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Abstract

This technical report consists of the two papers discussing testing technology. INFUSE:
Integration Testing with Crowd Control describes the test management facilities provided by the
INFUSE change management system. INFUSE partially automates the construction of test
harnesses and regression test suites at each level of the integration hierarchy from components
available from lower levels. Adequate Testing and Object-Oriented Programming applies the
axions of adequate testing to object-oriented programming languages and examines their
implications. Contrary to our original expectations, we discover that in the general case classes
must be retested in every context of reuse.
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Abstract

INFUSE is a change management system for large scale software projects. In previous papers, we
described its core philosophy of integrating strongly connected modules first and more weakly
connected sets of modules later, moving up a hierarchy from singletons to clusters of
interdependent modules to merging the change set into the baseline. We have previously applied
INFUSE to static consistency analysis of syntactic and semantic properties. In this paper, we
extend our work to dynamic consistency analysis, i.e., testing. Unit testing is done for the
individual modules at the leaves of the hierarchy, integration testing for the intermediate clusters
and acceptance testing at the root. INFUSE supports this by partially automating the construction
of test harnesses and regression test suites at each level of the hierarchy from components
available from lower levels.
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1. Introduction

INFUSE is a ‘city model’ software development environment [21], that is, it addresses the
special needs of large scale software projects, where the scale is in terms of programming-in-the-
many as well as programming-in-the-large. We believe that some seemingly small number of
programmers (say, 20) is effectively a ‘crowd’. Crowd control inherently makes change
management so complex that technological in addition to managerial mechanisms are required to
handle the interactions among the programmers. In previous papers [19, 11], we have presented
our philosophy and the basic mechanisms for isolating groups of modules! into a hierarchy of
experimental databases. The goal is to minimize the implications and extent of changes that the
programmers must cope with at one time. This paper extends our previous work to support
integration testing. INFUSE now supports semi-automatic construction of test harnesses and aids

selection of regression test suites, both at each level of the hierarchy.

We propose that any ‘city model’ change management system should assist the project team
with:

o partitioning the changed modules into a hierarchy of sets, for the purpose of
isolating groups of modules during integration;

¢ the time sequence of the integration, that is, the desired ordering of integration with
respect to the hierarchy — bottom-up, top-down or sandwich;

¢ syntactic and/or semantic consistency checking within a set;
e construction of test harnesses (drivers and stubs);
¢ regression testing for each set of modules at each level of the hierarchy; and

e test management, to keep track of which tests have been passed by which sets of
modules.

INFUSE provides all these facilities.

The core of INFUSE is a change management framework for automatically constructing and
maintaining a hierarchy of experimental databases (EDBs), where each EDB contains a subset
of the change set. At each level of the hierarchy, the contents of the EDBs are disjoint. The
notion of an EDB was initially introduced in Smile [12], a muitiple-user programming
environment for C developed as part of the Gandalf project [7]. INFUSE extends this notion to
(1) a hierarchy, (2) automatic partitioning of the change set into EDBs, and (3) integration

A module is any separately compilable syntactic unit, such as an Ada™ package, a Modula-2 module or a C
source file.




testing.

We subscribe to the rarely supported ideal of hierarchical integration of large scale software
systems. The rationale for this is the widely accepted software engineering rule-of-thumb that
interface errors detected early are much less costly to repair than errors detected late [3]. There
are two well-known mechanisms for structuring the modules of a system into a hierarchy:
managerial and design. The most significant innovation of INFUSE is a new kind of hierarchy,
dependency-order, where strongly interconnected modules are placed together near the bottom
of the hierarchy and more weakly connected modules are placed together closer to the top.

INFUSE generates the hierarchy by applying a clustering algorithm [14] to the change set. Our
algorithm uses a non-Euclidean similarity metric based on the dependencies between pairs of
modules. The similarity metric between two sets of modules ( M,, .., M, ] and
(M1 oo M.p } is defined by any one of several statistical measures applied to the basic metric.
A similarity metric based on dependencies is an approximation to the oracle that would tell us, in
advance, exactly how the interfaces of modules will be changed and how this will affect other
modules. The intuition is that changes will more likely involve strongly connected modules than
weakly connected modules, according to a simplistic proportionality argument.

There are three categories of dependency models [20] that may be employed — unit, syntactic
and semantic — as well as several subclasses of these models. For example, the strength of
syntactic interdependency between a pair of modules M and N is k, where k is the sum of i, the
number of facilities exported by M and imported by N, and j, the number of facilities exported
by N and imported by M. This can be refined, as in Tichy’s smart recompilation [28], to consider
only the external facilities actually used by an importing module. INFUSE does not presume any
particular dependency model, but can use any for which a corresponding analysis tool is

available.

INFUSE assumes several external facilides:

e programming-in-the-small tools: editors, compilers, linker/loaders, debuggers,
formatters, etc.;

e version management of source and object code, such as RCS [27] or Arcadia [26];

e system modelling and configuration management, such as Make [4] or Apollo’s
Domain Software Engineering Environment [13] (DSEE™),

¢ a modification request (MR) system [24];



e a consistency analysis tool, either syntactic such as Lint [10}, or semantic, such as
Inscape [18];

¢ a program-based and/or a specification-based test coverage analyzer — both kinds
of analyzer and their relationship with INFUSE are explained later on.

Although not required for operation, INFUSE can be augmented by an automatic software test
driver [17] that provides a standard setup for executing tests and automatic verification of test
results. We intentionally leave vague the notation for describing the tests and their required
results. We assume for this paper that INFUSE keeps track of which tests are in which test suites,
and which of these have been passed, but a human is actually responsible for executing the tests.

In the next section, we give an overview of INFUSE and its test management facilities. The
following two sectons discuss construction of test harnesses and regression test suites,

respectively. We conclude by summarizing the contributions of this paper.

2. Overview of INFUSE
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Figure 2-1: Baseline and Change Set

The INFUSE change management system operates as follows for a scheduled change, such as
for a new release or a patch to a previous release. The change set is selected manually by a
system analyst or automatically by an MR system. INFUSE checks out new revisions of the
modules in this set from the version control system as shown in figure 2-1, extracts their
dependency matrix and invokes the clustering algorithm to determine a hierarchy according to
the strengths of interconnections. The group of modules assigned to the same programmer is
treated as a single module for the purposes of clustering. INFUSE then builds the hierarchy of
EDBs containing the new revisions of the appropriate modules, as shown in figure 2-2.



Programmers work on their assigned module(s) in the EDBs at the leaves of the hierarchy. For
simplicity, we assume a leaf EDB consists of a single module M and the programmer is

responsible only for this individual module; thus, we refer to leaf EDBs as singletons.
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Figure 2-2: Hierarchy of Experimental Databases

When a programmer finishes editing M, he requests the consistency analysis tool, which
determines whether or not M is self-consistent. Syntactic consistency requires that every
identifier defined in M is used within M in the manner prescribed by the static semantics (i.e.,
context-sensitive syntax) of the programming language. Each use of an identifier defined
externally (i.c., not defined in M) must be consistent with all other uses of the same identifier. In
the case of semantic consistency, every identifier must be used correctly with respect to the
semantic specification mechanism employed. For simplicity, we assume syntactic consistency

analysis throughout the rest of this paper.



Once his module M is consistent, the programmer builds a test harness. The hamess consists
of a driver D that invokes the module to perform the tests and a set of stubs S that perform, in an
abstract sense, the functionality of those external modules referenced by M. In particular, stub
Sy represents all the subroutines and data defined by module N and used in module M. INFUSE
compiles and links M together with D and S, and then the programmer proceeds with testing and

debugging.
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Figure 2-3: Unit Testing Stubs and Test Suite
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The programmer devises a set of unit tests that together meet some test data adequacy
criteria [29], perhaps with the aid of an adaptive test generation tool [22]. The stubs and unit test
suite are associated with a singleton EDB as shown in figure 2-3. After M has passed all these
tests, the programmer enters a command to deposit it into the parent EDB. Deposit makes the

“new versions of the modules in the child EDB visible to the other modules in the parent EDB.
Before allowing the deposit, INFUSE requires that M is in fact self-consistent in the static sense
of the analysis tool and in the dynamic sense of the unit tests. INFUSE associates with M some
representation of T, the set of unit tests with their required results, along with D and S.

At some point, all the sibling EDBs have been deposited into their parent EDB, which then
contains several modules — typically 2 to S — that are very strongly interdependent. INFUSE
invokes the static analysis tool to check that these modules are consistent among themselves. If

not, it informs the responsible programmers, who negotiate among themselves, agree on further
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Figure 2-4: Automatically Selected Stubs and Tests
changes, and notify INFUSE of the modules that must again be changed. INFUSE generates
singleton EDBs for these modules and the singleton process repeats as necessary.
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Figure 2-§: Hierarchy After Several Deposits

If the modules are consistent to the extent that can be determined by a static analysis tool,
INFUSE constructs a set of stubs S for integration testing from the sets Sy available from unit
testing.  Usually some programmer must build the new test driver. INFUSE assists the



programmers in selecting the regression test suite T from the unit test suites Ty, The resulting
stubs and tests are illustrated in figure 2-4. Then the tests are executed and debugging proceeds.
If no errors are detected, the current EDB can be deposited into its parent, and so on, and the
hierarchy condenses as shown in figure 2-5. If errors are detected, the programmers negotiate
and select a subset of the EDB for further modification. INFUSE locally repartitions this subset
into singleton databases, as is done for inconsistencies detected by the analysis tool. A possible
result is shown in figure 2-6. After the subset has been modified and redeposited, INFUSE
constructs a new regression test suite in the same manner as it constructed the original, failed
suite for this EDB.
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Figure 2-6: Repartitioning for Further Changes

Once all the regression tests have been passed, a programmer can issue the deposit command
to move the integrated EDB into its parent. When all the siblings have also been deposited, this
process is repeated at each level using as components the modules, stubs and test suites of the
previous level in the hierarchy. Any inconsistencies result in repartitioning the subtree below the
EDB where the inconsistency was discovered.

At the top-level of the hierarchy, three tasks must be performed. First, the entire change set
must be integrated by this mechanism. Then it must be integrated with the unchanged modules
in the baseline version of the program. This stage is illustrated in figure 2-7. Finally, after
acceptance testing, INFUSE checks in the modules in the top-level database to the version control
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Figure 2-7: Acceptance Testing

system.

One limitation of INFUSE is that it does not provide any support, beyond a standard debugger,
for isolating and repairing errors detected by unit, regression and acceptance testing. Several
advanced debugging tools have been proposed [25], but none have yet been applied in the
context of crowd control. We are in the early stages of applying an existing machine learning
algorithm, which integrates explanation-based and similarity-based learning [2], to the problem
of fixing bugs ‘similar’ to previously fixed bugs.

3. Test Harnesses

INFUSE aids the programmers in constructing both the stubs and drivers of test harnesses. First
we explain how, for each EDB, INFUSE considers the collection of stubs associated with all its
children databases and determines which stubs are replaced by modules, which stubs can
continue to be used, and which potentially conflict with other stubs. At the end of this section
we sketch how INFUSE determines when a driver from a descendant database can be used in an
ancestor database.

3.1. Stubs

Consider an EDB, E, containing the set of modules { M, ..., My }. E is the parent of a set of
child EDBs, each of which contains a disjoint non-null subset of these modules. Each M; has a
set of stubs S; from its singleton EDB. INFUSE operates according to the algorithm shown in
figure 3-1 to construct the set of stubs for E.

INFUSE examines each stub Sy, y, constructed to represent absent module N as used by module



Let Sg, be the set of stubs associated with experimental database E,

M, N and O be modules,
Sy be the set of stubs associated with module M in the current EDB, and

Sy be the stub that represents module N as used by module M in the child EDB
containing M
In

SpeQ
VMe E do
Sue v ([ Syp )
VY Oe EstO#M do
if O is complete wrt M then
SueSu—Suo
VSyn€E Sy do
if{Oe E|O#MAS, y€ Sg } #O then
ask user whether to keep, replace or merge
and modify S,, accordingly
SpeSpUS,,

Figure 3-1: Algorithm for Stub Selection

M (i.e., one of the M;) in one of the child EDBs. All such stubs where N is present in the current
EDB (that is, N is one of the M; distinct from M) are replaced by N, as the first part of the
integration. The idea is to use the real module, now that it is available, rather than a stub. This
works only when N is complere with respect to M. For example, if the design for N calls for it to
export facilities f, g and h, but only facilities f and g are currently implemented, then N is
incomplete. If M actually uses only f and g, then N is complete with respect to M; if M actually
uses f and h, then N is incomplete with respect to M. These two cases are addressed by other
tools, such as PIC [30], where the two modules are called "consistent” and "conditionally
consistent”, respectively. INFUSE uses its analysis tool to detect cases where N does not provide
all the facilities simulated by the corresponding set of stubs. In this case, N is treated as as if it
were just as candidate stub available from a child EDB.

Other stubs will also remain, since the comresponding modules will not be integrated until
higher levels of the hierarchy. Among these, it is likely that many stubs S, N Wwill be duplicate,
that is, there is more than.one stub representing N in the context of module O another in the
context of P, efc. This is represented in S, 5 by the lowercase variable x. Note that the

duplication of a stub do not imply the duplicates are identical, and in fact the content of these
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stubs may be markably different, due to the different requirements placed by the context
modules. Thus where there is a duplication, it is rarely acceptable to automatically choose one
among the supposed ‘equivalence class’ of stubs to replace all elements of that class with respect

to the coming round of compilation, linking, testing and debugging.

INFUSE does not require this kind of conflict — i.e., duplication — to be resolved. Instead, it
brings the problem to the attention of each programmer whose module M uses one of the stubs in
a particular equivalence class. The programmer can choose to continue using his own stub Sy,
from the previous level of the hierarchy, begin using one of the other stubs S from the previous
level, or create a new stub Sy, from scratch or by merging (using an standard text editor) the
contents of some subset of these stubs. The superscript "-" refers to a stub available from a child
EDB. If more than one stub remains in the class after all programmers have made their decision,
INFUSE does the necessary internal renaming to ensure the decisions are reflected in the
executable image generated by normal compilation and linking.

3.2. Drivers
The set of drivers for an EDB is of course closely tied to its test suite. For each EDB, we can

divide the members of the test suite into two classes:

1. tests that originate at this EDB and check the functionality, performance, etc. of the
corresponding subsystem; and

2. tests that originated at a descendant EDB that are reapplied as regression tests
because the integration makes it possible for the results of the tests to be different
now than when previously performed at a lower level of the hierarchy.

For tests in the first class, the new set of drivers must usually be constructed by the
programmers, perhaps by merging several existing drivers associated with descendant EDBs.
For carrying out tests in the second class, however, INFUSE can automatically retain the original

" drivers.

4. Regression Testing

The preceding discussion of drivers suggests our approach to integration testing, which follows
the algorithm shown in figure 4-1. In the worst case, the test suite Tg for an experimental
database E is the union of all the test sets from the descendent EDBs, plus the additional
subsystem tests added at this point by one or more of the relevant programmers. In the typical
case, INFUSE helps reduce the amount of testing, without degrading the opportunities to detect
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Let E; be the ith descendant of experimental database E in some standard ordering such
as preorder,
Ty, be the test suite for E,

S:- be the set of stubs, among those associated with the ith descendent, which were
replaced in E (using the algorithm given previously),
T:. be the subset of the test suite, from the test suite associated with the ith

descendant, which actually exercised S:.
In

T, new tests for subsystem E
VYMe E do

T T,UT,,

Figure 4-1; Algorithm for Test Selection
errors. It does this by automatically marking as correctly completed all tests in Tg that it knows
could not produce different results in the integrated forum than in the descendant.

INFUSE determines the tests to mark as follows. Any tests applied directly to a module that
continues to use (transitively) exactly the same set of stubs as in the relevant descendant EDB is
assumed to return the same results for the same inputs. This is of course true only if the stubs
guarantee repeatability; INFUSE cannot automatically reduce Tg if the stubs and/or modules

involve nondeterminism (e.g., values based on the system clock, concurrency).

We assume S:. is computed as an extension of the previous algorithm, making this algorithm
relatively simple. Note the following implication for the driver (actually a set of drivers) Dg

used for testing E.

D;2(D,| T#D)

4.1. Program-based versus Specification-based Testing

So far, we have ignored the questions of how the tests are produced and how a test suite is
determined to be "adequate" according to some standard. These questions can be answered in
two different ways, following the two divergent forms of test case coverage that have been
proposed [9}, program-based and specification-based. Program-based testing implies inspection
of the source program and selection of test cases that together cover all possibilities, where the

possibilities might be statements, branches, control flow paths or data flow paths. In practice,
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some intermediate measure such as essential branch coverage [1] or feasible data flow path
coverage [5] is most likely to be used, since the number of possibilities might otherwise be
infinite or at least infeasibly large.

In the case of program-based testing, the test suite for each EDB would consist of the new tests
for the module(s) introduced by the EDB, plus additional tests to deal with the combinatorics
between the paths through these modules and the paths through the modules at the next lower
level of the program. The INFUSE notion of dependency-order hierarchy thus fits well with
program-based testing, since the massively connected modules are tested early. However,

particular program-based testing tools (such as Asset [6]) might require a different ordering.

Unlike program-based testing, specification-based (‘black-box’) testing does not consider the
source program. It instead addresses the (functional and non-functional — for instance,
performance) specification of the system, and hopefully the specifications of its subsystems and
individual modules. The current state of the art permits automatic test case generation and/or
test adequacy determination for only a few special cases — for example, mathematical
subroutines [23]. In the general case, the best that can be done beyond auditing is to cross-
reference tests with portions of the design document [16).

The INFUSE dependency-order hierarchy may not be the best for specification-based testing.
There is typically a design hierarchy developed from the specification, where the specification-
based tests are associated with the units of this design. Even though the design hierarchy often
implies the initial interdependencies among modules, and thus the initial dependency-order
hierarchy, the two may not be very similar after a sequence of changes. But INFUSE does not
require a dependency-order hierarchy; the clustering component of the system can be replaced
with some other mechanism for partitioning the change set. INFUSE still uses the same rules to
determine whether or not to apply regression tests at each level of the hierarchy, independent of
how the hierarchy is derived.

S. Conclusions

We have previously reported the partitioning of a change set into a hierarchy of experimental
databases according to the strengths of interdependencies among modules. We have also
described a suitable clustering algorithm and described how to do consistency checking in this

context. This paper presents our more recent work on extending INFUSE from compile-time to
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execution-time crowd control, that is, to integration testing for large scale software projects. The

new contributions of this paper are:
e A formalization of integration testing.

¢ A framework for integration testing management.
¢ Semi-automated support for test harness construction.

¢ Semi-automated support for test suite selection.

There has been much previous research on testing strategies and tools as they relate to
programming-in-the-small [31], and some work on integration of subroutines [8]. INFUSE is to
our knowledge the only system that applies the results of such research to large scale software

systems.
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Abstract

Oue of the primary advantages frequently cited for object-oriented programming is the inheritance of
reusable code from superclasses. It is commonly assumed that properly constructed reusable units such
as abstract data types and classes can be tested once in isolation and reused without retesting in a wide
variety of contexts. Although this is intuitively appealing, it turns out to be a false assumption for
certain widely accepted testing criteria.

In thus article, we consider the adequate testing of programs written in object-oriented languages. We
explain the axioms of adequate testing developed in the testing community, discuss their application to
specification-based and program-based testing, and examine their implications for object-oriented
programming. Contrary to one’s intuition, we discover that, in the general case, inberited code must be
retested in most contexts of reuse. We illustrate this by applying the adequacy axioms to encapsulation
and single inheritance, overriding of methods, and multiple inheritance, respectively.
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1. Introduction

Brooks, in his paper '‘No Silver Bullet: Essence and Accidents of Software
Engineering’’ (3], states:

Many students of the art hold out more hope for object-oriented programming than
for any of the other technical fads of the day. I am among them.

We are among them as well. However, we have uncovered a flaw in the general
wisdom about object-oriented languages — that ‘‘proven’’ (that is, well-understood,
well-tested and well-used) classes can be reused as superclasses without retesting the
inherited code. On the contrary, inherited methods must be retested in most contexts
of reuse in order to meet the standards of adequate testing. In this paper, we prove this
result by applying test adequacy axioms to certain major features of object-oriented
languages — in particular, encapsulation in classes, overriding of inherited methods,
and multiple inheritance pose various difficulties for adequately testing a program.
Note that our results do not indicate that there is a flaw in the general wisdom that
classes promote reuse (which they in fact do), but that some of the attendant

assumptions about reuse are mistaken (that is, those conceming testing)

Our past work in object-oriented languages has been concermed with multiple
inheritance and issues of granularity as they support reuse [10,11]. Independently, we
have developed several technologies for change management in large systems
(12,14,20] and recently have been investigating the problems of testing as a component
of the change process [13], especially the issues of integration and regression testing.
When we began to apply our testing approach to object-oriented programs, we
expected that retesting object-oriented programs after changes would be easier than
retesting equivalent programs written in conventional languages. Our results, however,
have brought this thesis into doubt. Testing object-oriented programs may still tum out
to be easier than testing conventional-language programs, but there are certain pitfalls
that must be avoided.

First we explain the concepts of specification- and program-based testing, and describe
criteria for adequate testing. Next, we list a set of axioms for test data adequacy
developed in the testing community for program-based testing. We then apply the
adequacy axioms to three features common to many object-oriented programming



languages, and show why the axioms may require inherited code to be retested.

2. Testing

By definition, a program is deemed to be adequately tested if it has been covered
according to the selected criteria. The principle choice is between two divergent forms
of test case coverage reported by Howden [9]: specification-based and program-based

testing.

Specification-based (or ‘‘black-box’’) testing is what most programmers have in mind
when they set out to test their programs. The goal is to determine whether the program
meets its functional and non-functional (for example, performance) specifications. The
current state of the practice is informal specification, and thus informal determination
of coverage of the specification is the norm. For example, tests can be cross-
referenced with portions of the design document [19], and a test management tool can
make sure that all parts of the design document are covered. Test adequacy
determination has been formalized for only a few special cases of specification-based
testing — most notably, mathematical subroutines [23].

In contrast to specification-based testing, program-based (or ‘‘white-box’") testing
implies inspection of the source code of the program and selection of test cases that
together cover the program, as opposed to its specification. Various criteria have been
proposed for determining whether the program has been covered — for example,
whether all statements, branches, control flow paths or data flow paths have been
executed. In practice, some intermediate measure such as essential branch coverage (4]
or feasible data flow path coverage (5] is most likely to be used, since the number of
possibilities might otherwise be infinite or at least infeasibly large. The rationale here
is that we should not be confident about the correctness of a program if (reachable)

parts of it have never been executed.

The two approaches are orthogonal and complimentary. Specification-based testing is
weak with respect to formal adequacy criteria, while program-based testing has been
extensively studied [6]. On the one hand, specification-based testing tells us how well
it meets the specification, but tells us nothing about what part of the program is
executed to meet each part of the specification. On the other hand, program-based
testing tells us nothing about whether the program meets its intended functionality.



Thus, if both approaches are used, program-based testing provides a level of
confidence derived from the adequacy criteria that the program has been well tested
whereas specification-based testing determines whether in fact the program does what
it is supposed to do.

3. Axioms of Test Data Adequacy

Weyuker in ‘‘Axiomatizing Software Test Data Adequacy’’ [29] developed a general
axiomatic theory of test data adequacy and considers various adequacy criteria in the
light of these axioms. Recently, in ‘‘The Evaluation of Program-Based Software Test
Data Adequacy Criteria’’ [30], Weyuker revises and expands the original set of eight
axioms to eleven. The goal of the first paper was to demonstrate that the original
axioms are useful in exposing weaknesses in several well-known program-based
adequacy criteria. The point of the second paper is to demonstrate the insufficiency of
the current set of axioms, that is, there are adequacy criteria that meet all eleven
axioms but clearly are irrelevant to detecting errors in programs. The contribution of
our paper is that, by applying these axioms to object-oriented programming, we expose
weaknesses in the common intuition that programs using inherited code require less

testing than those written using other paradigms.

The first four axioms state:

- Applicability. For every program, there exists an adequate test set.

- Non-Exhaustive Applicability. There is a program P and test set T such that
P is adequately tested by T, and T is not an exhaustive test set.

+ Monotonicity. If T is adequate for P, and T is a subset of T' then T s
adequate for P.

- Inadequate Empty Set. The empty set is not an adequate test set for any

program.

These (intuitively obvious) axioms apply to all programs independent of which
programming language or paradigm is used for implementation, and apply equally to
program-based and specification-based testing.



Weyuker's three new axioms are also intuitively obvious.

- Renaming. Let P be a renaming of Q. then T is adequate for P if and only if
T is adequate for Q.

« Complexity. For every n, there is a program P, such that P is adequately
tested by a size n test set, but not by any size n-1 test set.

- Statement Coverage. If T is adequate for P, then T causes every executable
statement of P to be executed.

A program P is a renaming of Q if P is identical to Q except that all instances of an
identifier x of Q have been replaced in P by an identifier y, where y does not appear in
Q, or if there is a set of such renamed identifiers. The first two axioms are applicable
to both forms of testing; the third applies only to program-based testing. The concepts
of renaming, size of test set, and statement depend on the language paradigm, but this
is outside the scope of this article.

4. Antiextensionality, General Multiple Change, Antidecomposition, and
Anticomposition Axioms

We are interested in the four remaining (not so obvious) axioms: the
antiextensionality, general multiple change, antidecomposition and anticomposition
axioms. These axioms are concemed with testing various parts of a program in
relationship to the whole and vice versa, and centain of them apply only to program-
based and not to specification-based adequacy criteria. They are, in some sense,
negative axioms in that they expose inadequacy rather than guarantee adequacy.

Antiextensionality. [f two programs compute the same function (that is, they are
semantically cluse), a test set adequate for one is not necessarily adequate for the
other.

There are programs P and Q such that P = Q, [test set] T is adequate for P, but T

is not adequate for Q.

This is probably the most surprising of the axioms, partly because our intuition of
what it means to adequately test a program is rooted in specification-based testing. In



specification-based testing, adequate testing is a function of covering the specification.
Since equivalent programs have, by definition, the same specification [22], any test set
that is adequate for one must be adequate for the other. However, in program-based
testing, adequate testing is a function of covering the source code. Since equivalent
programs may have radically different implementations, there is no reason to expect a
test set that, for example, executes all the statements of one implementation will

execute all the statements of another implementation.

General Multiple Change. When two programs are syntactically similar (that is, they
have the same shape), they usually require different test sets.

There are programs P and Q which are the same shape, and a test set T such that
T is adequate for P, but T is not adequate for Q.

Weyuker states: ‘‘Two programs are of the same shape if one can be transformed into
the other by applying the following rules any number of times: (a) Replace relational
operator rl in a predicate with relational operator r2. (b) Replace constant cl in a
predicate or assignment statement with constant c2. (c) Replace arithmetic operator al
in an assignment statement with arithmetic operator a2.”’ Since an adequate test set
for program-based testing may be selected, for example, to force execution of both
branches of each conditional statement, new relational operators and/or constants in the
predicates may require a different test set to maintain branch coverage. Although this
axiom is clearly concemed with the implementation, not the specification, of a
program, we could postulate a similar axiom about the syntactic similarity of
specifications, as opposed to source code.

Antidecomposition. Testing a program component in the context of an enclosing
program may be adequate with respect to that enclosing program but not necessarily

adequate for other uses of the component.

There exists a program P and component Q such that T is adequate for P, T' is
the set of vectors of values that variables can assume on entrance to Q for some t
of T.and T' is not adequate for Q.

This axiom characterizes a property of adequacy as well as an interesting property of
testing — that is, a program can be adequately tested even though it contains



unreachable code. But the unreachable code remains untested, adequately or
otherwise. The degenerate example is that in which Q is unreachable in P and T’ is
the null set. By the Inadequate Empty Set axiom of the previous section, T’ cannot be
adequate for Q. In the more typical case, some part of Q is not reachable in P but is
reachable in other contexts; hence, T’ will not adequately test Q. While this axiom is
written in program-based terms, it is equally applicable to specification-based testing.
In particular, the enclosing program P may not utilize all the functionality defined by
the specification of Q and thus could not possibly test Q adequately.

Anticomposition. Adequately testing each individual program component in isolation
does not necessarily suffice to adequately test the entire program. Composing two

program components results in interactions that cannot arise in isolation.

There exist programs P and Q, and test set T, such that T is adequate for P, and
the set of vectors of values that variables can assume on entrance to Q for inputs
in T is adequate for Q, but T is not adequate for P;Q. [P;Q is the composition of
P and Q]

H % .

UL

Figure |

This axiom is counter-intuitive if we limit our thinking to sequential composition of P
and Q. Consider instead the composition illustrated in figure 1, which can be
interpreted as either P calls Q multiple times or P and Q are mutually recursive. In
either case, one has the opportunity to modify the context seen by the other in a more
complex manner than could be done using stubs during testing of individual

components in isolation.



If the composition of P and Q is in fact sequential, then the axiom is still true — just
less useful. The proof is by a simple combinatorics argument: If p is the set of paths
through P and q is the set of paths through Q, then the set of paths through P;Q may
be as large as p X q, depending on the form of composition and on reachability as
considered by the previous axiom. However, T applied to P;Q generates at most p
paths. A larger test set may be needed to induce the full set of paths. This is an issue
for specification-based as well as program-based testing when the specification
captures only what the program is supposed to do, not including what it is not
supposed to do.

5. Encapsulation in Classes

In this and the following two sections, we consider only abstractions of encapsulation,
overriding of inherited methods and multiple inheritance, respectively, rather than
concemn ourselves with the details of specific object-oriented languages, such as
Smalltalk-80 (7], Flavors (18], CommonLoops [1] and C++ [28].

Encapsulation is a technique for enforcing information hiding, where the interface and
implementation of a program unit are syntactically separated. This enables the
programmer to hide design decisions within the implementation, and to narrow the
possible interdependencies with other components by means of the interface.
Encapsulation encourages program modularity, isolates separately developed program
units, and restricts the implications of changes. In particular, if a programmer changes
the implementation of a unit, leaving the interface the same, other units should be
unaffected by those changes. Our initial intuition, grounded in specification-based
testing, is that we should be able to limit testing to just the modified unit. However,
the anticomposition axiom reminds us of the necessity of retesting every dependent
unit as well, because a program that has been adequately tested in isolation may not be
adequately tested in combination. This means that integration testing is always

necessary in addition to unit testing, regardless of the programming language

paradigm.

Fortunately. one ramification of encapsulation for testing is that the dependencies tend
to be explicit and obvious. If a programmer changes only the implementation of a

unit, he need only retest that unit and any units that explicitly depend on it (call it, use



its global variables, etc), as opposed to the entire program. Similarly, if the
programmer adds a new unit, he need only test that unit and those existing units that
have been modified to use it (plus unmodified existing units that previously used a
different unit that is now masked due to a naming conflict).

One would assume that the classes of object-oriented languages would exhibit this
behavior, so that it would be both necessary and sufficient to retest those classes
explicitly dependent on a changed class as well as the modified class itself. We would
expect that, when a superclass is modified, it would be necessary to retest all its
subclasses since they depend on it in the sense that they inherit its methods. What we
don’t expect is the result of the antidecomposition axiom — that, when we add a new
subclass (or modify an existing subclass), we must retest the methods inherited from
each of its ancestor superclasses. The use of subclasses adds this unexpected form of
dependency because it provides a new context for the inherited components — that is,
the dependency is in both directions where we thought it was only in the one
direction.

Class C:
Vanables: v, .
Methods: J, . . .

J initializes v to 0

Class D:
Vanables: . . .
Methods: K, . . .
K initializes v to 1

Figure 2

For example, consider a class C with method J; we have adequately tested J with
respect to C. We now create a new class D as a subclass of C; D does not replace J
but inherits it from C. According to the antidecomposition axiom, it is necessary to
retest J in the context of class D. There may be new errors when in the context of D,
with its enlarged set of methods and instance variables — and perhaps subtly different



local meanings for instance variables inherited from C. The bug illustrated in figure 2
(the conflicting assumptions about instance variable v) would not be detected without
retesting J in the context of D.

In order to make this example more concrete, consider C to the class
WindowManager, D to be the class SunWindowManager, J is the method
InitializeScreen, and K is SetScreenBackground. J initializes to a blank screen, while
K puts a digitized picture in the background. There are obvious problems if K is
invoked first and then J, and vice versa.

There is one case where adding a new subclass does not require retesting the methods
inherited from the superclass in order to meet the adequacy axioms. This is when the
new subclass is a pure extension of the superclass, that is, it adds new instance
variables and new methods and there are no interactions in either direction between the

new instance variables and methods and any inherited instance variables and methods.

At least one object-oriented language has solved this problem in the general case, by
prohibiting unexpected dependencies: CommonObjects {25,26] removes all implicit
inheritance — that is, inherited methods must be explicitly invoked. This, in effect,
inserts ‘'firewalls'’ between each superclass and its subclasses, in the same sense that
encapsulation inserts firewalls between a class and its clients.

6. Overriding of Methods

Almost all object-oriented languages permit a subclass to replace an inherited method
with a locally defined method with the same name, although some support a subtyping
hierarchy that restricts the method to have the same specification [24]. In either case,
it is obvious that the overriding subclass has to be retested. What is not so obvious is
that a different test set is often needed. This is expressed by the antiextensionality
axiom: although the two methods compute semantically close functions, a test set

adequate for one is not necessarily adequate for the other.

For example, consider figure 3 where class C has subclass D, and method M is defined
in C but not in D. Say there exists an object O that is an instance of class D, which
receives a message containing the method selector M; M applied to O has already
been adequately tested. Now we change class D to add its own method M, which is
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Class C: Class C:
Methods: M, . .. Methods: M, . . .
.............. >
Class D: Class D:
Methods: . . . Methods: M, . ..
Figure 3

similar to C.M (by ‘“C.M’’, we mean the method M from superclass C). Obviously,
we need to retest class D. Intuitively we would expect that the old test data would be
adequate, but the antiextensionality axiom reminds us that it may not be adequate.
Thus, we may have to develop new test cases for two reasons. First, remember that
program-based testing considers the details of the program formulation, attempting to
cover, for example, each statement or branch. The test data would necessanily be at
least slightly different for C.M and D.M if the formulation in terms of statements and
branches were different; the test data would probably be very different if CM and
D.M used different algorithms. Second, it is very likely that the underlying motivation
for overriding a method affects not only the intemnal structure of the overriding method
but its external behavior as well — that is, it changes the functional specification.
Hence, in addition to test cases to exercise the different structure of the method, we
need test cases to test the different specification of the that method.

More concretely, consider C to be the class WindowManager, D to be the class
SunWindowManager, C.M to be the method RefreshDisplay that rewrites an entire
bitmapped screen, and D.M to be the method RefreshDisplay that repaints only the
**damaged’" part of a bitmapped screen. In this case, the specifications as well as the
implementations of the two methods might be different, in which case different test

sets would be required for specification-based as well as program-based testing.

I[n the previous section, we treated the two-way dependency between classes and
superclasses and explained how the antidecomposition axiom requires testing of
inherited methods in each inheriting context as well as the defining context. What we
did not discuss there was the application of the antiextensionality axiom to this
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additional testing: different test sets may be needed at every point in the ancestor
chain between the class defining the overriding method and its ancestor class defining
the overridden method.

Class C:
Methods: M, N, . ..

( M uses N )

Class D:
Methods: M, . ..

( M uses N from C )

Class E:
Methods: N, . ..

( M from D uses N from E)

Figure 4

In figure 4, class C has subclass D, which in tum has subclass E; C has methods M
and N; D has method M, which uses method N (from C): class E does not have
method M but does have method N (overriding the N inherited from C). The
antiextensionality axiom reminds us that we need different test data for M with
respect to each of the classes C, D, and E. This is obvious with respect to instances
of C and D, since they invoke distinct methods M in response to the message M; even
if these methods are semantically close, test data adequate for one may not be
adequate for the other. This is less obvious with respect to D and E, since they invoke
the identical method M. But when we consider that M calls C.N for D whereas it
calls EN for E, it becomes clear that different test sets are required since the
formulation and algorithms used by C.N and E.N are likely to be different in
functionality as well as structure.
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Again, more concretely, let class C be WindowManager where method M is
RefreshDisplay and method N is DrawCharacter, using bitmapped fonts; let class D be
SunWindowManager where method M is D’s replacement for the method
RefreshDisplay; and let class E be NeWS where method N is E’s replacement for the
method DrawCharacter, using Postscript fonts.

7. Muitiple Inheritance

Class C: Class B:
Methods: M, . .. Methods: M, . ..
Class D:
Methods: . . .
I Class B: Class C:
i Methods: M, . . . Methods: M, . . .
Class D:
Methods: . . .
Figure 5

Some, but not all, object-oriented languages support multiple inheritance [2], where
each class may have an arbitrary number of superclasses. The so-called ‘‘multiple
inheritance problem’’ - arises when the same component may be inherited along
different ancestor paths. Solutions to this problem typically define a precedence
ordering, which linearizes the set of ancestors so that there is a unique selection (or a
unique ordering if the semantics of the language are such that all conflicting inherited
methods must be invoked) [27]. These solutions, unfortunately, cause very small
syntactic changes to have very large semantic consequences. Fortunately, the general
multiple change axiom reminds us that programs that are syntactically similar usually
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require different test sets.

In figure 5, class D lists superclasses C and B, in that order, and the language imposes
the precedence ordering C, B. Method M is defined by both C and B but not by D.
Class D is then changed so that the ordering of the superclasses is B and C (meaning
that the precedence ordering is B, C). Not only must class D be retested, since it now
uses B.M rather than C.M, but most likely a different set of tests must be used. Since
C and B are independent, and perhaps developed separately, there is no reason that
B.M would be either syntactically or semantically similar to C.M — and even if it
were, the antiextensionality and general multiple change axioms remind us that even

then different test sets may be necessary.

As a concrete realization of this example, let class C be TextWindowManager where
method M is RefreshDisplay (that repaints the window from a text description), let
class B be GraphicsWindowManager where method M is RefreshDisplay (that repaints
the window from a bit-mapped representation), and let class D be

SunWindowManager.
I Class S1: Class S2: Class S3: Class S4:
I Methods: M, N, . .. Methods: N, . .. Methods: N, . . . ! Methods: M, N, . ..
M Class §: |
Methods: ‘; ‘ Methods: . .. |
| |
Class T: :
‘ Methods: . . . ’
! !
Figure 6

The example in figure 6 shows the inherent compounding effects of multiple

inheritance.

This implication of the general multiple change axiom is probably the most
significant result of applying the test data adequacy axioms to object-oriented
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languages, but also the least surprising to the object-oriented languages community.
Multiple inheritance is already widely recognized as both a blessing and a curse
[15,16,17].

8. Conclusions

Inheritance is one of the primary strengths of object-oriented programming. However,
it 1s precisely because of inheritance that we find problems arising with respect to

testing.

« Encapsulation together with inheritance, which intuitively ought to bring a

reduction in testing problems, compounds them instead.

« Where non-inheritance languages make the effects of changes explicit, inheritance
languages tend to make these effects implicit and dependent on the various
underlying, and complicated, inheritance models.

Brooks concludes his section on object-oriented programming:

Nevertheless, such advances can do no more than to remove all the accidental
difficulties from the expression of the design. The complexity of the design itself is
essential, and such artacks make no change whatever in it. An order-of-magnitude
gain can be made by object-oriented programming only if the unnecessary type-
specification underbrush still in our programming language is itself nine-tenths of

the work involved in designing a program product. [ doubt it.

While object-oriented programming clears away much of the accidental underbrush of
design, we have noted ways in which it adds to the accidental underbrush of change
management and testing. We conclude that there is a pressing need for research on
testing of object-oriented languages. We have begun work on this in the context of a
data-oriented debugger for concurrent object-oriented languages [8] and in the context

of semantic analysis (applying the approach of Inscape [21] to C++).
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