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SIAM Abstract plexity theory, and identify the reason for this
sudden progress. For many years, NP was viewed

L Dunngthehltfevyan,unprwedmu‘sdpmgm .- . black bax. During the last few
vies bas been made in structural complexity theory; . we have i to open that box. C )

class inclusions and relativized separations were ing and combinatorial techniques have been used
2 discovered, and hxe:a.rdna collapsed. We sur- to explore, and exploit, the strengths and weak-

: vey this progress, highlighting the central role of of ) inistic computation.

137. counting techniques. We also present a new result
wure whose proaf demonstrates the power of combina-

torial arguments: there is & relativized world in
and which UP has no Turing complete sets. We survey recent progress on collapsing hi-

erarchies, establishing complexity class contain-
ments, and proving relativized separations and

1 Introduction non—completeness results.

Two years ago, the hunting season opened.
Quickly, the strong exponential hierarchy fell, fol-
lowed by the linear-space, logspace, and logspace
oracle hierarchies. Soon the LBA problem, a ven-
erable precursor of P =7 NP, bad been added to
the game sack. Today, open season has been de-

The second part of this paper—Section $—
presents a result that extends the use of counting
arguments t0 a new area—proving Turing non-
completeness. We show that there is a relativized

clared on P =? NP. Many reasonable men express
confidence that P =? NP will be resolved within
& decade—a view that only a few years ago would
have been heretical.

In the first part of this paper, we survey some
highlights of recent progress in structural com-

*Supported by NSF grant CCR-8809174 and a
Hewlett-Paclkard Corporation equipment grant.

world in which the eryptographic class UP, unique
polynomial time, has no Turing complete sets.
This extends a long line of research on complete-
ness that has been pursued by Ambos-Spies, Hart-
manis, [nmerman, and Sipeer {Sip82,HI85 HHBS,
Amb88]. The goal of this research is to under-
stand the structure of complexity classes by de-
termining which classes have complete sets under
which reducibilities.




2 Recent Progress in Struc-
tural Complexity Theory

2.1 Collapsing Hierarchies and
Class Containments

The most notewarthy recent progress in struc-
tural complexity theory is the sudden callapee of
complexity hierarchies. The most surprising as-
pect of these collapees is the simplicity and ele-
gance of the techniques used. The LBA problem,
which remained open %D?Emty-ﬁve years, has &
four-page resolution. —en

The key technique in these collapses has been
the use of censws functions—functions that count.
Usually, census functions count the number of el-
ements in prefixes of & set having certain prop-
erties. Census functions are not new; Mabaney's
proof that NP bas no sparse complete sets unless
P = NP is based on the use of census information

We start by presenting two of the earlier of re-
cent uses of census functions to explore class in-
clusions. The first shows the relationship between
Turing reductions and truth-table reductions, and
the second strengthens s long line of “small circuit
[KL8OJ" results.

PNPIedd indicates the class of languages accepted
by polynomial-time Turing machines that make
O(logn) calls to an NP oracle. PI%, ., indi-
cates the class of languages that are polynomial-
time truth-table reducible to NP [LLS75].

Theorem 2.1 [Hem87c]

PNl = PNt -

The proof simply uses binary search to find, in
O(log n) queries to NP, the number m of queries

of the truth-table reduction that receive the oy
ua"yu,'undthenmelonefunhermm
to guess and check which m queries are answereq
“yea" and determine if the truth-table system .
cepla.

Proof Sketch S <, ... NP means there
s a polynomial-time machine that answers “; ¢
ST by making queries to SAT [GJ79], such that
the queries asked of SAT are independent of the
answers received [LLS75]. To prove the C part,
we have P perform binary search, using its NP
oracle, to find the number of yes answers, and
with one final query to the oracle have NP gues
which queries receive yes answers and simulate
the action of the truth-table reducer. The 2 part
it trivial—the truth-table reducer asks all queries
that might be formed by any of the n®!) possible
sets of oracle answers of the run of PNPIed. ||

Detailed investigations of the interleaving of
truth-table, oracle query, and boolean hierarchies
can be found in [KSW86,AG87,Bei87).

The next example, due to Kadin, strengthens
theorems of Karp, Lipton, Long, and Mahaney
[KL80,Mah82,Lon82). The Karp-Lipton “small
circuits” theorem (so-called as the hypothesis 18
equivalent to “NP has small circuits™) states:

Theorem 2.3 [KL80] If there is a sparse’ set
S such that NP C P%, then NP'F = PH, where
PH is the polynomial hierarchy.

For the case of simple sparse sets, this was ex-
tended by Mahaney.

‘AmAhcpcneifithuonlypdymmi'
ally many elements of length at most n. That
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Theorem 3.3 [MahB83)] If there is a sparse set
5 € NP such that NP ¢ P, then P*F = PH.

Kadin observed that Theorem 2.3 can be
strengthened using census functions.

Theorem 2.4 [Kad87] If there is a sparse set
5 € NP such that NP C P¥, then PNPPed — PH.

Proof Sketch Let censuss(1') equal the num-
ber of elements in S of length at most 1. If there is
s sparse set S as described in the theorem, then
3 P machine can make O(logn) calls to an NP
oracle to find—via binary search—censuss(1®).
It is easy to see that, with O(logn) NP queries
to calculate the census function, and one further
query (to guess exactly which strings are in § up
to a certain length), PNPietl caqn simulate PS. So,
using Theorem 2.3, PH € PNP C P(PY) ¢ PS ¢
A A |
The first hierarchy to fall under attack by cen-
sus functions was the strong exponential hierar-
chy. Nondeterministic exponential time, NE, is
defined as | | NTIME[2™}. The following theorem
states tha?&u strong exponential hierarchy col-
lapses.

Theorem 2.5 ([Hem87c¢]
PNE=EUNEUNPNEYNPN™ ..

This follows immediately from the lemma that
PNE = NPME. The collapse was first proven by
& census argument that—level by level in the
NPME computation tree—finds the number of yes
answers to queries, and yields strengthenings of
Theorem 2.5. Schoning and Wagner [SW8S| de-
veloped the following elegant proof: consider an
NP machine with an NE oracle A. The NP ma-
chine can query, for some k. at most n' strings

in A. Note, however, that PN® can, by binary
search, compute the function census,, and thus
simulate NPHE,

The strong exponeatial hierarchy is a time hi-
erarchy. However, the same techniques apply also
to space hierarchies. The linear-space hierarchy,
the logspace hierarchy, and the logspace hierar-
¢chy all collapsed under the application of census
techniques [Tod87,LIK87,SW8S8]. These space re-
sults were strengthened by Sselepcsényi and Im-
merman [Sze87,Imm87).

Theorem 2.6 [Sse87,Imm87] For any space
constructible S(n) > logn, NSPACE[S(n)] =
co — NSPACE(S(n)).

The proof has been widely circulated. It uses
mductive coxnting—iteratively counting the num-
ber of reachable configurations at each distance
from the start of 8 co-NSPACE(S(n)] computa-
tion. In part, this comes full circle to the iterative
use of census used to collapse the strong exponen-

Inductive counting has since been used to show
that the class of languages that logspace reduce to
some context-free language, LOG(CFL), is closed
under complement.

Theorem 2.7 [BCRTSS)
LOG(CFL) = co-LOG(CFL).

A number of class containment results have
been proven recently using the ability of nonde-
terministic machines to make extra copies of ac-
cepting paths. This approach has been used to
evaluate the complexity of classes in the count
ing hierarchy—sa hierarchy based on NP machines
with altered acceptance mechanisms [CH86,GW,
CGH®b]. More recently, this approach has been




used to show that parity palynomial time is pow-
erful enough to contain FewP—the subset of NP
languages that are sccepted by machines that
Dever have many accepting paths.
Definition 2.8

1. [PZ838] (Parity Polynomial Time) @P =
{L| there is a nondeterministic polynomial-
time Turing machine N such that 2 € L if
and only if N(z) has an odd number of ac-
cepting paths}.

2. [All868] FewP = {L| there is & nondeter
ministic polynomial-time Turing machine N
such that (1) 2 € L if and only if N(z)
has at least one accepting path and (2)
(k) ¥z)(N(z) bas at most |z|* + k accept-
ing paths]}.

3. [CH87] Few is the class of all lan-
guages L such that there is a nondeter-
ministic polynomial-time Turing machine
N, a polynomial-time computable predicate
Q(, ), and a palynomial ¢(), such that (1)
z € L f and only if Q(z, ||{N(z)|]), and (2)
(Vs)(IIN(2)Il < g(lz])], where ||N(z)|| de-
notes the number of accepting paths of N(z).

Theorem 2.9 (CH87] &P 2 Few.
Corollary 2.10 [CH87] &P 2 FewP.

A direct proof of the corollary is immediate.
Given & FewP machine, N,, that on inputs of
length n never has more than n* 4 k accepting
paths, we construct a new machine N, a noa-
deterministic machine with the parity acceptance
mechanism, so that N(z) has a path for each path
of N{z), and a path for each pair of paths of
Niz), ..., and & path for each (n* + k)-tuple of

paths of N{z). &chpthd”(z)vﬂlw;
and only if all of the paths that it represents i
Ni{z) are accepting paths. Since Tisicwei ({):
2~ 1 odd exactly when j # 0, it follows thy
FewP ¢ &P. Tbe]xodthnl"ewgephka.
bit more work, but follows the same lines.

2.2 Separations

The previous section described a number of cal-
lapsing hierarchies and class containments. Hier-
archy separstions, or even class separations, re.
main elusive. However, a number of hierarchies
have been separated in relativized worlds. These
include the boolean hierarchy, the counting hier-
archy [CGH*b], and, most importantly, the paly-
nomial hierarchy.

Definition 2.11

1. Boolean Hierarchy [Wec85] L27 =P.
TPH = NP. 87 = {L|(3L' € NP)3L" ¢
ML =L'-L"),i>1.

2. Polynomial Hierarchy [StoT7] £} =P.
I =NP. £? = NP, i > 1.

Theorem 2.12 [CGH®a)

1. There is a relativized world A in which
EEH(A) # SPH(A) # - .

2. For each k there is a relativized world A
in which £37(4) # - # £ff(4) =
SR = -

Theorem 32.13 [Ya0835,Ko088]

1. There is a relativized world A in which
o(A) # Z}(A) # -

2. For each k there is a relativized world A in

which E5(A) # --- o I{(4) = I],,(4) =
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complexity classes—NP, coNP, PSPACE, etc.—
have many-one complete sets that help us study
them.

Sipser noted, bowever, that some classes may
lack complete sets [Sip82]. His paper sparked
much research into which classes bhave complete
languages, and what strengths of completeness
results (e.g., many-one or Turing) can be ob-
tained. Of course, if P = PSPACE, then all
classes between P and PSPACE have many-one
complete languages. Thus, incompleteness re-
sults are typically displayed in relativized worlds
[BGS75,Sip82).

Sipser showed that there are relativized worlds
in which R and NP [\ coNP lack many-one com-
plete languages. Hartmanis and Hemachandrs
showed a relativized world in which UP—unique
polynomial time (Section 3.1}—lacks many-one
complete languages, and noted that if UP does
bave complete languages then UP has complete
languages with an unusually simple form—the in-
tersection of SAT with a set in P [HHS6].

One way of strengthening the above theorems
would be to show that these classes lack complete
sets even with respect to reducibilities more flexi-
ble than many-one reductions, e.g., k-truth-table,
positive truth-table, truth-table, and ultimately
Turing reductions {LLS75]. Hartmanis and Im-
merman, exploiting an insightful characterization
of Kowalcsyk [Kow84), showed that NP () coNP
has many-one complete languages if and only if
it has Turing complete languages [HISS]. An ele-
gant generalisation of their result by Ambos-Spies
shows that for any class C closed under Turing
reductions, ¢ has Turing complete sets if and
only if C has many-cne complete sets [Amb88].

In particular, it follows from the result of Sipee;
[Sip82]thattha-einard;tiv'ized'orldAinwm
NP ] coNP4 lacks Turing complete sets [Higs,
Amb88). Similarly, since PP — Bpp [Zacss),
from [HHB86|'s proof that BPP lacks many-oge
mpktemhmmhﬁvwmldsitfolbm
that it also may lack Turing complete sets.

Theorem 2.20 There is a relativized world A in
which BPP“ lacks Turing complete sets.

However, Ambos-Spies’s result does not apply
to UP or any other class not known to be closad
under Turing reductions. Furthermare, the tech-
nique used to show that UP may lack many-one
complete languages was an indirect proof via the
contradiction of an enumemation condition that
characterized the existence of many-one complete
languages [HH86]—and does not generalize to the
case of Turing completeness.

Section 3 constructs an oracle A for which UP*
contains no Turing complete sets. Our proof ex-
ploits the limited combinatorial control of nonde-
terministic machines to trivialize or corrupt can-
didates for Turing completeness. This approach
extends our theme: the exploitation of the combi-
nstorics of the nondeterministic acceptance mech-
anism.

It follows immediately from our proof that there
is a relativized world A in which UP4 lacks com-
plete languages under all reducibilities more re-
strictive than Turing reductions.
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Complete Languages?

3.1 Definitions

Deflnition 3.1 [Val76]

(Unique Polynomial Time) UP = {L| there is
s pondeterministic polynomial time Turing ma-
chine N such that L = L{N), and for all z, the
computation of N(z) has at most one accepting
path}. We say that a machine N that for every
input has at most one accepting path is categor-
iesl

UP captures the power of uniqueness; UP is
the class of problems that have (on some NP ma-
chine) unique witnesses. That is, if there is an
NP machine N accepting L and for every input =
the computation N(z) bas at most one accepting
path (i.e., N s a categorical machine), then we
sy L € UP.

Recently, UP has come to play a crucial role
in both cryptography and structural complexity
theory. In cryptography, Grollmann and Selman
have shown that one-way functions® exist if and
only if P 3# UP, and one-way functions whose
range* is in P exist if and only if P # UP N coUP.
Thus, we suspect that P 3 UP because we suspect
that one-way functions exist. In structural com-
plexity theory, a conjecture that “P ¥ UP =
there exist non-p-womorphic NP-complete sets”
was recently refuted in a relativized world [HH87).
T IA function f is honestif (IE)(Vz)(|f(z)I*+k >
jz]] ({GS84], see also [Wat86]). A onc-way func-
tion is a total, single-valued, one-to-one, bonest,
polynomial time computable function f such that
£~ (which will be a partial function if range( f} #
T°) is not computable in polynomial time [GS&4].
‘Range(f) = Uere f(i):

For background, we first define Turing reduc-
tians and completeness in the real (unrelativised)
world.

Definition 3.2

1 5 <t 8 if S, ¢ P [GIT9).

2. L s <f-complete for UP if L € UP and every
set in UP Turing reduces to L (ie., (VS €
UP)(S <t L)).

If we wish to discuss Turing completeness in
relativised worlds, we must address the key ques-
tion: are the Turing reductions allowed access to
the oracle? Definitions 3.3.2 and 3.3.3 answer this
question “yes” and “no,” respectively.
Definition 3.3

1. 5 <34 S, if 5, C PHe4,

2. L <}*-complete for UPA if [L € UP* and
(VS € UP4)[S <§“ L]}

3. L is <}complete for UP* if [L € UP4 and
(¥S € UP4)(S <% L]).

We suggest that Definition 3.3.2 above is the
natural notion of relativized Turing completeness.
Adopting it, we prove that there is a relativized
world in which UP# has no <%“-complete sets.
However, for purposes of completeness results, the
different notions of relativised Turing reductions
stand or fall together.

Lemma 3.4 For any oracle A: [UP* has <}*-
complete sets if and only if UP has <}-complete
sets).

This is true since if B i <}“-complete for UP4,
then B @ A is <}-complete for UP4. The azalog
of Lemma 3.4 for many-ane reductions waa proven
by Sipeer [Sip82).
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The difference between Definitions 3.3.2 and
333 is exactly the difference between “full”
(3.3.2) and “partial” (3.3.3) relativization dis-
cumed in [KMRS6] and [Rog87, Section 9.3].
[KMRB88] describes how this distinction has had
a crucial effect on recent research asking if all
NP-complete sets are polynomially isomorphic
(Kur83,GJ86,HH87]. However, Lemma 3.4 indi-
cates that in our study of Turing completeness,
we need not be concerned with the distinction.

3.2 A Relativized World in Which
UP Lacks Turing Complete
Sets

This section sketches the construction of an or-
acle for which UP# has no Turing complete sets.
It follows immediately that UP# lacks complete
seta with respect to reductions more restrictive
than <34, such as truth-table reductions [LLS75),
bounded truth-table reductions [LLS75), ete.

Theorem 3.5 There is a recursive oracle 4 such
that UP4 contains no <}4-complete sets.

Corollary 3.6 There is a recursive oracle A such
that UP4 contains no:

1. <7-complete languages.

2. truth-table complete languages.

3. bounded truth-table complete languages.

4. [HH86] <, or <Z4-complete languages.

Let {N;} be » standard enumeration of nonde-
terministic polynomial-time Turing machines and
let {M;} be a standard enumeration of determin-
istic polynomial-time Turing machines. The ides
of the proof s as follows. We wish to show that

for no [ € UPA is UPA C P?, whichtuﬁeqby
Lemma 3.4. Each L in UP* is, by definition, ac.
cepted by a categorical machine (L = L(NA), NA
categorical). Our goal is to show that for each ;,
either

1. N2 is not categorical, or
2. (3L)(L, € UPA and £, ¢ PLUNY),

The second condition says that same UP4 lan-
guage does not Turing reduce to L{N). That is,
every Turing reduction fails on some value. Thus
it certainly suffices to show that for all i, either

1. N2 is not categorical or

2 (a) (Vi)32)z € Li o> z € LMAM)),
where L, = {(1*| (3B)[(n = (p:)*) A
BGv)llyl = n A y € A]]} and p; is the
ith prime, and

(b) t.' € UPA.

Note that we have specified L..

Briefly put, for each < 1, j >, we seek to find
& way of extending the aracle to make N pon-
categorical. Failing this, we argue that we can
choose our oracle in such a way as to determine
the answers to all oracle queries made by M;, and
still have the flexibility to diagonalize against L..
The crucial step is a combinatorial argument that
categorical machines which don't trivially accept
must reject on an overwhelming number of aracle
extensions.
Proof Sketch for Theorem 3.5

We wish to show that there is a relativised
world A where UP“ has no Turing complete lan-
guages, i.e.,

(VL € UPAYAL' € UP4)[L’ £54 L).

By Lemma 3.4it
(YL € UPA)(
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4:By Lerama 3.4 it suffices to show that

(YL € UPAY3L' € UP4)[L’ £% L}

Since each language in UP“ is accepted by at
Janst coe categorical machine, we can equivalently
show thet

(Vi)[(N# is noncategorical)v
(3L, € UPA)L: g5 LNM)).
This says that:

(¥i)[(N is noneategorical) vV

(3L.~ € UP‘)[L. ¢ PuN{‘)]]. e
Let requirement Rg,, ;> be
Ryt ()l € Lo oo = € LOMT™D)), where
L={1|@kan=g) A@lvi=nAyeal},
and p; is the sth prime.

Note that we satisfy ( » ¢) if we can satisfy for
all i the following, which simply (1) specifies the
L., (2) uses the fact that PX = J , L{MX), where
{M;} is » standard enumeration of polynomial

machines and without loss of generality M; runs in
time n' + i, and (3) notes that differing languages
must differ on some specific element.

1. N# is noncategorical, OR g
2. (V5)[R;,, is satisfied] and (L € UP#).% % %%

Our construction will go by stages. In stage
< 1, j > we will dther satisfy R;; or know that
NA is noncategocical.

Initially set A¢i,> = . We'll have A =
Ucwi> Acii>
Stage <i,j>: I N/ bas already been made
poncategorical, akip this stage and set Ac. )5 =
Adij>-1- Otherwise, choose a huge integer n that
is & power of the ith prime (i.e., 90 (3k 3 n = p}))
and is much larger than sny previously touched
length.

A legel extension of A j» will be cne that does
pot touch any string shorter than n, and that adds
strings to A, j> ounly st lengths that are powen
of pi.

If there is a legal extension A of A j5-; such
that for some y 3 |y| < (9 + j) + ¢ we have
thatN“(y)ilmtegtricd,‘ then chocse two
accepting paths of NA(y) and set Ac( ;> 1o be
Adij>1 tugnmtedtowwith.iontnm
quetied on those two paths and go to the next
stage.

Otberwise, we've failed to make NA<“” noo-
categorical, s0 we must try to satisfy require-
ment Re.,>. Our goal is to fizx the behavior of
MUY (1%) and yet heve enough flessbility left
umnﬁctl'ef«;orl'dtiuw.nh.
Thws we can disgonelise to insure that R jp 4
satisfied. Purthermore, unless we discover ¢ wey
of making N* noncstegoricsl, we'll put only one
string into A &t cach lengih p! thws insuring thet
L, eUPA

We simulate the behsvior of M,l‘(hﬂ‘“"’“)(l.),
and cach time M; makes an orecle query, we take
sction to control thet guery.

We use T, to indicate the set of strings of length
n to which the Ith query is oblivious. We'll even-
tuallylho'thntheﬂmlﬂlolmgethatthuc
must be at some strngin Ty N Ta N - - Ty
Action for the first query:

Run MM 7 (1%) until M; aska ite first
oracle query, ¢1-

Case 1: N“7"'(q,) sccepts. Freeze the ele-
meats aloag the accepting path, and proceed to
action for the second query. Set T = {z] |z| =n

$We could remove the bound on y's sise, but
this would make the construction nonrecursive.

it
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and 5 has not just been frozen}.

Case 2: N<“”~1(q,) rejects. We argue that there
are a huge number of strings of length n that can
be added to the oracle which will not change this
rejection. Let Ty = {3| n = |z| and the member-
ship of element 1 in A has not yet been determined
sad N2 g,) rejeca). Let t, = |ITi|. By
Lemma 3.7, t; > 2* — 8((n’ + 5)* + %),

Action for the ith query:

At this point, we've already determined the an-
swers to the first | — 1 oracle queries. We pro-
ceed analogously to the action for the first query
(except we respect—and use k of Lemma 3.7 to
account for—strings frozen from case 1 of earlier
queries, which causes the bounds on T} to weaken
slightly as | grows).

End of query sequence

Ovxr gosl was 10 fiz the responses to the queries
vhile leaving ourselves enough freedom to make
1* ¢ L. or 1" ¢ I;. as we like. We can now do
thet.

Each 7. is easily of size > 2*—n*%* Thus, since
each T, is a subset of the set of length n strings,
and since there are at most n’ + j T.'s, there is
some length natring s in LN T3 N N Ty,
By the definition of the T)'s, adding this string
to A¢.;>-1 will have no effect on any of the ora-

Aoy

cle responses. That is, M,"™ (1) accepts
if and only if MHM < 7TOUBN 10 et It
these do accept, choose i € A. Thus, 1* ¢ L, but
1* € LIMHM)), 00 requirement R, ,, has been
satisfied. On the other hand, if MX™ " 7)(1v)
rejects, choose i € A. Thus, 1* € L, but
1 ¢ L(MHM)), 4o requirement R, ,> bas been
satisfied.

End of Stage <1, ;>

" B S WATRE e A b gy et

Notethnifwenevuﬁndlnydm.ﬁns
N# noncategorical, then L, € UP* (because the
above procedure puts in only one string, i, at each
length important to L,) and (¥;){requiremnent
Reqj> is satisfled]. Thus (% * %%) is satisfied.
On the other hand, if we do find a way of mak-
ing NA noncategorical, then (* * %) is satisfied.®
Thus we have met requirements that are, by the
discussion following Corollary 3.6, sufficient to in-
sure that UP* has no <}“-complete languages.
]

In the proof, we referred to the following
lemma. Loosely, what the lemma says is that if
a machine tries to be categorical on all possible
oracle extensions and it rejects on the empty ex-
tension, then it must also reject on an overwhelm-
ingly large proportion of extensions that add ex-
actly ooe string.

Lemma 3.7 Let N2 be a nondeterministic Tur-
ing machine that runs in NTIME[n® +i). Suppose
NA(z) rejects, A has no strings of length |z}, and
k strings of length |z| have been designated as
forbidden from being added to the oracle A. Let
Rejectora, = {y|N*U)(z) rejects sad |y = x|
and y is not one of the k forbidden strings}. Then
cither [[Rejectors,|| > 2° — (k + 8(|z|* + ) or
there exists a set S such that (1) |[S||<2,(2) S
contains no forbidden string, (3) (Vv € S)[|w| =
|z{], and (4) N,AUS is noncategorical (in particu-
lar, it has more than one accepting path on input
z).

Proof Sketch for Lemma 3.7

®In this case [, may not be in UP#, but since
we have met condition (* * *), we don't care if
L, isin UPA
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sLat Acceptors, = {y| N;'U"(z) accepta and

i = |zl snd y is not one of the k forbid-
den sirings}. Suppose there are [ + & strings in
Acceptors,, and thus at least | usahle acceptors.
Bach acceptor v triggers exactly ooe accepting
path (otherwise, set S = {v} and we're done).
For each pair of distinct acceptors v, and v,, we
must have that v, is queried on the unique path on
which N4 U™ (2) accepts or o, is queried on the
unique path on which N,AU{"}(:) accepts (oth-
erwine N;‘U"'")(:) has two accepting paths so
set S = {v,, v,} and we're done). There are G)
candidate peirs of elements of Acceptors,, which
each threaten to make the machine noncategonical
when both are simultaneously added. Consider
just the set of paths, Paths, that accept for some
string added from Acceptors,. Clearly [/(n'+1) <
[[Paths|] < I. Each element v € Acceptors kills
the candidacy of at most (n' + 1)+ p, pairs, where
P~ is the number of occurrences of v along paths in
Paths. So the total number of killed candidates
is < ((n' +1)||Paths]|}(n* +1) + || Pathali(n' +1) <
I((n* +1) 4 (n* +1)). To avaid the existence of
8 set S as described in the lemma, we thus must
have (;) < I((n'+1)* +(n‘+1)). So easily we have
I<g(n®*+). 1

4 Conclusion

This paper surveyed recent progress in struc-
tural complexity theory, and suggested that
counting arguments have played a crucial role in
these advances. We proved, wing counting tech-
niques, that there is a relativited world in which
UP has no Turing complete languages.

Many related open problems remain. How

much furtber can counting techniques by pushed
in obtaining complexity hierarchy collapses, class
cootainments, and relativised separations? What
techniques might be used to separate complexity
classes?

This paper has surveyed just a few of the in-
teresting recent uses of counting. A great werni-
ety of applications and discussions of counting in
complexity can be found in [A1l85,CH88,Hems88,
Hem87b,Hem87a,5ch88,Sim77, Wagss).
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