

TOTAL (machine cycles)

15 x 563
0x993
16 %< 160

0x192

Table 4-6: Operations in Local Computation (Optimal Chebyshev Acceleration Method)

57

4.2.1 Steepest Descent Method
We solve the equation (S1) iteratively by constructing a sequence {x(9) converging to the

solution o = A-!b. Let B be a matrix which commutes with A: BA = AB.
Let [ixl, = 1B"2x] = (Bx,)2, where |jxll; = (x, 0"

The gradient iteration method constructs the sequence {x{} as follows. Let X? be an initial

approximation and

XD = D — e, D, (52)

where ; is chosen in such a way that the error ¢;,; = ||x0*1) — o5 is minimized. This yields

_ (), B - o)

= 53
‘i (*9, Br))
It is well known that {x{)} converges to o and
' (K— 1)i+l
I+ D — oy S ———ID —all, (54)
(x+ D™

where x = [|A]| llA'lll is the condition number of the matrix 4, i.e., x = M(A) / m(A).

For B = A, the iteration (52), (53) is called the steepest descent method. It has, in general, very
slow convergence and therefore is not recommended in practice. The conjugate gradient method

is much more efficient.

4.2.2 Conjugate Gradient Method

Consider a class of iteration methods for which the error formula satisfies the relation
XD —a = WA (XD -),

where W; is a polynomial of degree at most i and W{0) = 1. We seek the polynomials W; such
that the error ¢; = 1) — 0llp is minimized. This means that the polynomials W; are the solution

of the following problem:

IW A O -l = I 1pa) GO -), (55)
Pe W(0,1)

where W{0, 1) is the class of polynomials of degree at most { normalized to unity at the origin.

The solution of the problem (55) is given by the orthogonal polynomials derived as follows. Let

58

Do =3 cg®
j=1
where £0) is an eigenvector of A associated with the eigenvalue As AEV) = kjg(j), AM<h< o<

lm,witthnandcjanforj:l,Z. N (8

From the orthogonality of the polynomials W; it follows that they satisfy a three-term recurrence

formula. This form is defined as follows:
WA = 1,

WA = 1-coh,
W (B = W) — c AW — 1 (W (M = W) + cAW D), i21,

where
. (W, W)
WL WY
uo = 0,

1
Wi —cAW;, s (Wi -WD + W)
u, = - 1 , i21.
Wiy = Wi+ AW, 2 Wiy =W +c¥)

From this we get the three-term recurrence formula for the sequence {x(},

D = AxXD - p,

2D = X0 - ¢;r0,

Yy = =D _ D,

D = D — gy, (56)
where

. o . B —ay)

‘ D, BrAY)

uo = 0,

() N_
i=(y.B(z< L) 7

00, 850

59

In infinite precision arithmetic, the conjugate gradient method (56), (57) solves the problem

exactly in at most m steps, i.e., X¥) = a forsome k < m.

From the equation (55) one can estimate the speed of convergence for initial approximations X0, i

< m. Setting
P = T;(g(W) 7 T;(g(1)

in the equation (55), where T; is the Chebyshev polynomial of degree i and
gA) = @h—A, 2D/, —A).

we get
(Va - 1)

D - olly < 2 ——= @ -, (58)
(Va + 1)’

where a =2, /A,. [Compare with the equation (54).]
In general, it seems that the choice B = A? for p = 0, 1 or 2 covers all cases of practical interest.

For B = A? = we minimize [X{? - oJ|. For B = I, we cannot, in general, compute the coefficient
¢; in the equation (57). To compute the coefficients ¢; and u; we assume that A = M*M and b =
M g for a nonsingular matrix M where M and g are given as data. This variant of the conjugate

gradient method is called the minimum error method.

For B = Al we minimize IIA”2 (x(0 — o)|l. This corresponds to the classical conjugate gradient

method. After substituting B with A and A with b, we have

)
D, Ay
Uy = 0,
D, A2D — p) .
;= —(y([), ™o . P21 (59)

On examination of the equations (56) and (59). we find that we seem to need four matrix-vector
multiplications. But two matrix-vector multiplications, Ay® and Az(), can be eliminated with

substitutions. Now we have

60

oo O
LD, ArY

uo = 0,
oD, 4D _ c.A/D)
4T 50, AxED 4D 4 ¢ Ay

i>1. (60)

For B = A% we minimize the residual vectors 79, since ||JA (x — o))|| = ||FD)|. This variant is called

the minimal residual method.
Only B = A! will be used in this work, although analysis of the others is similar.

4.2.3 Parallelization
We show the parallel implementation of the classical conjugate gradient method defined by the
equations (56) and (60). We assume the same model of computation used in section 4.1.5. We

assume again that the size of the mesh at the bottom of the tree is 5 X s.

4.2.3.1 Pre-computation Stage

The computation of the matrix A and the right-hand side vector b has been described in section

4.1.5.1. The discussion is not repeated here,

4.2.3.2 Iteration Stage

The matrix-vector multiplication operations, AX? and Ar{), of the conjugate gradient method

proceed in the same fashion using the mesh connection as described in section 4.1.5.2.

In order for the conjugate gradient method not to diverge, every diagonal element of the matrix A
was adjusted to 1.0 by division. Therefore, for non-diagonal elements of the matrix, we have
similar coefficients, a;;/a;;, to those of the Jacobi method given in the equation (15). This led
to further similarity in the computational steps of the matrix-vector multiplication operations for

the conjugate gradient and the adaptive Chebyshev acceleration methods.

When the inner products are computed, two elements (drawn separately from two vectors) in each

PE located at the leaf of the tree are multiplied together. Once the product is in place, the global

61

summation is carried out from the bottom to the top of the tree using the tree connection. This

too is a O(log, 5) process.

4.2.3.3 Space Complexity Analysis

The storage space needed in each PE is shown in Table 4-7. Compared to the adaptive

Chebyshev acceleration method, the conjugate gradient method requires more space to carry out
each iteration. In addition to the space for two vectors, x("1) and x{, we need additional space to

store the result of the matrix-vector multiplication, Ax(-1), Ax®, and A9, and also the space for
three other vectors, z®, y, and 9.

To summarize, we need 16 1-bit flags and 25 floating point numbers. In all, we need 816 bits per

PE. For the restricted case of the depth constraints only, we need 15 flags and 19 floating point

numbers. {See the discussion in section 4.1.5.3.]

Description Flag (1-bit) Floating Point (32-bit)
Input Vectors 3 3
Iteration Matrix and Vector 13 14
Output and Other Vectors 0 8

Table 4-7: Storage Space Used (Conjugate Gradient Method)

62

4.2.3.4 Time Complexity Analysis

The parallel computations are analyzed in further detail in terms of basic operations and shown in
three tables. In Table 4-8, we show local computations. The computations of four vectors and
two matrix-vector multiplications fall into this group. The matrix-vector multiplication
operations, Ax(? and Ar), which are embedded steps of the computation of the vector 77 and the

coefficient c;, respectively, are presented together under a separate column.

In Table 4-9, we show global computations. The computations of four inner products to compute

two coefficients, ¢; and u;, belong to this group.

In Table 4-10, we show the number of operations in local and global computations and then totals
for each operation. Under the column designated ‘“TOTAL’’, the number of operations are
multiplied by the number of machine cycles. In summary, the total number of machine cycles
required for each iteration of the conjugate gradient method is given by
5856 x (log , 5) + 34825. For the tree with 128 X 128 square mesh at the leaf, the total number of
machine cycles is 75817.

In the restricted case of the depth constraints only, a slightly faster execution is possible. [See the
discussion in section 4.1.5.4.] In Table 4-8, to compute Ax®, Art), and AD, we need 8
multiplication and 1 division operations. In Table 4-10, we have 18 multiplication and 2 division
operations for local computations but there is no change for global computations. The total
number of machine cycles per iteration step is given by 5856 x (log, s) + 32307. For the tree with
128 x 128 square mesh at the leaf, the total number is 73299.

4.3 Multigrid Method .

We now discuss the extension of the iterative methods by a multigrid approach. For the theory of
multigrid methods, we generally follow the description of [Terz 84], which is in tum based on the
seminar work of [Bran 77]. We follow also that of [Brig 87], a recently published introduction to

the subject with annotated suggested reading list. For another recent sophisticated treatment of

the subject, see [McCo 87].

63

Operations AXD, Ar®) r9 P10) y® XU+
Addition, Subtraction 13 14 1 1 1
Multiplication 12 12 1 0 1
Division 0 0 0 0 0
Mesh Communication 16 16 0 0 0
Tree Communication 0 0 0 0 0

Table 4-8: Operations in Local Computation (Conjugate Gradient Method)

Operations D, iy, (7@, ArDy (YD, D — ¢, ArDy (D, AU — AXD + c, AFD)
Addition, Subtraction 2(log s) 2(logs)+1 2(logs)+2
Multiplication 1 2 1
Division 0 0 0
Mesh Communication 0 0 0
Tree Communication 4(logs)+ 1 4(log s)+ 1 4(logs)+1

Table 4-9: Operations in Global Computation (Conjugate Gradient Method)

Operations local global TOTAL (machine cycles)
Addition, Subtraction 30 8(ogs)+3 (8(log s) + 33) x 348
Multiplication 26 5 31 %563
Division 0 0 0x 993
Mesh Communication 32 0 32x 160
Tree Communication 0 16 (log 5) + 4 (16(log s) +4)x 192

Table 4-10: Summary of Operations (Conjugate Gradient Method)

4.3.1 Multilevel Equations
We have considered the solution of a large system of linear equations At = f' . A total of

L - 1 similar problems on increasingly coarser levels can be introduced to increase efficiency.

The hierarchy of problems is then given by the sequence of L linear systems of the form

A= 1 <1 <L (61)

whose discrete solutions u™ for 1 < I € L constitute the hierarchy of full surface

representations.

In general, solving the problems at coarser levels is faster because of two factors. First, the size of
the matrices gets smaller. Second, the density of the constraints gets denser. However, it suffers

from the loss of fine detail because of crude resolution,

To exploit the hierarchy of problems, the system can be solved at the coarsest level, and that
solution can be used as an initial approximation in the iterative solution of the next finer level,
proceeding in this way to the finest level L. This idea of using coarser grids to generate improved
initial guesses is called nested iteration. However, it does not generate solutions having the
accuracy of the finest level in any of the coarser levels. The way that a hierarchy of coarser
solutions would maintain accuracies consistent with the solution of the finest level is to allow the
coarser levels to access the high-resolution information in the finer levels. Multigrid algorithms

provide such communication.

In general, the standard iterative methods, such as the weighted Jacobi or the Gauss-Seidel,
decreases the error rapidly within the first few iterations, after which it decreases much more
slowly. Any initial error can be divided between high- and low-frequency modes, that is, the
oscillatory and smooth components of the error. The initial rapid decrease in error is due to the
quick elimination of the high-frequency modes. The later slow decrease is due to the presence of
the low-frequency modes, i.e., the iteration is much less effective in reducing the remaining
smooth components. We can assume that enough relaxation sweeps on the fine grid eliminates
the high-frequency components of the error. In fact, very few sweeps may be needed to nearly
accomplish this.

65

The important point is that smooth modes on a fine grid look less smooth on a coarse grid. This
suggests that when relaxation begins to stall, signaling the predominance of smooth error modes,

it is advisable to move to a coarser grid, on which those smooth error modes appear more

oscillatory and relaxation will be more effective.

Another powerful idea of using the residual equation to relax on the error is called coarse grid
correction. In this procedure, we first relax on the fine level / until the convergence deteriorates,

obtain an approximation v, and compute the residual = fl — AM VM. Then we relax on the
residual equation AP-1 ef-1 = FP-1 on the coarser level [— 1 to obtain an approximation to the

error e"1. Finally, we correct the approximation obtained on the fine level with the error

. . h h h
estimate obtained on the coarser level: v = v + ¢-1,

The coarse grid correction acting on smooth modes produces smooth and oscillatory modes with
very small amplitudes. Therefore, the coarse grid correction scheme is effective at eliminating
smooth components of error [Brig 87, p. 75]. These two processes, relaxation and correction,

complement each other remarkably. By applying them in tandem, the multigrid methods reduce

the error very effectively.

The multilevel equations for L levels are given by [Terz 84, p. 110]

A= gt 1 <1 <L (62)

where
ghL = f*L‘
AT S (YT« S A A G L S B N S BP S IP S (63)

The original, right-hand side f'l of the /-th level problem occurs only on the finest level L. The
right-hand sides of the coarser levels have been modified using information from the finer levels

in order that the accuracy of the finest level be maintained throughout the coarser levels.

When the solution u* of the equation (63) is available, the approximation on the fine level can be

corrected by the replacement

66

h _ ., h h h
whl = yht + Il—)1+1 't -~ II+1 14 k). (64

For the sequence of L linear systems in the equation (61) or (62), the system matrices are SPD.
Suppose that the constraints at the finest level was obtained.3’ We can then show that the matrix
at the finest level is SPD. [See the discussion in section 2.2.2.4.] Given the condition that the
matrix at the finest level is SPD and the fact that the constraints at coarser levels are generated by
sampling or by local averaging of values at the finer levels, we can show that the matrices at

coarser levels are also SPD using similar arguments.

We can make another remark about the sequence of the smallest and largest eigenvalues, m(G™
and M(G"’). In A"l = j"l and AMu" = g"l, the same matrix A" is employed on the left-
hand side of the equations. Note that m(G"’) and M(Gh’) depend on the matrix Al only.38
Therefore, the estimates of the eigenvalues computed while solving the Al = f’" can be used

in the solution of A u" = g" ! as well.

Either smaller size of the matrices or denser constraints leads to easier problems to solve. In the
Chebyshev acceleration method, this amounts to smaller M(G) values. In multigrid approach,
both conditions, smaller matrices and denser constraints, are satisfied at coarser levels. Thus, the

values of M(G"f) at coarser levels are smaller.

In a simplified multigrid implementation, a 2 : 1 decrease in grid resolution between adjacent
levels is employed as shown in Figure 4-1. The grid nodes of coarser grids coincide with grid

nodes on adjacent finer grids.

37For an instance of the generation of the depth constraints at the finest level, see the Grimson’s approach which was
discussed in section 2.2.1.

38Recall the discussion about the m(G) and M(G) at the end of section 4,13,

67

Z
coarse
al
//
| | s
; medium
L L V4 4
sl <
oo 2)V a4
e L L el .
e Ll L L fine
it alVal L L
ol L X L
et L L

AAIAAFIEL

Figure 4-1: Typical Multigrid Organization3?

4.3.1.1 Interlevel Computation

The issue of intergrid transfers is discussed at some length in {Bran 82].

For the fine-to-coarse restriction operation, /,,, _, ,, simple injection or local averaging is used.

In an injection, a coarse-grid node receives the value from the coincident fine-grid node.

For the coarse-to-fine prolongation operation, /, _, ,,, . polynomial Lagrange interpolation is
employed. The two-dimensional interpolating polynomial of degree 3 in x and degree 3 in y is
used wherever possible [Terz 84, p. 122]. When discontinuities occur such as near the region

boundary, the degree of interpolation is reduced accommodating only nearby depth continuous

nodes.

The two-dimensional Lagrange interpolating polynomial of degree m in x and degree n in y
passing through the (m + 1)(n + 1) points (x;, Yje v(x,-.yj)), forOSi<smandO <j < n,is given by

Pmpxy) = ; ; Xpi (DY, ;0) vx, y). (65)

with the Lagrangian interpolation coefficients

$taken from [Terz 85a, p. 157]

68

m X =X
X, (%) = !| L 0<is<m
ki X T X
"oy -y .
Y, =]I L 0<js<n (66)

When the third-degree interpolation is used, m = n = 3 are substituted into the equations above,
(65) and (66). For four nodes at and near (x,.y,) at fine level, we have*0

P33 (xp.y) = vxpy s

P33 ((x+x) /2,y)) = (= v(xpy) +9v(x;.y) + Iv(x,.y,) —v(x,y)) /16,

P33 (xp Oy +y) 1 2) = (= v(xyp) + 9v(x), ;) + 9v(xy, y)) — v(x,.y5)) / 16,

P33 ((x)+x) /1 2,(y,+y) 12) = (Wxp.¥p) — Iv(x),¥p) — Iv(xy,y0) + v(x3.¥p)
- 9W(xgy) +81v(x,y,) + 81W(xy,) — 9 ¥(xy.)
— 9W(x0 ¥y + 81v(x;, ;) + 81 v(xp,¥) — 9 (3, ¥,)
+ WXg, y3) — 9v(x},¥3) — 9v(xp,¥4) + v(x3.y3)) / 256. 67

4.3.2 Multilevel Coordination Schemes

In a fixed scheme, listed in Figure 4-2, the switching of levels occurs in a fixed manner from the
coarsest level [= 1 to the finest level I = L [Terz 84, p. 113). (See also the full multigrid V-cycle
algorithm in [Brig 87, p. 49].)

In the controlling procedure FMRA, a sufficient number of iterations are performed first to solve
the coarsest level discrete system AMh = f' I to desired accuracy. Then the currently finest
level, stanted with [= 1, is incremented. The first approximation on the new level is set by the
interpolation and then the procedure FMC is invoked. When it terminates at level /, we have
obtained a hierarchy of / representations. The currently finest approximation is then interpolated

to the next finer level and the procedure FMC is called again until the finest level L is reached.

In the main computational procedure FMC, n, iterations are performed first at level /. It then

performs a restriction to the next coarser level / — 1. Next, it calls itself recursively on the

40A¢ coarse level /, for all i and j, we have Xl ~ XK =V~ Y = h,.

69

coarser level n, times. (In practice, only n, = 1 and n, = 2 are used.) Finally, it performs a
prolongation from the coarser level back to level /, following up with n, more iterations on level /.
On the coarsest level [= 1, the problem is solved to desired accuracy with the basic solution
method, SOLVE. It can be easily shown that when FMC is invoked on level [it calls RELAX a

total of n,)**(n, + n,) times on level k # 1 and it calls SOLVE n,/~! times on level 1.

In general, the relaxation processes on the coarser scales suffer from increasingly large
discretization errors, but they converge to the coarse solution relatively quickly since the size of
the matrices is smaller and the density of the constraints is denser. Conversely. those on the finer
scales are increasingly accurate, but exhibit a substantially slower response*3. With the coarse-
to-fine coupling, the fast response characteristics of the coarser relaxation processes is extended
to the finer levels, but beyond a certain point the poor accuracy of the coarser levels corrupts the
solution computed in the finest level. On the other hand, with the fine-to-coarse coupling, the
accurate approximations computed on the finer levels improve the accuracy of the coarser

approximations.

To resolve the dilemma, the interlevel coupling can be modified during the iterative process such
that there is an initially strong but gradually weakening coarse-to-fine interaction, which
accelerates convergence, and an initially weak but gradually strengthening fine-to-coarse

interaction, which ultimately yields consistent accuracy on all levels [Terz 85a).44

For multilevel coordination schemes, there are actually two common approaches. The first,
described above, is a fixed scheme, where the cycling parameters are chosen a priori and remain
fixed throughout the course of the algorithm. The choice may be made on the basis of analysis or

prior experimentation.

The second strategy is called an accommodative scheme. In this adaptive approach, the cycling

“3For example, see the numerical result in Table 5-13 which will be discussed in next chapter.

“1 is interesting to compare this control strategy with that of simulated annealing, which is a powerful and general
method for finding global optima of functions that have many local optima. In (Gema 84], the schedule for reduction
of temperature is givenby T = C/(log, (1 +k)) at the & iteration, where C is an appropriate energy constant. When
T is large, energy increases are often accepted, enabling the system to jump out of local minima. AsT — 0, the system
freezes, becoming almost deterministic in its descent towards a minimum of energy.

procedure FMC (/, u, g)

Ifl =1, then
u = SOLVE (I, u, &)
else
begin
for n, times do u := RELAX U u, g

vl w

d :

A"y w1 (g - AMy:
for n, times do FMC (-1, v, a;
uimu+ -0)

for n, times do u := RELAX (ug;
end,

procedure FMRA

Initialize 1, £, .. SL. Clear N N A zero. 41

4™ = SOLVE (1, 4, f1y,

for I =2 10 L do
begin
W= Iyt

FMC (1, v, fy:
end;

Figure 4-2: Multigrid Algorithm (Fixed Scheme)42

*'Here, *zero" means (0.0 0.0 . .. 0.0)T.

“ftaken from [Terz 84, p. 113-1 14]

70

71

parameters are determined on the run to account for variations in the patterns of convergence. An
accommodative scheme requires a small overhead, but it can pay for itself by reducing

unnecessary cycles and relaxation sweeps.

An example of an accommodative strategy is the following test, which determines when
relaxation should end on a given level. The residual vectors, given by o= ghl — A"y are
computed after successive relaxation sweeps. 4 When

e, > nlire
where 1) is a specified switching parameter, then relaxation on that grid is declared ineffective and
a move is made to the next coarser grid. The parameter N can be determined for certain model
problems. For instance, for the two-dimensional Poisson equation, | = .6 is reasonable (Brig 87,

p. 611.

Terzopoulos used an algorithm with a fully accommodative scheme (Algorithm 7.1 [Terz 84, p.
110]), which is based on [Bran 77), as a main vehicle in his work. We will use the fixed scheme

in next chapter to demonstrate the acceleration achieved by the multigrid approach.

4.3.3 Parallelization
The intralevel computation employs the standard relaxation. When serial relaxation methods

such as the Gauss-Seidel is used, it is not amenable to the parallelization.

Terzopoulos used work units (WU) to measure the computational cost of multigrid methods
following (Bran 77]. A work unit is defined as the amount of computation to perform one
relaxation sweep on the finest level L. When the computation on a sequential processor is
assumed, the work unit is proportional to the number of nodes where we can safely assume that
same amount of computation is required for nearly all nodes. Since there are about one quarter
the number of nodes on level / — 1 as there are on level /, only 1 /4% work unit is required to
perform a relaxation iteration on level /. Terzopoulos followed the convention of neglecting the

cost of intergrid transfer operations which could amount to 15-20 percent of the cost of the entire

45Note that the parallel computation of the discrete L,- or L_-norm of the residual vector, Iy hy requires global

connections as other vector norms.

72

cycle.

In our work, we shall use the iterative methods executable on a family of SIMD machines. We
shall carry out the corresponding space and time complexity analysis of multigrid algorithms. As
a measure of comparison for various iterative methods, we shall use principally the execution

time, though work units can still be used. We shall return to this issue again in section 4.3.3.3.

The interlevel computation interacts with local nodes in parallel fashion so that this
computational step is amenable to parallelization regardless of the method employed in the

intralevel computation.

As our analysis will reveal, the amount of time taken to perform an interlevel computation,
especially a prolongation operation, is not negligible compared to an intralevel computation, for

cxample, an iteration for the adaptive Chebyshev acceleration or the conjugate gradient methods.

As the model of computation, we are assuming the extended SIMD model we derived before in
section 3.2.4. Specifically, we assume that we have multiple mesh connections for the local
communication at the number of fine and coarse levels sufficient enough to execute multigrid
algorithms. We also assume tree connections, both for local interlevel computation and for global

communication.

4.3.3.1 Pre-computation Stage

We assume that the discontinuities and constraints inputs are available at the finest level. Then,
the discontinuities and constraints are propagated level by level to the coarsest one. A node at the
coarse level is set to be depth continuous if at least one node at the adjacent fine level is
continuous. For depth continuous nodes, the constraints can be obtained by sampling or by local

averaging of values at the finer level.

Once the discontinuities and constraints are in place for all levels, the matrices A" and their
associated vectors /'1 for 1 < | < L are computed simultaneously. However, a part of the
computation, i.e., some terms contributed by the constraints molecules, may be computed

separately for each level,

73

4.3.3.2 Space Complexity Analysis

For the multigrid algorithm, the increment of allocated memory is trivial. For the iterations on
the finest level only, 1 bit flag is allocated to mark the depth continuous PEs at the leaf. For the
multigrid method, instead of 1, we need L bits to mark the depth continuous PEs at each level

separately. Another addition is the space for ghl vector in addition to _fJl I'vector.

4.3.3.3 Time Complexity Analysis of Intralevel Computation

For the iterative methods at each level, we can use either the weighted Jacobi, the adaptive (and
optimal) Chebyshev acceleration, or the conjugate gradient method. Now, the results derived
before in section 4.1.5.4 and 4.2.3.4 can be used with slight modifications, taking into account the
different size of the mesh at each level. Suppose that the size of the mesh at the finest level L is s

x 5. Then the size of the mesh at level [is (s / 2L x (s / 2L).

At level [, the total number of machine cycles required for each iteration is given by
4392 x ((log,)—(L-D)+ 17712 for the adaptive Chebyshev acceleration and
5856 x ((log 5 5) — (L — D)) + 34825 for the conjugate gradient methods, respectively. When good
estimates of m(Gh’) and M(G"’) are available, we can use the weighted Jacobi or the optimal
Chebyshev acceleration method. Since these methods use only local connections, the
computation time does not depend on the size of the mesh, i.e., independent of level /. The total
number of machine cycles per iteration step is 15099 and 16573 for the weighted Jacobi and the

optimal Chebyshev acceleration methods, respectively.

For the restricted case of the depth constraints only, the total number of machine cycles per
iteration at level [is given by 4392 X ((log, s) — (L — 1)) + 16453 for the adaptive Chebyshev
acceleration and 5856 x ((log, s) —(L — D)+ 32307 for the conjugate gradient methods,
respectively. The total number of machine cycles per iteration step is 13840 and 15314 for the
weighted Jacobi and the optimal Chebyshev acceleration methods, respectively.

To measure the computational cost of multigrid algorithms, we can use work units or, more
generally, the execution time. Under the framework of a sequential processor, work units are
often used for a serial method such as the Gauss-Seidel, For a relaxation sweep on the finest

level, we have 1.0 work unit. For three coarser levels, we have .25, .0625, and .015625,

74

respectively. Under the framework of massive parallelism of a SIMD machine, identical
operations are carried out simultaneously on a set of chosen PEs. Here, the execution time is a
better measure since we have invested the hardware already. Instead of a few powerful
processors, we have huge number of small though quite capable processors.‘“S For an iterative
method which uses both local and global communications such as the conjugate gradient, we
have only small differences of execution time for fine and coarse grids. Suppose that the size of
the mesh at the finest level is 128 x 128. On the finest level, an iteration of the conjugate gradient
method takes 75817 machines cycles, while an iteration on three coarser levels take 69961,
64105, and 58249 machine cycles, respectively (with the only differences due to global
computation). If we set the execution time on the finest level as 1.0, then we have .9228, .8455,
and .7683 for the three coarser levels, respectively. Note the relatively small decreases compared
to the work units. For an iterative method which uses only local communications such as the
optimal Chebyshev acceleration, we would have same execution time for all levels. In next
section, we will carry out the time complexity analysis of the computations required for the
transfer of information between grids. By adding these costs together, we obtain a much more

precise picture of parallel computation.

4.3.3.4 Time Complexity Analysis of Interlevel Computation

For the restriction operation, simple injection or local averaging is used. We consider simple
injection first. In most cases, a coarse-grid node receives the value from the coincident fine-grid
node, the NW child.47 But for boundary nodes it may happen that NW child is not depth
continuous. In this case, it receives the value from one of the children in the order of NE, SW,
and SE child. This is done at two successive tree levels (i.e., one pyramid level). First, the data is
received from the right child at the lower (finer) level and then overwritten by the data from the
left child, thus favoring the data from children in the west direction. Then, a level up, identical
operation is carried out to favor the data from children in the north direction. The entire operation

takes four data moves through tree connection. [Refer back to Figure 3-1 and 3-2. See also

“6In the series of Cray's supercomputers, a Cray 1, a Cray 2, and a Y-MP model have 1, 4, and 8 processors,
respectively, while a Cray 3 and a Cray 4 will have 16 and 64 processors. In contrast, the Connection Machine has
between 16K and 64K processors.

4TRecall the discussion of coordinates assignment in section 3.2.4.

75
Figure 4-1.]

Now, we consider local averaging as the restriction operation. The depth data as well as the
number of depth continuous nodes in the subtree are sent up through the tree connection. At the
coarse level, the local average is obtained by dividing the sum of the depth data with the number

of depth continuous nodes in 2 x 2 grid of the adjacent fine level.

For the prolongation operation, Lagrange interpolation is employed. The two-dimensional
interpolating polynomial of degree 3 in x and y is used wherever possible. Near and on region
boundaries, the degree is reduced to 2, 1, or even to 0. This Lagrange interpolation is a rather
costly operation compared to the computation involved in iteration steps, though it is not required
so often as iterations are. To show how costly it is, we can compare the third-degree interpolation
formula in the equation (67) where 15 neighbors are involved with the nodal equations (1) or (2)
where 12 neighbors are involved. Also, we can compare the prolongation operation,
I

-1 =1 «"-1, in Table 4-11 with the nodal computations via the matrix-vector multiplication,

AXD and AAD in Table 4-8 or Gu® in Table 4-2.

The restriction and prolongation operations are analyzed in terms of basic operations in Table
4-11 and 4-12. The total number of machine cycles required for each operation is obtained by
multiplying the number of operations by the number of machine cycles defined in Table 3-3. In
summary, the number of machine cycles for the prolongation operation in FMRA, /., _,, W',
is 52383. The number for the restriction operaton in FMC, [, |, u and
AMty 4+ I @ - At u) together, is 29912 or 36218, when simple injection or local
averaging is used for the restriction operation, respectively. The number of machine cycles for
the prolongation operation in FMC, u + I, |, ,(v — [; _, ,_; w), is 53847 or 57000, when simple
injection or local averaging is used for the restriction operation, respectively. The execution time
for these operations is same for all levels since these operations involve only local interactions
between the adjacent coarse and fine level using the tree connections and identical processing is

done in SIMD fashion for all PEs at the same tree level.

In the restricted case of the depth constraints only, a slightly faster execution is possible. To

compute Ay 4 I ,@ - A" u), we need only 16 multiplication operations, instead of the

76

numbers in Table 4-11 and 4-12. Similarly, we need only 2 or 3 division operations, instead of
the numbers in Table 4-11 and 4-12, respectively. (For the matrix-vector multiplication
operations, A"-1y and A" u, see the discussion in section 4.2.3.4.) In summary, the number of
machine cycles for the restriction operation in FMC, [, u and
Aly 4 0@ - Al u) together, is 27394 or 33700, when simple injection or local

averaging is used for the restriction operation, respectively.

4.4 Conclusion and Summary

For the depth interpolation problem we investigated where the matrix A is SPD, the Jacobi
method is not convergent but the other methods, the Gauss-Seidel, the weighted Jacobi, the
optimal Chebyshev acceleration, the adaptive Chebyshev acceleration, and the conjugate

gradient, are all convergent.

Among convergent methods, the Gauss-Seidel method is serial, thus not amenable to
parallelization. But all other methods can be implemented on a parallel architecture, in this work,
a fine grained SIMD machine with local and global communication networks. The iterations of
the weighted Jacobi and the optimal Chebyshev acceleration methods critically depend on global
parameters, the smallest and largest eigenvalues of the iteration matrix G, where good bounds for
these two extreme eigenvalues should be obtained analytically or good estimates obtained
through prior experimentation. However, the parallel implementation of these methods requires
only local connections. The iterations of the adaptive Chebyshev acceleration and the conjugate
gradient methods can be started with no global information, but the parallel implementation of
these methods then demand both local and global connections. Nevertheless, since the adaptive
Chebyshev acceleration method computationally determines the estimates of the extreme
cigenvalues, the weighted Jacobi and the optimal Chebyshev acceleration methods can always

use the estimates obtained.

The space and time complexity analysis reveals that the conjugate gradient method requires more
storage space and longer execution time per iteration step than the adaptive Chebyshev
acceleration method. But as will see in the next chapter, depending on the number of iteration

steps required for convergence, the conjugate gradient method performs sometimes better in total

Addition, Subtraction
Multiplication
Division

Mesh Communication

Tree Communication

Addition, Subtraction
Multiplication
Division

Mesh Communication

Tree Communication

Table 4-11:

77

Iy RS A

0 40

0 28

0 11

0 64

4 8

Ah’"l"*lz-»l-x(g—Ah’“) el -, W

28 42
24 28
0 11
32 64
4 12

Restriction (simple injection) and Prolongation Operations

78

Operations Iy u Iy U
Addition, Subtraction 4 40
Multiplication 0 28
Division 1 11
Mesh Communication 0 64
Tree Communication 8 8

Operations ARty + I (g - APy u+ Iy =10
Addition, Subtraction 32 46
Multiplication 24 28
Division 1 12
Mesh Communication 32 64
Tree Communication 8 16

Table 4-12: Restriction (local averaging) and Prolongation Operations

79

cost than the adaptive Chebyshev acceleration method, especially, when the latter is not started
with good estimates of the extreme eigenvalues. Therefore, the nonadaptive former can serve as

a good metric to check how the adaptive latter performs with given initial estimates.

Assuming multiple mesh connections with a tree topology, which has nearly the equivalent power
of pyramid connections, the incremental storage space for the multigrid approach is rather
insignificant. The execution time for the iterations on coarser levels takes less time since the
global operations can be executed more quickly due to smaller mesh size. Even though the
interlevel operations, prolongation and restriction processes, are not performed quite often as the
iteration processes, the execution time for them are not negligible, especially, in the prolongation

process where the two-dimensional Lagrange interpolation is employed.

The Gauss-Seidel, the weighted Jacobi, the optimal and adaptive Chebyshev acceleration, and the
conjugate gradient methods converge when the matrix is SPD. But what about the multigrid
acceleration of these methods? In our experimental results to be shown in next chapter, they
converged and showed measurable degrees of acceleration. But theoretically, will they be valid

only under the condition that the matrix at the finest level is SPD?

We can make both weak and strong statements. First, here is a weak statement. Given the above
mentioned condition, we can show that the matrices at the coarser levels are also SPD.
Therefore, the separate solutions at different resolutions are at least guaranteed to converge. [See
the equation (61).] Nevertheless, regardless of the result of the theoretical question of
convergence, the fast convergence rate at the coarser levels is still very attractive in the initial
stage of the iterative process. Since the desired accuracy is quickly obtained at coarser levels, we
can at least interpolate the resulting approximations to finer levels in order to get good initial
guesses. Now, we can make a strong statement. For general problems, convergence analysis for
multigrid methods is difficult. It is still an open area. However, we can give heuristic and
qualitative arguments suggesting that the standard multigrid schemes, when applied to well-
behaved problems, (for example, when the matrices are SPD), they not only work, but they work

very effectively. Furthermore, convergence results for such problems can be proved quite

80

rigorously [Brig 87, p. 54).48

We use a fixed scheme as the control strategy of multilevel coordination. Further study is called
for the accommodative scheme when we employ iterative methods, such as the conjugate gradient

or the adaptive (and optimal) Chebyshev acceleration, for relaxation sweeps.

A related issue is that one might think that optimal iterative methods may not be necessarily
required for intralevel computation, especially since slower iterative methods such as the
weighted Jacobi might not perform so badly at coarser levels. However, we should not ignore the
fact that the optimal Chebyshev acceleration method is an order of magnitude faster than the
weighted Jacobi method for the iterations on any size single-grid. [Refer back to the equation
(36).] Recall that the size of the matrix is quite big; for 128 x 128 images, a typical size of the
matrix is 10000 x 10000!

In conclusion, we arrive at the following suggestion. If the constraints of the images are not
sparse, the execution carried out on the finest level only may be sufficient. For very sparse
images, multigrid methods may be a better choice than the execution on the finest level only,
since the multigrid methods may provide significantly faster response. In the multigrid methods,
either the less powerful iterative methods, such as the weighted Jacobi, or the optimal methods,
such as the adaptive (and optimal) Chebyshev acceleration or the conjugate gradient, may be used
for relaxation sweeps. When we employ a fixed scheme as the control strategy of multilevel
coordination, and the weighted Jacobi or the optimal Chebyshev acceleration as the relaxation
methods, only local mesh and tree connections are sufficient, i.e., global connections are not
needed. Nevertheless, even in this case, we may still need the adaptive Chebyshev acceleration
method, at least in prior experimentations which are carried out for the separate solutions at
different resolutions, in order to get good estimates of the smallest and largest eigenvalues of the
itecration matrices. In the next chapter, we will show numerical results on several synthetic and

rcal imagery, which behave in accordance with the suggestions we have drawn here.

48Same problem applies 1o relaxation algorithms in coarse-fine segmentation, edge linking, etc., throughout
computer vision.

81

5. Numerical Results

We present the actual numerical results for the iterative methods that were discussed theoretically
in previous chapter. For various surface reconstruction examples, we interpret the number of
iterations under a SIMD model of parallel computation and show how fast the iterative methods

will run on SIMD machines with local and global communication networks.
5.1 Overall Discussions of Images and Iterative Methods

5.1.1 Root Mean Square Error
When we solve the equation (51) iteratively, a sequence {x{?} converging to the solution

o = A'lb is constructed where) and « are n x 1 vectors.

The root mean square error (RMSE) at the ith iteration is defined as follows:

RMSED = (3, (5 - og12)/ n)12. (68)
=

In this chapter, we shall use the RMSE to compare the performances of the different iterative
methods. The standard L,- or L_- vector norms are also appropriate measures. Note that L,-norm
of the error vector and the RMSE is related. [Compare the definition of the RMSE in equation
(68) with that of L,-norm in (42).] There is another merit of using the RMSE rather than L,-or
L- vector norms. In the multigrid method, we deal with several resolutions. At coarser levels,
the dimension of the matrix, », is smaller. Since the RMSE values are always normalized with

respect to n, we can compare conveniently the results of iterations at coarse and fine levels.

For the real images, since we do not know the solution ¢, we cannot compute the RMSE values.

Instead, we shall use the root mean square deviation (RMSD) which is defined as follows:

RMSD® = (3, (- d) /n,)2, (69)
=

where n_ is the number of the known depth constraints. The summation is now restricted to the

deviation of the computed depth values from the known depth constraints d.

Instead of the RMSE or RMSD, one can use different convergence criteria. For the single-grid

algorithms, a convergence criterion specific to each iterative method may be used. For instance,

82

for the adaptive Chebyshev acceleration method, see the iteration termination test in the equation
(49). For the multigrid algorithms, the discrete L,- or L_-norm of the residual vector may be

used.

5.1.2 Iterative Methods
We will show the number of iteration steps to reduce the RMSE to specified fraction. For
methods that can be implemented on a parallel architecture, we will compare the performance by

the execution time, i.e., the number of machine cycles.

When the iterations are carried out on the finest level only, we will compare the performance of
the conjugate gradient, the adaptive Chebyshev acceleration, and the Gauss-Seidel methods. In
particular, we will show that on a parallel architecture the adaptive Chebyshev acceleration
method executes faster than the conjugate gradient method if this method is started with more

accurate initial estimate of the smallest and largest eigenvalues of the iteration matrix.

For the multigrid algorithms, we will compare the performance of the conjugate gradient, the
adaptive (and optimal) Chebyshev acceleration, the weighted Jacobi, and the Gauss-Seidel
methods. We will demonstrate the speed-up of multigrid execution over the single-grid
algorithms on the finest grid only. We will show also that the optimal Chebyshev acceleration
method with fairly good estimates of the eigenvalues executes faster than the adaptive Chebyshev

acceleration or the conjugate gradient methods.49

5.1.3 Kinds of Images Used
We will investigate a small set of model problems in depth with various iterative methods. For an
extensive set of experiments that might be run with the iterative methods studied in this work, see

chapter 8 of [Terz 84).

“9Recall that the optimal Chebyshev acceleration and the weighted Jacobi methods rely on the local computations
only and therefore utilize local connections only.

83

5.1.3.1 Synthetic Images

The first synthetic image is a floating plane of constant depth, & = (1.01.0 ... 1.0)T. The
shape of the boundary of the plane is a square, with size 128 x 128. The depth discontinuities are
assumed to be present outside of the square. Most of the nodes are interior nodes located well
inside the boundary, as depicted in Figure 2-4. But along the boundary, there are several kinds of
boundary nodes as well. For example, at one comer of the square, we have a boundary node as
shown in Figure 2-5. The depth constraints are scattered randomly over the plane and the

densities of the depth constraints are varied to 50%, 30%, and 15%.

The second synthetic image is a portion of a cylinder whose axis is parallel to the j direction. The

synthetic depth for node [i, j] is

oy = (LO=G—r/22/ (DR,
where 0 < i < 127 and r = 127.0. The shape of the boundary is a square, with size 128 x 128,
The depth constraints are scattered randomly as in the plane example for the single-grid

experiments. But for the multigrid methods, the constraints lie along one axis only.

The last synthetic image is the upper hemisphere of a sphere where the depth is changing along
both directions smoothly. The synthetic depth for node [i, j] is
oy = (LO= (= r2+(-n)/ ()2,

where 0 < /,j < 127 and r = 63.5. The shape of the boundary of the sphere is the biggest circle
that can be contained in the square mesh, and all nodes outside the circle are assumed to be depth
discontinuous. The size of the square mesh is 128 x 128. The depth constraints are scattered
randomly, too. For some experiments, we assume that the orientation constraints are also
available at all the nodes where the depth constraints exist. The densities of the constraints are

varied to 50%, 30%, 15%, 5%, and 2%.

5.1.3.2 Real Images
For the real images, we used range data from the Utah range database [Hans 86]. Two examples
of range data chosen for our experiments were those of a quasi-spherical object and the

cylindrical portion of a soda can.

84

5.2 Discussion on Estimate of Extreme Eigenvalues

For the bulk of the simulation work, the first Young algorithm (Algorithm 6-4.1 [Youn 81, p.
107]) was used. In this algorithm, the estimate of M(G) is updated upward during iterations but
the estimate of m(G) is not changed at all. When the estimate M is close enough to M(G), the
convergence is fast even in the case that mg is not close enough to m(G): in the adaptive
Chebyshev acceleration method, Mg is more critical than mg. Therefore, before embarking on
this algorithm, we carried out an experiment to see how much we lose by running this algorithm
with the reasonable and simple to compute initial estimates of Mg = 0.0 and mg = - ||Gl\...

Another related problem is how we can get more accurate initial estimates to speed convergence.

In this experiment, the synthetic image used was a floating plane of constant depth,
o = (1.01.0 ... 1.0)T. The depth constraints were scattered randomly over the plane and the

density of the depth constraints was 50%.

We used another more general algorithm of Young (Algorithm 6-5.1 [Youn 81, p. 117]), in which
the estimate Mg is updated upward while the estimate mg is updated downward if current
estimate is bigger than the smallest eigenvalue, m(G). This algorithm can also be used to provide

more accurate initial estimates for subsequent images.

When we have no information at all, we can use 0.0 as initial estimate of Mg and pick a large
enough number, say, —0.1 for mg. When we started with these initial estimates, we got improved
estimates of mg, —2.157480 and —2.389980. These estimates were used from the iteration step 8
and 170, respectively, as shown in the first entry of Table 5-130. These estimates are much
smaller than the initial estimate, —0.1, but still considerably bigger than the calculated lower

bound, - [|Gl|, = —3.0, which means that the lower bound is a rather conservative estimate.

We can examine the system matrix to get some clues for the possible interpretation of these two

values. Most of nodes are the interior nodes. In general, as the depth constraints get sparser,

50This algorithm was run again on the images with sparser depth constraints. Same initial estimates, 0.0 and —0.1
were used for My, and my, respectively. When the density of the depth constraints was 30%, the improved estimates of
my, —2.180764 and —2.402566, were used from the iteration step 8 and 399, respectively. When the density was 15%,
the improved estimate of mg, —2.193811, was used from the iteration step 8.

85

more of these interior nodes are not depth constrained. The interior node with no depth constraint
is illustrated in Figure 2-4 and its corresponding nodal equation is given in the equation (1). The

definition of the matrix norm ||G]|_, given in the equation (44) is reproduced here,

Gl = . max (Z Ig;JI)-
=1,2 n

When we compute the quantity — Z}'=1 18 for the interior node, we get —44 /20 = —-2.2,
which is much closer to the final estimates of mg we obtained above. Furthermore, when we
compute the quantity — 2}'=1 l&; J-I for the boundary node whose corresponding nodal equation is

given in the equation (4), we get — 12 /4 = —3.0, which coincides with the lower bound>!.

Therefore, —2.2 can serve as a more accurate initial estimate of mg. The second entry in Table
5-1 shows the result where 0.0 is used as initial estimate of Mg and —2.2 for mg. In Table 5-2,
we show the number of iterations to attain the specified fraction of the initial RMSE value. The
comparison of the first two columns confirms that —2.2 is a better initial estimate than —3.0. The
difference in number of iterations is small in the beginning but becomes increasingly larger as the

RMSE is reduced further.

For the more accurate initial estimate of My, we can pick a number that is slightly smaller than
the final estimate at convergence. For this example, we picked 0.99. As the fourth and fifth entry
in Table 5-1 shows, the initial estimate of M is quite good so that it is not changed for more than
100 initial iteration steps. In the adaptive Chebyshev acceleration method, the more accurate
estimation of Mg is more critical than that of mg for convergence. The remaining two columns in
Table 5-2 show that effect. The RMSE values in the beginning rows are attained in much smaller
number of iterations for initial Mg of 0.99 compared to that of 0.0. The absolute differences in
number of iteration steps are maintained or increased as the iterations go on, though in a less
degree between the second and the third column. But the overall relative ratios of iteration steps
get smaller. This is due to the fact that nearly the same final estimate of M is obtained at the end

of iterations even with different initial choice of estimates.

51For depth constrained nodes, we get bigger values. When the interior node is depth constrained, the nodal equation
is given in the equation (2) and we get — 44 /20.5 = —2.1463 assuming .5 for v. When the comner boundary node is
depth constrained, we get — 12/4.5 = —2.6667 assuming the same Yy value. If the y value is increased to 2.0, we get
— 44 /22,0 = -2.0 for the interior node and — 12/ 6.0 = —2.0 for the comer boundary node.

86

We have done the same experiment using the similar set of the estimates for the first Young
algorithm. The only difference is that we used —2.3 instead of —2.2 for the initial estimate of
mg. The results are reported in Table 5-3 and 5-4. The overall performance is very similar to that
in Table 5-1 and 5-2. Also, the choice of —2.3 as an initial estimate of mg is not sensitive. When
0.0 was used as initial estimate of M, it took 192, 195, and 197 iterations to reduce the RMSE to
.00001 for initial estimate mg values of —2.2, —2.3, and —2.4, respectively. When 0.99 was used
as initial estimate of Mg, the same phenomenon was observed, i.e., it took 167, 170, and 172
iterations, respectively. Note also that for initial estimate mg of —2.2, it took same number of
iteration steps for both Young algorithms, i.e., 192 and 167 iterations to reduce the RMSE to
.00001 for initial estimate Mg of 0 and 0.99, respectively.

As discussed in section 4.1.3, the average virtual rate of convergence for the Chebyshev
acceleration method increases to an asymptotic value and many iterations are often required
before the asymptotic convergence is achieved. Thus, whenever there is a change of estimate of
Mg, a new Chebyshev polynomial is generated with the better estimate but the convergence slows
down for a while. For instance, compare the second and the fourth column of Table 54 where
the same estimate of mg = —2.3 is used. When initial Mg was 0.0, i.e. for the second column, a
new estimate of M is used from the iteration step of 48, as reported in Table 5-3. To reduce the
fraction of the RMSE from .2 to .1, it takes 12 iterations in the second column while it takes only
7 iterations in the fourth column. The similar phenomenon can be observed again for two
columns. As another example, in the fourth column, a new estimate of Mg is used from the
iteration step of 110. To reduce the fraction of the RMSE from .0005 to .0002, it takes 16

iterations in the fourth column while it takes only 11 iterations in the second column.

Thus, it is clear from this discussion that using initial mg = —2.3 determined from the analysis of
the quantity - Z;:l 18l for the interior node is good enough; and therefore we will use Young's

first algorithm throughout this chapter.

15
22

37

97
138
151
170
177

184

15
24
49
80

120

184

14
21
36
63
96
137
150
169
176

183

14
23
48
79
119

183

—2.157480
-2.157480
—-2.157480
—-2.157480
—-2.157480
—2.157480
—-2.157480
—2.157480
—-2.389980
—2.389980
~2.389980

=22
-2.2
=22
=22
=22

386872
.984627
.987545
.989491
.990582
.992213
.996393
1

297588

992041

.899890
982372
.986745
.988929
.990533
.991806

.992705

(Continued)

87

1 - 7 -30 0
8 — 14 -3.0 .891406
15 - 25 -3.0 .981490
26 — 52 -3.0 986737
53 - 87 -3.0 988922
88 — 130 -3.0 990515
131 - 201 -3.0 991795
202 - -3.0 992691
i mE ME

1 - 107 =22 99
108 - 126 -2.2 990863
127 - -22 .992609
4 mE ME

1 - 121 =30 99
122 - 142 -3.0 .990878
143 - -3.0 992618

Table 5-1: Change of Estimates of Extreme Eigenvalues (Algorithm 6-5.1)

RMSE

0.1

0.05
0.02
0.01
0.005
0.002
0.001
0.0005
0.0002
0.0001
0.00005
0.00002
0.00001

67

80

95
106
119
134
147
160
170
181
197

214

108
120
132
144
153
163
177
192

51
63
75
93
107
121
141
157
166
178
187

&9

26
34
46
56
67
83
95
110
126
140
148
159

167

Table 5-2: Effects of Errors in Initial Estimates of Extreme Eigenvalues (Algorithm 6-5.1)

1 - 7 -23 0
g - 14 -2.3 .898760
1S - 23 -23 982258
24 - 47 -23 986702
48 - 79 -23 .988855
80 - 117 =23 990471
118 — 180 -23 991757
181 - -23 992662
i mg Mg

1 - 7 -3.0 0
8 — 14 -3.0 .891406
15 - 24 -3.0 981490
25 - 49 -3.0 986582
50 - 84 -3.0 988772
85 — 125 -3.0 .990385
126 — 192 -3.0 991694
193 - -3.0 .992620

(Continued)

1 - 109 -2.3 99
110 - 128 -2.3 990867
129 - -2.3 992610

i mg Mg

1 - 120 -3.0 99
121 - 141 -3.0 .990868
142 - -3.0 992611

Table 5-3: Change of Estimates of Extreme Eigenvalues (Algorithm 6-4.1)

RMSE

0.01
0.005
0.002
0.001
0.0005
0.0002
0.0001
0.00005
0.00002
0.00001

105
119
136
146
159
170
181
202

212

61
73
87
97
109
124
134
145
155
165
180
195

51
63
75
93
107
123
141
156
165
177

187

mE = —2,3,

34
47
57
69
84
97

112

128

142

150

161

170

Table 5-4: Effects of Errors in Initial Estimates of Extreme Eigenvalues (Algorithm 6-4.1)

93

5.3 Experiments on Synthetic Images

5.3.1 Single-grid Algorithms on the Finest Grid

5.3.1.1 Experiments on a Floating Plane
The synthetic image used was a floating plane of constant depth, @ = (1.01.0 ... 1.0)T. The

densities of the depth constraints were varied to 15%, 30%, and 50%.

In Table 5-5, we show the number of iterations / to attain the specified fraction of the initial
RMSE value.32 The results are tabulated side by side for three different iterative methods, the

conjugate gradient, the adaptive Chebyshev acceleration, and the Gauss-Seidel method.

We observe that the conjugate gradient method performs best in the sense that it takes the least
number of iterations. The adaptive Chebyshev acceleration method comes next and the Gauss-
Seidel method performs worst. But we should note that each step of the iteration of the first two
methods is completely parallelized so that overall execution is much faster, compared to the
Gauss-Seidel method where the computation is done in serial fashion. As the depth constraints
become sparser, the discrete depth interpolation problem itself becomes inherently harder to solve
and takes more iterations. Even here, the degradation in the Gauss-Seidel method tumns out to be

the worst.

Suppose that the size of the mesh at the leaf of the tree is s X s. When there are depth constraints
only, we have derived before that the total number of machine cycles per iterations are
4392 x (log, s) + 16453 for the adaptive Chebyshev acceleration method (see section 4.1.5.4)
and 5856 x (log, s) + 32307 for the conjugate gradient method (see section 4.2.3.4),
respectively. For the tree with 128 x 128 mesh, the number of machine cycles are 47197 for the
adaptive Chebyshev acceleration method and 73299 for the conjugate gradient method. In Table
5-6, we show the normalized number of iterations for two methods in the first two columns. For
the adaptive Chebyshev acceleration method, we use the same numbers as in Table 5-5. For the

conjugate gradient method, we have multiplied the number of iterations in Table 5-5 by 73299 /

52The trivial initial approximation, x® = (0.000 ... 0.0)T, was used. Thus, the initial RMSE was 1.0 for this
example.

94

47197 = 1.5530.

After normalization, the conjugate gradient method still performs better than the adaptive
Chebyshev acceleration method. This is in part due to the errors in the initial estimates of the
eigenvalues. The initial estimates of the largest and the smallest eigenvalues, Mg and mg, were
0.0 and - |G, = —3.0, respectively. In the first few iterations, the conjugate gradient method
performs much better, but as more computations are done the estimates of the eigenvalues (in this
case, Mg only) get better. The final estimates of Mg values at the iteration steps of 170, 271, and
495 were 991694, .996805, and .999064 when the densities of the depth constraints were varied
10 50%, 30%, and 15%, respectively. [See Table I-1.] Thus, the ratio (or relative difference) of
the number of iterations between the conjugate gradient and the adaptive Chebyshev acceleration

methods gets smaller.

The third column in Table 5-6 shows the result from the adaptive Chebyshev acceleration method
with more accurate initial estimates. For the initial estimates of Mg, we used the values slighdy
smaller than final estimates from previous runs: we used .99, .993, and .997 as the initial
estimates of M. For the initial estimates of mg, we used —2.3. With these near optimal initial
estimates, the adaptive Chebyshev acceleration method performed better than or at least
comparable to the conjugate gradient method, i.e., the normalized number of iterations were
smaller nearly everywhere. It is not surprising since the iteration process is started with global
information: here, the near optimal estimates of the largest and the smallest eigenvalues. In
contrast, the conjugate gradient method is started with no global information, at least in the
beginning. However, for several iteration steps in the first row in Table 5-6, we have a
paradoxical result in the sense that the conjugate gradient method tums out to be faster. This can
be explained by the fact that the convergence rate is slow in the beginning even for the optimal

Chebyshev acceleration method, as mentioned in section 4.1.3.

Other numerical values are given in section [.3.1 of Appendix with further explanations.

RMSE Conjugate Gradient Chebyshev Accel. Gauss-Seidel
50% 30% 15% 50% 30% 15% 50% 30% 15%

0.5 6 9 16 28 36 55 30 52 112
0.2 13 21 37 42 60 99 73 131 296
0.1 21 32 55 56 80 129 107 196 460
0.0s5 28 43 74 66 94 158 142 265 648
0.02 38 58 104 80 121 207 191 364 950
0.01 46 70 130 95 137 251 229 445 1231
0.005 53 82 153 105 161 297 269 531 1555
0.002 63 99 179 119 183 354 323 654 2024
0.001 71 110 200 136 208 384 365 752 23%4
0.0005 79 122 220 146 224 416 408 855 2769
0.0002 89 136 247 159 247 470 465 995 3269
0.0001 96 146 267 170 271 495 509 1103 3650

Table 5-5: Number of Iterations (plane)

RMSE

0.5

0.2

0.1
0.05
0.02
0.01
0.005
0.002
0.001
0.0005
0.0002
0.0001

Conjugate Gradient

20.2
32.6
435
55.0
714
82.3
97.8
110.3
122.7
138.2

149.1

108.7
127.3
153.8
170.8
189.5
211.2

226.7

Table 5-6: Normalized Number of Iterations (plane)

57.5

85.4
114.9
161.5
201.9
237.6
278.0
310.6
341.7
383.6

414.7

(initial mg= -3.0,

28
42
56
66
80
95
105
119
136
146
159
170

Mg =00)
0% 15%
36 55
60 99
80 129
94 158
121 207
137 251
161 297
183 354
208 384
24 416
247 470
271 495

Chebyshev Accel.

96

(initial mg= -2.3,

50%

1
19
26
34
47
57
69
84
97

112

128

Mg 2099)
0% 15%
15 21
30 45
45 70
62 102
93 165
110 197
124 240
152 289
169 315
184 344
211 395
24 40

142

97

5.3.1.2 Experiments on a Cylinder

We show the number of iterations in Table 5-7 and the normalized values in Table 5-8. We have
similar results, but the overall number of iterations are smaller, because of the parameter change
in the nodal equations. For the plane example, we employed smaller value for v, 0.5, but for the
cylinder and the sphere example, we employed 2.0. This has the effect of giving the center nodes

and the depth constraints more weight, and thus speeds up the convergence. [See the equation

(2).]

For the adaptive Chebyshev acceleration method run with more accurate initial estimates, we
proceeded in similar fashion. For the initial estimates of mg, we used —2.3. When the initial
estimates of mg and Mg were —|[|Gl|, = -3.0 and 0.0, we obtained .982331, .993159, and
998364 as the final estimates of Mg values at the iteration steps of 117, 191, and 380 when the
densities of the depth constraints were varied to 50%, 30%, and 15%, respectively. As the

improved initial estimates of Mg, we used .97, .98, and .99, respectively.

5.3.1.3 Experiments on a Sphere

We show the number of itcrations in Table 5-9 and the normalized values in Table 5-10. We
have similar results to those of the cylinder, but the overall number of iterations are a little bit
smaller. The major difference here is that only limited accuracy could be obtained even after
sufficient number of iterations for all iterative methods.>3 For example, even after 100 iterations
were carried out with the conjugate gradient method over the sphere image of the 50% depth
constraints, the fraction of the RMSE error was still .0063. In Table 5-9, we observe that the bulk
of the accuracy, the fraction .01, was obtained after only 29 iterations. This phenomena was also

observable in the cylinder examples, though in a much less degree.

For the adaptive Chebyshev acceleration method run with more accurate initial estimates, we
proceeded in similar fashion. For the initial estimates of mg, we used —2.3. When the initial

estimates of mg and Mg were — |G|, = -3.0 and 0.0, we obtained .987428, .991676, and

3We can explain the limited accuracy as following. Starting with the plane, and then to the cylinder and the sphere
examples, the depth values progressively change more rapidly at the boundary. We observe also that the nodes at the
boundary are cormected with a fewer number of neighboring nodes, i.e. they are less supported, because of the presence
of the depth discontinuity. In fact, we deal with a free plate problem. [Recall the discussion at the end of section
2.2.2.3. For instance, compare the equation (1) with the equation (4).]

98

RMSE Conjugate Gradient Chebyshev Accel. Gauss-Scidel
50% 30% 15% 50% 30% 15% 50% 30% 15%

0.5 4 7 12 17 23 36 8 15 36
0.2 9 15 28 27 39 67 21 42 109
0.1 13 22 42 33 52 94 33 66 187
0.05 18 29 56 42 66 123 45 94 288
0.02 24 40 82 53 85 164 62 138 470
0.01 29 49 100 60 102 203 77 178 647
0.005 34 59 116 70 114 232 92 222 843
0.002 41 70 135 79 136 273 114 287 1114
0.001 46 77 152 90 153 295 131 339 1323
0.0005 51 85 170 97 165 318 149 393 1532
0.0002 58 95 189 106 179 360 173 466 1803
0.0001 62 103 202 117 191 380 192 521 2000

Table 5-7: Number of Iterations (cylinder)

99

RMSE Conjugate Gradient Chebyshev Accel.
(initial mg = -3.0, (initial mg= -2.3,
Mg=00) Mg 2097)

50% 30% 15% 50% 30% 15% 50% 30% 15%

0.5 6.2 10.9 18.6 17 23 36 6 8 12
0.2 14.0 233 43.5 27 39 67 10 17 32
0.1 20.2 34.2 65.2 33 52 94 15 26 58
0.05 28.0 45.0 87.0 42 66 123 20 39 91
0.02 37.3 62.1 127.3 53 85 164 28 64 128
0.01 45.0 76.1 155.3 60 102 203 36 75 159
0.005 52.8 91.6 180.2 70 114 232 45 91 190
0.002 63.7 108.7 209.7 79 136 273 S8 111 228
0.001 714 119.6 236.1 90 153 295 69 121 266
0.000s 79.2 1320 264.0 97 165 318 75 131 294
0.0002 90.1 147.5 2935 106 179 360 83 146 322
0.0001 96.3 1600 3137 117 191 380 89 160 344

Table 5-8: Normalized Number of Iterations (cylinder)

100

997106 as the final estimates of Mg values at the iteration steps of 113, 190, and 383 when the
densities of the depth constraints were varied to 50%, 30%, and 15%, respectively. As the

improved initial estimates of Mg, we used .97, .98, and .99, respectively.

Up to this point, we have dealt with the images of the depth constraints only. For the sphere
image, we have another result with both the depth and the orientation constraints. We assume the
identical depth constraints but we assume also that the orientation constraints are available at the
same nodes.55 For the coefficients of the constraints terms in the nodal equations, we used B =
2.0 / h? for the depth constraints and o = 1.0 / h for the orientation constraints. [See the

equations (2) and (3).]

We show the number of iterations in Table 5-11 and the normalized values in Table 5-12. The
densities of the constraints are varied to 30%, 15%. 5%, and 2%. When we compare the results
of the iterative methods on depth constraints only with the methods on both depth and orientation
constraints for same densities (30% and 15%), we observe the improvements. The number of
iteration steps to reach the .2, .1, and .05 of the initial RMSE values are smaller for all iterative

methods when both constraints exist. However, the improvements are surprisingly marginal.

When both constraints exist, we need to use a slightly different normalizing factor. We have
derived before that the total number of machine cycles per iterations are
4392 x (log, s) + 17712 for the adaptive Chebyshev acceleration method (see section 4.1.5.4)
and 5856 x (log, 5s) + 34825 for the conjugate gradient method (see section 4.2.3.4),
respectively, when the size of the mesh at the leaf of the tree is s X 5. For the tree with 128 x 128
mesh, the number of machine cycles are 48456 for the adaptive Chebyshev acceleration method
and 75817 for the conjugate gradient method. For the adaptive Chebyshev acceleration method,
we use the same numbers as in Table 5-11. For the conjugate gradient method, we have

multiplied the number of iterations by 75817 / 48456 = 1.5647 in Table 5-12.

55The p and q orientation constraints are defined by p = £ and ¢ = ? where 4G) is the (synthetic) depth value
/]

at the node [i, j]. For the specific image considered, we have ugj) = (1.0- (G- r)2 +(- r)2)/(r)2)ln. We can
show that Pij = (r=i)/(uxrd. Similarly, we have i) = (r=n/wx r2).

101

RMSE Conjugate Gradient Chebyshev Accel. Gauss-Seidel
50% 30% 15% 50% 30% 15% 50% 30% 15%

0.5 4 6 11 17 23 36 8 15 35
0.2 9 14 26 27 38 65 21 41 103
0.1 13 20 39 33 50 88 32 63 172
0.05 17 27 53 41 61 113 43 88 259
0.02 23 36 71 49 76 147 60 126 406
0.01 29 47 *ox54 60 95 okok 77 172 *okk

Table 5-9: Number of Iterations (sphere)

RMSE Conjugate Gradient Chebyshev Accel.
(initial mg = -3.0, (initial mg=-23,

05 6.2 9.3 17.1 17 23 36 6 8 12
0.2 14.0 21.7 40.4 27 38 65 10 16 30
0.1 20.2 31.1 60.6 33 50 88 14 24 53
0.05 26.4 419 82.3 41 61 113 19 35 86
0.02 357 559 1103 49 76 147 26 52 111
0.01 45.0 73.0 wwrxs 60 95 e 34 73 ok

Table 5-10: Normalized Number of Iterations (sphere)

34:4es2" refers o a number that could not be computed even if sufficient number of iterations were performed.

102

For the adaptive Chebyshev acceleration method, we used —2.3 for the more accurate initial
estimates of mg. When the initial estimates of mg and Mg were —3.0 and 0.0, we obtained
986494, .995370, .999063, and .999835 as the estimates of M values at the iteration steps of 96,
123, 244, and 591 when the densities of the depth constraints were varied to 30%, 15%, 5%, and
2%, respectively. As the more accurate initial estimates of Mg, we used .98, .99, .998, and .9998,

respectively.

5.3.2 Multigrid Algorithms

5.3.2.1 Experiments on a Cylinder
One of the two synthetic images we tried is a portion of a cylinder, the same one used in section
5.3.1.2. However, the depth constraints are not scattered randomly. The constraints lie along j =

8, 36, 64,93, and 119 where 0 < j < 127,56

We ran four-level multigrid algorithms to see how much speed up is achieved against iteration on
the finest level only. The sizes of the images are reduced from 128 x 128 to 64 x 64, 32 x 32, and
16 x 16 as seen from the finest level (I = 4) to the coarsest one (/ = 1). The depth constraints at
the coarser levels are generated by sampling the same cylindrical surface. For this particular
example, the depth constraints are constrained along one arc of the cylinder only so that the
densities of the depth constraints are doubled for each coarser level. At the finest level, we have
the density of 3.91%. For the coarser levels, we have the densities of 7.81%, 15.63%, and

31.25%, respectively.

Before running the multigrid algorithms, we obtained the result separately for each level. [See

the equation (61)]. We show the number of iterations in Table 5-13.

The trivial initial approximations, xX® = (0.00.0 ... 0.0)T, were used for all levels. The initial
RMSE values were 956515, .956709, .956742, and .956742 for the level [= 1, 2, 3, and 4,

respectively.

In the adaptive Chebyshev acceleration method, we show the result with more accurate initial

56This example is similar to the one used in [Terz 84, p. 125).

103

RMSE Conjugate Gradient Chebyshev Accel. Gauss-Seidel

30% 15% 5% 2% 30% 15% 5% 2% 30% 15% 5% 2%

05 6 11 29 69 23 35 76 168 15 35 152 661
0.2 13 24 66 166 38 61 154 380 39 98 519 2756
0.1 19 37 95 235 46 85 220 545 60 161 914 5221

0.05 25 S50 126 356 58 109 280 757 83 239 1419 9145

002 35 72 wws sms 76 148 ek wwk [23 409 ke kkks

Table §-11: Number of Iterations (sphere with depth and orientation constraints)

RMSE Conjugate Gradient Chebyshev Accel.
(initial mg = -3.0, (initial mg=-2.3,

Mg =00) Mg 2098)

0.5 9.4 17.2 454 1080 23 35 76 168 8 12 26 60
0.2 20.3 37.6 1033 2597 38 61 154 380 15 28 70 146
0.1 29.7 579 1486 3677 46 85 220 545 22 48 129 222
0.05 39.1 782 1971 5570 58 109 280 757 31 77 213 399
0.02 S4.8 1127 Heskk wkkkk 6 |48 Rk kkk 48 []) k% kwxk

Table 5-12: Normalized Number of Iterations (sphere with depth and orientation constraints)

104

estimates only. For the initial estimates of mg, we used —2.3. As the improved initial estimates
of Mg, we used .97, .99, and .999, for the level / = 1,2, and 3, respectively.>’ For the finest level,
we used .99995 as the estimate of Mg from the beginning to the end without any change at all.>8
In the optimal Chebyshev aécelerau’on and the weighted Jacobi methods, for the real eigenvalues,
m(G"l) and M(G"’), we simply used these initial estimates instead, assuming that these estimates

are fairly good.

When the depth constraints exist only, we have derived in section 4.3.3.3 that at level / it takes
5856 % ((log , 5) — (L — D) + 32307 machine cycles for an iteration of the conjugate gradient
method.’® Thus, an iteration on each level from coarsest to finest respectively takes 55731,
61587, 67443, and 73299 machine cycles. We have derived also that at level / it takes
4392 x ((log , s) — (L — D) + 16453 machine cycles for an iteration of the adaptive Chebyshev
acceleration method. Thus, an iteration on each level from coarsest to finest respectively takes
34021, 38413, 42805, and 47197 machine cycles. For an iteration of the optimal Chebyshev
acceleration and the weighted Jacobi methods, we have derived that at all levels it takes 15314

and 13840 machine cycles, respectively.

We can now normalize the number of iterations to compare the iterative methods. In Table 5-14,
we show the normalized number of iterations. For the optimal Chebyshev acceleration method,
we use the same numbers as in Table 5-13. The number of iterations for other iterative methods

were multiplied by corresponding normalizing factors.

We compare first the unnormalized number of iterations of the adaptive and optimal Chebyshev

57When the initial estimates of mg and M were —3.0 and 0.0, we obtained .979848, .997912, and .999869 as the
estimates of M values at the iteration steps of 88, 279, and 1205 for the level { = 1, 2, and 3, respectively.

58In general, for a larger image with sparser constraints, the depth interpolation problem is harder to solve. In the
Chebyshev acceleration method, the largest eigenvalue M(G) is closer to upper bound, 1.0. [Recall our discussion in
section 4.3.1.] For this large image with very sparse and highly artificial distribution of depth constraints, the adaptive
Chebyshev acceleration procedure did not work out well since M(G) was too close to 1.0. Note that .99995 is the
largest value of the imposed upper bounds for initial estimate of M. [For the numerical values of the upper bounds,
see the equation (72) in Appendix.] We need 1o extend the upper bounds of the equation (72) suggesled by Young. He
states thal the upper bounds were imposed infrequently. In his numerical experiments, the typical size of the matrix
was 100 x 100 or 1000 x 1000, But in our case, we are dealing with the depth continuous region of the size 128 x 128,
so that the size of the matrix is 16384 x 16384. Further study is called for with regard to extending the upper bounds.

5%The size of the mesh at the finest level L is 5 X s.

105

acceleration methods. The used initial estimates of the extreme eigenvalues are quite good. They
are not updated, i.e., same for both methods, until the RMSEs are reduced to .1 of initial values.
At the coarsest level, the number of iterations are nearly same even until the RMSE is reduced to
01. We compare now the normalized number of iterations of the adaptive Chebyshev
acceleration and the conjugate gradient methods. For all levels, nearly all numbers in the first
three rows, i.c., until the RMSEs are reduced to .1, show that the adaptive Chebyshev acceleration

method executes faster.

When the RMSEs are reduced to .1, the normalized numbers are 2575.1, 2490.2, and 808 for the
conjugate gradient, the adaptive, and the optimal Chebyshev acceleration methods, respectively,
for the finest level. The nommalized numbers are 54.6, 51.1, and 23 for the coarsest level. When
the RMSEs are reduced to .01, the normalized numbers are 6255.8, 11655.9, and 3782 for the

finest level and 109.2, 117.7, and S5 for the coarsest level.

We discuss now the multigrid execution results. For the multilevel coordination, the fixed
scheduling scheme was used. [For the listing, refer back to Figure 4-2]. At the coarsest level,
procedure SOLVE performs iterations to desired accuracy. The fixed number of iterations
performed by SOLVE are designated as ¢, and s, when invoked inside of procedure FMRA and
FMC, respectively.

For the conjugate gradient method, four sets of parameters were used to obtain different precision
of final RMSE values. We compare the amount of time taken to arrive at the same final RMSE

values at the finest level, when iterations are carried out on the finest level only versus multigrid.

For the first set, £, = 15 was used. In Table 5-13, we can read that the RMSE value is reduced to
.1 of initial value at the coarsest level. The actual value obtained was .101114. For the other
parameters, s, =4, n; = 6, n, = 1, and n, = 6 were used. The total number of iterations performed
on each level from coarsest to finest respectively is 27, 36, 24, and 12. The final RMSE value
obtained on cach level from coarsest to finest respectively is .0664448, .0675243, .0680527, and
.0683314. When the relaxation is carried out on the finest level only, the RMSE value .0682560

is obtained after 683 iterations.

106

RMSE Conjugate Gradient Adapt. Chebyshev Accel. Opt. Chebyshev Accel.

0.5 167 44 13 4 164 42 15 7 164 42 15 7
0.2 419 100 27 10 430 127 37 15 430 127 37 15
0.1 538 130 35 15 808 245 67 23 808 245 64 23
0.05 894 216 55 20 1470 400 94 32 1470 432 101 32

0.02 1088 268 78 25 2748 569 141 47 2748 771 171 45
0.01 1307 323 91 30 3782 677 170 53 3782 1045 231 55
0.005 1575 393 107 35 4850 748 189 59 4850 1330 293 66
0.002 1788 472 121 44 6308 846 214 68 6308 1721 379 85
0.001 2083 533 137 ** 7459 935 237 ** 7459 2038 455 **

0.0005 2235 585 w¥x ¥x 8743 1065 *¥* 8743 2419 ¥ k¥

(Continued)

107

RMSE Gauss-Seidel Weighted Jacobi

I=4 =3 =2 =1 I=4 =3 =2 I=1
0.5 5422 375 4 12 W 144 40
0.2 w0 1280 123 31 wHH 403 102
0.1 #2365 204 47 WHHE R 665 155
0.05 #4033 313 65 s mEEE 1011 213
0.02 w7073 512 89 WM B 1652 295
0.01 #9572 686 108 wHH HEHE 2223 358
0.005 W 866 128 wHH R 2817 426
0.002 wHH #1114 165 e #E# 3635 550
0.001 #HH w1333 e HHHE W
O(XX)S R i ok e ke HEHE HHEHE e ke e 3k e 2k 2k

Table 5-13: Number of Iterations on Fine/Coarse Levels (cylinder)

60+ iititi " refers 1o a number that was not computed. It could be computed, but it would just show that some
iterative methods are indeed very slow.

108

RMSE Conjugate Gradient Adapt. Chebyshev Accel.
=4 =3 =2 =1 =4 =3 1=2 =1

0.5 799.3 193.8 52.3 14.6 505.4 117.4 37.6 15.6
0.2 2005.5 440.4 108.6 36.4 13252 355.0 92.8 333
0.1 25751 572.5 140.8 54.6 2490.2 684.8 168.1 S1.1
0.05 4279.0 951.3 221.2 72.8 45305 1118.1 235.8 71.1
0.02 5207.6 1180.3 313.7 91.0 8469.2 1550.4 353.7 1044
0.01 6255.8 1422.5 366.0 109.2 116559 18923 4264 117.7

0.005 7538.6 1730.8 4303 1274 149475 2090.8 474.1 1311
0.002 8558.1 2078.7 486.6 160.1 194409 2364.7 536.8 1511
0.001 9970.1 2347.3 551.0 ks 22988.3 2613.5 594.5 wwwkx

0.0005 10697.6 25764 *wkkx kkkkk 260455 2976.8 Wkkk dkkkk

(Continued)

109

RMSE Opt. Chebyshev Accel, Weighted Jacobi
=4 =3 =2 =1 =4 =3 =2 =1

0.5 164 42 15 7 HEHEHE R 130.1 36.1
0.2 430 127 37 15 HERERE aEHE 3642 922
0.1 808 245 64 23 HHEEHE iHEERE 601.0 140.1
0.05 1470 432 101 32 HHERHE R 913.7 1925
0.02 2748 771 171 45 HEHHRE R 1493.0 266.6
0.01 3782 1045 231 55 HEHHRE EEREEE 2009.0 3235
0.005 4850 1330 293 66 HEEHE HEEEE 25459 385.0
0.002 6308 1721 379 85 HERERE HEEEHE 32851 497.1
0.001 7459 2038 455 ** HEHEEE HEHERE HERREE Rekorx
O(xx)s 8743 2419 ok >k HHHREE HHEEE Tk dkakoakok

Table 5-14: Normalized Number of Iterations on Fine/Coarse Levels (cylinder)

110

The multigrid algorithm takes 6220089 machine cycles for iterations on four levels. To this, we
should add the time taken by 3 prolongation operations invoked in procedure FMRA, 6 restriction
operations in FMC, and 6 prolongation operations in FMC. We have derived in section 4.3.3.4
that it takes 52383, 27394, and 53847 machine cycles for a prolongation operation in FMRA, a
restriction operation in FMC, and a prolongation operation in FMC, respectively, when the depth
constraints exist only. Therefore, 644595 machine cycles are added to yield a total of 6864684,
For the iterations on the finest level only, it takes 50063217 machine cycles. When the numbers
of machine cycles are divided, we get a speed-up factor of 50063217 / 6864684 = 7.2929.61

When we compare the number of iterations to attain .1 of initial RMSEs on the coarsest and finest
levels, translated into total number of machine cycles, we get a speed-up factor of 39434862 /
835965 = 47.1729. In contrast, the speed-up factor of multigrid execution result (7.2929) is much
smaller than the speed-up factor obtained (47.1729) which can serve as a rough upper limit,
though a too high one. This is due to two reasons. First, the iterations are performed on all
levels. Though we carry out 27 iterations on the coarsest level, including ¢, iterations to reach an
initial accuracy, we have 36, 24, and 12 iterations on other three fine levels. Second, interlevel
computations are carried out, too. For this case, it amounts to 644595 / 6864684 = 9.39 percent

of the entire execution time.

For the second set, #, = 30 was used. The RMSE value .00938218 was obtained at the coarsest
level after 30 iterations. For the other parameters, s, = 4, n, = 6, n, = 1, and n, = 6 were used.
The total number of iterations performed on each level from coarsest to finest respectively is 42,
36, 24, and 12. The final RMSE value obtained on each level from coarsest to finest respectively
is .00704917, .00727274, .00749481, and .00758961. When the relaxation is carried out on the
finest level only, the RMSE value .00760190 is obtained after 1467 iterations. After carrying out
a similar analysis, we get a speed-up factor of 107529633 / 7700649 = 13.9637.

For the third set, £, = 44 was used. The RMSE value .00194568 was obtained at the coarsest level

61When smaller parameler values are used, more speed-up is possible. For example, with sy =3, ny=3,ny =1, and
nqy = 3, the final RMSE value obtained on each level from coarsest to finest respectively is .0793532, .0838957,
0858741, and .0867920. When the relaxation is carried out on the finest level only, the RMSE value .0868207 is
obtained after 558 iterations. Here, we get a speed-up factor of 40900842 / 4339815 = 9.4246.

111

after 44 iterations. For the other parameters, s, = 4, n, = 8, n, = 1, and n, = 8 were used. The
total number of iterations performed on each level from coarsest to finest respectively is 56, 48,
32, and 16. The final RMSE value obtained on each level from coarsest to finest respectively is
00154726, .00181073, .00202964, and .00213553. When the relaxation is carried out on the
finest level only, the RMSE value .00213782 is obtained after 1735 iterations. After carrying out
a similar analysis, we get a speed-up factor of 127173765 / 10052667 = 12.6507.

For the last set, t, = 44 was used again. For the other parameters, s, = 4 and n, = 1 were used as
before. For n, and n,, we used different values for each level. In Table 5-13, at the coarsest level
the RMSE value is not reduced further after 44 iterations. Therefore, we increased the number of
iterations at finer levels to get smaller final RMSE values. For n, = n,, we used 12, 36, and 108
for the level I = 2, 3, and 4, respectively. The total number of iterations performed on each level
from coarsest to finest respectively is 56, 72, 144, and 216. The final RMSE value obtained on
each level from coarsest to finest respectively is .000496926, .000519746, .000551625, and
.000427701. When the relaxation is carried out on the finest level only, the RMSE value
000428212 is obtained after 2269 iterations. Here, we get a speed-up factor of 166315431 /
33744171 = 4.9287.

Since the conjugate gradient and the Chebyshev acceleration methods are performing already
well on the single-grid, the speed-ups are relatively small (14 or less). They are also insensitive

to parameter setting, i.e., they vary continuously with different values of sy, n,, and n, for a given

to;
For the adaptive Chebyshev acceleration method, two sets of parameters were used.

For the first set, t, = 23 was used. The RMSE value .0955011 was obtained at the coarsest level
after 23 iterations. For the other parameters, s, = 4, n, =7, n, = 1, and ny = 7 were used. The
total number of iterations performed on each level from coarsest to finest respectively is 35, 42,
28, and 14. The final RMSE value obtained on each level from coarsest to finest respectively is
0627607, .0624723, .0621976, and .0620595. When the relaxation is carried out on the finest
level only, the RMSE value .0620297 is obtained after 1174 iterations. After carrying out a

112

similar analysis, we get a speed-up factor of 55409278 / 5307974 = 10.4389.62

Compared with the similar result of the conjugate gradient method for the first set of parameters,
the final RMSE values are reduced further with less machine cycles. This remark applies to the

other examples as well.

For the second set, %, = 53 was used. The RMSE value .00987263 was obtained at the coarsest
level after 53 iterations. For the other parameters, s, = 6, n; = 8, n, = 1, and n; = 8 were used.
The total number of iterations performed on each level from coarsest to finest respectively is 71,
48, 32, and 16. The final RMSE value obtained on each level from coarsest to finest respectively
is .00647283, .00672038, .00701148, and .00712965. When the relaxation is carried out on the
finest level only, the RMSE value .00712748 is obtained after 4232 iterations. Here, we get a
speed-up factor of 199737704 / 7028822 = 28.4170.63

When the switching of level occurs, the most recent estimates of the extreme eigenvalues are
preserved. As each level is entered, a new Chebyshev polynomial is generated based on the
stored estimates. For the set of parameters employed, ¢, was relatively big but s,, n,, and ny were
not big enough for the change of estimates to occur.%4 The change of estimates occurred at the
coarsest level only during the initial iteration steps when the desired accuracy was obtained. The
initial estimate of Mg was .97 at the coarsest level. With ¢, = 53, the improved estimates of
973413 and .981453 were obtained at the iteration steps of 35 and 43, respectively. After this

update of the estimate of Mg at the coarsest level, no further estimate changes were observed.

52When smaller parameter values are used, more speed-up is possible. With sy =4,1n) =6,n,=1, and ny = 6, the
final RMSE value otxained on each level from coarsest to finest respectively is .0642141, .0649569, .0648902, and
.0648521. When the relaxation is carried out on the finest level only, the RMSE value .0648646 is obtained after 1129
iterations. Here, we get a speed-up factor of 53285413 / 4811882 = 11.0737.

3For this example, we varied ny and ny while ny + ny was kept same as before. With smaller » value, ny = 6 and
ny = 10, the final RMSE value obtained on the finest level is .00847359. When the relaxation is carried out on the
finest level only, the RMSE value .00847447 is obtained afier 3967 iterations. Here, we get a speed-up factor of
26.6375. Since ny + ny is same, it takes same amount of computation for the multigrid algorithm. With larger n,
value, nyp = 10 and ny= 6, we get smaller final RMSE value on the finest level, .00745601. However, note that both
final RMSE values are larger than that of the original ny = 8 and ny = 8. When the relaxation is carried out on the

finest level only, the RMSE value .00745516 is obtained after 4163 iterations. Here, we get a speed-up factor of
27.9536.

4For the discussion of p'. the integer threshold that governs the generation of new Chebyshev polynomial and is
greater than 5, see section [.1.1 of Appendix.

113

One more remark should be made about the estimates of the largest eigenvalue. In general, the
size of the matrices is smaller and the constraints are denser at coarser levels. Both facts lead to
easier matrix iteration problems to solve. In terms of the adaptive Chebyshev acceleration
method, we have smaller numerical values for the largest eigenvalue at coarser levels. Therefore,
at every switching to finer levels, the improved initial estimate may be set as the bigger value
from following two choices: the estimate at the current level or the one at the adjacent coarse

level.

For the optimal Chebyshev acceleration and the weighted Jacobi methods, two sets of parameters
were used. Recall that in the optimal Chebyshev acceleration method, given (estimates of the)

eigenvalues are used throughout the computation with no changes.

For the first set of parameters, where ¢, = 23,5,=4, n, =7, n, = 1, and n, = 7 were used, we have
the identical results of final RMSE values since there were no changes of eigenvalue estimates in
the adaptve Chebyshev acceleration method. But the total execution time is faster since the
computation of the optimal Chebyshev acceleration method employs the local connections only.
After carrying out an analysis, we get 17978636 and 2466961 machine cycles for the execution
on the finest level only and the multigrid, respectively. Therefore, we get a speed-up factor of

17978636 / 2466961 = 7.2878.

For the second set, , = S5 was used. The RMSE value .00967034 was obtained at the coarsest
level after 55 iterations. For the other parameters, s, = 6, n) = 8, n, = 1, and ny = 8 were used.
The total number of iterations performed on each level from coarsest to finest respectively is 73,
48, 32, and 16. The final RMSE value obtained on each level from coarsest to finest respectively
is .00638630, .00662617, .00691268, and .00702903. When the relaxation is carried out on the
finest level only, the RMSE value .00703077 is obtained after 4253 iterations. Here, we get a
speed-up factor of 65130442 /3232661 = 20.1476.

For the Gauss-Seidel method, two sets of parameters were used.

For the first set, t, = 47 was used. The RMSE value .0967473 was obtained at the coarsest level

after 47 iterations. For the other parameters, s, = 6, n, = 8, n, = 1, and n, = 8 were used. The

114

total number of iterations performed on each level from coarsest to finest respectively is 65, 48,
32, and 16. It amounts to 28.015625 work units. The final RMSE value obtained on each level
from coarsest to finest respectively is .0683368, .0680508, .0678371, and .0677086.55

Here, we did not compute a speed-up factor since it took too many iterations on the finest level.

[See the Table 5-13.] The Gauss-Seidel method is indeed very slow for this example.

With same 7, = 47, we varied n,. We used s,=4, n, =8, n, =2, and ny = 8. The total number of
iterations performed on each level from coarsest to finest respectively is 103, 112, 48, and 16. It
amounts to 36.609375 work units. The final RMSE value obtained on each level from coarsest to
finest respectively is .0642819, .0640420, .0638443, and .0637243. For this example, more work

units are required but smaller final RMSE values are obtained as well.

For the second set, f, = 108 was used. The RMSE value .00968758 was obtained at the coarsest
level after 108 iterations. For the other parameters, s, = 8, n, = 20, n, = 1, and n, = 20 were used.
The total number of iterations performed on each level from coarsest to finest respectively is 132,
120, 80, and 40. It amounts to 69.5625 work units. The final RMSE value obtained on each level
from coarsest to finest respectively is .00562791, .00568184, .00574512, and .00577894.

Before concluding this section, we examine the range of execution time for the conjugate gradient
and the Chebyshev acceleration methods. For instance, we consider the result of the first
parameter set where the accuracies obtained at the coarsest level are close to .1 of the initial
RMSE value. At one extreme end, the iterations on the finest level only using the conjugate
gradient method takes 50063217 machine cycles. At the other end, the multigrid execution with
the optimal Chebyshev acceleration method takes 2466961 machine cycles. When we compare
these two, we get a speed-up factor of 50063217 / 2466961 = 20.2935. In a similar way, for the
second set, we get a speed-up factor of 107529633 / 3232661 = 33.2635.

The traced execution result of the first parameter set for each iteration method is given in section

65When smaller parameter values are used, smaller work units are obtained. With 5= 4, n = 6, ny = 1, and ny= 6,
the total number of iterations performed on each level from coarsest o finest respectively is 59, 36, 24, and 12. It
amounts to 21.171875 work units. The final RMSE value obtained on each level from coarsest to finest respectively is
.0733860, .0730684, .0728650, and .0727331.

115

1.3.2 of Appendix with further explanations.

5.3.2.2 Experiments on a Sphere
The second synthetic image we tried on the multigrid methods is the upper hemisphere of a
sphere, the same one used in section 5.3.1.3, with both the depth and the orientation constraints.

The densities of the constraints are 2% and 15%.

The three-level multigrid algorithms were run, The sizes of the mesh are reduced from 128 x 128
to 64 x 64 and 32 x 32. The constraints at the coarser levels are generated by sampling the same
spherical surface. When the density at the finest level is 2.02%, we have the densities of 7.71%
and 26.19% at the coarser levels. When the density at the finest level is 14.93%, we have the
densities of 47.47% and 89.52% at the coarser levels.

Before showing the result of multigrid algorithm, we show the result for each level in Table 5-15
and 5-17. The initial RMSE values were .687068, .698895, and .707767 for the level [=1, 2, and

3, respectively.

For the adaptive Chebyshev acceleration method, we show the result with more accurate initial
estimates only. For the initial estimates of mg, we used —2.3. When the density at the finest
level is 15%, we used .91, .97, and .99 for the level / = 1, 2, and 3, respectively, as the improved
initial estimates of Mg.56 When the density at the finest level is 2%, we used .985, .995, and
.9998 for the level / = 1, 2, and 3, respectively.5” In the optimal Chebyshev acceleration and the

weighted Jacobi methods, we simply used these initial estimates for the real eigenvalues.

When both the depth and the orientation constraints exist, we have derived in section 4.3.3.3 that
at level [it takes 5856 x ((log, s) — (L —)) + 34825 machine cycles for an iteration of the
conjugate gradient method. Thus, an iteration on each level from coarsest to finest respectively

takes 64105, 69961, and 75817 machine cycles. We have derived also that at level / it takes

6When the initial estimates of myg and M were —3.0 and 0.0, we obtained .917046, .971150, and 995370 as the
estimates of M| values at the iteration steps of 20, 55, and 123 for the level 1=1,2, and 3, respectively.

67When the initial estimates of m; and M were.~3.0 and 0.0, we obtained .988769, .998959, and .999869 as the
estimates of M values at the iteration steps of 77, 261, and 705 for the level /=1, 2, and 3, respectively.

116

4392 x ((log 5 5) — (L — D) + 17712 machine cycles for an iteration of the adaptive Chebyshev
acceleration method. Thus, an iteration on each level from coarsest to finest respectively takes
39672, 44064, and 48456 machine cycles. For an iteration of the optimal Chebyshev acceleration
and the weighted Jacobi methods, we have derived that at all levels it takes 16573 and 15099

machine cycles, respectively.

In Table 5-16 and 5-18, we show the normalized number of iterations. We compare the
normalized number of iterations of three iterative methods. We consider first the result of 15%
density. When the RMSEs are reduced to .05, the normalized numbers are 228.7, 225.1, and 75
for the conjugate gradient, the adaptive, and the optimal Chebyshev acceleration methods,
respectively, for the finest level. The normalized numbers are 42.5, 43.1, and 18 for the coarsest
level. We consider now the result of 2% density. When the RMSEs are reduced to .1, the
normalized numbers are 1075.1, 649.1, and 222 for the finest level and 104.4, 74.2, and 31 for the

coarsest level.

For the conjugate gradient and the Chebyshev acceleration methods, we compare the amount of
time taken to arrive at the same final RMSE values at the finest level, when iterations are carried
out on the finest level only versus multigrid. For the Gauss-Seidel method, we compare work

units.

We analyze the result of the conjugate gradient method first. When the density of the constraints
is 15%, t,= 5 was used. The RMSE value .0666681, nearest to .1 of initial value, was obtained at
the coarsest level after 5 iterations. For the other parameters, s, =3, 7, =3, n,=1,and 3 =3
were used. The total number of iterations performed on each level from coarsest to finest
respectively is 11, 12, and 6. The final RMSE value obtained on each level from coarsest to
finest respectively is .0420933, .0377653, and .0334779. When the relaxation is carried out on
the finest level only, the RMSE value .0325647 is obtained after 51 iterations.

For the three-level multigrid algorithm with n, = 1, 2 prolongation operations are invoked in
procedure FMRA, 3 restriction operations in FMC, and 3 prolongation operations in FMC. We
have derived in section 4.3.3.4 that it takes 52383, 29912, and 53847 machine cycles for a

prolongation operation in FMRA, a restriction operation in FMC, and a prolongation operation in

117

RMSE Conjugate Gradient Adapt. Chebyshev Accel. Opt. Chebyshev Accel.
=3 =2 =1 =3 =2 =1 =3 =2 =1

0.5 11 4 1 12 6 4 12 6 4

0.2 24 8 2 28 10 8 28 10 8

0.1 37 13 5 48 14 11 48 14 11

0.05 50 18 11 77 20 18 75 20 18

0‘02 72 %k Ak i 12 Ak ek 132 * % %k

RMSE Gauss-Seidel Weighted Jacobi

0.5 35 9 4 114 29 14

0.2 98 22 10 323 71 33

0.1 161 33 15 529 108 49

0.05 239 47 24 788 153 82

0.02 409 ** ke 1351 ohx **

Table 5-15: Number of Iterations on Fine/Coarse Levels (sphere : 15% density)

118

RMSE Conjugate Gradient Adapt. Chebyshev Accel. Opt. Chebyshev Accel.

=3 =2 =1 =3 =2 =1 =3 =2 =1
0.5 50.3 16.9 39 35.1 16.0 9.6 12 6 4
0.2 109.8 33.8 7.7 819 26.6 19.2 28 10 8
0.1 169.3 54.9 19.3 140.3 372 26.3 48 14 11
0.05 228.7 76.0 425 225.1 53.2 43.1 75 20 18
0_02 3294 A 3¢ ok e ok e e 3275 e 0 e 3¢ e e ok 132 ek * %
RMSE Weighted Jacobi

0.5 1039 264 128
0.2 2943 647 30.1
0.1 4820 984 446
0.05 717.9 1394 747
0.02 1230.8 *¥%kk kkk

Table 5-16: Normalized Number of Iterations on Fine/Coarse Levels (sphere : 15% density)

RMSE Conjugate Gradient

=3
0.5 69
0.2 166
0.1 235

22
50

73

0.05 356 127

18

27

A4k

91

%

RMSE Gauss-Seidel
=3 =2
0.5 661 91
0.2 2756 308
0.1 5221 551
0.05 9145 1083
Table 5-17:

Number of Iterations on Fine/Coarse Levels (sphere : 2% density)

Adapt. Chebyshev Accel.

60
146
222

399

22

70

127

204

18

31

ok

Weighted Jacobi

2187
#HHHE
HHH

i

303
1020
1825

3548

61
172

305

a4k

119

Opt. Chebyshev Accel.

60
146
222

399

22

70

130

263

18

31

Ao ¥k

120

RMSE Conjugate Gradient Adapt. Chebyshev Accel. Opt. Chebyshev Accel.
=3 =2 =1 =3 =2 =1 =3 =2 =1
0.5 315.7 92.9 30.9 175.4 585 19.2 60 22 8
0.2 759.4 211.1 69.6 426.9 186.1 43.1 146 70 18
0.1 1075.1 308.2 104.4 649.1 3377 742 222 130 31

0.05 1628.6 536.1 kx¥xx 1166.6 542.4 oAk 399 263 h

RMSE Weighted Jacobi

:3 =2 =1
0.5 1992.5 276.1 55.6
0.2 HHEHHE 9293 156.7
0.1 HERARE 16627 2779
0.05 HBHEHHE 32324 wddkk

Table 5-18: Normalized Number of Iterations on Fine/Coarse Levels (sphere : 2% density)

121

FMC, respectively, when both constraints exist. Therefore, 356043 machine cycles should be

added to account for the restriction and prolongation operations.

For the iterations on the finest level only, it takes 3866667 machine cycles. For the multigrid
algorithm, it takes 2355632 machine cycles. When the numbers of machine cycles are divided,
we get a speed-up factor of 3866667 /2355632 = 1.6415,

When the density of the constraints is 2%, f, = 27 was used. The RMSE value .0687782 was
obtained at the coarsest level after 27 iterations. For the other parameters, s, =4, n, = 5, n,=1,
and n; = 5 were used. The total number of iterations performed on each level from coarsest to
finest respectively is 35, 20, and 10. The final RMSE value obtained on each level from coarsest
to finest respectively is .0672145, .0616802, and .0578548. When the relaxation is carried out on
the finest level only, the RMSE value .0580171 is obtained after 263 iterations. After carrying

out a similar analysis, we get a speed-up factor of 19939871 /4757108 = 4.1916.

We consider now the result of the adaptive Chebyshev acceleration method. When the density of
the constraints is 15%, ¢, = 11 was used. The RMSE value .0682193 was obtained at the coarsest
level after 11 iterations. For the other parameters, s, = 3, n; = 3, n, = 1, and n; = 3 were used.
The total number of iterations performed on each level from coarsest to finest respectively is 17,
12, and 6. The final RMSE value obtained on each level from coarsest to finest respectively is
0424810, .0389937, and .0357214. When the relaxation is carried out on the finest level only,
the RMSE value .0356335 is obtained after 77 iterations. After carrying out a similar analysis,
we get a speed-up factor of 3731112 / 1849971 = 2.0168.

When the density of the constraints is 2%, f, = 31 was used. The RMSE value .0686763 was
obtained at the coarsest level after 31 iterations. For the other parameters, sy =4, n, =7, n, = 1,
and ny = 7 were used. The total number of iterations performed on each level from coarsest to
finest respectvely is 39, 28, and 14. The final RMSE value obtained on each level from coarsest
to finest respectively is .0632827, .0581492, and .0542605. When the relaxation is carried out on
the finest level only, the RMSE value .0542546 is obtained after 272 iterations. After carrying
out a similar analysis, we get a speed-up factor of 13180032 / 3815427 = 3.4544.

For the optimal Chebyshev acceleration and the weighted Jacobi methods, we repeated the

experiments with two densities.

For the optimal Chebyshev acceleration method, we used the same estimates of the eigenvalues
with the same parameters as in the adaptive Chebyshev acceleration method. We have the

(nearly) same final RMSE values but the total execution time is faster.

When the density of the constraints is 15%. ¢, = 11 was used. The RMSE value .0682193 was
obtained at the coarsest level after 11 iterations. For the other parameters, s, =3, n, =3, n, = 1,
and n, = 3 were used. The total number of iterations performed on each level from coarsest to
finest respectively is 17, 12, and 6. The final RMSE value obtained on each level from coarsest
to finest respectively is .0424810, .0389937, and .0357214. When the relaxation is carried out on
the finest level only, the RMSE value .0353510 is obtained after 75 iterations. After carrying out
an analysis, we get a speed-up factor of 1242975 /936098 = 1.3278.

When the density of the constraints is 2%, ¢, = 31 was used. For the other parameters, s, =4, n, =
7.n, =1, and n, = 7 were used. We have the identical results of final RMSE values as in the
adaptive Chebyshev acceleration method. After carrying out an analysis, we get a speed-up

factor of 4507856 / 1698456 = 2.6541.
For the weighted Jacobi method, we repeated the experiments with two densities.

When the density of the constraints is 15%, t, = 49 was used. The RMSE value .0685087 was
obtained at the coarsest level after 49 iterations. For the other parameters, s, =6, n, =8, n, =1,
and n, = 8 were used. The total number of iterations performed on each level from coarsest to
finest respectively is 61, 32, and 16. (This amounts to 27.8125 work units.) The final RMSE
value obtained on each level from coarsest to finest respectively is .0445619, .0410180, and
.0375995. When the relaxation is carried out on the finest level only, the RMSE value .0376335
is obtained after 762 iterations, which amounts to the same number of work units. After carrying

out an analysis, we get a speed-up factor of 12628626 / 2162500 = 5.8398. (With the multigrid

approach, work units are reduced by a factor of 762 / 27.8125 = 27.3978.)68

When the density of the constraints is 2%, f, = 305 was used. The RMSE value .0686376 was
obtained at the coarsest level after 305 iterations. For the other parameters, s, =7, n, = 10, n, =
1, and ny = 10 were used. The total number of iterations performed on each level from coarsest to
finest respectively is 319, 40, and 20. (This amounts to 49.9375 work units.) The final RMSE
value obtained on each level from coarsest to finest respectively is .0705693, .0654956, and
.0619304. The number of machine cycles required for the execution of the multigrid algorithm is
6078564.

For the Gauss-Seidel method, we repeated the experiments with two densities.

When the density of the constraints is 15%, #, = 15 was used. The RMSE value .0657366 was
obtained at the coarsest level after 15 iterations. For the other parameters, 5o =3, n, =3, n, = 1,
and ny = 3 were used. The total number of iterations performed on each level from coarsest to
finest respectively is 21, 12, and 6. This amounts to 10.3125 work units. The final RMSE value
obtained on each level from coarsest to finest respectively is .0386824, .0347583, and .0309097.
When the relaxation is carried out on the finest level only, the RMSE value .0309190 is obtained
after 257 iterations, which amounts to the same number of work units. With the multigrid

approach, work units are reduced by a factor of 257 / 10.3125 = 24.9212.

When the density of the constraints is 2%, f, = 91 was used. The RMSE value .0687677 was
obtained at the coarsest level after 91 iterations. For the other parameters, s, =4, n, =6, n, = 1,
and ny = 6 were used. The total number of iterations performed on each level from coarsest to
finest respectively is 99, 24, and 12. This amounts to 24.1875 work units. The final RMSE value
obtained on each level from coarsest to finest respectively is .0682326, .0630561, and .0593441.
When the relaxation is carried out on the finest level only, the RMSE value .0593413 is obtained

63We show also the result with smaller parameter values to compare with other iterative methods. With sy=3,n, =
3, ny = 1, and ny = 3, the total number of iterations performed on each level from coarsest to finest respectively is 55,
12, and 6. (This amounts to 12.4375 work units.) The final RMSE value obtained on each level from coarsest to finest
respectively is .0574017, .0546859, and .0520999. When the relaxation is carried out on the finest level only, the
RMSE value .0520627 is obtained after 636 iterations. After carrying out an analysis, we get a speed-up factor of
10540428 / 1565872 = 6.7314. (With the multigrid approach, work units are reduced by a factor of 636 / 12.4375 =
51.1357))

124

after 6007 itcrations. With the multigrid approach, work units are reduced by a factor of 6007 /
24,1875 = 248.3514.

Compared to the poor speedups of the conjugate gradient and the Chebyshev acceleration
methods, we have significandy higher speedups for the weighted Jacobi and the Gauss-Seidel
methods. This is due to two reasons. First, for comparison, we used the execution time for the
conjugate gradient and the Chebyshev acceleration methods, while we used the work units for the
Gauss-Seidel method. Note that when we use both execution time and work units for the
weighted Jacobi method, the speed-up factor of execution time is smaller. Second, compared to
the conjugate gradient and the Chebyshev acceleration methods, the performance of the weighted

Jacobi and the Gauss-Seidel methods on a single-grid is very poor.

Before concluding this section, we examine again the range of execution time for the conjugate

gradient and the Chebyshev acceleration methods.

First, we consider the case where the density of the constraints is 15%. At one extreme end, the
iterations on the finest level only using the conjugate gradient method takes 3866667 machine
cycles. At the other end, the multigrid execution with the optimal Chebyshev acceleration
method takes 936098 machine cycles. When we compare these two, we get a speed-up factor of
3866667 /936098 = 4.1306.

Now, we consider the case where the density of the constraints is 2%. At one extreme end, the
iterations on the finest level only using the conjugate gradient method takes 19939871 machine
cycles. At the other end, the multigrid execution with the optimal Chebyshev acceleration
method takes 1698456 machine cycles. When we compare these two, we get a speed-up factor of
19939871 / 1698456 = 11.7400.

5.4 Experiments on Real Images

5.4.1 Multigrid Algorithms
For the real images of range data, we used % =2.0/ hj69 and 0.2 / h; for a quasi-spherical object

and a soda can, respectively.

5.4.1.1 Experiments on Actual Range Data from a Quasi-spherical Object

A data set of 976 depth constraints in a (x, y, z) format was scaled to generate data in a (i, j,)
format, where 0 < i, j € 127 and 0.01 < d < 1.0. A SIMD region labeling routine was then run
to mark the depth continuous region that contains given depth constraints. The generated region
contained 10628 nodes. Next, we patched the region by adding 84 more depth continuous nodes

to get a smoother boundary.

The three-level multigrid algorithms were run. The sizes of the mesh are reduced from 128 x 128
to 64 x 64 and 32 x 32. The constraints at the coarser levels are generated by local averaging the
constraints at the finest level. At the finest level (I = 3), 976 nodes are constrained out of 10712
depth continuous nodes. At the medium level (! = 2), 961 nodes are constrained out of 2748
depth continuous nodes. At the coarsest level (I = 1), 605 nodes are constrained out of 720 depth
continuous nodes. Thus, the density on each level from coarsest to finest respectively is 84.03%,

34.97%, and 9.11%.

Before showing the result of multigrid algorithm, we show the result for each level in Table 5-19.
The initial RMSD values were .779238, .747674, and .742538 for the level / = 1, 2, and 3,

respectively.

For the adaptive Chebyshev acceleration method, we show the result with more accurate initial

%%In comparison with B"’ =20/ hjz. used for the synthetic images of the cylinder and sphere examples, we can give
following explanations. After 1/ hjz are factored out, B% = 2.0/ hj2 corftributes a constant weight of 2.0 for all levels,

while Bh' =20/ hj contributes smaller weights of 0.8, 0.4, and 0.2 for the coarsest, medium, and the finest level when

three-level multigrid scheme is used with &, = 04, h,y = 0.2, and hy = 0.1. In physical terms, equal-strength springs are
used for all levels in the synthetic images, while generally weaker, though gradually stronger, springs are used for
coarser levels in the real images. These choices are meant to handle the noise present in the real images. Note that in
the real images the constraints at coarser levels are more reliable since the averaging process responsible for the
generation of these constraints tends to cancel out the noise. Since we use generally looser springs, the irregularities
caused by spurious noise can be lessened. However, overall convergence is slowed down compared to the synthetic
images of similar size with similar density of censtraints. In the Chebyshev acceleration method, this effect is
manifested as a bigger M(G) value which is closer to 1.0, the theoretical upper bound.

estimates only. For the initial estimates of mg, we used —-2.3. As the improved initial estimates
of Mg, we used .98, .995, and .9995 for the level [= 1, 2, and 3, respectively.70 In the optimal
Chebyshev acceleration and the weighted Jacobi methods, we simply used these initial estimates

for the real eigenvalues.

When the depth constraints exist only, we have derived in section 4.3.3.3 that at level [it takes
5856 x ((log, 5) — (L — D) + 32307 machine cycles for an iteration of the conjugate gradient
method. Thus, an iteration on each level from coarsest to finest respectively takes 61587, 67443,
and 73299 machine cycles. We have derived also that at level [it takes
4392 x ((log 5 s) — (L — D)) + 16453 machine cycles for an iteration of the adaptive Chebyshev
acceleration method. Thus, an iteration on each level from coarsest to finest respectively takes
38413, 42805, and 47197 machine cycles. For an iteration of the optimal Chebyshev acceleration
and the weighted Jacobi methods, we have derived that at all levels it takes 15314 and 13840

machine cycles, respectively.

In Table 5-20, we show the normalized number of iterations. We compare the normalized
number of iterations of three iterative methods. When the RMSDs are reduced to .05, the
normalized numbers are 607.9, 477.7, and 155 for the conjugate gradient, the adaptive, and the
optimal Chebyshev acceleration methods, respectively, for the finest level. The normalized

numbers are 68.4, 62.7, and 25 for the coarsest level.

For the conjugate gradient and the Chebyshev acceleration methods, we compare the amount of
time taken to arrive at the same final RMSD values at the finest level, when iterations are carried
out on the finest level only versus multigrid. For the Gauss-Seidel method, we compare work

units. For the weighted Jacobi method, we compare both execution time and work units.

We analyze the result of the conjugate gradient method first. We used t, =9. The RMSD value
.0791359 was obtained at the coarsest level after 9 iterations. For the other parameters, sy = 3, n,

=5,n,=1,and n, = 5 were used. The total number of iterations performed on each level from

"®When the initial estimates of my and M were —3.0 and 0.0, we obtained .983780, .995785, and .999489 as the
estimates of M, values at the iteration steps of 50, 102, and 296 for the level [= 1, 2, and 3, respectively.

RMSD

0.5
0.2
0.1

0.05

RMSD

0.5
0.2
0.1
0.05

Conjugate Gradient
=3 =2 l=l
20 7 2
49 17 4
83 29 9
127 46 17
Gauss-Seidel
=3 =2 =1
401 51 10
1017 128 23
1556 195 35
2312 289 49
Table $-19:

Adapt. Chebyshev Accel.

=3 =2 =1
37 14 6
61 24 9
100 34 17
155 54 25
Weighted Jacobi
=3 =2 =1
1323 167 32
3366 425 77
5161 652 116
HEH 981 168

127

Opt. Chebyshev Accel.

=3 =2 l:].
37 14 6
61 24 9

100 34 17
155 54 25

Number of Iterations on Fine/Coarse Levels (sphere : range data)

128

RMSD Conjugate Gradient Adapt. Chebyshev Accel. Opt. Chebyshev Accel.

=3 =2 =1 =3 =2 =1 =3 =2 =1
0.5 95.7 30.8 8.0 114.0 39.1 15.1 37 14 6
0.2 2345 749 16.1 188.0 67.1 226 61 24 9
0.1 397.3 127.7 36.2 308.2 95.0 426 100 34 17
0.05 607.9 202.6 68.4 471.7 150.9 62.7 155 54 25
RMSD Weighted Jacobi

0.5 1195.7 1509 28.9
0.2 3042.0 384.1 69.6
0.1 4664.2 589.2 104.8
0.05 R 886.6 151.8

Table 5-20: Normalized Number of Iterations on Fine/Coarse Levels (sphere : range data)

129

coarsest to finest respectively is 15, 20, and 10. The final RMSD obtained on each level from
coarsest to finest respectively is .0772859, .0769072, and .0722429. When the relaxation is
carried out on the finest level only, the RMSD value .07201309 is obtained after 85 iterations.

For the three-level multigrid algorithm with n, = 1, 2 prolongation operations are invoked in
procedure FMRA, 3 restriction operations in FMC, and 3 prolongation operations in FMC. We
have derived in section 4.3.3.4 that it takes 52383, 33700, and 57000 machine cycles for a
prolongation operation in FMRA, a restriction operation in FMC, and a prolongation operation in
FMC, respectively, when the depth constraints exist only and local averaging is used for the
restriction operation. Therefore, 376866 machine cycles should be added to account for the

restriction and prolongation operations.

For the iterations on the finest level only, it takes 6230415 machine cycles. For the multigrid
algorithm, it takes 3382521 machine cycles. When the numbers of machine cycles are divided,
we get a speed-up factor of 6230415 /3382521 = 1.8419.

We consider now the result of the adaptive Chebyshev acceleration method. We used ¢, = 17.
The RMSD value .0790101 was obtained at the coarsest level after 17 iterations. For the other
parameters, S, =4, n, = 6, n, = 1, and n, = 6 were used. The total number of iterations performed
on each level from coarsest to finest respectively is 25, 24, and 12. The final RMSD value
obtained on each level from coarsest to finest respectively is .0700527, .0695689, and .0672210.
When the relaxation is carried out on the finest level only, the RMSD value .0669729 is obtained
after 110 iterations. After carrying out a similar analysis, we get a speed-up factor of 5191670 /
2930875 = 1.7714.

For the optimal Chebyshev acceleration method, we used the same estimates of the eigenvalues
with the same parameters as in the adaptive Chebyshev acceleration method. We have the same
final RMSD values but the total execution time is faster. After carrying out an analysis, we get a

smaller speed-up factor of 1684540/ 1311020 = 1.2849.

For the weighted Jacobi method, t, = 116 was used. The RMSD value .0777064 was obtained at

the coarsest level after 116 iterations. For the other parameters, 5, =12, n, =16, n, =1, and n, =

130

16 were used. The total number of iterations performed on each level from coarsest to finest
respectively is 140, 64, and 32. (This amounts to 56.75 work units.) The final RMSD value
obtained on each level from coarsest to finest respectively is .0759227, .0739616, and .0721752.
When the relaxation is carried out on the finest level only, the RMSD value .0721828 is obtained
after 5243 iterations, which amounts to the same number of work units. After carrying out an
analysis, we get a speed-up factor of 72563120 / 3643106 = 19.9179. (With the multigrid
approach, work units are reduced by a factor of 5243 / 56.75 = 92.3877.)

For the Gauss-Seidel method, we used f, = 35. The RMSD value .0767458 was obtained at the
coarsest level after 35 iterations. For the other parameters, s, =4, n) = 6, ny = 1, and n, = 6 were
used. The total number of iterations performed on each level from coarsest to finest respectively
is 43, 24, and 12. This amounts to 18.6875 work units. The final RMSD value obtained on each
level from coarsest to finest respectively is .0692349, .0678860, and .0662348. When the
relaxation is carried out on the finest level only, the RMSD value .0662035 is obtained after 1657
iterations, which amounts to the same number of work units. With the multigrid approach, work

units are reduced by a factor of 1657 / 18.6875 = 88.6685.

We examine again the range of execution time for the conjugate gradient and the Chebyshev
acceleration methods. At one extreme end, the iterations on the finest level only using the
conjugate gradient method takes 6230415 machine cycles. At the other end, the multigrid
execution with the optimal Chebyshev acceleration method takes 1311020 machine cycles.

When we compare these two, we get a speed-up factor of 6230415/ 1311020 = 4.7523.

Again, note the relatively small speed-ups as in the synthetic examples.

5.4.1.2 Experiments on Actual Range Data from a Soda Can

The three-level multigrid algorithms were run. The sizes of the mesh are reduced from 128 x 128
10 64 x 64 and 32 x 32. The constraints at the coarser levels are generated by local averaging the
constraints at the finest level. At the finest level (I = 3), 1483 nodes are constrained out of 12080
depth continuous nodes. At the medium level (! = 2), 1312 nodes are constrained out of 3084
depth continuous nodes. At the coarsest level ({ = 1), 660 nodes are constrained out of 805 depth

continuous nodes. Thus, the density on edch level from coarsest to finest respectively is 81.99%,

131

42.54%, and 12.28%.

Before showing the result of multigrid algorithm, we show the result for each level in Table 5-21.
The initial RMSD values were .926353, .919643, and .885797 for the level / = 1, 2, and 3,

respectively.

For the adaptive Chebyshev acceleration method, we show the result with more accurate initial
estimates only. For the initial estimates of mg, we used —2.3. As the improved initial estimates

of Mg, we used .995, .999, and .9999 for the level /=1, 2, and 3, respectively.’!

In Table 5-22, we show the normalized number of iterations. We compare the normalized
number of iterations of three iterative methods. When the RMSDs are reduced to .2, the
normalized numbers are 1258.8. 859.9, and 279 for the conjugate gradient, the adaptive, and the
optimal Chebyshev acceleration methods, respectively, for the finest level. The normalized

numbers are 160.9, 155.5, and 58 for the coarsest level.

We analyze the result of the conjugate gradient method first. We used #, = 40. The RMSD value
.187266 was obtained at the coarsest level after 40 iterations. For the other parameters, s, = 6, n,
=8, n,=1, and ny = 8 were used. The total number of iterations performed on each level from
coarsest (o finest respectively is 52, 32, and 16. The final RMSD obtained on each level from
coarsest to finest respectively is .166422, .185920, and .221586. When the relaxation is carried
out on the finest level only, the RMSD value .222083 is obtained after 175 iterations.”2

The iterations on three levels take 6533484 machine cycles. Then, 376866 machine cycles are
added to account for the restriction and prolongation operations. Thus, for the multigrid
algorithm, it takes 6910350 machine cycles. For the iterations on the finest level only, it takes
12827325 machine cycles. When the numbers of machine cycles are divided, we.get a speed-up

71When the initial estimates of my and My were —3.0 and 0.0, we obiained .995935, .999189, and .999882 as the
estimates of M values at the iteration steps of 61, 164, and 428 for the level I = 1, 2, and 3, respectively.

"2For the multigrid algorithm, the discrete L,-norm of the residual vector obtained on each level from coarsest to

finest respectively is .00149900, .00164972, and .00557440. For the single-grid algorithm, the norm of the residual
vector obtained on the finest level is .00831499.

RMSD

RMSD

0.8
0.6
0.5
04

0.2

Conjugate Gradient

=3 =2 =1
25 8 7
58 12 11
74 20 13
98 33 19
263 67 40
Gauss-Seidel

:3 =2 =1

106 27

258 66

361 92

500 126

1144 282

Table 5-21: Number of Iterations on Fine/Coarse Levels (soda can : range data)

Adapt. Chebyshev Accel.

=3 =2 =1 =3 =2
52 19 10 52 19
85 31 16 85 31
103 38 20 103 38
125 47 26 125 47
279 92 62 279 92

Weighted Jacobi

132

Opt. Chebyshev Accel.

16
20
26

58

133

RMSD Conjugate Gradient Adapt. Chebyshev Accel. Opt. Chebyshev Accel.
=3 =2 =1 =3 =2 =1 =3 =2 =1
0.8 119.7 352 282 160.3 53.1 25.1 52 19 10
0.6 271.6 52.8 4.2 2620 86.6 40.1 85 31 16
0.5 354.2 88.1 52.3 3174 106.2 50.2 103 38 20
0.4 469.1 145.3 76.4 3852 1314 65.2 125 47 26
0.2 1258.8 295.1 160.9 859.9 2572 155.5 279 92 58
RMSD Weighted Jacobi
=3 =2 =1
0.8
0.6
0.5
04
0.2

Table 5-22: Normalized Number of Iterations on Fine/Coarse Levels (soda can : range data)

134

factor of 12827325 /6910350 = 1.8563.73

We consider now the result of the adaptive Chebyshev acceleration method. We used ¢, = 62.
The RMSD value .185203 was obtained at the coarsest level after 62 iterations. For the other
parameters, s, = 7, n; =9, n, = 1, and ny = 9 were used. The total number of iterations performed
on each level from coarsest to finest respectively is 76, 36, and 18. The final RMSD value
obtained on each level from coarsest to finest respectively is .167187, .186873, and .220360.
When the relaxation is carried out on the finest level only, the RMSD value .220293 is obtained
after 188 iterations.”® After carrying out a similar analysis, we get a speed-up factor of 8873036 /
5686780 = 1.5603.

For the optimal Chebyshev acceleration method, we used ¢, = 58. The RMSD value .185933 was
obtained at the coarsest level after 58 iterations. For the other parameters, 5o=7,n, =9, 1, = 1,
and n; = 9 were used. The total number of iterations performed on each level from coarsest to
finest respectively is 72, 36, and 18. The final RMSD value obtained on each level from coarsest
1o finest respectively is .167904, .187397, and .221142. When the relaxation is carried out on the
finest level only, the RMSD value .221389 is obtained after 187 iterations. After carrying out an
analysis, we get a smaller speed-up factor of 2863718 /2306430 = 1.2416.

We examine again the range of execution time for the conjugate gradient and the Chebyshev
acceleration methods. At one extreme end, the iterations on the finest level only using the
conjugate gradient method takes 12827325 machine cycles. At the other end, the multigrid
execution with the optimal Chebyshev acceleration method takes 2306430 machine cycles.

When we compare these two, we get a speed-up factor of 12827325 /2306430 = 5.5616.

73When smaller parameter values are used, mare speed-up is possible. With so=4.n; =6,ny=1,andny =6, the
final RMSD value obtained on each level from coarsest to finest respectively is .175867, .195881, and .233090. When
the relaxation is carried out on the finest level only, the RMSD value .233180 is obtained after 166 iterations. Here, we
get a speed-up factor of 12167634 / 5831262 = 2.0866.

74For the multigrid algorithm, the discrete L,-norm of the residual vector obtained on each level from coarsest o
finest respectively is .00041147, .00122146, and .00700397. For the single-grid algorithm, the norm of the residual
vector obtained on the finest level is .00211884,

135

5.5 Implementation Experiences

We have rewritten the existing NON-VON simulator [Choi 85a] to handle the floating point
operations. Our simulators ran on DEC-20, VAX 11/750, and IBM 4381 machines. The initial
version of the software was written in PSL. By transporting our software progressively across
these machines, we were able to handle bigger images. The size of the biggest image we could
handle under PSL was 16 x 16, 32 x 32, and 64 x 64 respectively. Then the entire code was
rewritten in FORTRAN 77 and transported to an IBM 4381. This brought two advantages for us.
We could run bigger images, up to 128 x 128 images. Our program ran in the maximum virtual
user space allowed, 16 Mbytes of virtual machine, under CMS. Secondly, this simulation ran 3 to

5 times faster.

It was straightforward to implement and test the SIMD control, mesh connections, and tree
topology aspects of the computation. We later simulated the Gauss-Seidel method, which

requires only mesh connections, for comparison.

The language VS FORTRAN provides three precisions for floating-point numbers [IBM 84]. A
real number can occupy 4, 8, or 16 bytes of storage, which are, approximately, 6, 15, and 32
decimal digits. In our implementation, we chose the real numbers of 8 bytes long, i.e., double

precision.

We examine the general SIMD programming techniques we used. Usually, each procedure has a
set of associated boolean predicates which made the hierarchical construction of SIMD programs
easier. The general form of the predicates is as follows: "For such and such PEs, such and such
conditions hold.” The predicates are classified as input, output, pre-condition, and
post-condition. The input and output predicates state how and where the input vectors (or scalar
values) are prepared before entering this procedure and the output vectors (or scalar values) are
generated as the execution result. The pre-condition and post-conditions state what conditions
hold, usually about the marking of the set on which operations are to be carried out. The
statement about the post-condition helps the calling procedure. Sometimes the pre-conditions
remain valid as post-conditions, or some other useful post-conditions are set up. In both cases,

the calling procedure can utilize them so that it avoids the unnecessary new set up of context for

136

following actions.

Inside the procedure, predicates are interspersed with actions. The actions are execution of a
sequence of SIMD instructions or function calls. At the beginning of the procedure, the pre-
condition and optional set up of the context establish the initial conditions. After each minor or
major action, depending on the need of detail, new conditions are declared. In our programming
development, this served two purposes: verification and expectation, which are really two sides
of the same coin. By stating the condition explicitly, we know what we have done, where we are,
and where we are going. In this sense, verificarion is carried out as the informal proof of
correctness of the SIMD program.”® The declaration of the conditions reveal the expectation or
intent of the programmer. The explicit statement of the condition to hold at particular point of the
program helps the debugging process. When the program does not work, i.e., does not follow the
original intention of the programmer, we can mentally execute the sequence of actions or
examine the dumped out contents of registers and memory, especially, when the program is under
development using simulator, to find out the bug. But the tracing of the conditions usually helps
to correct the wrong behavior of the program, where some action is missing or the sequence of
actions has been executed in wrong order. The statement of conditions are declared in

hierarchical manner as the sequence of actions are.

This general description will be elaborated further in section 1.2 of Appendix where actual listing
of SIMD programs are given. The final remark about the declaration of conditions in our
program is that these conditions are used in passive sense. In our case, they are written as
comments, enclosed in curly brackets. We can imagine a hypothetical active usage of conditions,
i.e., enforcing the conditions through further redundant actions or dynamically checking them, at

certain crucial points to ensure the correcmess of program execution.

T5For the rigorous treatment of the correctess proof of the programs running on the sequential machines, see (Mann
74].

137

5.6 Conclusion and Summary

The actual experiments on the adaptive Chebyshev acceleration and the conjugate gradient
methods confirmed that the performance depends strongly on global information. In the case of
the adaptive Chebyshev acceleration method, the global parameters are the largest and smallest
eigenvalues, where the estimate of the largest eigenvalue M is more critical. When the adaptive
Chebyshev acceleration method is started with the more accurate initial estimates of the extreme
eigenvalues, we observe nearly always that it executes faster than the conjugate gradient method.
However, when there are frequent changes or updates of Mg due to the error of the initial
estimates, the overall execution time is often slower than steady conjugate gradient method which
is not started with any initial global information. Recall that in the optimal Chebyshev
acceleration method, many iterations are often required to achieve the asymptotic convergence
rate. The slowdown occurs at every change of Mg, when a new Chebyshev polynomial is

generated again.

In section 5.2, we gave an interpretation of the estimate m; based on the system matrix,
specifically, the nodal equation of an intemal node. For the more accurate estimate of Mg, further
theoretical study is needed. In practice, more accurate initial estimates, still low enough to satisf{y
the condition m; < m(G) and My < M(G), may be prepared in a lookup table form. The search
parameters for this table may be the number of the depth continuous nodes in the region, which is
related to the size of the matrix, and the density of the constraints. Less influential parameters
may be the shape of the region, i.e., the two-dimensional spatial extent of the region, and the
distribution of the constraints on it. Note that these proposed parameters can be easily obtained
through the global communication networks of the SIMD machine. Such global operations as
counting, summation, average, minimum, and maximum can be executed in O (log, 5) time when

the size of the mesh is s X s.

In our experiments, we used the fairly good estimates of m; and M values in the following sense:
either the execution time for the adaptive Chebyshev acceleration method was faster than the
conjugate gradient method, or the initial estimates were hardly changed at all, or both, until the
specified fraction of RMSE is attained. But, theoretically, how accurate the estimates should be?

For the single-gnd algorithm of the optimal Chebyshev acceleration method, section 4.4 of [Youn

138

81] discusses the sensitivity of the asymptotic virtual rate of convergence to the estimates of mg
and M. But for the multigrid algorithms, the theoretical anaylsis will be more difficult since we
have both iterations and interlevel computations, restriction and prolongation. However, we can
make general assertions about the accuracy of the estimates. In many cases, since given initial
estimates may not be changed, they should be fairly accurate. Nevertheless, because computation
does not depend on iterations only, they need not be so accurate as in the single-grid algorithms.
Furthermore, the estimates on coarser levels can be computed more easily as well as accurately,
since the sizes of the matrices are smaller and the constraints are denser. In practice, during
initial iterations on the coarsest level, the Chebyshev acceleration method can be run adaptively
for possible updates of the initial estimates. In the case of actual estimate changes, the estimates
on other finer levels can be adjusted. After this adjustment, the Chebyshev acceleration method

might be run non-adaptively.

For the images with very sparse constraints, the adaptive Chebyshev acceleration and the
conjugate gradient methods accelerated by the multigrid approach demonstrated the speed-up by
two or seven times or more compared to the execution on the finest level only. From these
meager speed-up factors, one might conclude that the acceleration achieved by the multigrid
approach may not be worthwhile for the additional hardware and software complexity.
Nevertheless, for bigger images, more speed-up is possible. Therefore, the adoption of the
multigrid approach should be made after a relevant cost/benefit analysis that depends on each

application.

139
6. Conclusion and Future Directions

6.1 Contributions

In this thesis, we showed how a middle-level computer vision problem, in particular the
smoothness constraint propagation problems in early vision which are cast as solving a large
system of linear equations with a resulting matrix that is sparse SPD, can be run efficiently on a

class of parallel computers. Specifically, we have worked on the depth interpolation problem.

Basically, the speed-ups of the computation have been achieved by two factors. First, we used
theoretically better iterative methods. In the Gauss-Seidel method, only local information is used.
However, in the Chebyshev (including the adaptive Chebyshev acceleration) and the conjugate
gradient methods, local as well as global information are used in each step of the matrix

iterations.

Second, all computational steps have been parallelized and can be run on any fine grained SIMD
machines with local and global communication networks. We have analyzed the space and time
complexity of the two iterative methods based on our abstract SIMD model derived from actual
machines built. In particular, we have analyzed the computational and communication costs of
parallel computing. Also, we have analyzed two modes of communications, local and global,

necessary for local interactions and global summary, respectively.

We have shown the results from two methods, the Chebyshev acceleration and the conjugate
gradient, and compared them with the results from the Gauss-Seidel method. We applied these

methods to the synthetic and real images and found the degree of improvement.

We also applied the iterative methods to multigrid approach. We have listed in Table 6-1 the
speed-up factors of the execution time obtained by the multigrid approach of various iterative
methods. (The speed-up factors of the work units are enclosed in parenthesis.) The results in the
top two rows are from the synthetic images, while those in the bottom two rows are from the real
images of range data. The size of the mesh at the finest level is 128 x 128. The number of depth
continuous nodes in the region, n, for four images are 16384, 12867, 10712, and 12080,

respectively. Recall that the size of the matrix is n x n. The densities of the depth constraints are

140

3.91%, 2.02%, 9.11%, and 12.28%, respectively. The initial accuracies, RMSE or RMSD values,
attained at the coarsest level are .1 except the last row where .2 is attained. In general, more
speed-up is possible as more iterations are required for convergence of the single-grid algorithms;
as the size of the image gets bigger, the density of the constraints is sparser, or smaller errors are

wanted.

In Table 6-2, we show the execution time of various iterative methods when the speed-up factors
of Table 6-1 are obtained. (The work units are enclosed in parenthesis.) The multigrid execution
of the adaptive Chebyshev acceleration method is faster than the conjugate gradient method for
all images. Furthermore, the optimal Chebyshev acceleration method is the fastest one.
However, we observe that the speed-up factors get smaller as we employ a more optimal mode of
execution. In contrast, the speed-up factors achieved by the weighted Jacobi or the Gauss-Seidel
methods are rather big, since the convergence rates of the single-grid algorithms (on the finest
grid) are very slow. Note also the slowest execution time of the weighted Jacobi method

compared to the fastest optimal Chebyshev method, even accelerated with the multigrid approach.

6.2 Implementation Restrictions

Our implementation examples were smaller than most standard camera generated images. The
most recent version of our program handled up to 128 x 128 images due to the limitation of the
virtual space of the machine where simulation was carried out. Often, images in the real world
are 512 x 512 or 1024 x 1024. The SIMD machines now in existence seem to keep up with the
demand. The initial prototype of the Connection Machine is a 16K machine, which means it can

handle 128 x 128 images. When a bigger machine is built, it will be able to handle larger images.

6.3 Extension of Current Research Work

In this work, we presented a methodology of solving a large system of linear equations where the
matrix is sparse SPD in a computationally efficiently way. In particular, we have worked on the
depth interpolation problem. In mathematical terms, the particular matrix we worked on is
derived from the biharmonic equation. Our methodology, an implementation of efficient iterative
methods on a parallel architecture for sparse SPD matrices, can be applied in other areas. We can

use other interpolating functions to generate different system matrices for the depth interpolation

Cylinder
Sphere

Quasi-spherical

Soda Can

Cylinder

Sphere

Quasi-spherical

Soda Can

Conjugate
Gradient

7.2929
4.1916

1.8419

1.8563

Adaptive

Chebyshev

10.4389
3.4544

1.7714

1.5603

Optimal
Chebyshev

7.2878
2.6541

1.2849

1.2416

Weighted
Jacobi

19.9179
(92.3877)

Table 6-1: Speed-up Factors of Multigrid Approach

Conjugate
Gradient

6864684

4757108

3382521

6910350

Adaptive

Chebyshev

5307974

3815427

2930875

5686780

Optimal
Chebyshev

2466961

1698456

1311020

2306430

Weighted
Jacobi

6078564
(49.9375)

3643106
(56.75)

141

Gauss-
Seidel

(248.3514)

(88.6689)

Gauss-
Seidel

(28.015625)

(24.1875)

(18.6875)

Table 6-2: Execution Time of Multigrid Algorithms (in machine cycles’S)

76Recall that a cycle time is 100 nanoseconds for our abstract SIMD model.

142

problem. For instance, see chapter 9 of [Boul 86]. The other constraint propagation problems in
early vision may be another choice for extension. For examples of the constraint propagation
problems, such as shape from shading, optical flow, etc., see chapter 10 of [Terz 84]. But recall
that our methodology is general enough so that it can be applied to the solution of any sparse,

SPD matrices.

In terms of the depth interpolation problem in the fuller context of actual computer vision
systems, there needs to be added another layer of modules to our solution. In our experiments,
we always used the constraints and the discontinuities as the input, and concentrated on efficient
solutions of the matrix iteration. In practice, we have two stages, the segmentation and the
iteration, where two can alternate to reconstruct a better surface. The segmentation process
detects the discontinuities. In the beginning, we have an initial gross segmentation, for example,
based on the thresholding of the constraints. But after sufficient number of iteration steps, we
may need a refined segmentation which can now be based on the computed smooth surface
values. This is addressed in [Schu 83] where the general issue of segmentation versus iteration is
considered, though it deals with the motion problem. Especially, for the boundary detection, see
chapter 8 of [Schu 83]. For the detection of the discontinuities in the depth interpolation problem,

see chapter 9 of [Terz 84] and [Terz 85b]. See also the recent work of [Blak 87].

In the concluding section of chapter S, we stressed the preparation in a table form of the estimates
of the largest and smallest eigenvalues, especially the largest one, of the iteration matrices, if one
desires the practical use of the optimal and adaptive Chebyshev acceleration methods. More
experiments and further theoretical work will be needed for preparation of these tables. Further
investigation of the effects of the density and distribution of the constraints and the shape of the

surface upon the extreme eigenvalues will be needed.

In the multigrid methods, we have only explored the effects of a fixed scheme for a multilevel
coordination strategy. The study of an accommodative scheme will be beneficial, since it is more
flexible and can be executed on the fly with no prepared parameters. Also, it can eliminate
possible unnecessary relaxation sweeps, thus increasing speed-up over the single-grid method. It

is not clear how great an effect this may have; perhaps the speed-up using theoretically better

143

iterative methods will continue to be found meager, especially since such adaptivity is dependent

on global computation of the residual norms.

6.4 Future of Parallel Architecture for Image Processing

We proceed in two steps in this final section. We describe the prospects of near term future first,
and then speculate about what may arrive in not too distant future. For the longer term prospect,
we only mention possibilities, though research may lead ultimately to such realizations in terms

of a large scale system implementation.

The three layers of computer vision problems require different processing needs. On the one
hand, low level problems, typified by the edge detection, and middle level ones, for example the
depth interpolation problem investigated in detail in this thesis, require SIMD architectures with
demanding numerical computational power. On the other, high level problems, for example
object recognition, are not defined well, in terms of both algorithms and architectures. The more
useful architecture may be in software, not in hardware. In this sense, high level problems may
require MIMD architectures (or MSIMD architectures) with symbolic computational power, too.
In chapter 3, we noted already that two SIMD machines, the NON-VON and the Connection
Machine, support symbolic processing as well as numeric processing. For MIMD architectures,
some interesting machines are based on global shared memory, such as the Ultracompuler77 (Gott

86). For an integrated vision system, we will need features of both architectures.

As a shont exercise, one might review the implementation of the connected component labeling
algorithms on three parallel architectures although of middle level vision. [Huss 84] provides the
one based on the NON-VON, [TMC 87b] on the Connection Machine, and [Humm 87] on the
Ultracomputer. Note that the NON-VON and the Connection Machine are SIMD machines while
the Ultracomputer is a MIMD machine. However, in terms of global communication topology,
the NON-VON is based on the tree, while the Connection Machine and the Ultracomputer are

based on the variations of boolean n-cube.

T"The theoretically inclined reader may consult [Vish 83) where formal parallel computer models are surveyed. The
Ultracomputer is interesting since it embodies one of the earliest direct implementation of these theoretical models.

144

The human brain is one of the most complex structures in the universe. It is thought to consist of
perhaps 10'! individual neurons. A given neuron in the brain may receive several thousand
synaptic connections from other neurons. Hence if the human brain has 10!! neurons, then it has
at least 10! synapses.”® The brain is a vast network of connections among neurons. At each
point where a nerve fiber forms a connection or synapse onto another neuron, information is
transferred and may be transformed or processed. Information is continuously flowing through
the multitude of synaptic contacts and networks in the brain. During evolution certain regions of
cell bodies where these connections occur have expanded enormously, as in the human cerebral
cortex. The brain is not simply a collection of special structures but a vast information processing

system [Thom 85].

How can we ever, (or perhaps never,) achieve the performance of the human brain as an
information processing system? Part of the answer may lie in the great expansion of the number
of processors and the other in the increase of the number of connections. We discussed the SIMD
machines with local and global communication networks. When the future version of the
Connection Machine that can handle a 1024 x 1024 image will become available, it will have
only 10 processors compared to 10'! neurons in the human brain. For the connections, instead
of several thousand connections at every neuron, it will have only 24 connections per PE, where 4
are for local mesh connections to nearest neighbors and 20 for global connections to boolean cube
neighbors.” We see the obvious limitations in terms of the number of processors and

connections.

One of the promising researches to alleviate this shortfall is the electronic neural networks [Jack
861, [Graf 86]. In recent research work, the electronic neurons are fully interconnected, at least

locally. The proposed network complexity is 10* neurons and 108 synapses. The authors hope

"8For image processing, in each human eye there are about 126 million photoreceptor cells whose impulses are
channeled into 1 million ganglion cells. Information from the outside world is increasingly simplified and abstracted as
the information travels from the outside to the visual cortex of the brain. There are over 100 million neurons in the
human visual cortex, and we do not yet know well the extent of their specialization.

"9Recall that our application can be run on any SIMD machine with local and global communication networks, for
example, the Connection Machine. But when it is run on the ree machine with multiple mesh connections or the
pyramid machine, the number of connections is still smaller, 7 for the tree machine and 9 for the pyramid machine,
respectively. For each node, there are 4 local mesh connections to its neighbors, 1 1o its own parent, 2 or 4 to ils own
children.

145

that neural-net algorithms will become one of the main stream Al tools and some neural-net
hardwares will become standard tools in pattem classifying machines, where their highly parallel
and regular structure will be fully utilized. As an application in the image processing with neural
nets, a feature map can be produced by moving image processing kemels through all possible

image locations.

Another possibility is optical processing. It provides two advantages compared to existing
semiconductor technology. First, the processing may be done at the speed of the photons instead
of the electrons. One of the main reasons of the recent scaling down of the supercomputer project
in Japan was the technological barrier of building high speed semiconductors, which was
expected to be surmountable.8? Instead, we have steady development in optical processing
elements and storage devices. Second, we can have flexible optical connections that are

arbitrarily changeable under program control.

The final possibility is the analog, or hybrid, analog-digital processing. Even though the digital
computer has been in use for more than 40 years, a lot of processing in nature is done by the
analog computation. Analog processing has aroused a lot of interest recently in the vision
community, and we can mention two examples. One is the replicating of the function of a neuron
[Koch 84). The other is the depth interpolation problem itself, and more generally, the
smoothness constraint propagation problems in early vision. Terzopoulos mentions a cascaded
electrical resistance network where there are 2 processors and 10 local connections for an intemal
depth constrained node (Terz 84, p. 219]). The solutions are obtained as node voltages after the
injection of currents, and the imposition of the depth constraints as appropriate voltages. The
analog computation is supposed to provide speedier execution but limited precision compared to
the digital computation. In our research, we have shown how the computation is done in a
computationally efficient way using a parallel digital computer. It may be simply a temporary

stop gap measure, and eventually be superceded by an analog computation mechanism.

80For a speedier chip, gallium arsenide potentially offers far greater (five to seven times faster) speed than silicon. In
addition to speed, it dissipales less heat, so chips can be packed closer together. And it can emit light, allowing for its
use in optical fiber communication systems. The technology for processing gallium arsenide is still far behind that
available for silicon, but it has the best chance 10 replace silicon in applications that require speed.

146

I. The Appendix
L.1 Algorithm 6-4.1.

L.1.1 Listing of Algorithm 6-4.1.

The listing of a procedure for the adaptive Chebyshev acceleration method which uses the
L,-norm (Algorithm 6-4.1 [Youn 81, p. 107)) is reproduced in Figure I-1 and further explanation
of the details of this algorithm is given below. In this algorithm the adaptive parameter

estimadon utilizes only the L,-norm of the pseudoresidual vector 3.

The initial approximation is input as 401, The trivial initial approximation, 4@ = (00 ...)T,

was usually chosen.

The counter i is for the current iteration step number, while the counter p is for the degree of the

Chebyshev polynomial currently being used.

We assume that the input estimate my for m(G), the smallest eigenvalue of G, satisfies mg <
m(G). The other algorithm (Algorithm 6-5.1 [Youn 81, p. 117]) detects when an initial estimate
myg is greater than m(G) and obtains a new estimate for m(G) if needed. We have given the

discussion for numerically getting estimate m; in section 5.2.

The initial estimate My for M(G), the largest eigenvalue of G, should satisfy my; < M; < 1.0.
When mg < 0.0 and it is known that M(G) > 0.0, then M, = 0.0 is appropriate if no better choice

is available.

As discussed in section 4.1.3, the average virtual rate of convergence for the Chebyshev
acceleration method increases to an asymptotic value and many iterations are often required
before the asymptotic state is reached. Thus if Mg is changed too frequently, the optimum
asymptotic convergence rate will never be achieved. A damping factor F is used to prevent M
from being changed too often. In the following parameter change test, the current estimate M £ is

judged to be unsatisfactory if
18D, 7 189N, > [2r72 /(1 +)], (70)

with r being defined by

147

r=Q0-Vi-02)/1+V1-c.2), an
and ¢ denoting the last iteration step at which the previous estimate M was used, i.e.,g =i — p.

The constant F is a strategy parameter81 which is chosen in the range 0-1. Choosing F = 1 may
result in changing parameters very frequently. On the other hand, with F = 0 one would never
change parameters no matter what value of M < 1.0 is chosen. Numerical studies indicate that £
in the range 0.65-0.85 is appropriate but that the effectiveness of the adaptive Chebyshev
acceleration method is relatively insensitive to F. By choosing F < 1, we are in effect resigning
ourselves 10 an average convergence rate which may be only F times the optimum attainable

(Youn 81, p. 66].

A new estimate M is obtained as the largest real A that satisfies
T, @M/ T, (g1)) = 118, / 1189N,,

where

geN) = QA —Mg—mg) [(Mg —mp).
Let

B = (18901, / 1189,
and

Q = 1/T,(gg(1) = 2rP2 [(1 + rP).

If the condition, mgz < Mg < M(G) < 1.0 and m; < m(G), is satisfied and if B > Q, then the new
estimate M, is given by

E 2 2(1+1n) X

v

where

X = [((1+7°)/2)(B + VB2 - Q2)]Vp,
The new estimate ME' obtained may be greater than M(G). Two precautionary steps are taken in
Algorithm 6-4.1 to ensure that all estimates M used are less than or equal to M(G). First is the

requirement that each Chebyshev polynomial generated to be at least of degree p* before the

s‘lBy strategy parameter, it is meant that no mathematical basis exists for choosing this parameter and that the
optimum parameter value is likely to be problem dependent. Usually, the effectiveness of the process is relatively
insensitive to the value chosen for a strategy parameter (Youn 81, p. 66].

148

estimate M can be changed. The strategy is to pick p" to be the smallest integer greater than 5
that satisfies

P o< d,
or, equivalently,

p° = (log d) / (log 1.
The constant d is a strategy parameter lying in the range 0-1. Numerical studies indicate that d in
the range 0.03-0.15 is appropriate. We note that p” could equivalently be defined as the smallest
integer greater than 5 such that the ratio of average to asymptotic convergence rates is greater

than some constant, say d. A value of d in the range 0.6-0.42 is equivalent to d in the range

0.03-0.15. For instance, d = 0.481 is equivalentto d = 0.1 [Youn 81, p. 105].

The second precautionary step is that of imposing upper bounds on the M estimates.
Specifically, if s — 1 Chebyshev polynomials have been generated, then for polynomial s, we
require that M < 1, where the strategy parameters T, are chosen to be [Youn 81, p. 109]

1, = 0948, 1, = 0985, 1, = 0.995,

T, = 09975, 15 = 0.9990, 1, = 0.9995,

T, = 099995 for s 2 7. (72)

s

For the termination test, we use
1 1891,
1-Mg (D)

(73)

where { is the stopping criterion number and M E’ 1s the best available estimate for M(G). { =

106 was often used in [Youn 81).

I.1.2 Overlapped Execution

The computations in Algorithm 6-4.1 can be broken down into three big parts: Next_[teration,

Calculate_New_lterate, and the rest,

All the SIMD computations are handled in Calculate_New_lterate part. Calculations of §, ul®]
are stricly necessary for next iterate, while [|8]l,, [I8}l... and |[u!®||_ are needed for possible

parameter change or iteration termination. In the calculation of [18}l, = V(3,3), the SIMD part

149

computes (8,8) and the host computes square root of it. Since [|3]l, is needed for parameter

change test, the calculation on the host part can be done in background 82

In Next_Iteration part, as long as there is no parameter change, i.e., p 2 1, the involved
calculation on the host is trivial. Therefore, the computation time is dominated by the SIMD part
and the overlapped execution of SIMD and host processor is simple. The only precaution needed
is providing spaces for enough copies of u vector and corresponding scalar pointers (a, b. c, d,
...) so that we can back up. This precaution is justified if parameter change and iteration
termination test performed on the host processor takes longer time than the calculations delegated

to the SIMD hardware.

Calculate_New_Estimate_M E'. Convergence_Test, Parameter_Change_Test, and the part of
Next_Iteration for the case of p = 0 constitute time-consuming scalar processing on the host
processor. The computation depends on some results from the SIMD part: the value of (3. 9)
which is provided to compute ||3]},, and the values of i8]l and [jul®)||_ as well. It also needs other

scalar variables such as r, p, mg, and M.

Normally, the Next_Iteration and Calculate_New_lIterate parts proceed at full speed assuming
that there is no need of parameter change. When it tums out that parameter change is necessary,
the case of p = 0 in Next_Iteration is started and the SIMD part is set idle and the pointers are set
back to the correct u vectors. This action is quite similar to the preemption in conventional
pipeline processing where computational results that are done in advance but no longer relevant

are thrown out. When the convergence is reached, similar action takes place for the SIMD part.

In the conjugate gradient method, this kind of sophisticated overlapped execution is unnecessary

because the scalar processing on the host is simple. [Sce the equations (56) and (60).]

821f this compultation, computing the square roo! of some value, needs to be speeded up, it may be dispatched to a
special floaling point arithmetic hardware unit.

DATA DEFINITION PART

Real MATRIX:

G;

Real VECTOR:
k;

L0l

o

Integer SCALAR:

i
ps Ps

S, Spir

a, b, c

Real SCALAR:
&

mE: ,
ME' ME:

Te

Y, g P

r

DELNP, DELNPI,
DELNE;

YUN;

0, B:
X;

151
PROGRAM PART
Input: (§. Mg, mg, ul®)

Initialize :

If Mg < 0948, then
S = 0

elseif Mg < 0.985, then
Simig = 13

elseif My < 0.995, then
Spr = 2

elseif M, < 0.9975, then
Sp = 3

elseif My < 0.999, then
Sing = &

elseif My < 0.9995, then
Spg =

else

i =0
p=-1
Mg = Mg
stiw;
a=0 b=1

83In order to use the large initial M g estimates unmodified as input, while satisfying the imposition of upper bounds
set by the equation (72), we introduced the variable §,n; W0 Algorithm 6-4.1. For instance, in section 5.3.1.1, when the
adaptive Chebyshev acceleration method was run with more accurate initial estimates, we used .99, .993, and .997,
respectively, as the initial Mg estimates.

$F = 0.75 and d = 0.1 were often used, for example, in [Youn 81, p. 123].

Next Iteration:

i=i+1

p=p+h

If p=0, then
Begin
s=s5s+1

If Mg > T, then Mg =1

p =10

vy =2/Q—-Mg—mpg)

r= (1=V1-02)/(1+V1-0g)

p* = [Qog d) / (og Nk
If pP <6, then p° = 6

End

else

Begin

Ifp=1, then p = 1/(1-.50g2):
else p = 1/(1—.250.%p):

End

Calculate New lterate:

§ = Guldl + k—ulh:
DELNP = ||8ll,; DELNE = |8l
W8 = p(y8+ ulely + (1 - p)ul®h
YUN = (WP

153

Calculate New Estimate M

If p <2, then
Begin
If p=0, then DELNPI = DELNP;
Go roNext Iteration;
End
else
Begin
B = DELNP | DELNPI,
Q =22/ (1+),

If B2 1.0, then
Begin
Go toNext Iteration;
End

If B> Q, then
Begin
X = [((1 +rP)/2)(B + VB2 - Q)|lP

., Mg+mg (2—ME—mE)(}(2+ .
Mg = + ;
2 2(0+7) X
End ,
else My = Mg,
End

Convergence Test:

If (DELNE | YUN) < §(1 — M), then STOP (converged);

Parameter Change Test:

If p2p°, then
Begin
If B> QF, thenp = —-1;
End

Go toNext Iteration;

Figure I-1: Complete Listing of Algorithm 6-4.183

85taken from [Youn 81, p. 107-109]

154

I.2 Listing of SIMD Programs
The lower level details of the parallel implementation under SIMD framework is given here.
Particularly, we discuss the preparation of the system matrix at the pre-computation stage and the

matrix-vector multiplication operation at the iteration stage.86

Our program is constructed out of a layer of procedures where the bottom layer consists of a set
of instructions and operations. Our implementation work is based on a simulator of a particular
SIMD architecture called NON-VON, whose short description was given in section 3.1.2. In
Figure 1-2, we have a partial summary of the semantics for the instructions and operations defined
in the extended NON-VON simulator. We have shown only a part of definitions just needed for
illustrating the SIMD program listings presented in this section. The complete description of the
semantics can be found in [Shaw 82], [Shaw 84a), and [Choi 85a]. In general, the instructions
and operations are executed on enabled PEs only with a single exception of the enable instruction
(NVENBL) which enables every PE again regardless of its previous state of the enable flag
(EN1). For the mesh or tree communication instructions, the semantics is defined as follows:

each data item is delivered to enabled receiving PEs only, regardless of the states of sending PEs.

In NON-VON, we have five 1-bit flags (A1, B1, C1, 101, and EN1), five 8-bit registers (A8, B§,
C8, 108, and MAR), a 1-bit memory (MEMORY 1), and an 8-bit memory (MEMORY8). In the
extended simulator, we conveniendy introduced four floating-point registers (AF, BF, CF, and
IOF) and floating-point memory (MEMORYF). For the instructions, we have equivalent ones
operating on the floating-point registers and memory. For example, we have 1-bit and 8-bit
broadcast instructions which load the designated register (or directly a memory cell pointed to by
contents of its MAR) of the enabled PEs with the data item broadcasted from the host processor.
To perform this function we have introduced the floating-point version of this instruction.

[Compare the semantics of the instructions NVBC1, NVBC8, and NVBCF in Figure I-2.]

In Figure [-3, we show how the data in each SIMD PE are organized for our sample program. In

8The implementation detail of the computation of global informations will not be given. The higher level
description seems to be adequate. [See the discussion of the global summation algorithm in section 3.2.3, the
computation of the vector norms in section 4.1.5.2, and the computation of the inner products in section 4.2.3.2.]

Operands :
srcl, dstl = {$Al, $B1l, S$Cl, $I0Q1, S$ENl}
src8, dst8 = {S$A8, $B8, $C8, $I08, S$MAR}
srcf, dsif = {$SAF, §$BF, SCF, SIOF}
rs! = {$SAl, $Bl1l, $Cl, SEN1}
rsf = {$AF, BF, SCF}
nbr = {$E, $W, SN, $S}
riype = {RC, SLC, $P, SRN, SLN}

NON-VON Instructions
NVENBL ()

NVBCRL1 (bit)
NVBCRS (byte)
NVBC1 (dstl, bit)
NVBCS8 (dst8, byte)

NVRRM1 (dstl)
NVRRMS8 (dst8)
NVWRML1 (srcl)
NVWRMS (src8)

NVMOV1 (srcl, dstl)
NVMOVS8 (src8, dst8)

NVAND1 ()
NVMSH1 (nbr)

NVRCVL1 (rsl, rtype)

EN1l of all PEs = 1
MEMORY1 [(MAR)] := bit
MEMORY8 [(MAR)] := byte
dstl = bit

dst8 := byte

dstl] = (MEMORY1l[(MAR)])
dst8 = (MEMORYS8 [(MAR)])
MEMORY1 [(MAR)] := (srcl)
MEMORYS8 [(MAR)] = (src8)
dstl = (srcl)

dst8 = (src8)

Cl := (Al) AND (Bl)

Bl of nbr PE := (Bl)

rsl = (I01) of rtype PE

Floating Point Extension of NON-VON Instructions :

NVBCRF (f?)
NVBCF (dsff, ft)

NVRRMF (dstf)
NVWRMF (srcf)

NVMOVF (srcf, dstf)
NVMSHF (nbr)

NVRCVF (rsf, rtype)

MEMORYF [(MAR)] = ft
dstf = ft

Basic Floating Point Operations

FAUC ()
FSUC ()
FMAUC ()
FMSUC ()

dstf = (MEMORYF [(MAR)])
MEMORYF [(MAR)] := (srch)
dastf = (sref)

BF of nbr PE := (BF)

rsf ;= (IOF) of rtype PE
CF := (CF) + (BF)

CF = (CF) - (BF)

CF := (CF) + (AF) * (BF)
CF = (CF) - (AF) * (BF)

Figure I-2: Part of NON-VON Instructions (Extension Included)

155

156

the data definition part of the listing of Algorithm 6-4.1 given in Figure I-1, we have matrix,
vectors, and scalar variables. Since the scalar variables are allocated in the familiar manner in the
host processor which is a conventional serial machine, our attention is focused on the SIMD

implementation of data structures, i.e., the matrix and vectors.

The data in the SIMD part are allocated for every PE at the fixed same memory addresses. They

are of two kinds, 1-bit flags and floating-point numbers.

The data in Figure I-3 form three groups. The first group is the input information provided to the
depth interpolation process: depth discontinuities, depth constraints, orientation discontinuities,

and orientation constraints.%’

Given these inputs, the pre-computation stage computes the system matrix A and the vector b
using the series of the computational molecules. (See the discussion about the derivation of the
system matrix in section 2.2.2.3 and the parallelization in section 4.1.5.] The second group
provides the space for the coefficients of the system matrix A and the vector b thus generated.
Note that in the depth interpolation problem we have a sparse matrix, i.e., even an interior node
interacts with 12 neighbors as shown in Figure 2-4 and a boundary node at a comer with only 5
neighbors as shown in Figure 2-5. As typical in the organization of SIMD data, the data spaces
(in our problem, the matrix coefficients) are allocated to cover all possible configurations (in our
case, an interior node turns out to be the most general configuration). The 13 matrix coefficients,
one for itself and 12 for neighboring PEs, are stored at designated addresses according to the
spatial arrangement and the corresponding flags are marked.38 Usually, a flag and a number are
allocated in a pair, if the number is conditionally assigned. For instance, for each depth

constrained node, the flag is marked first and then the associated depth constraint is stored.

The third group of the addresses are allocated for the vectors which are repeatedly updated for

every iteration step at the iteration stage. These vectors include the depth vector.

87For the sake of simplicity, we assumed that for every orientation-constrained node both p and ¢ constraints exist.

210 the general case, for instance, when both the depth and the orientation constraints exist, one more pre-
computation step may be necessary. For every depth continuous PE, all other terms are divided by the diagonal
element, i.e., by the number at SFMOMO.

C Continuity/constraints

c

C

157

PARAMETER ($1DDSC=1, C 1 if depth is continuous.

* $FSYND=1) C
PARAMETER ($1DCS=4, C
* $FDCS=4) C
PARAMETER ($10CS=2, C
* $FPCS=20, C
* $FQCS=21) C

System matrix, vector

contains synthetic depth.

1 if depth is constrained.
contains depth constraint.

1 if orientation is constrained.
contains p constraint.
contains g constraint.

C coefficients of matrix A (G).

PARAMETER ($1M0P2=5, SFMOP2=5)
PARAMETER ($1N1P1=6, $FN1P1=6)
PARAMETER ($1MOP1=7, SFMOP1=7)
PARAMETER ($1P1P1=8, SFP1P1=8)
PARAMETER ($1N2M0=9, SFN2M0=9)
PARAMETER ($1N1M0=10, $FN1IM0=10)
PARAMETER ($1MOM0O=11, SFMOMO0=11)
PARAMETER ($1P1M0=12, $SFP1M0=12)
PARAMETER ($1P2M0=13, $FP2M0=13)
PARAMETER ($1N1N1=14, $SFN1N1=14)
PARAMETER ($1MON1=15, $SFMON1=15)
PARAMETER ($1P1N1=0, SFP1N1=0)
PARAMETER ($ 1MON2=3, $FMON2=3)

OO0 0000

for
for
for
for
for
for
for
for
for
for
for
for
for

PARAMETER ($FF=24) C wvector b (k).

Computed vectors

node
node
node
node
node
node
node
node
node
node
node
node
node

PARAMETER ($FUCA=18, C depth vector ul0,
* $FUCB=19) C depth vector ulll,
PARAMETER ($FDLT=2) C pseudoresidual vector 9.

(0,2]
(-1,1]
[0,1]
(1,1]
[_21 0]
[-lr 0]
[(0,0]
(1,0]
(2,0]
(-1,-1)
(0,-1]
(1,-1]
(0,-2]

Figure I-3: Address Map (Adaptive Chebyshev Acceleration Method)

158

In Figure I-4, we have a SIMD listing of one of the procedures from the pre-computation stage
that compute the coefficients of the system matrix A and the vector b. This procedure computes
the contributions made by the upper left plate molccule in Figure 2-1 and the upper left
orientation constraint molecule in Figure 2-3, i.e., if three consecutive PEs in a row are depth

continuous when they are seen from the rightmost PE.

The declarations of global constants (either defined by simulator or user program) and arrays
(simulator defined) come first. With the size of the tree set here, the size of the mesh at the leaf
level is 128 x 128. The global arrays for the registers and memory of PEs are implemented with

labeled COMMON statement of FORTRAN.

When computation begins, it starts with a plate molecule. All depth continuous PEs whose two
neighbors on the left side are also depth continuous need to be selected. For the depth continuous
PEs their contents of 101 were set to 1 before this procedure was called. This pre-condition is
declared at the header of the procedure. The sequence of conditions are declared as comments.
[Recall the general description about conditions in section 5.5.] Note the sequence of actions
leading to the selection of the desired set of nodes. First, all PEs are enabled. Second, we are
only interested in the marked set of the pre-condition. Third, the flag from west neighbor is
received and ANDed with its own flag to select all pair of PEs which are depth continuous.
Finally, the flag from west neighbor is received again and ANDed to select all three consecutive
depth continuous PEs in a row. Note that the flag of every PE is transmitted by the execution of
each mesh communication instruction since every PE is enabled up to the final selection time.
Because the flag was received twice, the one received at the most recent step is the one from two

neighbors away.

For the selected set, the three coefficients, [1, -2, and 1],39 are added to at three addresses
($FN2MO, $SFN1IMO, and $SFMOMO) after the flags are marked.

When the orientation constraint molecule is applied, the more restricted set is selected. Three

consecutive PEs in a row should be depth continuous and the left neighbor of the rightmost PE be

89Compared to the nodal equation (3), 1 / R is faclored out. (See the Figure 2-4.]

159

p orientation constrained as well. The desired condition is generated as follows: the orientation
constraint flag read at left neighbor is shifted in to be ANDed together with the retained condition

of the three consecutive depth continuous nodes.

The three coefficients, [2 pPyo —1/h and 1/ 1),90 are added to at three addresses ($FF, SFN2MQO,
and $FMOMO) where p_, , is the p constraint of the left neighbor.

In Figure [-5, we have the SIMD listing of the matrix-vector multiplication operation performed
at each iteration step. Note the declaration of all four conditions, i.e., input, output,
pre-condition, and post-condition, at the header. The operation performed at every depth
continuous PE is a rather simple one. After checking whether this particular term is present or
not in the nodal equation of this PE, each element value shifted-in from its neighbor is multiplied
by the appropriate coefficient and added to the intermediate sum. In the listing, we show two
such sequences. The first one gets the value from its west neighbor and multiplies it by the
coefficient at $FNIMO. The second one gets the value from the west neighbor of its west
neighbor and multiplies it by the coefficient at SFN2MO0. Observe again the pipeline-like shift-in
of data. When the PE sends data to its east neighbor, it gets data from its west neighbor and at

next shift, the PE gets data from two neighbors away.

9We assumed that a* = Y,/ h where v, is 4.0. [See the nodal equation (3).]

{ For depth continuous PEs at chosen level,

their (IOl) 1.

(11)

SUBROUTINE FPHWWM (HINV)

INTEGER $MINPE
PARAMETER (SMINPE
INTEGER S$MAXPE
PARAMETER (S$SMAXPE

INTEGER $E, $W, SN,
PARAMETER (S$E 1,

SW
INTEGER*2 SEN1 ($MINPE
SAl (SMINPE
$B1 (SMINPE
$C1 (SMINPE
$IO01 (SMINPE
COMMON /NV1/ S$ENI1,

* * % %

INTEGER*2 $MAR (SMINPZ
$A8 (SMINPE
$B8 ($MINPE
$C8 ($MINPE

* A A

REAL*8
*
*

*

COMMON /NVF/ $AF,

INTEGER $1N2MO,
PARAMETER ($1N2MO
INTEGER $1N1MO,
PARAMETER ($1N1MO
INTEGER $1MOMO,

INTEGER $10CS, S$FPCS,
PARAMETER ($10CS = 2,
INTEGER S$FF

PARAMETER (SFF = 24)

REAL*8 HINV

$Al,

$I08 (SMINPE
COMMON /NV8/ MAR, SAS8,

1)
32767)

$S

$s

= 2, SN =

3, 4)
: SMAXPE),

: SMAXPE),

+ $SMAXPE) ,

: SMAXPE),

: SMAXPE)
$B1, $Cl, SIOl
: SMAXPE) ,

: SMAXPE) ,

: SMAXPE) ,

: SMAXPE),

: SMAXPE)
$B8,

$C8, $IO08

$AF ($MINPE: $MAXPE) ,
$BF ($MINPE: $MAXPE),
SCF (SMINPE: SMAXPE) ,
SIOF (SMINPE: $MAXPE)

BF, SCF,

SIOF

SFN2MO
9,
SEN1IMO
10,
SFMOMO
PARAMETER ($1MOMO = 11,

SFN2MO 9)

SFN1MO 10)

I

SFMOMO
SFQCS
SFPCS

11)

20, $FQCS

21)

O 000

CALL NVENBL()

CALL NVMOV1(SIOl, SAl)
(Al) = 1 if this PE is depth continuous. }

CALL NVMOV1 ($IQl, $Bl)
(Bl) = 1 if this PE is depth continuous. }
CALL NVMSHL1 (SE)

(Bl) = 1 if west neighbor PE is depth continuous.

CALL NVAND1 ()
CALL NVMOV1(Cl, SAl)
(A1) = 1 if both this PE and
its west neighbor PE are depth continuous. }

CALL NVMSH1 (SE)
CALL NVAND1 ()
CALL NVMOV1 (Cl, SSEN1)
Only those PEs are enabled
where three contiguous horizontal PEs
seen from rightmost PE are depth continuous. }

rel-x = -2 and rel-y = 0.

CALL NVBCS8 ($MAR, $1N2MO)
CALL NVBCR1 (1)

CALL NVBCF ($BF, 1.0D0)
CALL NVRRMF ($CF)

CALL FAUC()

CALL NVWRMF ($CF)

rel-x = -1 and rel-y = 0.

CALL NVBCS8 ($MAR, $1N1MO)
CALL NVBCR1l (1)

CALL NVBCF ($BF, 2.0D0)
CALL NVRRMF ($CF)

CALL FAUC()

CALL NVWRMF ($CF)

rel-x = 0 and rel-y = 0.

CALL NVBCS8 (SMAR, $1MOMO)
CALL NVBCR1 (1)

CALL NVBCF ($BF, 1.0D0)
CALL NVRRMF (SCF)

CALL FAUC()

CALL NVWRMF ($CF)

161

C

[oReXeN@]

Q O

Orientation constraint.
CALL NVENBL ()
CALL NVBC8 (SMAR, $10CS)
CALL NVRRM1 ($B1)

CALL NVBC8 ($SMAR, S$FPCS)
CALL NVRRMF ($BF)

CALL NVMSH1 (SE)
CALL NVMSHF (SE)

(Bl) =1

if west neighbor PE is orientation constrained.
BF contains p orientation constraint

of west neighbor PE.

CALL NVMOV1($C1l, $Al)
CALL NVAND1 ()
CALL NVMOV1(Cl, SEN1)

{ Only those PEs are enabled where three contiguous
horizontal PEs seen from rightmost PE are depth
continuous and left neighbor of rightmost PE is

orientation constrained.
b vector.

CALL NVBCS8 ($SMAR, S$FF)
CALL NVRRMF ($CF)

CALL NVBCF ($AF, 2.0D0)
CALL FMAUC ()

CALL NVWRMF ($CF)

rel-x = -2 and rel-y = 0.

CALL NVBCS8 ($MAR, SFN2MO0)
CALL NVRRMF (S$CF)

CALL NVBCF ($BF, HINV)
CALL FSUC()

CALL NVWRMF ($CF)

rel-x = 0 and rel-y = 0.

CALL NVBC8 ($MAR, $FMOMO)
CALL NVRRMF (5$CF)

CALL NVBCF ($BF, HINV)
CALL FAUC()

CALL NVWRMF ($CF)

RETURN
END

Figure I-4: Pre-computation Stage (Computation of Matrix Coefficients)

162

aoOOaoOaaaon

O 000

aQ oo O

o O OO0

PRE

PRE

IN

POST

ouT

163

For every depth continuous PE at chosen level,
(I01) = 1. }

Depth continuous PEs at chosen level

are enabled. }

For every depth continuous PE at chosen level,

IOF contains current value of the vector v. }

Depth continuous PEs at chosen level

are enabled. }

For every depth continuous PE at chosen level,

element value of the vector Gv is left in CF.}

SUBROUTINE FCGVCR()

{ For every depth continuous PE at chosen level,

(I01) = 1, (ENl) =1, i.e., enabled, and
IOF contains its own depth value. }

Clear CF.
CALL NVBCF ($CF, 0.0D0)

Two horizontal left terms.

Depth continuous PEs at chosen level are enabled. }
CF contains intermediate sum. }

rel-x = -1, rel-y =0

CALL NVMOVF ($SIQOF, S$BF)
CALL NVMSHF (SE)
BF contains depth value of west neighbor PE. }

CALL NVBCS8 (SMAR, $1N1MO)

CALL NVRRM1 ($EN1)

CALL NVRRMF ($AF)
AF contains locally contributed multiplication factor
for west neighbor PE. }

CF := (CF) + (AF) * (BF)
CALL FMAUC ()
CF contains updated intermediate sum. }

O O OO0

rel-x = -2, rel-y =0

CALL NVENBL()

CALL NVMOV1($I0O1l, SEN1)
All depth continuous PEs at chosen level
are enabled again. }

CALL NVMSHF ($E)
BF now contains current depth value of
west neighbor of west neighbor PE. }

CALL NVBCS8 (MAR, S1N2MO)

CALL NVRRM1 (SEN1)

CALL NVRRMF (SAF)
AF contains locally contributed multiplication factor
for west neighbor of west neighbor PE. }

CF := (CF) - (AF) * (BF)

CALL FMSUC()
CF contains updated intermediate sum. }

RETURN
END

Figure I-5: Iieration Stage (Computation of Matrix-Vector Multiplication)

164

165
1.3 Supplementary Numerical Results

L.3.1 Other Numerical Values
We show other numerical values of single-grid algorithm execution result for the plane example

discussed in section 5.3.1.1.

In Table I-1 we have the results from each iterative method for three different densities of the
depth constraints. In Table I-2 we have shown another result from the adaptive Chebyshev
acceleration method when more accurate initial estimates were used. The measures listed are the
number of iterations; the minimum, the maximum, and the average of the depth values; and the
L,-norms of the error vector. Furthermore, we have listed IlAm (xm—a)ll for the conjugate
gradient method and the final estimate of the largest eigenvalue, M, for the adaptive Chebyshev

acceleration method.

When we examine the final depth values, they show another aspect of the depth interpolation
problem becoming harder as the depth constraints become sparser. With comparable or
sometimes better average values, the minimum and the maximum values deviate further from the
solution. This phenomenon is common to all three iterative methods. For example, for the
conjugate gradient method, we have smaller values of |A"(x) — o), the quantity being
minimized in this method, as the depth constraints become sparser. Nevertheless, we have
comparable L,-norms of the error vector and the average values, and worse minimum and

maximum values.

166

Density of the Depth Constraints = 50%

Results from the Conjugate Gradient Method

1] 3 ln
i X0 . x@ X0 I — o A5 — ol
21 457691 1.250388 969833 12.433526 1.5220272
46 .899396 1.024408 999615 1.229187 .1426707
71 .984603 1.002782 999994 126194 .0143727
96 998077 1.000396 999999 013349 .0014978

Results from the Adaptive Chebyshev Acceleration Method (initial mg = —3.0, Mg =0.0)

i X X X0 KD — o] Mg
56 574881 1.027588 915067 12.906060 988772
95 907512 1.005085 994306 1.296641 990385

136 985364 1.000801 999687 124797 991694
170 997973 1.000107 999982 012647 991654

Results from the Gauss-Seidel Method

i X0 X X I — a
107 637535 1.034809 910398 12.746128
229 927154 1.003870 992740 1.291107
365 988639 1.000352 999474 .127688
509 998467 1.000085 999962 012823

(Continued)

Density of the Depth Constraints = 30%

Results from the Conjugate Gradient Method

32
70
110

146

980571
998821

1.019000
1.003009

1.000854

.999614
999988
1.000000

D — o]

12.562866
1.268632
.130898
.010304

167

142D — |

1.0888625
.0957004
.0096369

.0010545

Results from the Adaptive Chebyshev Acceleration Method (initial mg = —3.0, Mg =0.0)

80
137
208

271

Results from the Gauss-Seidel Method

196
445
752

1103

453362
.855935
.979400

897705

1.038548
1.005517
1.000410

1.000047

1.026782
1.003267
1.000412

1.000048

(Continued)

12.645528
1.284419
126349

.012930

12.750857
1.279349
.128378

.012805

.996296
.996805

168

Density of the Depth Constraints = 15%

Results from the Conjugate Gradient Method

i PO PO X, I — oy a6 — o

55 .567370 1.171957 973058 12.643796 .6655899
130 .755494 1.015766 .599641 1.282472 0487649
200 979287 1.007600 .999997 .125836 .0053095
267 998963 1.001350 1.000001 .012700 .0005662

Results from the Adaptive Chebyshev Acceleration Method (initial mg =-3.0,Mg=0.0)

! x(i)m x(omx J‘:(‘.)avg “‘x(i) - (X" ME
129 .139001 1.035064 931920 12.797598 997510
251 766146 1.010805 997725 1.286709 .998322
384 971733 1.001309 .999929 127170 .998905
495 997079 1.000135 .999993 .012906 .999064

Results from the Gauss-Seidel Method

i X . XD) — a
460 .088604 1.030712 925998 12.793736
1231 766415 1.011704 .997037 1.278771
23%4 971534 1.001434 .999900 127979
3650 997069 1.000148 .999993 .012799

Table I-1: Other Results (plane)

Results from the Adaptive Chebyshev Acceleration Method

26
57
97

142

45
110
169

224

70
197
315

422

.485533
.890348
.983999
.998015

.856176
979009
997772

.765680
971242

.997084

1.158198
1.011170
1.000908
1.000105

1.093854
1.005725
1.000427
1.000046

1.079271
1.010865
1.001331
1.000135

x®

avg

.944240
997374
.999732
.999979

934956
.995760
999845

999991

.997963
.999939
.999994

12.718857
1.297171
.127034
.012739

12.558977
1.300641
127135

.012565

12.793268
1.268198
.128831

.012879

Density of the Depth Constraints = 50% (initial mg = —2.3, Mg =099)

.99

.992610

Density of the Depth Constraints = 30% (initial mg = —2.3, Mg = 0.993)

995482
996110

.996747

Density of the Depth Constraints = 15% (initial mg = —2.3, Mg = 0.997)

.998358
.998937
.999069

Table I-2: Other Results (plane : with more accurate initial estimates of mg and M)

169

170

1.3.2 Sample Traces of Multigrid Algorithm (Fixed Scheme)
We show further details of multigrid algorithm execution result for the cylinder example

discussed in section 5.3.2.1.

For the multigrid methods, we use the discrete L,-norm of the error vector (at the nth iteration

step), (M = x(" — @, which is defined as follows [Brig 87, p. 62]:

il
M, = Chy Y, D57 = oy, (74)
=

where n, represents the number of the depth continuous nodes in the region and 4, the length of

the sides of the tessellation square elements®! at level /.

The L,-norm of the error vector is not available in most problems and a more practical measure of

convergence is the discrete L,-norm of the residual vector, o= g"l — Ak, similarly defined

by

"
Dl = (Y, 81— (A" xR, (75)
=l

Figure I-6 shows the scheduling of grids for the fixed scheme with n, = 1. [For the fixed scheme,
see the program listing in Figure 4-2.]

As explained already, the value of f, was chosen to achieve the desired accuracy at the coarsest
level. Though we did not run extensive experiments, the choice of n, = 1 and n, = n, seems to be

simple and good enough.

The set of o, n;, and n, were chosen as the possible, but not always, minimal values where the
final RMSE value for every level is smaller than the initial RMSE value when each level is first
entered. For the coarsest level, the final RMSE value is ensured to be smaller than the desired
accuracy obtained after ¢, iterations. For the other levels, the final RMSE values are ensured to
be smaller than the initial values generated through the prolongation process in the procedure

FMRA before invoking the procedure FMC.

9'The acmal lengths of the sides from coarsest o finest respectively were h; = 0.8, hy = 0.4, hy = 0.2, and hy = 0.1.

171

finest

coarsest

Figure I-6: Schedule of Grids on Four Levels%?

As the first trace example of the scheduling, we show the result of the conjugate gradient method.

The parameter values are f, = 15, 55 =4, n, = 6,n,=1, and n; = 6.

We trace the change of the RMSE values as the grids are visited. We trace also the discrete

L,-norms of the residual vector but the values of the residual norms are enclosed in parentheses.

After initial 15 iterations (n = 15), we have the RMSE value of .1011137 (.12556313) at the

coarsest level [= 1.

The prolongation in the procedure FMRA provides the initial guess for level 2 and the initial
RMSE value at this level is .1005757 (.07040571). The procedure FMC is invoked for the first
time and after 6 iterations on level 2, we have the restriction back to level 1. The reduced RMSE
value at the coarsest level is .0872281 (.02906745). After 4 iterations it is reduced further to
0795454 (.03060642) and we have the prolongation to level 2. After 6 iterations on level 2, we
have the RMSE value of .0727709 (.02480185) and the first call of FMC is finished.

The prolongation in the procedure FMRA provides the initial guess for level 3 and the initial
RMSE value is .0731687 (.02369524). The procedure FMC is now invoked for the second time

92taken from [Brig 87, p. 47]

172

and after 6 iterations on level 3, we have the restriction back to level 2. The reduced RMSE value
at level 2 is .0709065 (.01163662) and after 6 iterations on level 2, we have the restriction back to
level 1. The reduced RMSE value at the coarsest level is .0685103 (.00639124). After 4
iterations it is reduced further to .0682280 (.00522123) and we have the prolongation to level 2.
After 6 iterations on level 2, we have the RMSE value of .0691420 (.00539452) and we have the
prolongation to level 3. After 6 iterations on level 3, we have the RMSE value of .0693508
(.00605052) and the second call of FMC is finished.

The prolongation in the procedure FMRA provides the initial guess for the finest level and the
initial RMSE value is .0696286 (.00991621). The procedure FMC is now invoked for the last
time and after 6 iterations on level 4, we have the restriction back to level 3. The reduced RMSE
value at level 3 is .0691617 (.00425162) and after 6 iterations on level 3, we have the restriction
back to level 2. The reduced RMSE value at level 2 is .0682678 (.00336418) and after 6
iterations on level 2, we have the restriction back to level 1. The reduced RMSE value at the

coarsest level is .0665816 (.00173344).

Now, starting at the coarsest level, we have a final series of iterations and prolongations down to
the finest level. After 4 iterations (n = 81), the RMSE value is reduced further to final .0664448
(.00191015) and we have the prolongation to level 2. After 6 iterations on level 2 (n = 87), we
have the final value of .0675243 (.00228414) and we have the prolongation to level 3. After 6
iterations on level 3 (n = 93), we have the final value of .0680527 (.00363177) and we have the
prolongation to level 4. After 6 iterations on the finest level (n = 99), we have the final value of

0683314 (.00244497) and the whole procedure is finished.

As the second trace example of the scheduling, we show the result of the adaptive Chebyshev
acceleration method. The parameter values are t, = 23, s,=4,n, =7, n,=1,and n, = 7. We
trace again the change of the RMSE values and the residual norms as the grids are visited, The

values of the residual normms are enclosed in parentheses.

After initial 23 iterations (n = 23), we have the RMSE value of .0955011 (.02904537) at the

coarsest level [= 1.

173

The prolongation in the procedure FMRA provides the initial guess for level 2 and the initial
RMSE value at this level is .0951464 (.05456750). The procedure FMC is invoked for the first
time and after 7 iterations on level 2, we have the restriction back to level 1. The reduced RMSE
value at the coarsest level is .0810578 (.01965193). After 4 iterations it is reduced further to
.0779575 (.01120022) and we have the prolongation to level 2. After 7 iterations on level 2, we
have the RMSE value of .0685260 (.01813959) and the first call of FMC is finished.

The prolongation in the procedure FMRA provides the initial guess for level 3 and the initial
RMSE value is .0684786 (.01851928). The procedure FMC is now invoked for the second time
and after 7 iterations on level 3, we have the restriction back to level 2. The reduced RMSE value
at level 2 is .0669836 (.00918446) and after 7 iterations on level 2, we have the restriction back to
level 1. The reduced RMSE value at the coarsest level is .0654301 (.00367233). Afier 4
iterations it is reduced further to .0647048 (.00225785) and we have the prolongation to level 2.
After 7 iterations on level 2, we have the RMSE value of .0634130 (.00356676) and we have the
prolongation to level 3. After 7 iterations on level 3, we have the RMSE value of .0625448
(.00975163) and the second call of FMC is finished.

The prolongation in the procedure FMRA provides the initial guess for the finest level and the
initial RMSE value is .0625041 (.00758814). The procedure FMC is now invoked for the last
time and after 7 iterations on level 4, we have the restriction back to level 3. The reduced RMSE
value at level 3 is .0624155 (.00400121) and after 7 iteratons on level 3, we have the restriction
back to level 2. The reduced RMSE value at level 2 is .0624187 (.00231163) and after 7
iterations on level 2, we have the restriction back to level 1. The reduced RMSE value at the

coarsest level is .0627756 (.00092782).

Now, starting at the coarsest level, we have a final series of iterations and prolongations down to
the finest level. After 4 iterations (n = 98), the RMSE value is reduced further to final .0627607
(.00052839) and we have the prolongation to level 2. After 7 iterations on level 2 (n = 105), we
have the final value of .0624723 (.00089367) and we have the prolongation to level 3. After 7
iterations on level 3 (n = 112), we have the final value of .0621976 (.00224931) and we have the

prolongation 1o level 4. After 7 iterations on the finest level (n = 119), we have the final value of

174

0620595 (.00436349) and the whole procedure is finished.

As the last trace example of the scheduling, we show the result of the Gauss-Scidel method. The
parameter values are t, = 47, s, = 6, n; = 8, n, = 1, and n, = 8. We trace again the change of the
RMSE values and the residual norms as the grids are visited. The values of the residual norms

are enclosed in parentheses.

After initial 47 iterations (n = 47), we have the RMSE value of .0967473 (.02969730) at the

coarsest level [= 1.

The prolongation in the procedure FMRA provides the initial guess for level 2 and the inital
RMSE value at this level is .0962959 (.05760785). The procedure FMC is invoked for the first
time and after 8 iterations on level 2, we have the restriction back to level 1. The reduced RMSE
value at the coarsest level is .0860415 (.01137371). After 6 iteratons it is reduced further to
.0800077 (.00710874) and we have the prolongation to level 2. After 8 iterations on level 2, we
have the RMSE value of .0729618 (.00927485) and the first call of FMC is finished.

The prolongation in the procedure FMRA provides the initial guess for level 3 and the initial
RMSE value is .0727732 (.01824689). The procedure FMC is now invoked for the second time
and after 8 iterations on level 3, we have the restriction back to level 2. The reduced RMSE value
at level 2 is .0716791 (.00394246) and after § iterations on level 2, we have the restriction back to
level 1. The reduced RMSE value at the coarsest level is .0710175 (.00136784). After 6
iterations it is reduced further to .0703222 (.00089113) and we have the prolongation to level 2.
After 8 iterations on level 2, we have the RMSE value of .0692155 (.00125151) and we have the
prolongation to level 3. After 8 iterations on level 3, we have the RMSE value of .0683705
(.00293137) and the second call of FMC is finished.

The prolongation in the procedure FMRA provides the initial guess for the finest level and the
initial RMSE value is .0682978 (.00733104). The procedure FMC is now invoked for the last
time and after 8 iterations on level 4, we have the restriction back to level 3. The reduced RMSE
value at level 3 is .0682557 (.00150354) and after 8 iterations on level 3, we have the restriction

back to level 2. The reduced RMSE value at level 2 is .0683084 (.00051254) and after 8

175

itcrations on level 2, we have the restriction back to level 1. The reduced RMSE value at the

coarsest level is .0684145 (.00017451).

Now, starting at the coarsest level, we have a final series of iterations and prolongations down to
the finest level. After 6 iterations (n = 137), the RMSE value is reduced further to final .0683368
(.00010632) and we have the prolongation to level 2. After 8 iterations on level 2 (n = 145), we
have the final value of .0680508 (.00015623) and we have the prolongation to level 3. After 8
iterations on level 3 (n = 153), we have the final value of .0678371 (.00040012) and we have the
prolongation to level 4. After 8 iterations on the finest level (n = 161), we have the final value of

.0677086 (.00105797) and the whole procedure is finished.

We show other numerical results of multigrid execution in Table I-3, I-5, and I-7 for the
conjugate gradient, the adaptive Chebyshev acceleration, and the Gauss-Seidel methods,
respectively. We start with the accuracy achieved at the coarsest level after initial iterations on
that level. We show then the effects of the prolongation operation to level 2, iterations on that
level, and the restriction operation back to the coarsest level. We show next the initial guesses at
level 3 and 4 after the prolongation operations. Lastly, we show the values at final iterations on

each level and the effects of the prolongation operations to adjacent finer levels.

We show also numerical results for the iterations on a single level, i.e., on the finest level only, in
Table I-4 and 1-6, for the conjugate gradient and the adaptive Chebyshev acceleration methods,

respectively.

The measures listed are the number of iteration steps n and the level /; the discrete L,-norms of
the residual vector; the minimum, the maximum, and the average of the depth values; the
minimum, the maximum, and the average of the relative depth values where the computed depth
values are divided by the ideal synthetic depth values; the discrete L,-norms of the error vector
and the RMSE values. Furthermore, we have listed ||A"2(x{") — a))|| for the conjugate gradient
method, the estimate of the largest eigenvalue MZ’ and the L_-nomms of the pseudoresidual vector
for the adaptive Chebyshev acceleration method, and the accumulated work units for the Gauss-

Seidel method.

176

After the initial 15 iterations on level 1
n=15 [=1
”r('->||,,l =.12556313

X n=.684947, X 1127059, X0 = 934484
rel. x®) . =.704688, ™ - 1148635, X = 978427

e, =1.447022, RMSE™ = 1011137, |1A”2(x<">—a)||=.2746703
Ay

After prolongation operation (7,5, P! Jin FMRA :
||r<">||,,2 =.07040571

X . =.684047,) 1127059, X = 935062
rel. X0 . =.703046, x®) _ =1.14863s, X e = 978854

llt*:(")ll,I2 =2.035510, RMSE®™ = 1005757

After 6 iterations on level 2 :
n=21, =2
||r(")||,,2 =.04193274

x® .= 687771, x - 114788], X = 936341
rel. x) . =.703572, X =1.166643, X = 980099

ue(")u,,2 =1.787390, RMSE®™ = 0883160, ||4'%(x") _ o)) = 2316637

After restriction operation (/55 2" and A" M 4 12_,1(‘;3'l2 - A" ¥ inEme
]|r<")||,ll =.02906745

X . =.688887, x) = 1004860, x®, = 935296
M = X = 1121478, X - 979736
rel. x® = 703572, = 1. : g = -
I, = 1.248306, RMSE® = 0872281

After prolongation operation [5, x*2]in FMRA :

||r<")||,.3 =.02369524

X = 717967, A =1.121397, X = 939824
rel. x) . =.741299, x®) - 1144437, X, = 983641
lle,, =2.094210, RMSE®™ = 0731687

(Continued)

177

After prolongation operation [/, _, , x"3]in FMRA :

||r<">||,,4 =.00991621

xn) . = 721806,
rel. x™ . =.747774,

lle®,,, = 2.818367,

After final iteration on level 1 ;

n=81,I=1
]|r(")||hl =.00191015

X" . = .728396,
rel. xm . =.751891,

II.‘i(")II,,1 =.950881,

X =1.123942,
x®_=1.151309,

RMSE®™ = 0696286

X, = 939447
X, = 983218

X .=1048217, X =.936728
™ =1085186, x™ =.980599

avg
RMSE®™ = 0664448, [|4"(x" — o)|| = .2465730

After prolongation operation ("2 + I, _)z(x"l - 12_,1):"‘2)] in FMC :

||r(")||h2 =.00305485

x™ . =.726623,
rel. X . =.751891,

||z=,<'*>||,,2 =1.372128,

After final iteration on level 2 ;

n=87,1=2
I, = 00228414

x® . =.726589,
rel. x™ . =.751728,

|[€(")||;,2 = 1.366596,

x_=1.080351,
x® . =1.146863,
RMSE® = 0677977

x™ = .938187
x| = 981922

x®,_ . =1.073957,
x® =1.141830,

RMSE®™ = 0675243,

X, = 938208
X, = 981953

A2 —)| = .1937609

After prolongation operation [x"3 + 15 4 (x"2 -1 _,th‘-*)] in FMC :

I|r<")||h3 =.00554816

x® . =.718667,
rel. x(™ . =.748165,

lle(")ll,,3 = 1.951834,

x®_ =1.105213,
x® =1.184091,

RMSE™ = 0681943

X = 938600
vg
X, = 982343

(Continued)

178

After final iteration on level 3 :

n=93,1=3
Il = 00363177

x? L, =.714002, XM =1.099287, x) . = 938572
rel. x® , =.748673, x® . =1.170988, x™ = .982313

||n=.(~>1|,l3 = 1.947783, RMSE®™ = 0680527, |42 -)|l = .1039976

After prolongation operation [)c"4 + 13, (xh3 -1, _‘3x"4) 1in FMC :

I, =.00713094
hy

x® L =.707536, x¢_ =1.113764,), =.938798
rel. x® =.748534, x0) =1.184069, x™, =.982558

™, = 2.767711, RMSE®™ = 0683771
hy

After final iteration on level 4 :

n=99, I=4
I, = 00244497

X . =.704425, X =1.112690, x) .= 938812
rel. x . =.748437, X =1185867, x _=.982572

e, = 2.765860, RMSE® = 0683314, [l — a)|| = .0562665

Table I-3: Trace of Multigrid Algorithm (Conjugate Gradient Method)

After 683 iterations (on level 4) :

n=1683, =4
I, = 00075454

X =.737644, A =1265321, X, = 953792
rel. x® . =.851758, X =1268927, ™ =.997791

™, = 2.762807, RMSE®™ = 0682560, |IA"2(x(™ — o)|| = .0340234

Table I-4: Result of Iterations on the Finest Level Only (Conjugate Gradient Method)

After the initial 23 iterations on level 1:

n=23,1=1, Mgl=.97
I, = 02904537

x™ . = 705024,
rel. x® , =.722250,

Ilii(")H,ll = 1.366701,

X =1.041640,
X =1.050381,
RMSE®™ = (0955011,

After prolongation operation [/, _,, X"1]in FMRA :

Ilr(”)ll,12 =.05456750
X = 705024,
rel. xm . =.722250,
) =
lle “h2 1.925627,

X =1.041640,
X =1.068944,

RMSE™ = (0951464

After 7 iterations on level 2 :

n=30, [=2, M;=.99
||r<">||,.2 = 02926091

™ . =.701193,
rel. x™_, =.719006,

[le®™] = 1.637754,

X =1.048129,
X =1.053860,
RMSE®™ = 0809224,

After restriction operation (/; _, x"2 and AN 2"+ 12_”(3'l2 - AR %)]inFMC:

ur(")n,,1 =.01965193

X . =.701193,
rel. X = 719006,

lle®1, = 1160005,

M =1.042649,
X =1.049661,
RMSE™ = .0810578

After prolongation operation [/, _, , x2]in FMRA :

llr(")ll,l3 =.01851928

X . = 745547,
rel. x™_, =.766526,

ue<">||,13 = 1.959972,

X =1,035361,
£ =1.049402,
RMSE® = 0684786

(Continued)

X, = 905493
X, = 948284
I8¢ = .00753925

x . =.905679
XM = 948291

X, = 916837
X = 959766

avg

1180, = .00564610

X, = 916537
X, = 959665

X, = 923353
X, = 966460

179

After prolongation operation [/ _ 4 ']in FMRA :

I, = 00758814

X = 754358,
rel. ™ . = 779176,

le®,, = 2.529988,

After final iteration on level 1 ;

n=98, I=1, M2l=.97
I, = 00052839

xm . =.752202,
rel. x(™ . =.781071,

xM . =1040128, x(, =.928839
x® . =1062586, x =.972136

RMSE®™ = 0625041

X . =1041069, x), = 928749
") oax = 655 x = .972245
x_=1.047655, vg = -

RMSE®™ = 0627607, |16, = .00010293

After prolongation operation [Jc'l2 + 1, (x"l - lz_nx"?)] inFMC:

||r(")ll,|2 =.00143687

X =.752202,
rel. x® . =.781071,

IIIE(")II,‘2 = 1.262605,

After final iteration on level 2 :

n=105, [=2, M22=.99

||r(")||,i2 =.00089367

x™ = 752694,
rel. x® = 780554,

||e‘">l|,,2 = 1.264350,

X =1041069, M = 929075
X =1056168, X, = 972389

RMSE™ = 0623860

™ =1.041820, x™, = 928960
™ = 1058650, x® =.972272

RMSE®™ = 0624723, [|I8™)||_ = .00017401

After prolongation operation (™ + Iy 4 " - 13_,21:"3)] in FMC :

||r(")||h3 =.00285338

X = 749737,
rel. x® . =.777687,

||t:"')||,.3 = 1.783643,

™ =1041820, x®,, = 928822

max

XM . =1.065809, x™_=.972111
RMSE®™ = 0623179

(Continued)

180

181

After final iteration on level 3 :

n=112, I=3, M23= 999
1A, = 00224931

X0 = 747626, x®,,, =1042553, X", =.928938
el x® = 780249, x®,.=1069988, x, =.972230
lle®,, = 1780198, RMSE®™ = 0621976, [I3)]|_, = .00028079

After prolongation operation (X" + I3 _,4 oM -1 4 _,3xh4)] in FMC :

|lr(")||,,4 =.00526873

X = .747597, x®) =1.042562, X, = 928940
rel. x® . =.779067, x® . =1072773, X, . = 972243

Ilﬁ(")||h4 =2.514787, RMSE®™ = 0621286

After final iteration on level 4 :

n=119, [=4, M24= .99995
I, = 00436349

xm . =.747721, X" =1.042188, x®) . = 928940
rel. x® =.778485, x) _ =1073646, x,, =.972240

le®|, =2.511991, RMSE®™ = 0620595, ||3)_ = .00064709
hy

Table I-5: Trace of Multigrid Algorithm (Adaptive Chebyshev Acceleration Method)

After 1174 iterations (on level 4) :

n=1174, =4, My} = 99995
||;<">||,,4 =.00011623

X™ = .734298, X =1197495, x(), = .938368
el x® . =.847392, X _ =1206766, x, =.981669

avg

len], =2.510787, RMSE®™ = 0620297, 18| = .00001307
hy

Table I-6: Result of Iterations on the Finest Level Only (Adaptive Chebyshev Accel. Method)

182
After the initial 47 iterations on level 1:
n=47, =1, WU=.734375
||r(")|l,‘l =.02969730

A = 690886,
rel. x®™ . =.753693,
€™, = 1384535,

X =.999192,
X =1.035565,
RMSE® = (0967473

xm,, = 882249
X, = 923816

After prolongation operation [/, _, , x”l] in FMRA :
n) =
|| ||,I2 05760785

X = 690886,
el X = 753693,
(n) =
lle ll,‘2 1.948891,

xm o =.999192,
XM =1.054821,
RMSE®™ = 0962959

x), = 883024
X" .= 924535

After 8 iterations on level 2 :

n=>55 1=2, WU=1.234375
||r(")|[,|2 =.01570253

XM = 693834,
rel. x® . = 753563,
e, = 1.734804,

™ =1.001389,
. = 1.040087,
RMSE®™ = 0857177

X, = 893808
X, = 935709

After restriction operation [, _,, ™ and AM X" + 1, (g"2 - A% x"))inFMC:
K™Y, = 01137371

X . = .693834,

X . = 753563,

e, = 1.231326,

XM =1.001389,
XM = 1035467,
RMSE® = 0860415

I(")av,, =.893065
rel.

X, = 935051

After prolongation operation [/, _, ; x"2] in FMRA :
||r(")||,,3 =.01824689

X = 708452,
rel. x® . = 775397,
e, = 2.082891,

X =1,008463,
X =1038347,
RMSE® = 0727732

X, = 906173
), = 948537

(Continued)

183

After prolongation operation [/, _ , x*31in FMRA :

I, = 00733104

X o=711046, 1™ =1.009373, X, =.912234
rel. x® . =.779310, x® =1.038696, x(= .954825

lIe®l,,, = 2.764502, RMSE® = 0682978

After final iteration on level 1 :

n=137, =1, WU = 17.515625
I, = 00010632

x® . =.712825, x_ =1009376, x(,=.912414
rel. x® . =.782350, i@ __ =1025581, x(=.955122

e, = .977956, RMSE®™ = 0683368

After prolongation operation [x"2 +1,_,, (xhl - 12_,lxh2)] in FMC :

||r(”)||h2 =.00022244

X =.712825, x®_ =1009376, x™, =.912975
rel. x® . =.781922, x®W _ =1.029144, x = 955559

IIE(”)II,I2 = 1.379051, RMSE®™ = 0681397

After final iteration on level 2 :

n=145, 1=2, WU = 18.015625
||r(")||,l2 =.00015623

X =.712866, 1", =1009441, x =.913078
rel. x® . =.782089, ™ =1029073, i), =.955665
(™| n, = 1.377252, RMSE™ = 0680508

After prolongation operation [x"3 + 1, ,, (x"2 -1 _’2x"3) 1in FMC:

n) =
[frt ”h3 .00064137

X =.711539, i =1.009441,), = 913123
el x® , =.780050, X =1033644, x_=.955719

Ilta(")llh3 =1.943675, RMSE®™ = 0679092

(Continued)

After final iteration on level 3 :
n=153, =3, WU =20.015625
lIFf,,, = .00040012
X . =.711450, x®, . =1009423, x™), =.913260
rel. x® . =.780049, x®__ =1.033614, X, = 955860
e, = 1.941612, RMSE®™ = 0678371

After prolongation operation [xh“ + 13,4 (xh3 -1, _ﬂx"“)] in FMC :

A n, = 00186325

X® = 711095, x®_ =1009423, x®, =.913338
rel. x™ . =.779602, x® _=1038509, x(), =.955964
e ny = 2743285, RMSE®™ = 0677737

After final iteration on level 4 :

n=161, =4, WU =28.015625
I, = 00105797

X =.710992, 1) =1.009429, x()_ = 913534
rel. x® . =.779613, x™ __ =1.038426, X = 956166
||e<")||,,4 = 2,740650, RMSE™ = 0677086

Table I-7: Trace of Multigrid Algorithm (Gauss-Seidel Method)

134

[Aspe 87]

[Back 78]

[Batc 83]

[Bawd 84)

(Blak 87]

[Boul 86]

[Bran 77]

[Bran 82]

[Brig 87]

[Brou 83]

[Choi 85a]}

(Choi 85b]

(Choi 87]

185

References

An Introduction to the PIPE System
Aspex Incorporated, 1987.

Backus, J.

Can Programming Be Liberated from the von Neumann Style? A Functional
Style and Its Algebra of Programs.

Communications of the ACM, 21(8):613-641, 1978.

Batcher, K.
General Description of the MPP.
Technical Report GER-17140, Goodyear Aerospace Corp., April, 1983.

Bawden, A.
A Programming Language for Massively Parallel Computers.
Master’s thesis, Massachusetts Institute of Technology, August, 1984.

Blake, A. and Zisserman, A.
Visual Reconstruction.
MIT Press, 1987.

Boult, T. E.
Information-based Complexity in Nonlinear Equations and Computer Vision.
PhD thesis, Columbia University, October, 1986.

Brandt, A.
Multi-Level Adaptive Solutions to Boundary-Value Problems.
Mathematics of Computation, 31(138):333-390, April, 1977.

Brandt, A.

Guide to Multigrid Development.
Multigrid Methods.

Springer-Verlag, 1982, pages 220-312.

Briggs, W. L.
A Multigrid Tutorial.
Society for Industrial and Applied Mathematics, 1987.

Brou, P.
Finding the Orientation of Objects in Vector Maps.
PhD thesis, Massachusetts Institute of Technology, July, 1983.

Choi, D. J. and Shaw, D. E.
The NON-VON 3 Simulator User’s Guide.
1985

Choi, D. J. and Kender, J. R.

Solving the Depth Interpolation Problem with the Adaptive Chebyshev
Acceleration Method on a Parallel Computer.

In Image Understanding Workshop, pages 219-223. 1985.

Choi, D. J. and Kender, J. R.

Solving the Depth Interpolation Problem on a Parallel Architecture.

In IEEE Computer Society Workshop on Computer Architecture for Pattern
Analysis and Machine Intelligence, pages 107-114. October, 1987.

[Choi 88]

(Chri 84]

[Duff 83]

[Duff 86]

[Dyer 79]

[Dyer 81]

[Gema 84]

(Gilm 83]

[Golu 85]

(Gott 86]

(Graf 86]

(Grim 81]

186

Choi, D. J. and Kender, J. R.

Solving the Depth Interpolation Problem on a Parallel Architecture with a
Multigrid Approach.

In IEEE Computer Society Conference on Computer Vision and Pattern
Recognition. June, 1988.

(To appear).

Christman, D. P.
Programming the Connection Machine.
Master’s thesis, Massachusetts Institute of Technology, January, 1984.

Duff, M. J. B. (editor).
Computing Structures for Image Processing.
Academic Press, 1983.

Duff, M. J. B. (editor).
Intermediate-level Image Processing.
Academic Press, 1986.

Dyer, C. R.
Augmented Cellular Automata for Image Analysis.
PhD thesis, University of Maryland, March, 1979.

Dyer, C. R.

A VLSI Pyramid Machine for Hierarchical Parallel Image Processing.

In Proceedings of the IEEE Conference on Parallel Recognition and Image
Processing, pages 381-386. 1981,

Geman, S. and Geman, D.

Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of
Images.

IEEE Trans. Pattern Anal. Machine Intell., PAMI-6(6):721-741, November,
1984,

Gilmore, P. A.
The Massively Parallel Processor (MPP) : A Large Scale SIMD Processor.
In Proceedings of SPIE, pages 166-174. 1983.

Golub, G. H. and Van Loan, C. F.
Matrix Computations.
Johns Hopkins University Press, 1985.

Goulieb, A.

An Overview of the NYU Ultracomputer Project.
Technical Report 100, NYU, July, 1986.
Ultracomputer Note.

Graf, H.P., Jackel, L.D., et al.

VLSI Implementation of a Neural Network Memory with Several Hundreds of
Neurons.

In Neural Networks for Computing, pages 182-187. American Inst. of Physics,
1986.

Grimson, W. E. L.
From Images to Surfaces.
MIT Press, 1981.

187

[Grim 83] Grimson, W.E. L.
An Implementation of a Computational Theory of Visual Surface
Interpolation.
Computer Vision, Graphics, and Image Processing, 22:39-69, 1983.
[Hack 85] Hackbusch, W.

Mulri-Grid Methods and Applications.
Springer-Verlag, 1985.

[Hack 86] Hackbusch, W. and Trottenberg, U. (editors).
Multigrid Methods I1.
Springer-Verlag, 1986.

[Hans 86] Hansen, C. and Henderson, T.
UTAH Range Database.
Technical Report UUCS-86-113, University of Utah, April, 1986.

[Hill 81] Hillis, W. D.
The Connection Machine (Computer Architecture for the New Wave).
Technical Report 646, MIT, September, 1981.
Al Memo.

(Hill 86] Hillis, W. D.
The Connection Machine.
MIT Press, 1986.

[Hillyer 86] Hillyer, B. K.
On Applying Heterogeneous Parallelism to Elements of Knowledge-Based
Data Management.
PhD thesis, Columbia University, 1986.
[Hom 81} Hom, B. K. P. and Schunck, B. G.

Determining Optical Flow.
Artificial Intelligence, 17:185-203, 1981.

(Humm 87] Hummel, R. and Zhang, K.
Dynamic Processor Allocation for Parallel Algorithms in Image Processing.
Technical Report 123, NYU, January, 1987.
Ultracomputer Note.

[Huss 84] Hussein, A. H. 1.
Image Understanding Algorithms on Fine-Grained Tree-Structured SIMD
Machines.
PhD thesis, Columbia University, October, 1984,

(IBM 84] VS FORTRAN Language and Library Reference
1st edition, IBM, 1984,
Release 4.0.

[Ikeu 81] Ikeuchi, K. and Hom, B. K. P.
Numerical Shape from Shading and Occluding Boundaries.
Artficial Intelligence, 17:141-184, 1981.

[Jack 86] Jackel, L.D., Denker, J.S., et al.
Electronic Neural Computing.
1986
AT&T Bell Laboratories.

[Koch 84]

[Lee 85]

[Litt 86]

[Litt 87]

[Mann 74}

[Marr 82]

[McCo 87]

[Mins 85]

[Mins 86]

[Pott 85]

(Rose 84]

[Same 80}

(Schu 83]

188

Koch, C. and Poggio, T.

Biophysics of Computation: Neurons, Synapses and Membranes.
Technical Report 795, MIT, October, 1984.

A.L. Memo.

Lee, D.

Contributions to Information-based Complexity, Image Understanding and
Logic Circuit Design.

PhD thesis, Columbia University, October, 1985.

Little, J. J.

Parallel Algorithms for Computer Vision on the Connection Machine.
Technical Report 928, MIT, November, 1986.

A.L. Memo.

Little, J. J., Blelloch, G., and Cass, T.

How to Program the Connection Machine for Computer Vision.

In 1987 Workshop on Computer Architecture for Partern Analysis and
Machine Intelligence, pages 11-18. 1987.

Manna, Z.
Mathematical Theory of Computation.
McGraw-Hill, 1974,

Marr, D.

Vision: A Computational Investigation into the Human Representation and
Processing of Visual Information.

W. H. Freeman and Company, 1982.

McCormick, S. (editor).
Mulrigrid Methods.
Society for Industrial and Applied Mathematics, 1987.

Minsky, M. (editor).
Robotics.
Anchor Press/Doubleday, 198S.

Minsky, M.
The Society of Mind.
Simon and Schuster, 1986.

Potter, J. L.
The Massively Parallel Processor.
MIT Press, 198S.

Rosenfeld, A. (editor).
Multiresolution Image Processing and Analysis.
Springer-Verlag, 1984.

Samet, H.
Region Representation: Quadtrees from Binary Arrays.
Computer Graphics and Image Processing, 13:88-93, 1980.

Schunck, B. G.
Motion Segmentation and Estimation.
PhD thesis, Massachusetts Institute of Technology, May, 1983,

[Seit 84]

(Shaw 80]

[Shaw 82]

[Shaw 84a]

[Shaw 84b]

[Stew 86]

(Stol 87]

[Terz 83]

(Terz 84]

(Terz 85a)

[Terz 85b)

[Terz 86]

[Thom 85)

[Tikh 77]

185

Seitz, C. L.
Concurrent VLSI Architectures.
[EEE Trans. Comput., C-33(12):1247-1265, December, 1984.

Shaw, D. E.
Knowledge-Based Retrieval on a Relational Database Machine.

PhD thesis, Stanford University, August, 1980.

Shaw, D. E.
The NON-VON Supercomputer.
Technical Report, Columbia University, August, 1982.

Shaw, D. E. and Sabety, T. M.
An Eight-Processor Chip for a Massively Parallel Machine.
Technical Report, Columbia University, July, 1984,

Shaw, D. E.
Organization and Operation of a Massively Parallel Machine.
Technical Report, Columbia University, October, 1984,

Stewart C. V. and Dyer C. R,
Convolution Algorithms on the Pipelined Image-Processing Engine.
Technical Report, University of Wisconsin, May, 1986.

Stolfo, S. I.
Initial Performance of the DADO2 Prototype.
Computer, :75-83, January, 1987.

Terzopoulos, D.
Multilevel Computational Processes for Visual Surface Reconstruction.
Computer Vision, Graphics, and Image Processing, 24:52-96, 1983.

Terzopoulos, D.
Multiresolution Computation of Visible-surface Representations.
PhD thesis, Massachusetts Institute of Technology, January, 1984,

Terzopoulos, D.
Concurrent Multilevel Relaxation.
In Image Understanding Workshop, pages 156-162. 1985.

Terzopoulos, D.

Computing Visible-surface Representations.
Technical Report 800, MIT, March, 1985.
A.l. Memo.

Terzopoulos, D.
Image Analysis Using Multigrid Relaxation Methods.
IEEE Trans. Pattern Anal. Machine Intell., PAMI-8(2):129-139, March, 1986.

Thompson, R. F.
The Brain: An Introduction to Neuroscience.
W. H. Freeman and Company, 1985.

Tikhonov, A. N. and Arsenin, V. Y.
Solutions of Ill-Posed Problems.
V. H. Winston & Sons, 1977.

190

[TMC 86] .
Introduction to Data Level Parallelism.

Technical Report, Thinking Machines Corporation, April, 1986.
Thinking Machines Technical Report 86.14.

[TMC 87a] .
Connection Machine Model CM-2 Technical Summary.
Technical Report, Thinking Machines Corporation, April, 1987.
Thinking Machines Technical Report HA87-4,

[TMC 87b] Lim, W., Agrawal, A,, and Nekludova, L.
A Fast Parallel Algorithm for Labeling Connected Components in Image
Arrays.
Technical Report, Thinking Machines Corporation, April, 1987.
Thinking Machines Technical Report NA86-2.

[Trau 84] Traub, J. F. and Wozniakowski, H.
On the Optimal Solution of Large Linear Systems.
Journal of the Association for Computing Machinery, 31(3):545-559, 1984,

[Utah 84) The Utah Symbolic Computation Group.
The Portable Standard LISP Users Manual
University of Utah, 1984,
Version 3.2.

{Vish 83] Vishkin, U.
Synchronous Parallel Computation: A Survey.
Technical Report 53, NYU, April, 1983,
Ultracomputer Note.

(Wozn 77] Wozniakowski, H.
Numerical Stability of the Chebyshev Method for the Solution of Large Linear
Systems.
Numerische Mathematik, 28:191-209, 1977,

[Wozn 80] Wozniakowski, H.
Roundoff-Error Analysis of a New Class of Conjugate-Gradient Algorithms.
Linear Algebra and its Applications, 29:507-529, 1980.

(Youn 81] Young, D. M. and Hageman, L. A.
Applied Iterative Methods.
Academic Press, 1981.

