Support for Reliable Distributed Computing

Gail E. Kaiser
Wenwey Hseush
Columbia University
Department of Computer Science
New York, NY 10027

June 1988

CUCS-355-88

Abstract

This technical report consists of two papers describing support for reliable distributed
computing. Data Path Debugging: Data-Oriented Debugging for a Concurrent Programming
Language explains our goal of data-oriented debugging, and then presents Data Path Expression
(DPE) debugging, our approach to data-oriented debugging for concurrent programming
languages. DPE is being implemented as part of MD, the MELD Debugger. A Nerwork
Architecture for Reliable Distributed Computing proposes a reliable distributed environment
(RDE) based on an efficient and reliable extension to datagram communications. It gives
simulation results for coupled relations based on different algorithms, node failure rate, recovery
rate, message sending rate and data missing rate, and to illustrate the behavior of distributed
systems constructed using our view section model on top of RDE.

Prof. Kaiser is supported in part by grants from AT&T, IBM, Siemens and Sun, in part by the
Center of Advanced Technology and by the Center for Telecommunications Research, and in
part by a DEC Faculty Award. Mr. Hseush is supported in part by the Center of Advanced
Technology.

Data Path Debugging:
Data-Oriented Debugging for a
Concurrent Programming Language

Wenwey Hseush Gail E. Kaiser

Columbia University
Department of Computer Science
New York, NY 10027

1. Introduction

One trend in new programming languages, whether sequential or concurrent, is to include facilities that
permit problem solving to be directed from the viewpoint of the problem domain. Object-oriented and
dataflow languages are two prominent examples. A related trend in symbolic, debuggers is for the
debugger's command language to be both conceptually and syntactically close to the target programming
language. These two trends are combined in data-oriented debugging, a form of problem-directed
debugging.

We first describe our goal of data-oriented debugging, and then present Data Path Expression (DPE)
debugging, our approach to data-oriented debugging for concurrent programming languages. DPE
debugging is an extension of Bruegge's generalized path expression debugging (6. 7). In DPE debugging,
(1) the debugger is aware of data flow as well as control flow and/or message flow, (2) the debugging
language can express breakpoints, single stepping, traces and so on in terms of the data as well as the
control, and (3) the debugger can automatically validate both sequential and concurrent paths.

2. Data-Oriented Debugging

Data-oriented debugging is an approach o problem-directed debugging since (1) data in programs
usually represent abstract entities in the problem domain, (2) data is usually more sensible and meaningful
than control to program users, and (3) bugs are usually incamated in inappropriate data values.
Traditional debugging is control-oriented, s0 in order t0 compare actual with expected behavior, the user
must first interpret the abstract entities of the problem in terms of control structures, which are bound
the syntax and semantics of the particular programming language. The user develops, in his or her mind,
an intermediate form between the problem (domain) and the program.

We believe that such intermediate forms often retard users from finding bugs direcdy and quickly. For
example, in cases such as logical efrors, the intermediate form in a user’s mind may be as incorrect and
inappropriate o represent the problem behaviors as the program, since the user of the debugger is usually
the same person who wrote the program. Data-oriented debugging eliminates the intermediate forms and
provides an almost face-t0-face contact between the problem and the program. Problem behsviors can be
described to the debugger in terms of data that are meaningful to humans and program behaviors can be
reported by the debugger in terms of data that are sensible to humans. A user can repeatedly describe
the debugger the incorrect/correct problem behaviors based on the previous program behaviors reported
by the debugger, until the bugs are found. Data-oriented debugging provides a "closer to the problem
domain” viewpoint for debugging. We now describe a general form of debugging facilities that are
oriented towards the data, but are not specific to data path expressions.

236

ARRARERA _ ARNEERNNNENDDN

N

2.1. Behavior Data, Histories and Data Events

The first question for debugging is how programmers know something is wrong with their programs,
They must sense something unexpected or unusual with the final or intermediate output data, often
displayed on the screen. Most misbehaviors are obviously data-related, except perhaps those where an
expected event never happens. Let behavior daia refer to the entities that represent the program
behaviors, no matter whether they are expected or not. Expected behavior data can be the objects (or
variables) defined in the program, messages, sounds (¢.g., beep), graphics displays, screen control (e.g.,
moving the cursor up and down) and any kinds of intentional signals meaningful o humans, which
usually represent the abstract entities of the original problem. Unexpected behavior data can be timeout,
unexpected printout, cursor disappearance, robot hands out of control and messages from the operating
system (e.g.. segmentation fault, /O error or bus error). Some types of behavior data like screen display
are sensible to humans without the help of debuggers: other types of behavior data like variables during
execution carmot be understood by humans without debuggers. We concentrate on the values of
variables.

The history of a given variable, which might represent an abstract entity in the problem domain, is a
sequence of the states of the variable in each round of program execution (we refer to each re-execution
of a program during testing and debugging as 2 "round”). For example, the history of the subtotal
darum of a payroll program might be (20, 30, 44, 70, 95, ... , 155}). The history of a particular

philosopher in the dining philosophers problem might be ([NO_FORK, NOT_EAT, NO_FORK],
[FORK, NOT_EAT, NO_FORK]), [FORK, NOT_EAT, FORK], [FORK, EAT, FORK], ... }.

The entries in such histories can be described by daza events, denoted by [condirion]. Any two
consecutive data events in a history are ordered by time and are different in value. The time intervals
between any two consecutive data events are not necessarily the same. The time associated with each
data event is the time that the coadidon becomes satisfied. For example, the event that subtotal
becomes equal 0 30 can be described as (subtotal = 30] or {subtotal > 2§ and subtotal < 3§]. A
standardized data event has the format [beAavior_datum = staze].(i.e., (subtotal = 30]). Each program
execution can be viewed as a mulrple-history graph where the histories of global variables are
maintained from the beginning to the end of execution, and the histories of dynamic local variables are
created at centain times and destroyed af later times. A szandardized multiple-history graph can be
uniquely constructed by using standardized data events for each round of program execution. There is a
mapping from any given history ® the control flow of the program that generated that history during
execution. It is often feasible but usually difficult to deduce the prior control flow from any given data
event. The major job of a dats-oriented debugger is to keep track of the mappings between the control
events and the histories of given variables.

2.2. Data-Oriented Debugging for Sequential Languages

Using data-oriented debugging, where expected/Amnexpected behsvior data can be described as data
events, certain kinds of bugs are easy w0 locate. For exampie, say a programmer senses the existence of
bugs in the program by obeerving the behavior datum salary, which is printed as -1000 instead of the
expected 3000. He/she starts looking for the actual program error by telling the debugger "As soon as
salary equals -1000, break and print all the entities that caused salary to be -1000". On the next
round, the debugger might give more information about behavior data like “The related entities are
subtotal equal 1o 30 and total equal to -1030°. The programmer can first check whether the
statement that adds subtotal to total is correct or not. If so, then one bug has been found. If not,
the programmer might eliminate the possibility of incomrect subtotal and treat only total as the

237

!

suspicious behavior datum, and then continue 10 locate bugs by following the history of total. Some
other examples are "when the cursor disappears, break”, "when a beep occurs, break” or "when the
memory at address OxFFFF is overwritten, break”. Some behavior data are difficult o keep track of
during execution.

In general, the programmer repeats the following procedure until the bugs are found.

1. Programmer: Execute the program and observe suspicious behavior data (e.g., salary).

2. Programmer: Describe the suspicious behavior data to the debugger (e.g.. "As soon as salary is equal
to0 -1000, break and print all the entities that cause salary to be -1000.7).

3. Programmer: Re-execute the program with the debugger by following the history of the suspicious
behavior data (e.g.. the history of salary).

4. Debugger: Suspend the program and report (e.g., "The related entities are subtotal equal to 30 and
total equal to -1030.").

5. Programmer: Check the statements around the break point; sometimes the bug is obvious.

6. Programmer: If no bug is found, check all the behavior data that directly causes the suspicious
behavior data, eliminate some of them and treat the others as suspicious behavior data. Go 0 2.

2.3. Data-Oriented Debugging for Concurrent Languages
For debugging sequential programs, one important assumption is deterministic behavior. That is, &
program can be re-executed over ang over again until bugs are found. In concurrent programming, this
assumption frequently does not hold. Given this problem, the first question is what role the debugger can
and should play for concurrent programming languages. Some suggestions are:
e Operate the debugger like a video tape recorder. The entire history of program execution can
be recorded and then played back (forwards or backwards) as many times as desired without
actually re-executing the program. Stu Feldman has described how he does this in hardware
(private communication). However, it is unclear how to analyze the vast amount of
information once it has been recorded.

o Treat the debugger as a program verification system. This is currently infeasible for small
sequential programs, let alone large concurrent ones.

och\dndudd?uaﬂwﬂmmfaﬁt?lepmu[ﬂ.indmmgmposﬁbhmmmu
course of applying program-based testing techniques [12).

e Use the debugger (o force an execution flow identical to the previous one.

o Ask the debugger to detect when the current execution flow is or is not the same as the
previous one or an anticipated one.

For practicality, we consider only, the latter. For each round of execution, we save a special form of
multiple-history graph that represents the program behavior in terms of histories of behavior data. For
program execution, the current graph is compared with the graph from a previous exscution or with an
anticipated flow provided by the user. We discuss this graph further in section .

3. Path Expression Debugging
Bruegge applied three versions of path expressions to debugging.

Path expressions [11]: A regular expression with the operators repetition (*), sequencing (;) and
exclusive selection (). The operands — called path functions — are the names of the operations

238

defined for a data type. A path function might be a procedure call or a function call. For example,
Path (Open; (Read | Write)®; Close) End
states that a file has to be opened first, before an arbitrary sequence of reads and writes is performed,
and then closed.
Predicate path expressions (1): The original path expressions augmented with predicates. For example,
(Consume{TERM(Produce) - ACT(Coasume) > 0] | Produce[ACT(Produce) - TERM(Consume) < N])*
states the operational relationship between Consume and Produce. ACT and TERM are history
variables, which describe how many times that caller has started to perform the operation (i.e.,
Produce or Consume) and how many times that caller has terminated the operation, respectively.
Generalized path expressions: Predicate path expressions are extended by i) allowing an arbitrary block
of statements, including a single statement, to be a path function; ii) allowing the arguments in a
predicate to be any identifiers declared in the source program; iii) providing a predefined path
function, _Assignment, 10 refer to a change in the state of a variable (this is the simplest form of data
event),
All three versions are coatrol-oriented, where activities in a specified control flow are interpreted as
checking points in order o compare with the actual program behaviors.

DPEs extend generalized path expressions, mainly by allowing data events to appear as path functions.
DPEs describe the histories of some given behavior data as well as the control flow. DPEs can describe
concurrent program behaviors with a powerful set of operators for specifying the concurrent
characteristics among data events. A debugger based on DPEs can automatically check the correctness of
the multiple histories of a given system, either concurrent or sequential, and violations of the DPEs during
program execution cause breaks or other prescribed actions.

Filtering is an important festure for path expressions in debugging (4]. Since data in programs can
represent problem entities at different granularities, different DPEs may describe different abstraction
levels with respect to the same data and typically mention only a subset of the data in the program. For
example, a user may be interested only in the behavior datum total but not in subtotal at a
particular moment. Between two data events related 10 total, some irrelevant events related to
subtotal might happen. Since we specify the DPE without mentioning the irrelevant behavior data, all
irmelevant events are automatically ignored. The irrelevant events will not affect whether or not the
specified DPEs match the run-time paths. We give a detailed description of DPEs in the next two
sections, focusing on sequential and concurrent aspects, respectively.

4. Sequential Data Path Expressions

The concept of sequential DPEs consists of application of DPEs without consideration of inter-
reladonships among concurrent units. A sequential DPE is a regular expression, where operands are data
or control events, either of which can be annotated with immediate actions. An event in DPEs may or
may not have a predicate attached.

The operators in sequential DPEs are repetition (*), sequencing (;) and selection/or (). Since in
sequential computing, only one event happens at a time, the selection operator means exclusive selection
(exclusive or). In concurrent DPEs, we distinguish between inclusive and exclusive or.

A new operator, permutation (,), is also considered as an operator in DPES, even though it is not an
operator in regular expressions. The permutation operator specifies that the events associated with it may
ham in any order. For example, (READ,WRITE) is equivalent to (READ;WRITE)(WRITE;READ).
This brings the users some convenience in specifying DPEs where the order of a set of events is known o

239

be irrelevant to the bugs. The permutation operator is more significant for concurrent DPEs, as will be
discussed shortly.

There are three categories of events in DPEs:

Data events, denoted [condition], are the events that the condition becomes true. Any identifier
declared in the source program can be used inside []; additional identifiers representing debug

anributes (explained later) can also appear. A standardized data event has the format

[behavior_datum = swate). For example, [flag = 1] is the event that flag becomes equal 0 one;
[flag > 0] describes the same event. In the case of sequential computing, [X > 0 and Y > 0] is the
event that either i) X is larger than 0 and then Y becomes larger than O, or ii) Y is larger than 0 and then
X becomes larger than O,

Control events, denoted by identifiers that might be function names, procedure names or attached to
blocks of statements, represent activities in control flow. For example, READ is the event that the
function named READ is called.

Message events, denoted by ? and ! followed by message identifiers, are the events of the sending and the

receiving of the messages. !message refers to the event of sending the message and ?message refers o
the event of receiving the message.

The semantics of control events and message events differ from one language to another, and in some
programming languages there is some level of overlap between control events and message events, For
example, in some object-oriented languages, message events subsume function calls and procedure calls.
However, the different semantics of these events do not affect the results in this paper.

Two notations on behavior data are used to describe some special cases for data events: (1) A behavior
danum without any relational operator (i.e., =, >, <, <=, >a, !=) denotes an access (0 the behavior datum.
For example, if X is a variable in a program, [X] is the event of an access 1o X. [X or Y > 0] is the event
of either an access to X or that Y becomes larger than 0. The event [X and Y] never occurs in sequential
computing. (2) The notation of (") postfixing a behavior datum denotes the previous value of the behavior
darum. For example, counter is a behavior datum and counter’ is the previous value of counter;
the program behavior of positively incrementing counter by one can be specified as
(counter = counter’ + 1].

A conditional event is any kind of event (data event, control event or message event) followed by a
predicate. The format of predicates is [condition }, the same as for data events. Conditional events are
recognized when the event in the first part happens in a context where the coadition in the predicate is
satisfied. For example, if READ is a control event, then READ(flag = 0] is the event that READ is
invoked while £1ag is equal o 0. [X > O][Y > 0] is the event that X becomes larger than 0 under the
condition that Y is already larger than 0. Note that this is different from [X > 0 and Y > 0], since the
former does not describe the case that X becomes larger than 0 before Y is larger than 0. Predicates play
an important role in event recognition.

The format of an imwmediate acton is (statements). Immediate actions in DPEs are analogous ©
semantic routines in syntax-directed translations (e.g., YACC (14]). An immediate action will be
evaluated as soon as the corresponding path is recognized, in the same manner that a semantic routine is
invoked as soon as the non-terminal is recognized in syntax-directed translation. For example,
(X > X'){ counter := counter + 1; } will increment counter by one when the event, [X > X', is
recognized. For more obvious debugging purposes. [X != X'){ print(X) } will print out the value of X
whenever X is changed. [QSIZE > NJ; ?MESSAGE (break; } will suspend the execution whenever the
message is received after QST 2E is larger than N.

Immediate actions play two roles in DPEs. First, the debugger is able to change the program's behavior

240

‘“I_I_I_I_LI_I_LII'"IIIII

t

automastically, thus it changes paths at run-time. Sometimes programmers want to force the program to
behave in a particular way for debugging purposes. With proper use of immediate actions (e.g.. if-then-
else statements can be used in immediate actions), a program execution can be forced in some direction,
typically where the programmer thinks bugs are most likely to be found. In traditional debuggers, the
programmer would have to break the program execution, assign values to some variables, then resume
execution; in DPE debugging, value-assignments are automatically done as soon as some pattems of path
are matched. The decision of selecting a desired path also can be made interactively by setting the /O
interface in the immediste actions. One example is to check a ‘context-free’ path by using a DPE such as
X != X'} pusiX);}*; [Y != Y’ Z := pop(); IF (Y != Z) THEN break; }*, which (i) saves the value
of X on a stack (i.e., push(X)) whenever X is changed, (ii) retrieves X's value into Z from the stack (i.e., Z
:= pop()) when Y is changed, (iii) checks whether Y and Z are equal or not, (iv) if not then breaks the
program execution. One legal data path is [X=1] [Xa2] [Xa3] [Y=3] [Y=2] [Y=1].

Second, additional debugging control can be achieved. For example, we like to know how many times
that behavior datum X is accessed before the condition [flag = 1] is satisfled The DPE is
{ counter := 0; };[X){ counter := counter + 1; }*;(flag = 1){ print counter; }. Here, counter is not
a behavior datum, but 3 debug anribute that is attached to this particular DPE. The difference between
behavior data and debug attributes is that debug attributes are not declared in the source program
represent some abstraction of program behavior, but instead ‘declared’ to the debugger. In this example
the first action is attached to a null event, $0 it will be evaluated as soon as the round begins.

A set of DPEs can be specified in order to describe different patterns of histories among behavior data.
If all events happen within one concurrent unit, from the giobal view there is only one sequence defining
the occurrence of all the events (Le., standardized multiple-history graphs). From any particular local
view described by a single DPE, only part of the events are visible in the sequence, therefore different
histories are described according w0 the interesting program behaviors. Multiple DPEs can describe a set
of different histories from different local views. We now discuss the case that events happen in two or

_ more concurrent units.

S. Concurrent Data Path Expressions

A concurrent DPE specifies multiple streams of data histories as well as control and message flows
among two or more concurrent units. The units may be related to each other through message passing,
communication and synchronization through message passing, some through shared memory, while
others provide both. The data dependency facility is suitable only for those languages that support
dataflow, lazy evaluation and/or other features where control flow is based on dependencies among data
values — note that thig is different from the ‘data dependencies’ implied by shared memory.

The effects of message passing, shared memory and/or data dependency can be represented
(concepuually) in a partial ordering graph (17] for each round of execution. A partial ordering graph is a
special form of multiple-history graph.

I"Wm“ﬁnlmmmm—mwmmlwmmmwmmﬂm
macro-evenss made up of several sub-events. Edges between vertices are directed and represent the
“meszmeanvemambMMAMbimmwy. Even though
:“Mmaffeaiw.unmmMuawduyaﬂmdmmmmu.formy
X 2, an edge is directed from a to a; we explain why this is necessary later on. A standardized
PArtial ordering graph is a partial ordering graph constructed without using any non-standardized data

241

cvents.

A standardized partial ordering graph can be constructed by ths follov-ing procedure:
1. (inherent parallelism) Assume a set of concurrent units, let each unit be an event (a vertex) that may
contain a sequence of sub-events; therefore, all the events are potentially executed in parallel.

2. (data dependency) In most programming languages, in which the execution ordering is not
determined by data dependency, this step can be skipped. The execution ordering between event a and
b is determined in the way that if the output data of event a affects the input data of event b, then a
occurs before b; thus an edge is directed from a to b. The events without an incoming edge will be
executed as soon as the program begins. If there is no data dependency between them., 2 and b are
assumed to happen in parallel. Circularities in graphs are considered as logical errors; this is not an
issue in this paper.

3. (inherent sequencing) Zoom all events so that i) a sequence of sub-events substitute for an event, for
all events; ii) the edges into an event are connected o the first sub-event; iii) the edges out of an event
are connected o the last sub-event.

4, (mpudng)lfmb-cvunnuthemdingohmmuﬂbisuxeceiptot‘thesamemesage.
then an edge is directed from a to b.

s. (Mmy)umbmWIdememvemmnmodxfymempom
of shared memory, for any sub-event R that sees the value(s) of the portion of shared memory that W1
changed, there is an edge directed from W1 to R and an edge from R to W2. An edge from W1 to W2
is necessary if there is no sub-event R between W1 and W2,

6. (reflexive property) For each sub-event a, there is an edge from a to a, even though the event cannot
affect itself.

Figure 1 illustrates an example with four concurrent units, A, B, C and D. Data dependency requires A
and B to execute before C and D. C will not be executed until A completes and D will not be executed
until both A and B complete. Each event has three sub-events, 1, 2 and 3. The sub-event B.3 sends a
message t0 A.1 and C2 sends a message 0 D2,

1. Partial ordering graph and execution order

Depending on the granularity of the events that the user is imerested in, different partial ordering graphs
are constructed. deemmmmmnzvmmumdsymsmﬂnmdiﬂemmmﬂom
graphs in different rounds of execution for the same program. As a maring point for discussing
concurrent DPEs, we assume there exists (conceprually) a standardized partial ordering graph for each

242

- W

I
&

b
14
4 !,1 .

o

[A

round of execution and the graph is non-circular.

Two events are partially concurrent, if and only if there is no path between them in the partial ordering
graph. Two distinct sets of events are partially concurrent, if and only if there exists two events, which
are from different sets, that are partially concurrent. These two distinct sets of events may contain
common events, but one set cannot contain the other. Two distinct sets of events are tally concurrent, if
and oaly if all possible pairs of events, one event from one set and the other event from the other set, are
partially concurrent. Two events are partially sequential, if and only if there exists a path between them
in the partial ordering graph. Two distinct sets of events are partially sequential, if and only if there exists
two events, which are from different sets, that are partially sequential. Two distinct sets of events are
totally sequential, if and only if all possible pairs of events, one event from one set and the other event
from the other set, are partially sequential and all paths between two sets have the same direction. Partial
concurrency is not equivalent to partial sequentiality, even though they often describe the same cases.

Figure 2 depicts four sets of partial ordering graphs — TC, PC, PS and TS. The graphs are defined on
two sets of events, A = (1, 2, 3) and B = (4, S, 6), which are relased with total concurrency, partial
concurrency, partial sequentiality and total sequentiality, respectively. The execution orders are 1 = 2
- 3inA,and4 - 5 = 6in B. TC contains only one graph with no psth between A and B. PC contains
all the graphs that at least one peir of events in AxB have no path between them. (TC ¢ PC) PS contains
all the graphs where at least one pair of events in AxB have paths between them. TS contains only two
graphs, with an edge from 3 to 4 and an edge from 6 to 1. (TS < PS) Some other properties are (i) PC »
PS, (ii) PC U TS includes all possible partial ordering graphs, (iii) PC N TS =@.

TcCPc¢PsDTs

totally concurremt partiaily concurrent totally sequentiai

2. Concurrency relationships
Concurrent DPEs specify a superset of what sequential DPEs can specify. Concurrent DPEs have the

same definitions of events, predicases and immediate actions as sequential DPEs. The major difference is
the definitions of the operators, which may be applied to macro-events as well as to data, control and
message events. Four new operators are introduced in concurrent DPEs:

thdveor(ﬂmenenalyommdndmshmldm.

* partial concurrency/and (&) means two associated events are partially concurrent.
owm(u).mmmmmmwym

¢ partial sequentiality (:) means two associated events are partially sequential.

Users are usually interested only in partial concurrency and total sequentiality. Two sets of events must

243

e

be either partially concurrent or totally sequential, but not both. For example, [X);[Y];(Z] is a set of
events and [S);[Y];[T] is another set of events. These two macro-events are partially concurrent, because
there is an edge from the event [Y] in the first macro-event (o the event [Y] in the second. Another
example, [XJ;(Y}(Z] is 2 macro-event and [Z];(S];[T] is another. These two are totally sequential,
becsuse there is s path from any event in the first to any event in the second macro-event. Without the
reflexive property, we cannot say these are totally sequential. This is why we include reflexive edges in
the construction of partial ordering graphs.

All operators appearing in sequential DPEs have slightly different meanings for concurrent DPEs.
o ssquencing (;) means two consecutive events are totally sequential.

o repetition (*) means two consecutive events are totally sequential

* selection/or () does not mean exclusive selection in concurrent computing; instead, it means at least
one associated event should occur. If a and b are events, ajb means a+b+(a&b)+(a&&b), which is
one of the cases: i) only a happens; ii) only b happens; iii) a and b are partially concurrent; iv) a and
b are totally concurrent.

o permutation () if a and b are events, (a,b) means (a;b)+(b;a)+(a&b)+(a&&b), which is one of the
cases: i) a happens before b; ii) b happens before a; iii) a and b are partially concurrent; iv) a and b
are totally concurrent. Permutation is important since there may be two or more legal execution
orders, each producing the correct results. DPEs were originally formulated without the permutation
operator, but we found that timing order problems made it tedious for programmers o specify suitable
DPEs for concurrent computing.

For example, assume two concurrent transactions, T1 and T2, applied to a shared database, X. T1

containg three sequential events, READ1, COMPUTEl and UPDATEL, and T2 also contains three

sequential events, READ2, COMPUTE2 and UPDATE2. Because there is a bug in the concurrency control

in the databese, 3 programmer wants to detect possible cases where two transactions happen at the same

time. He/she can specify a concurrent DPE
(READ1;COMPUTELUPDATE)&(READ2;COMPUTE2; UPDATE2)(break;)

For sach round of program execution, a pertial ordering graph will be built through shared memory and

the DPE will be checked according w0 the graph. If READ2 happens after UPDATEL, then the partial

ordering graph construcied at run-time is as in figure 3. These two transactions are totally sequential (i.e.,

:). If READ2 happens between READ1 and UPDATE], then the partial ordering graph is as in figure 4, If

these two sets are partially concurrent (i.¢., &), then the debugger breaks the execution.

—~ READI

la__ll l l

: P '

=
(COMPUTIQ‘—" (comPUTE2 J= (comurei)_—\ (COMPUTE;?

2 3 v

3. Total sequentiality 4. Partial concurrency

244

HEEEEEF~"9B6EES®EESETN

—~ READ2 ? — READI LS:] —~ READ2$ N

: b b :
{QPDATEa ("uppaTE2 Jo Lo(TUPDATE! Q I{Upb:ﬂiz:p :

fh -

4
i
:

6. Related Work

Path expressions were first introduced by Campbell and Habermann as a formalism for specifying
process synchronization [8]). Lauer and Janicki used path expressions in COSY (19, 18, 13] o simplify
the study of synchronous aspects of concurrent systems. Balraj and Foster use path expressions to specify
synchronization requirements as part of the input to Miss Manners (3], a silicon compiler for
synchronizers. Bairaj and Foster allow flags 10 be atached to path expressions, where the states of the
system can be changed by setting flags: thus, the execution path can be selected at run-time. This can be
considered an extreme case of DPEs, if we treat flags as behavior data.

Bates' Event Based Behavioral Abstraction (EBBA) (4, 5] provides a high-level viewpoint similar o
ours, with the goal of providing facilities that allow the user to make a meaningful comparison between
models of actual and expected system behsvior. Bates views a system's behavior as a stream of primitive
event occurrences and provides powerful operators for composing primitive events into high-level events
that can be recognized by the distributed debugger. Unlike data path expressions, however, EBBA does
not take any stand on data versus control orientation, but instead requires that all primitive events be
explicidy signaled in the target program.

Baiardi's Event Specifications and Behaviour Specifications (2] provide a similar high-level viewpoint
for formally specifying program behaviors, but there the notion of events is restricted to a small set of
synchronization constructs. Gordon's Timing Graphs [10], which are useful for finding timing errors in
distributed systems, are restricted to message sending and receiving events.

7. Conclusions

Wehveam@dﬂmw:mﬂudmmmmﬂmmohﬁmdmm
oriented and from sequential to parallel and distributed programs. Our resuit, data path expression
debugging, is a step towards debugging of concurrent programs from the viewpoint of the problem
domain rather than from the artifacts of the particular programming language.

Mmﬂmﬂﬂmof@pﬂmwmmmfamwhuwnmwm
progress. MELD (15, 16] is an experimental multiperadigm language combining object-oriented, dataflow
and transaction programming The object-oriented aspect supports large grain (distributed) parallelism
with both synchronous and asynclwonous message passing among remote objects, while the dataflow
aspect suppors fine grain (MIMD) perallelism among the statements within 2 method. The
implementation of MELD simulates the dataflow within a process, but supports distribution of objects
across a network of Suns and Vaxen running Berkeley Unix. Transaction processing facilities are
currently being integrated 10 provids better control over interactions both among methods applied to the
same object and among objects.

Acknowledgements

This research is supported in part by grants from AT&T Foundation, [BM, and Siemens Research and
Technology Laboratories, in part by the New York State Center of Advanced Technology — Computer &
Information Systems and by the Columbia University Center for Telecommunications Research, and in
part by a Digital Equipment Corporation Faculty Award,

245

fo mpeedin Bl . . g0 . O U cin . v s Y NN . o e W 5 Rkt v - - AT e T

References

(1]

(2]

(3]

(4]

(s1.

(6]

(7]

(8]

(91

(10]

(11]

(12])

Sten Andler.
Predicate Path Expressions: A High-Level Synchronization Mechanism.
PhD thesis, Camegie Mellon University, August, 1979, v

F. Baiardi, N. De Francesco, E. Matteoli, S. Stefanini, G. Vaglini,

Development Of A Debugger For A Concurrent Language.

In ACM SIGSoft'SIGPlan Software Engineering Symposium on High-Level Debugging, pages
98-106. Pacific Grove, CA, March, 1983,

Special issue of Software Engineering Notes, 8(4), August 1983,

T.S. Balnaj and MLJ. Foster.
Miss Manners: A Specialized Silicon Compiler for Synchronizers.
In Proceedings of the Fourth MIT Conference, pages 3-20. The MIT Press, April, 1986,

Peter Bates.

EBBA Modelling Tool a_k.a. Event Definition Language.

Technical Report COINS 87-35, Computer and Information Science Department, University of
Massachusetts, April, 1987.

Peter Bates.

Distributed Debugging Tools for Heterogeneous Distributed Systems.

In ACM SIGPlan/SIGOps Workshop on Parallel and Distributed Debugging. Madison, W1, May,
1988,

This proceedings.

Generalized Path Expressions: A High-Level Debugging Mechanism_
The Journal of Systems and Saftware 2(3):265-276, 1983.

Bernd Bruegge.
Adaptability and Poreability of Symbolic Debuggers.
PhD thesis, Camegie Mellon University, 1985,

R. H. Campbell and A. N. Habermann.

msmﬂaﬁmdmmwmw

In G. Goos and J. Hartmanis (editors), Lecture Notes in Computer Science. Volume 16:
Operating Systems, pages 89-102. Springer-Verlag, Berlin, 1974.

Phyllis G. Frankel and Elaine J. Weyucker.

Dmﬂow‘r&nginthcl’lmolvmbbm

In Workshop on Software Testing, pages 4-13. [EEE Computer Society, Banff, Canada, July,
1986.

Aaron J. Gordon and Raphael A. Finkel.

TAP: A Tool To Find Timing Errors In Distributed Programs,.

In Workshop om Software Testing, pages 154-163. [EEE Computer Society, Banff, Canada, July,
1986, '

AN. Habermann.
Implemenation of Regular Path Expressions.
Technical Report, Camepe Mellon University, February, 1979,

William E. Howden.
Software Engineering and Technology: Functional Program Testing & Analysis.
McGraw-Hill Book Co., New York, 1987.

246

S

e T

A EEEEEEEEEEY"S"EEEESN

el T ewweweswemmeasman

(13]

(14]

(13]

(16]

(17

(18)

(19)

Ryszard Janicki.

A Method For Developiag Concurrent Systems.

In Lecture Notss in Computer Science. Number 167: International Symposium on Programming,
pages 155-166. Springer-Verlag, Berlin, 1982.

S.C. Johnson and M.E. Lesk.
Language Development Tools.
The Bell System Technical Journal 57(6):2155-217S, July-August, 1978.

Gail E. Kaiser and Devid Garlan.
MeldinzSoﬁmSymmmeb&
IEEE Software :17-24, July, 1987.

Giil E. Kaiser and Devid Garlan.

MELDing Data Flow and Object-Oriented Programming.

In Object-Oriented Programming Syswems, Languages, and Applicatiorns Conference, pages
254-267. Kissimmee, FL, October, 1987.

Special issue of SIGPLAN Notices, 22(12), December 1987.

Lestie Lamport. ,
Time, Clocks and the Ordering of Events in a Distributed System.
CACM 21(7):558-564, July, 1978.

P. E. Laver and M. W. Shields.
Formal Theory of the Basic COSY Noaation.
Technical Report 143, Computer Lab. University of Newcastle upon Tyne, 1979.

P. E. Laper and M. W, Shieids.

Formal behsvioural specification of concurrent systems without globality assumptions.

In J. Diaz and L.Ramos (edisor), Lecture Notes in Computer Science. Number 107: Proceedings
of Insernation Colloquism on Formalization of Programming Concepts, pages 115-151.
Springzr-Verlag, Berlin, 1981,

247

Proceedings of the
ACM SIGPLAN and SIGOPS
Workshop on
Parallel and Distributed Debugging

May 5-6, 1988
University of Wisconsin
Madison, Wisconsin 53706

Co-Chairmen

Barton Miller, University of Wisconsin-Madison
Thomas LeBlanc, University of Rochester

Program Committee

Domenico Ferrari, University of California at Berkeley
Richard Rashid, Carnegie Mellon University

John Sopka, Digital Equipment Corporation

Douglas Terry, Xerox Corporation Palo Alto Research Center
Andre van Tilborg, Office of Naval Research

Jack Wileden, University of Massachusetts

Rt oy e R T T e

A Network Architecture
for Reliable Distributed
Computing

Wenwey Hseush
Gail E. Kaiser

Inctroduction

essage passing in loosely-coupled distributed systems is becoming

increasingly complex, due, in part, to the movement towards

large scale distributed systems and intelligent distributed appli-
cations. Traditional approaches such as the client-server model are no longer
appropriate. Therefore, we propose a Reliable Distributed Environment
(RDE) based on an efficient and reliable extension to datagram communica-
tions. The “coupled relation” is introduced to measure the degree to which
distributed environments are reliable. “View sections”, a programming con-
struct that protects against changes in node status (available or not), as sup-
port for distributed computing tasks, are also presented. In addition, we give
simulation results for coupled relations based on different algorithms, node
failure rate, recovery rate, message sending rate and data missing rate to illus-
trate the behavior of distributed systems constructed using our view section

model on top of RDE.

A Reliable Distributed Environment (RDE) is a collec-
tion of loosely-coupled distribured nodes [1 | where the en-
vironmenc ensures reliable communicaction and close view.
Reliable communication implies chat messages are sately
delivered if the destination nodes are functionally working
at the moment of message arrival, thus protecting against
link failures. Close view provides a clear picture of the near
current environment to prorect against node failures (proc-
ess deachs, machine failures | 2|, or any temporary tunction-
al fatlures on nodes). The “view™ in “close view™ means the
global view, which s che global stacus of the environment;
the “close™ means “near past”, since the contents of the cue-
rent global view arec impossible to collect chrough message
passing. Close view implies precise prediction ot node sta-
tus. We use the term “node” to refer to a “process” in the
cransport layer in order to distinguish from a “host™ in che
necwork layer.

It would be unnecessary for us ro propose RDE if the
complexity of message passing had remained as simple as in
most tradicionally distributed applicacions, to which che
clienc-scever model [2=3] has been applied successtully.
The clienc-server model implies end-to-end communica-
tions between two different nodes, which need noc know
the stacus of any nodes excepe each ocher’s. The notion of
close view is becoming imporrant since the complexity of
message passing 1s dramacically increasing in large scale
and/or intelligent distributed syscems, which boch require
more complicated communication pacterns. The clienc-
server relationship no longet holds, and failure to predicr
network-wide node status results in severe degradation of
pertormance.

0890-8044 88 70028 S0 i < 1988 |EEE

28

We propose a programming framework, the view sec-
tion model, in which to construct reliable discributed com-
puting tasks on top of RDE (see Figure 1). View sections
protect against change of the global view in a manner anal-
ogous to how critical sections [6] protect against change of
shared memory. A view section defines a period of time and
a sequence of insteuctions during which the global view
should remain the same to maincain the correctness of the
computation pertormed by che instructions. The fac s,
however, that the global view changes from time to cime as
nodes fail and are restored, even during view sections. We
handle this by invoking an application-specific compensa-
tion function via an immediate nocification generated by
RDE when it senses a change of the global view. The com-
pensation function decides what to do to preserve che view
section. Further work is required to construct a full cransac-
tion mechanism |7, 8| based on the view section. Note,
therefore, that we are not concerned here with the issues of
reliable discributed databases.

Complicated Communication Patterns

In most loosely-coupled distributed syscems, typical com-
munication pateerns like the clienc-server model and com-
plete connections in small domains are so simple thac the ex-
isting cransporc layer protocols (e.g.. TCP [9]) can perform
efficiencly and reliably. In large-scale and intelligenc discrib-
uted systems, communication patterns are much more com-

- plicated than che convencional models can handle. In chis ar-

ticle, we use the rerm “vircual circuit” to refer to an
end-to-end communicacion link in the cranspore layer, where
connection berween two ends (pores) is required throughout
the whole period of communication in order to ensure

July 1988—Vol. 2, No. 4
IEEE Network

u—é—egm View Section -7 | Compensation
- - Function
VIEW
SECTION End__View _ Section
MODEL Exception
COMMUNICATION CONFIGURATION
RELIABLE TRANSPORT SERVICE
DISTRIBUTED SERVICE
ENVIRONMENT CONFIGURATION
EXCEPTION
HIGHLY RELIABLE CONTROL
DATAGRAM D&LEI\S/SEEEEOSF
1101110110....... 1 Local View
LAYER
_ A
MULTICAST BAL VIEW
SEND SENSE GLO
[N NoN N N NoN N Ne o
GLOBAL VIEW

reliable communication and close view (between two
nodes). We use "daragram” to refer to a connectionless
communication medium in che cransport layer, where a re-
mote address is required for each message send, and neither
che stacus of remote nodes nor whether messages are safely
deltvered 1s known ro the sender nodes. Some common
communiation pacterns are described below.

Trivial Communicacions

Communicacions randomly and frequently cake place
among the possible pairs of nodes. That is, 1) che number of
nodes associaced with a communicacion is small, i) che
number of independent communications s large, and iii)
the communication relations among nodes vary from time
to ume. Tvpically, instead of using datagram, virtual cir-
cutts are used because of the necessity of celiable message
delivery. Unfortunacely. it is inappropriace to use virtual
arcuits tor end-to-end communications in chis case, be-
cause che cost of connecting reliable virtual circuics is com-
paratively higher than thar of passing messages. The per-
tormance 1s degraded dramacically.

July 1988—Vol. 2, No. 4
IEEE Network

Fig. 1. A network architecture for reliable distributed computing.

Communications in the Large

In some large-scale distributed systems, i) che number of
nodes associated with a communication is large and vari-
ant, and ii) the configuration of the systems are dynamic
[10], where nodes come and go without affecting che rest ot
a system. Again, it is inappropriate to use virrual circuits in
this case, because the complexity of the number of 170
ports, O(N), complicates each node. The complexity ot
O(N) looks reasonably good bur in fact it is not, since /O
resources are limited in most operating systems. For exam-
ple. in Berkeley Unix™ the number of file descripeors that
can be associated wich 1/Q ports (i.e., stream sockets [11.
12)) is quite small. For each file opened as an 1/0 channel.
the kernel reserves a memory buffer for storing incoming
data packers and pays attention (CPU time) ro detecting
the failures of connections and nodes. These costs are ex-
pensive.

Unix™ is a-trademerk of AT&T w9~ - Jem

2(

Multicasce Transport Services

In some distributed systems, nodes communicate wich
each other through multicasting. Grouping, reliable mes-
sage delivery and exception control are importanc. Unfortu-
narely, mulricast transport services are not supported in
most existing transpoet layer network environments. Even
when supported in a network environment, unreliabilicy is
usually a problem.

There is a discinction between what vircual circuirs and
datagrams can provide for applicacions; virrual circuic sup-
ports those applicacions that need reliable one-to-one com-
municacions, while dacagram supports those applications
that need many-to-many communications wicthout worry-
ing too much abour reliability. Neicher ot them can ensure
reliable many-to-many communications. RDE fills chis
need and solves the problem of complicated communica-
cion patcerns.

Datagram Layer

RDE appears to be a chird type of cransporrt service (the
other two are vircual circuic and daragram). Actually, RDE
is built on top of a datagram layer (see Figure 1). Dacagram
eliminates the problems of high 170 ports complexicy and
expensive virtual circuit connections, so it seems to be a
better approach for large-scale, loosely-coupled distribured
systems. The disadvantages and advantages of using
dacagram have to be pointed out to explain our design of
RDE using daragram. For most existing datagram trans-
port services (e.g., User Datagram Protocol), unreliabilicy
is the major problem. Datagram packets may be delivered
multiple times or out of sequence, ot not delivered ac all. A
sender neither knows che status of che destinacion nodes,
nor can be assured chat the message packerts have been safe-
ly received. A positive acknowledgmenc scheme is often
used to ensure safe delivery of messages. The most pleasant
aspect ot dacagram 1s that only one [/O port is needed tor
cach node ro send und receive messages, which is particular-
ly imporcant when 'O resources are limited. Theretore, it
makes more scnse co implement a protocol on top of
daragram to cnsure rcliable delivery of messages racher
chan implementing a protocol on top of virtual circuit to re-
duce the number of pores used.

The simplicicy ot one 170 pore is a very convincing rea-
son tor large-scale distributed systems to use datagram.
This cesules in the crend for intelligene discributed applica-
cions to handle increasingly complex pacterns of message
communications using one 1/0 pore for each node, which
listens to or calks to all ocher nodes wicthout building end-
to-end connections. and expecting a small degree of unreli-
abiley.

Reliable Distributed Eavironment

The goal ot RDE is to extend the reliability between a
pair ot nodes, which has been promised by virtual circure. o
rchabilicy among a group ot nodes. As mentioned above,
RDE is detined as a colleccion of loosely-coupled distribuc-
cd nodes that cnsures reliable communication and close
view. Each distribuced node has a scatic view, called che
local view. to retlect the starus of the environment. In RDE.
4 local view 1s a bue string—-called contigurarion bies—chac

30

indicates che scacus of each node (acrive or inacuive). 1n a
designared order according to the nodes domain ot che dis-
tributed environment. The global view 1s imagined contig-
urarion bits constructed from che starus of all nodes in the
same order as the local view.

Reliable communication can be achieved by using a £-
rerry/time-out and positive acknowledgmenc scheme.
which ensure messages are safely delivered ar destinarion
nodes. "Delivered at destination nodes” should be distin-
guished trom “received by destination hosts” and “received
by destination nodes™. "Received by destinacions hosts”
does not imply the existence of che destinatton nodes, and
“received by destination nodes” implies char messages are
explicitly read by the application programs, which might
take arbitrarily long and cause the sender nodes to time out.

We can chink of “host™ as a local post office and “node”
as a house with a mailbox; then mail (message) is delivered
to che mailbox of the destination house and the postman
sends back an acknowledgment. Close view in RDE means
precise prediction of node status. Thar is, RDE approxi-
mates local views to the giobal view. Due to the nature of
message passing, local views can reflect, ar best, the envi-
ronment stacus in che near past. This can be achieved by
running predicting algorithms in RDE, which will be de-
scribed in the "Distributed Predicting Algorithms” section.

Reliable communications and close view are not mutual-
ly independent. Reliable communicacions, together with,
che efféct of close view, ensure reliable delivery #essages.
which requires reliable links and healthy nodes (functional-
ly working). That is, messages that are expected to be safely
delivered ac the remorte nodes (according to che local views)
will be safely delivered (depending on the global view) ac a
very high probability. Also, close view with the etfect of re-
liable communications ensutes precise prediction of node
status and immediate notification of exceptions, since the
predicting procedures are constructed through message
passing.

Remember chat 100% reliable delivery, even through a
100% reliable communication channel, is impossible, be-
cause the local view can only retlect, at best, the environ-
menc stacus in the near past due to the nacure of message
passing, and chere is no way to guarantee chat messages will
be safely received by the destinacion nodes at the moment
of transmission. Our simulations, which we describe later,
demonstrace thac che closer the relation among nodes, che
more reliable message delivery is. Thac is, the more precise-
ly a node can predict its local view of che status of all che
other nodes, the less exceprions due to unexpected events
regarding message deliveries.

Whether messages are safely delivered can be almosc (at
a4 very high probability) predicted, because of reliable com-
municauon and close view at the moment of message send-
ing. Thus, it i1s unreasonable to sacrifice performance by
waiting for acknowledgments if the extremely small proba-
bility of exceprions can be compensated for in some way.
Highly reliable delivery in RDE, where the control flow
continues immediately after che message sending wichout
wainng for acknowledgments, leads to high performance
tor the targeted distributed computing casks. One more
important service in RDE is configuracion exception con-
trol. which is proposed to complement highly reliable

July 1988—Vol. 2, No. 4
[EEE Network

delivery; this is discussed in che next section. Basically, che

philosophy of the RDE model is highly reliable delivery
plus configuration exceprion control.

RDE Services

Two important services are supported in RDE: commu-
nicarion service and configurarion service. Communication
service supports reliable communicacion, and configura-
tion service is tor close view,

As we mentioned in cthe previous section, communica-
tion secvice uses the standard mechanisms of sequence
number and time-out/retry to eliminare che possibilities of
duplicacion, out of sequence and missing dara packecs in

datagram communications. It supports chree types of oper-
arions:

® Multicass. Send messages to a group of nodes.
Nodes in the domain can be arbitrarily grouped by
serring different channels. Grouping will be dis-
cussed with configuration service below.

® End-10-end send. Send message to one node. The two
relevant funcrion calls for this rype are sendro and
reply.

® Multiread. Read messages from multiple inpurcs.
Two or more [/0 ports can be created for different
classes of communications. Each 1/O port corre-
sponds to a domain. Two or more domains can be
specified in a distributed environment. Each do-
main defines a class of communication.

The major difference berween RDE and rraditional
cransport services is chac the messages are assumed to be
safely received by the destination nodes at the moment they
are sent, and concrol is immediately rerurned co che caller.
This is because messages are safely delivered with very high
probability, which we explain in the “Simulacion” section.
The ditficulties of highly reliable delivery of messages are
solved by configuration exceprion concrol.

Contiguration service supports the following:

® Configuration exception control. The idea is whenever
RDE senses changing of configuration or unexpect-
ed conditions of message delivery, it norifies che
higher level layer with a configuration excepcion.
The service protocol guarantees chat che related
nodes will be nocified in cime ¢ after a message de-
livery 15 initiated if che celated exception occurs.
The noufication procedure first encers exceprion
events into a global event queue, then generares a
signal that invokes a handler routine.

® Grouping. Nodes can be grouped by serting chan-
nels. One node might become a2 member of mulri-
ple groups by setring rwo or more channels. A node

can release group membership by unsecting the
channels.

® Dynamic configuration. Nodes can come or go wich-
out affecting the whole system. This is very impoc-
tanc in large-scale distribuced systems thae disallow
curning off all the nodes in order to reconfigure the
environment.

July 1988—Vol. 2, No. 4
IEEE Network

Coupled Relation and Idealized RDE

In order to measure che degree of reliability of a distrib-
uted environment, che coupled relation is introduced as a
function of how closely nodes musc interacc. The “more
closely” che distributed nodes inceracr, the more reliably che
distribuced compuring tasks are achieved. In other words,
the coupled relation is used to quantify the reliability of a
message passing-based distribured environment, where the
reliability lies berween closely-coupled and loosely-coupled
with respect to message passing racher chan concucrent pro-
cessing. That is, we try to quantify che unceliability due to
the deficiency of message passing. A closely-coupled dis-
tributed environment, where nodes communicate wich
each other chrough shared- memory, can be considered
100% reliable wich respect to message passing.

Two versions of coupled relation have been defined: as
the coefficient of statistical correlation becween a local view
and the global view, and as the probability chat a local view
matches the global view. In most cases, there is a
monotonically increasing relation berween the coefficient of
correlation and the probabilicy. We simply use the second
version as our experimental coupled relation for the simula-
tions. This means that the coupled relation specifies how
precisely a node’s local view predicts the status of other

- nodes. If the coupled relation is equal to 1, we call it a close-

ly coupled relacion. In our RDE model, where the difficul-
ties of highly reliable delivery of messages are solved by con-
figuration exception control, a higher coupled relation chat
more precisely predicts node status will reduge the cost of
exception handling."A coupled relacion care therefore be
considered a hit ratio where messages are safely delivered to
destination nodes (as expected when sending messages).

Many parameters like message sending rate, node failure
rate, node recovery rate, predicting algorichms, and data
missing race affect coupled relation; these are discussed in
the “Simulation” section.

An idealized RDE is a distributed enviconment wich the
following conditions:

® Closely-coupled relasion. This is the strongest version
of the close view discussed above. The relacion ex-
1sts in distributed environments if all local views in
active nodes are consistent with the global view at
any rime when message deliveries are iniciated dur-
ing the lifecime of an environment. The closely-
coupled relacion makes loosely-coupled distribuced
systems look like chey share a pottion of memory,
the configuration bits, the major feature of closely-
coupled distributed systems. This is the reason we
call chis the closely-coupled relation.

® [mmediate effect. This guarancees thac che status of
the related nodes remains unchanged during the
transmission of messages. This means that messag-
es are received by the destination nodes instantane-
ously upon sending out the messages.

Idealized RDE guarancees 100% reliable delivery of mes-
sages.

It is impossible for idealized RDE to exist in 2 message
passing system due to che nacure of message passing: trans-
mission cime is required. The goal of this article is not co

R o T e o S R S
S TSI B T T

31

achieve idealized RDE but instead to build a framework for
distributed systems based on an archicecture of highly reli-
able delivery plus configuration excepcion concrol; chese
services are supported in RDE. This framework makes it
possible co achieve an almost idealized RDE.

Distributed Predicting Algorithms

A distributed predicting algorichm is used in RDE in
order to maincain local views. In the next seccions we pres-
enc three algorithms.

Global-Local Views Comparison (GL)

The information defining the global view can be collect-
ed approximartely by receiving data/control packers from
remorte nodes. Local views are updared as follows:

¢ When a new node comes up or a node recovers from
failure, send out control packets saying “I am up” to
all nodes, and wait for acknowledgments, denorted
by ACKs, from all nodes, within a time-our slice.
This turns on che configuration bits corresponding
to the nodes that the ACKs were received from,
turning che resc of the configuration bics off.

® When a sending function is invoked, send data
packecs to the destinacion nodes and send control
packets to all ocher nodes, and waict for ACKs from
all active nodes wichin the time-our slice; turn off
the configuration bits corresponding to the nodes
from which expected ACKs are not received and
turn on the configuracion bits corresponding to the
nodes from which unexpected ACKs are received. A
configurarion exception signal is generated whenev-
er the local view is changed.

¢ When a packet is received, no matrer whether irisa
data packer or a concrol packer (excluding ACK),
send back an ACK; if the configuration bit corre-
sponding to the node chat the packet is received
trom s otf, turn it on. It would be unnecessary to
send any packets to the nodes which che configura-
cion bics indicace as inactive nodes, if the missing
race of packet transmission is equal co zero, where
no unexpected ACKSs thar respond to control pack-
ets will possibly come back since all active nodes are
noticed when one node comes up.

Local-Local Views Comparison (LL)

This algorichm inheties all feacures from the firse algo-
richm excepe chac che configuration bics are senc out wich
the packet ro active nodes. Each receiving node compares its
contiguracion bits wich chose received, and then turns off ics
contiguration bits where an inconsistency occurs. The rea-
son tor curning off the relevant configuration bic instead of
rurning it on is because RDE communication service en-
sures celiable communicacion (low data missing rate). A
node changing from inactive to active can broadcase a con-
trol packet. bur a node changing from active to inactive
cannot broadcase any more. The small probabilicy of miss-
ing dara ensures thar almose all inconsistent bies thac are on
correspond to inactive nodes.

32

Enthusiastic-Correction (EC)

This algorithm inherics all features from the second al-
gorithm. The node thac turns che bits on when eventually
receiving unexpected ACKs or curns the bits off when not
receiving expected ACKs within che cime-our slice sends
out its configuration bits to all active nodes after updating.
Thar is, the first node that norices the failure of a node in-
forms all the other active nodes. An active node mighe re-
ceive a norice of the failure of itself due o packets missing
in transmission. The node has to immediately broadcast a
message "I am scill alive!” to correct the inconsistency be-
tween local view and global view.

There are some ocher algorichms chat could alternanively
be used in RDE. For example, control messages could be
periodically sent our in order to collect the most recent glo-
bal view.

Simulation

The purpose of the simulacion is to underscand the be-
havior of the coupled relation, and the performance and re-
liability associated with a coupled relation. The coupled re-
lation indicates the reliability of message passing in a
diseributed environment based on our architeccure. The
performance of distributed computing tasks depends heavi-
ly on the reliability, which is indexed by the coupled-tela-
tion of the environment; distributed computing tasks on a
higher coupled relation environment incur lower exception
handling costs.

The simularion assumes a diseribuced computing task
running on an N-node environment where nodes interact
with ochers only chrough broadcasting messages. The mes-
sages received by a node are independenc with respect ro the
messages senc out by the node (independence assump-
tion[13]). The cime chat it rakes messages to be cransferred
between any possible pairs of nodes is assumed the same
and small. Five environmental factors are used as the pa-
rameters in the simulation.

® Distributed predicting algorithms—GL, LL, and
EC—provide different degrees of consistency be-
tween local views and the global view.

® Node failure rate A is the probability that an acrive
node fails in a time unit. Assume A is a Poisson dis-
tribution.

® Node recovery rase |l is the probabilicy that an inac-
tive node recovers from failure wichin a time unie.
The reciprocal of node recovery rate is the average
time chac a node stays in the failure scate. Assume
is a Poisson distribucion.

® Message sending rate v is the number of message
passing operations invoked by an active node wich-
in a time unit. Assume V is a Poisson distribu-
tion,

® Data missing rate R_ is the probability thac dara
packets are missing or cannot be delivered within a
cerrain time slice. A fixed rate is assumed for each
round of simulacion.

The daca missing rate is a complex of all possible trans-
mission incompletions such as data missing due to physical

July 1988—Vol. 2, No. 4
IEEE Network

link failure, partition [14], or insufficient time-our slice.
All cransmission incompletions will be caught by che stan-
dard mechanism, £é-recry/time-out. This is che reason we
did nor use time-our slice as a paramerter, since chis is more
general and simple.

The model for node failure and recovery is acrually a
birth-deach queuing system, M/M/co/co/M [15] Gie., fi-
nire customer population and infinite number of servers).
See Figure 2. The customer populacion (the number of che
nodes) is N. A state K is che state wich K nodes in failure
status. The probability of going to state K~1 from state K is
K x u, if K> 0. The probabilicy of going to scate K+
from state K is (N-K) x A, if K< N. The number of mes-
sage sendings in a time unit for state Kis (N=K) x V, which
plays an important role in RDE o approximate local views
to the global view.

Basically, ewo stages of simulations were conducted. The
firsc stage was to understand how the coupled relacion is af-
fected by the environmental faccors, and the second stage
was to understand how the system performance is affecced
by the coupled relacion. Let Cr refer to che statistical value
of coupled relarion, which is between zero and one.

Coupled Relation with Different Environmental Factors

In chis section, we show how environmencal tactors—
node tailure rate (A). node recovery rate (4), message send-
ing rate (V), ditferent discribured predicting algorichms
(GL. LL. EC). and dara missing rate (R_)— atfect Cr. Two
utilizavion facrors for the simulation are defined as follows:

e p_ = H: the ratio of node recovery rate to message
sending rate.

e p = A the ratio of node failure rate to node recov-
ery rate.

Generally, che coupled relation is approaching one,
while p_ and p, are close to zero. In Figure 3, we show the
relation berween Crand p_ and che relacion berween Crand
p,. respectively. We assume algorichms GL and R_ =0 in
both simulacions.

p. carries the information concerning message sending
during the period of node failure. If the average number of
tailure nodes 1s K and the number of nodes in the environ-
ment is N, then the average number of messages broadcas.
M. from che time a nodé fails o the time che node recovers
is (IN=K) XV which is (N=K), K is dependent on p; K is

m p.
small while p, is small, which implies che high Cr.

July 1988—Vol. 2, No. 4
IEEE Network.

(N-21)A

(N-3) A \

3u 44 Nu

Fig. 2. State diagram for node failure/recovery model — M/ M/co/ca/M.

Message broadcasting during the period of node failure
plays an importanc role in correcting the inconsistency be-
tween local views and che global view, which s caused by
the failure of nodes. If M is much larger than 1. only the
nodes broadcasting the first few messages (depending on
the predicring algorithms, for EC, only the one node) sutfer
the incorrectness of local views due to the node tailure, and
all che nodes that broadcase the following messages take ad-
vantage of correct prediction of localgews, which are deliv-
ered withour exception. Thus, the lower p. - #plies e
higher M, which implies che higher Cr. If M is small, che ef-
tect of che control message "I am up” broadcasting when a
node recovers from failure is significant, most likely causing
the local views of ail active nodes to be corrected before any
daca packecs are broadcast. Conclusively, in order to get a
high Cr, it is important that p_ and p, stay small, and the
facror of p_ affects the coupled relation more than p, does.
Thar is, increasing p_ has a more significant effect on de-
creasing che coupled relacion than does increasing p.. Next,
we will compare che different predicting algorichms in che
cases that R_ is fixed to zero and R_, is changing.

In Figure 4, we show Cr for the three distributed predict-
ing algorithms where R_ is zero. Two simulations are con-
ducted: 1) p_150.1 and p, is from 0.01 to 10.0; and i1) P, is
0.1 and p_ is from 0.01 o 10.0. We can see, generally, EC
has a higher Cr than LL in most cases, and LL has a higher
Cr than GL. That is, when the data missing rate is zero, al-
gorithm EC is berter than algorichm LL, which is betrer
than algorithm GL. The reason is obvious: LL requires
sending out packets to active nodes with local views and GL
does nort, and EC requires informing all nodes when che fiest
node discovers any node failure and/or node recovery and
LL does not. It is relatively more expensive for EC to main-
cain a higher Cr chan ic is for LL, which is more expensive
than GL.

In Figure S, we show Cr for the three algorichms in the
case where R_ is changing. In the simulation where p, and
p_ are both 0.01, cthe relacion chat EC is better chan LL, and
LL is becter chan GL no longer holds as soon as R_, is greacer
than 0.0001. Algorichms EC and LL have a low Cr when
R_, is high, where GL still has a comparatively high Cr. In
the simulacion that p and p_are both 0.1, EC is berter chan
LL, and LL is better chan GL when R_ is smaller than
0.001, and then, when R_, is greacer than 0.001, GL be-
comes bettes than both LL and EC. This is because the in-
formarion that EC and LL need to inform all ocher nodes is
very likely incorrect since R .ighaigh. GL affects local.views

33

COUPLED RELATION

COUPLED RELATION

ALGORITHM GL DATA MISSING RATE = 0.0000

1.0 e

Pm = 0.0100

0.9
0.8

0.7 A
0.6
0.5

0.4 4

0.3+
0.2 5

0.14

Pm = 0.1000

Pm = 1.0000

Pm = 10.0000

0.0 T

Pm = 0.1000 DATA MISSING RATE = 0.0000

|
EC

09
08—
07+
06 -
0.5+
0.4
034
02
0.1+

LL

GL

0.0 +—

36

COUPLED RELATION

COUPLED RELATION

ALGORITHM GL DATA MISSING RATE = 0.0000

10 PRI
09—
0.8
0.7 - Pm = 1.0000
0.6
0.5
0.4 - Pm = 10.0000
0.3 o
0.2
0.1
0.0 T T T T T T T
0 2 3 4 5 6 7 8 9 10
Pm
Fig. 3. Conpled relation and p,, p,
Pr = 0.1000 DATA MISSING RATE = 0.0000
)
T — = — =EE
0.9 + GL
0.8 -
0.7 -
0.6
0.5+
0.4 -
03+
0.2
0.1
0.0 1 T T T T T T T 7
0 1 2 3 4 S 6 7 8 9 10
Pm
Fig. 3. Coupled relatsons for predicting algorithms uhen R, 15 zem.

July 1988—Vol. 2, No. ¢
IEEE Network

PRSI

)

I P NE

=00100 P, =00100

1.00 GL

TS S

0.98 - EC

0.99 4

0.97
0.96
0.95 1

0.94 1

COUPLED RELATION

0.93 1
0921

0.914

0.90
0.0000

1 T T Ll T
0.0004 0.0008 0.0012 00016 0.0028

DATA MISSING RATE

only by the comparison wich che global view racher than
from rumors. Concluswely. when R_, is high and p, and p_
are small, GL is betcer than LL and LL is better than EC.
When R is small and p, and p_ are high, EC is berter chan
LL and LL is berter chan GL.

Figure 6 shows that when R 1s very high. GL is much
beceer chan LL and EC and much more scable (almost lin-
ear).

Performance with Coupled Relation

[n this scage of simulation, we show how Cr atfects che
environmenc pertormance. Instead of measuring che envi-
ronment performance directly, the exception cost is mea-
sured 1n the simulation. An exception is signaled when a
message. sent to a node thac is indicated active in the local
view, is not sately delivered due to incorrect local view, in-
complete transmission, or che failure of remoce nodes when
cransmuccing. [ncoerect local view is indexed by the low Cr.
Incomplete transmission is indexed by data missing race
R_, and tailure of remote nodes is indexed by node tailure
rate A. The cost of an exception includes the cost that RDE
needs to detece the incorrect local view and nocify che higher
level layer with a signal. and che cost of executing the
application-specitic compensation tunction (exception
handler routine). We chus assume the exception cost is
much more expensive than the cost of message passing. The
overall exception cost tor a distribured computing rask can
be considered cthe same as the number of exceprions, if we
assume che cost from all exceptions are che same. In Figure
7. the higher Cr causes the lower exceprion cost. More im-
portantly, every curve 1s almost linear and che relation

July 1988—Vol. 2, No. 4
[EEE Network

COUPLED RELATION

Pm = 0.1000 P, = 0.1000

1004 LtL g

058 M

0.98 -

m— O
NnNrr—

0.97 o

0.96

0.95+

0.94 +

0.93 4

0.92 1

0.91 4

0.90
0.0000

T 1 T 1 LI
0.0004 0.0008 0.0012 0.0016 0.0028

DATA MISSING RATE

Fig. 5. !ou;!r! n!anon; for pnr!:rrmg algorithms when !_u 35 changing.

berween che starting point (when Cr is 1.0) of each curve
and che data missing rate R_ is also almost linear. This
makes the prediction of the mcpnon «cost.according to the
coupled relacion very easy.

View Section

Our view section model is a programming framework
for constructing distributed computing tasks on top of
RDE. View sections procect against changes to the imag-
ined shared memory, the global view, in the same way thac
critical sections protect against change of real shared mem-
ory. Cerrain differences exist, e.g., for critical sections,
shared variables can be locked against being further ac-
cessed until they are unlocked. In contrast, the change of
the global view due to the failure of nodes is torally out of
control, so there is no way to prevent che global view from
changing. The philosophy is thar a view section, which de-
fines a period ot time and a sequence of instructions, is de-
clared as a procected section during which che global view is
desited to remain che same. If the global view does change
during the protected section, a compensation function, de-
fined in che beginning of the view section, is invoked by a
notificacion generated from the underlying RDE. A com-
pensation function behaves as a special form of exception
handler. The service supported by the underlying RDE 1is
configuration exception handling, as mentioned above.

Each view section begins with the statemenc
Begin_view_Section, and may or may not end with the
statement, End_View._Section, as illuscraced in Figure 8
We call chem close-type view section and open-type view
section, respectively, to distinguish the scatic characreriseic

37

COUPLED RELATION

EXCEPTION COST

Pm = 0.0100 P, = 0.0100

1.0 1
0.9 1
GL
0.8+
0.7
0.6
0.5
0.4

0.3

0.2+

0.1+

0.0 1T 1T T T T T T T
0.0 0.1 0.2 0.3 04 05 06 0.7 08 09 1.0

DATA MISSING RATE

FAILURE RATE = 0.0010

1.0+

0.9 +

98 DATA MISSING RATE

0.7 ~

0.6

0.0 T T

COUPLED RELATION

38

1 T T 1 LI
1.0 09 08 07 06 05 04 03 02 0.1 00

COUPLED RELATION

EXCEPTION COST

P = 0.1000 Pm = 01000

10
0.9
0.8~
0.7
0.6

0.5+

0.4

0.3

0.2 H

0.1 -

0.0 | RS S SR SR R S R
00 0.1 02 03 04 05 06 0.7 08 09 1.0

DATA MISSING RATE

Fig. 6. Coupled ralations for prediciing aigorithms when R, i changing.

FAILURE RATE = 0.1000

DATA MISSING RATE

1 1 1 1 1T 1T 1 1T 1
1.0 09 08 07 06 05 04 03 02 0.1 00
COUPLED RELATION

Fig. 7. Exception cost affecied by Cr.

July 1988—Vol. 2, No. 4
IEEE Network

&
(T

sommat

e

Open-Type View Section

Close-Type View Section

End_View__Section(vsec);

o

vsec : = Begin_View_Section(group,timeslice,function)

vsec : = Begin__View__Section(group,timeslice, function);

J

of programming structure. At run-time, a view section may
end with the statement End_view_Section or end in a
given uime slice. We call chem code-bound view section and
time-bound view section, respectively. An open-type view
section must be a time-bound view section, bur a close-type
view section does not have to be a code-bound view
secion—it may end due to code or due to rime.

The scatement Begin_view_Section initializes a view
section. The firsc parameter group specifies a set of parrici-
pant nodes. The second parameter timestice is the maxi-
mum tme period in which the casks executed in che view
section are expected to be accomplished. Programmers can
set che time slice chemselves, or use a time estimation func-
aion, provided by the underlying RDE, to gec the cime slice.
Alcernatively, they can leave che problem to RDE by setting
DEFAULT. The chird paramerer, function, is an exception
handler tor when exceptions arise during the view section.
Because a computing cask may be involved in more than
one view section at che same cime, vsec acts as a handle chac
uniquely identifies a particular view section. The handle
vsec 1s very important when nested view sections or over-
lipped view sections are allowed. For example, an open-
type view section can be inside a close-cype view section.

The statement End_view_Section recminaces the view
section tmmediately. If given time period is consumed be-
tore che stucement End_View_Section is execured, che view
secrion is forced to end by implicitly invoking an RDE pro-
cedure char checks che status of the discributed environ-
menc and. if necessary. invokes the compensacion function.
Then che program continues to execure the currenc state-
menc 1t che view section is open-type, or jumps to che next
stacement tollowing End_view_Section if close-type.

July 1988—Vol. 2, No. 4
[EEE Network

Fig. 8. View sections.

Another important statement is:

Update_View__Section (vsec, timeslice, function)
which reinitializes view section vsec and changes the time
slice and the compensation function if necessary. If pro-
grammers do not want to change the parameters, cthey can
set the parameters to SAME. Parameter group is unnecessary
here. This scatement can also be used to end a view section
if che cime slice is set to zero. The possible usage is that it is
called from the compensation function to end the view sec-
tion when a facal exception arises.

One rypical pattern of view section, shown in Figure 9, is
sending a message to all nodes in group and then receiving a
message from each active node. In fact, the mechanism of
positive acknowledgment plus time-out existing in many
communicartion layers describes some aspects of chis pat-
tern of view section. The view section model not only pro-
vides a clear scructure to programmers, but also provides a
precise configuracion exception handling. A distributed
compucing task constructed by using view sections on top
of RDE is aware of the exception cthat a node recovers as
weil as the exception that a node fails.

Nesced view sections and overlapping view sections are
permircted in our model. Many problems arise due to the
time-out slices, but these are outside che scope of chis arei-
cle. In che next sections, we give two examples using view
seccions.

Example 1: Summation of Distributed Data

This example does noc illuscrate che feature of reliabilic
when using view section. It illustraces only how to use vies
section on top of RDE. (See Figure 10.) Example 2 describe
how reliability is achieved by using the view section model.

(.. N

:= Begin_view_Sectian(group,timestice, function);
send(group, message);
for (nqde ' Ingroup is active) receive(message);
End_V1ew_Section(vsec);

_ Y,

Fig. 9. Typical view section pattern.

Procedure Sum;

begin
for (node Nodeld in group) MY_X{Nodeld] : = 0;
§$:=0;

vSeC = Bcg‘ln..Vin-Stction(qroup,stin,kdjust_Su-);
multicast(group, “send back X value’);
for (node Nodeld in group is active)

begin
receive(X);
S:=8S + X;
AY_X(NodelId] : = X;
end;
End_view_Section(vsec);
Sum:= §;
end;

procedure Adjust._Sum;
begin
Get_Exception(Nodeld, NodeStatus);
if (NodeStatus = INACTIVE) then
begin
S :m S - NY_X{Nodeld);
RY_X(Nodeld] : = O;
ond

else if (NodeStatus = ACTIVE) then
begin
sond_to(Nodeld, “send back X value®);
Update_view_Section(vsec,stime, SANE) ;
eond;
end;

s R & Fig. 10. Summation of distributed datu.

July 1988—Vol. 2, No. 4
40 [EEE Network

A system has N nodes. which are each randomly acrive or
inaccive. Each node has a variable X thac changes in value
from time to ume. A designared node execures a function
that recurns the sum of che X values for all active nodes.
The multicast function is supporred by RDE. Two func-
tions are presented below o solve the problem. The main
function is Sum, which broadcasts a message to all active
nodes and then waits to receive the X value from each active
node.

After ic initializes che array MY__X and S, Sum begins a
view secrion by execucting rthe statement
Begin_View_Section, which defines a rime-out slice,
stime, and a compensation funcrion, Adjust_sum. Then the
sum funcrion multicasts a request ro all active nodes and
waits for the X values from all active nodes. It adds each re-
ceived X value co § until values have been received from all
active nodes.

The compensation function, Adjust_—Sum, will be in-
voked as an exception handler toutine whenever the global
view is changed. The function Get__Exception will recurn
the node whose scatus changed to cause the exception and
che starus of the node (i.e., Nodeld and NodeStatus). If the
status of the exceptional node changes from acrive to inac-
tive, then it will subtracc MY_X's value of node Nedeld
from che sum and sec MY__X's value of node Nodeld to
zero. If the status of the exceptional node changes from in-
active co active, it will send a request message to che excep-
tional node and update the view section by resetting a new
rime-out stime, which ensures chat che exceprional node

has enough time ro send back its X value. The compensa-
tion funccion of the view section is still bound rto
Adjust_Sum (i.e., SAME).

Example 2: Reliable Resource Redistribution

A distributed environment has N+ [nodes. node,
node,..... node, which may be active or inactive. Node, 1s
the leader char was previously elected by all the nodes. Each
node has several resources that might be allocated by a local
process. For node,, che set of available resources is R. The
leader, node,, invokes a task of resource redistribution
upon a request from another node that has consumed all its
available resources. The leader broadcasts a message to ask
ocher nodes to relinquish cheir available resources. After
the leader receives all relinquished resources,
R+ R,+..+R. it reassigns resources so chat the set of
available resources for node ¢ is Q.. Then che leader sends Q,,
Q... @y 10 node,, node,...., node,, respec'tively.

The problem is that every node, including che leader,
might tuil unexpectedly during the process of resource
redistribunion. We do not want to lose or duplicate resourc-
¢s due ro che failure of regular nodes (i.e., not che leader).
W'e also do not wane ro swallow resources due to che failure
ot the leader: chis might block or dramatically slow down
the whole syscem. We do not address the reassignment
problem, but we assume it takes time co complete this task.

The main function is Resource_Redistribution, which
divides inco three blocks as shown in Figure L 1. In the first
block, it initializes a view section with the compensartion
tunction Check_Total. [t mulcicasts a message REQUEST to
ask all nodes to give up and send back cheir available re-
sources R. and chen waics for all resources to be relin-
quished. After it recerves the available resources from all

July 1988—Vol. 2, No. 4
[EEE Network

acrive rgodesr tt rewnirializes the view secrion with compen-
sation funcrion Check_rail and goes to che second block.
In the second block, ¢ reassigns resources into @, and sends
the Q, to nodes. One important considerarion is chac the
leader has to ask nodes to lock resources R before chey get Q,
back, and if a node fails before getting Q,, it should consider
R as che available resources when it recovers from failure.
This prevents the received resources from premature alloca-
tion to local processes until the leader makes sure thac che
redistribured resources have been safely received by all
nodes. If node, fails during che second block, i) all resources
that were already distribured have to be canceled; ii) the re-
sources received from node, in the first block have to be dis-
carded so that node, can consider R, as its available resourc-
es after it recovers from failure; and iii) reassignment of
resources has to be done again and then the leader redistri-
buces che sets of resources. The view secrion ends at che end
of the second block. In the chird block, not inside che view
secrion, it broadcasts a message 0K to.unlock the resources.
Message 0K indicaces the leader knows all nodes have re-
ceived the newly assigned resources Q..

Two compensation functions are used in the view sec-
tion: Check_Totat in che first block and Check_Fail in the
second block. Check_Total is almost the same as the com-
pensacion Adjust_Sum in cthe previous example “Summa-
tion of Distributed Data” except thar resources are used
here. In the second block, Check_Fail is the compensation
function which, when some node, fails, asks all the nodes
thar already received resources Ql:m give them up, and
restarts che second block again. Function Set_Resume is
used to jump gracefully to the beginning of the second
block, labeled REASSIGN. We do not care about the case that
nodes are restored from previous failures, because it is too
late ro reassign the resources for the “coming up” node. It
has to wait until the naext round of resource
redistribution.

From che view point of a regular node,, several rules are
followed:

® Node, considers R, as its available resources in the
following cases:

a. Node, does not receive Q. within a given time
slice, after it sends out R. When time-out oc-
curs, the leader is assumed to have failed.

b. Node, fails after ic gives up R, and before it re-
ceives its newly assigned resources Q..

c. Node, does not receive an 0K message from the
leader within a given time slice. The leader is as-
sumed to have failed. The 0K message is sent out
by the leader, when the leader makes sure all
nodes received newly assigned resources Q,,
Qo Qu

This is to protect resources from being swallowed

by che leader, if che leader node fails after it receives

part oc all of the resources.

® Node considers Q, as its available cesources, if it re-
ceives an OK message after it received Q, from the
leader.

® Node considers R and Q as its possible available
resources, if it fails after it receives Q and before it
receives an OK message. A checking procedure,
which checks whether R or Q is its available

11

progedure Resource__Redistribution;
begin

multicast (group, REQUEST);
for (node Nodeld in group is active)
receive (R[Nodeld));

REASSIGN:
reassign__resources(R[], Q[]);

send__to(Nodeld, Q[Nodeld)]);
End__View_Section(vsec);
multicast (group, 0K);
end;

procedure Check__Total;
begin

if (NodeStatus = ACTIVE) then
begin
send_to(Nodeld, REQUEST);

end;
end;

procedure Check_Fail;
begin

if (NodeStatus = INACTIVE) then
begin

multicast (group,DISCARD);
R{Nodeld] : = INVALID;

Set__Resume (REASSIGN);
end;
end;

for(node Nodeld in group) R{ModeId] : = INVALID;
vsec := Begin_View_Section(group,stime,Check__Total);

Update _View__Section(vsec,stime,Check__Fail);

for (node Nodeld where RiNodeld] is valid)

Get__Exception(Nodeld, NodeStatus);

Update__View_Section(vsec,stime, SAME);

Get__Exception(Nodeld, NodeStatus);
for (node Nodeld to which @{Nodeld] has been sent)

Update__View_Section(vsec,stime,SANE);

resources, will be invoked when node, recovers from
faduce: chac 1s che procedure. Node, broadcasts a
message to ask whether Q is a valid resource set or
not, where we can use version number of Q to verify
it. If node,,, which was the leader when node, failed,
says "no’. it uses R as ics available resources. If any
node says “ves . it uses Q as ics available resources.
Ortherwise, it waits until a node comes up, and re-
peats the whole procedure. This is to procect re-
sources trom being duplicated ot lose.

A state diagram is presented in Figure 12 to describe the
behavior of regular nodes.

Conversations

Peterson’s conversations [16] are another IPC abstrac-

~ tion chat atcempe to achieve reliability in diseribured com-
puting by incorporating a notion of view. In a conversation,

however. a view is a context graph giving the partial order-

ing of all past messages. As with our RDE, the global view

is the truch and the local view is whar distributed nodes

know about the truth. Distribured nodes sense che cruch

through message passing, and the difference between the

global view and a local view is due to the unreliabilicy of

42

Fig. 1l. Ruliable resource redistribution.

message passing. That is, a node may not be aware of the
entire concext due to missing or out of order messages, as
well as node tailures or nerwork partitions. Each message is
passed wich the encire context graph known by the sender,
so che receiver has che opportunity to update its own and/or
the sender’s view of che truch wich any messages included in
one but not che ocher.

Pecerson’s conversacions and our RDE have che follow-
ing features in common:

® Global view. There exists a global entity, the truch,
which might change from time to cime. In the con-
versation IPC abstraction, it is the context graph.
In our model, ic is the (imaginary) global contigu-
racion bits.

® Local view. Every node has a view that represents its
knowledge about che global view. Local views are
updated incrementally through message passing
and are rebuilc afrer node failure or network parei-
tion. In conversarions, it is participane p's view of
the context graph. In our model, it is the local con-
tiguracion bits.

® Knouledge busis. Discributed nodes behave according
to their local views, and local views and operations

July 1988—Vol. 2, No. 4
[EEE Network

NODE i (NOT LEADER)
HAS AVAILABLE

REQUEST FROM LEADER

RESOURCES R (i)

0]

SENDR (1)
TO LEADER
- \
o TIMEOUT
USE R (i) NODE |
AS AVAILABLE COME UP NODE i
RES RECEIVE NOT
OURCES - FAIL RECENVEQ() | FOR () PROFE
r FROM LEADER LEADER
J Meoyr
IF LEADER SAYS
Q (i) IS NOT AVAILABLE
NODE i
FAIL
RECEIVE OK FOR Q (i)
FROM LEADER
NODEi -
BROADCAST
TO CHECK IF COME UP
Qs
AVAILABLE v
SEND
MESSAGE WAIT UNTIL USE Q (i)
TO CHECK NEXT NODE AS AVAILABLE
IF Q(i) I COMES UP IF ANY NODE RESOURCES
AVAILABLE] SAYS Q (i) IS
AVAILABLE
Fig. 12. State diagram.
are mucually affected. In conversations, che opera- Conclusions

tions are cthe scandard send() and receive(). Our
model also provides sendto() and multicast().

Peterson arcempes to achieve ordering of messages for
group communication, whereas we try co attain safe deliv-
ery of messages for group communication. This difference
in goals explains the differences berween views. The dy-
namic views used in conversations preserve context infor-
mation, while che (concepeually) static views used in RDE
preserve configuration infocrmation. Conversations support
ordered broadcast while RDE procects against node failure.

Thus, conversations and our model are really comple-
mencary. It would be nice to implement conversacions on
top of RDE, using view sections to build the component of
conversations thac protects againsc node failure. This would
solve certain problems of conversacions, such as nodes ex-
pecting an acknowledgment from a failed process and lack
of reliable broadcases. It would also be easy to use view sec-
tions to rebuild che context graphs when the system recov-
ers from node failure or network partition.

July 1988—Vol. 2, No. €
IEEE Network

We propose a Reliable Distributed Envitonment (RDE)
among. large groups of nodes to ensure the reliability ot
complicated communicacion patterns, as virtual circuics are
already applied to pairs of nodes to ensute che celiabilicy ot
simple communicacions. RDE serves as a basic communi-
cation environment to handle large-scale and/or incelligent
distribuced systems. RDE provides reliable communication
services and configuration services thac do noc exise in tra-
ditional communication environments.

We characterize the reliability of a distribuced environ-
ment by ics coupled relation, which is based on differen:
predicting algorithms, node failure rate, node recovery race
message sending rate, and data missing rate. Our simula
tion results clearly illustrate how the coupled relation af
fects the performance of a distributed environment.

We have demonstrated the utilicy of our view sectior
model by our reliable resource redistribution example. W
believe chis model, which suppotts a high level ot abserac
tion for handling low-level environmencal changes, w

prove to be a good programming framework for conscruct-
ing reliable distributed compurting casks.

We expect our network architecture, with view section
as the cop layer, RDE in che middle and daragram commu-
nication at the botrom, to become increasingly significane
due co the movement towards large-scale discribuced sys-
tems and intelligent distribuced applicacions.

Acknowledgments

This arcicle is an expansion of a paper with che same
name that appeared in the proceedings of che 1987 Symposi-
um on Simulation of Computer Networks, Colorado Springs,
CO. August 1987, pp. 11-22. This research is supported in
part by grants from AT&T Foundation, IBM, and Siemens
Research and Technology Laboratories, in part by the New
York State Center of Advanced Technology—Computer
and Informarion Systems and by the Columbia University
Cenrer for Telecommunications Research, and in part by a
Digiral Equipment Corporation Faculty Award.

References

[1] H.S.Scone, Computer Science Series: Introduction 10 Comput-
er Archisecture, SRA, Chicago, 1980.

[2] K. Ravindran and S. T. Chanson, “Starte Inconsistency Is-
sues in Local Area Nerwork-Based Distributed Kernels,”
Proceedings of Fifth Symposium on Reliability in Distributed
Software and Database Systems, Los Angeles, CA, Jan.
1986.

[3] W.L. Gentleman, "Message Passing Berween Sequential
Processes: The Reply Primitive and cthe Administrator
Concept,” Sofware—Practice & Experience, vol. 11, pp.
435-466, May 1981.

[4] L.Svobodova, “File Servers for Nerwork-Based Distribuc-
ed Systems,” ACM Computing Surveys, vol. 16, pp. 353-
398, Dec. 1984,

(5] J. G. Micchell and J. Dion, “A Comparison of Two
Nerwork-Based File Servers,” Communications of the ACM,
vol. 25, pp. 233~245, Apr. 1982.

(6] G.R. Andrews and F. B. Schneider, "Concepts and Noca-
tions for Concurrent Programming,” ACM Compuring Sur-
veys , vol. 195, pp. 3—-44, Mar. 1983,

(7] J- Elioc and B. Moss, “Nested Transactions: An Approach
to Reliable Discributed Compucing,” Technical Report,
Massachusetes [nscicute of Technology, Apr. 1981.

(8] B. W. Lampson, “Atomic Transactions,” Distribured
Systems—Architeciure and Implementation: An Advanced
Course, Springer-Verlag, Berlin, FRG, Chapeer 11, 1981,

44

[9] A.S. Tanenbaum, Computer Networks, Englewood Chitfs.
NJ: Prencice-Hall, Inc., 1976.

(10} J. Kramer and J. Magee, *Dynamic Configuracion for Dis-
cributed Syscems,” [EEE Transactions on Software Engineer-
ing, vol. SE-11, pp. 424-434, Apr. 1985.

[11] S. Sechrest. "An Introductory 4.3 BSD Interprocess Com-
munication Tucorial,” Technical Repore, Department of
Electrical Engineering and Computer Science, Universiry
ot California, Berkeley, CA, 1986.

[12] S.]. Leffler, R. S. Fabry, W. N. Joy, and P. Lapsley, “An
Advanced 4.3 BSD Interprocess Communicarion Tutori-
al,” Technical Repore. Department of Electrical Engineet-
ing and Computer Science, University of California.
Bertkeley, CA, 1986.

[13] L. Kleinrock, Communication Nets: Stochastic Message Flow:
and Delay, NY: McGraw-Hill, 1964, Reprinted, Dover
Publications, 1972.

[14] S. B. Davison, H. Garcia-Molina, and D. Skeen, “Consis-
tency in Partitioned Networks,” ACM Computing Surveys,
vol. 17, pp. 341-370, Sepr. 1985.

(15] L. Kleinrock, Queneing Systems, Volume I: Theory, NY:
John Wiley & Sons, 1975.

{16] L.L.Peterson, “Preserving Context Information in an IPC
Abstraction,” Proceedings of Sixth Symposium on Reliability
in Distributed Software and Dasabase Systems, Kingsmiil
Williamsburg, VA, Mar. 1987,

Wenwey Hseush received his M.S. from Columbis Universi-
ty and his B.S. from Nacional Taiwan University, and will be-
come a2 Ph.D. candidace at Columbia University in Fall 1988.

Hseush is 2 Research Scaff Associate of Computer Science at
Columbia University. His research interests include diseribuced
programming environments, object-oriented languages, distrib-
uted systems and network simulation.

Gail Kaiser received her Ph.D. and M.S. degrees from
Carnegie Mellon University, where she was a Hertz Fellow, and
her Sc.B. from the Massachusetts Insticuce of Technology.

Kaiser is an Assistane Professor of Computer Science ac Co-
lumbia Unaiversicy. She received a Digital Equipment Corpora-
cion Incencives for Excellence award in 1986, and has been se-
lected as a Nartional Science Foundation Presidential Young
Investigator for 1988.

Her research interests include programming environments,
evolution of large software systems, appplicacion of acrificial in-
celligence technology to software development and maintenance,
software reusability, object-oriented languages and darabases,
and distributed syscems.

July 1988—Vol. 2, No. 4
IEEE Network

N = ==
IEEE

THE MAGAZINE OF COMPUTER COMMUNICATIONS

July 1988 ISSN 0890-8044

Simulation and Analysis of Very Large Area Networks (VLAN) Using an

Information Flow Model / Jacob J. Wolf 111, Biswadip Ghosh 6
Performance Analysis of a Large Interconnected Network by Decomposition

Techniques / Jhitti Chiarawongse, Mandyam M. Srinivasan, Toby J. Teorey 19
A Network Architecture for Reliable Distributed Computing / Wenwey Hieush,

Gail E. Kaiser 28
Effects on Response Time Performance Using an Edge-to-Edge Protocol in an

X.25 Packet Network / Paul T. Brady 45
MBRAM - A Priority Protocol for PC Based Local Area Networks /

Robert P. Signorile, James LaTourrette, Michael Fleisch 55
Guest Editorial / Mitchell G. Spiegel 5
The IEEE Network Forum / John Daigle, Univ. of Rochester 60
Technology Perspective / Eric E. Sumner, ATET Bell Laboratories 61
Information Infrastructure / Vinton G. Cerf, Corporation for National Research Initiatives 62
Open Systems Standards / Ha/ Folts, Omnicom, Inc. 63
Conference Calendar 65
Advertiser's Index 68

Director of Publications—Stewars D. Personick
> Editor-in-Chief—Harvey A. Freeman
’ Publication Editor—/Joba N. Daigle
Publisher—Caro/ M. Lof

Cover Photo: The Image Bank/ Phorogiher: S. Hunt

July 1988—Vol. 2, No. 4
IEEE Network 1

——————— e]

