User’s Manual for Pyramid Emulation
on The Connection Machine

Lisa Gottesfeld Brown
Qifan Ju
Cynthia Norman

CUCS-341-88

Department of Computer Science
Columbia University
New York, NY 10027

May 31, 1988

1 Introduction

This manual describes a set of functions for using image pyramids on the
Connection Machine. These functions are an extension of *LISP which
itself is an extension of COMMON LISP. The functions were designed to
work on the Connection Machine 2 of the Northeast Parallel Architectures
Center located at Syracuse University. The manual is organized as follows:

o description of pyramids

¢ naming conventions

getting started

global pyramid variables



pyramid primitives
e horizontal communications

vertical communications

pyramid display

pyramid input/output

2 Description of Pyramids

The routines described herein can be used to write *LISP programs for
vision algorithms which use multiresolution image pyramids to structure
and manipulate image data. The implementation is described in detail
in: Pyramid Algorithms Implementation on the Connection Machine by
Hussein Ibrahim; DARPA Image Understanding Workshop 4/88. Basically,
by using these routines, the user can program multiresolution algorithms
on the Connection Machine so that inter-pyramid communications will be
executed efficiently. Examples of typical multiresolution algorithms include
the computation of depth from stereo or motion and image registration.
Students here at Columbia University and also at Syracuse University are
currently working on an implementation of hierarchical stereo correlation
using this system. It is important to note that this system deals with
pyramids where each node communicates with exactly four children below
it, to a single parent above it, and to four neighbors on the same level. This
system would probably be inappropriate for emulating pyramids with more
general configurations.

§
3 Naming Conventions

The functions described all use a new data structure called a pyramid (or
pmd). This structure is actually composed of two pvars although this is
transparent to the user. All the functions are written so that in most cases
those dealing with pyramids are analogous to standard *lisp functions which
deal with pvars. For example, to create a pmd the function is *defpmd (like

3%




*defvar) and *set-pmd (like *set). In addition, the following conventions
are adhered throughout so that properties of functions and variable names
are as obvious as possible:

pmd!! All functions which end with pmd!! return a pmd.

*—pmd All functions which begin with an asterisk and end with pmd have
arguments which are pmds.

*pmd—* All variables which start *pmd and end with an asterisk are
global pyramid variables (see section on global variables).

These conventions are similar to those for pvars in ¥*LISP. We also adhere to
their conventions; namely, functions ending with !! return pvars, functions
starting with asterisks use pvars internally.

4 Getting Started

To use the pyramid environment it is necessary that the following two
conditions are met:

1. The number of logical processors should equal the number of physical
processors. (This will be extended so that the number of logical
processors can be any multiple of four times the number of physical
processors. )

2. The machine should be configured for 2 dimensions Hence, the num-
ber of processors should be of the form 2?n where n is an integer.

The first condition can be met by attaching to the same number of
processors a8 you configure the machine when *cold-booting. The second
condition is met with the :initial-dimensions to *cold-boot. To load the
pyramid system, the file “pyramid-emulate” should be loaded and the func-
tion pyramid-emulate is then executed. An example session which shows a
start-up is shown in the file “pmd-example.” Most of the commands issued
in this session are also contained in the file, “pmd-init.lisp” which is the
initialization file used for testing the system.



5 Global Variables

The following are global variables used by the pyramid system which might
also be useful to the user. A variable of particular importance is *pmd-
level-number*.

*pmd-number-of-levels* the number of levels in the pyramid.
*pmd-size* the size of one side of the base of the pyramid

*pmd-self-address* the address of each processor in the pyramid. Note:
these addresses indicate the location of the physical hypercube con-
nections that connect the processors.

*pmd-level-number* a pvar which indicates the particular level other
than the lowest level which a processor represents. This pvar can be
used in a *when to select only the processors on a certain level (above

the leaf level).

6 Pyramid Primitives

The following functions are for creating, allocating and setting the values of
pyramids and their levels. They form the basis of all pyramid programs. In
addition, the *LISP function *let can be used to dynamically create pmds
using the function allocate-pmd!!.

(*defpmd pmdname &optional pmd-initialization)
(allocate-pmd!!)

(*deallocate-pmd pmd)

(*set-pmd pmd-1 pmd-2)

(*set-level-pmd level pmd-1 pmd-2)




7 Horizontal Communications

The following functions execute mesh communications within individual
levels of the pyramid. They work according the scheme specified in section
3 of the article “Pyramid Algorithms Implementation on the Connection
Machine.”

(shift-level-pmd!! level direction source-pmd &optional dest-pmd
&key border-pmd)

This uses the mesh on the specified level to shift the data in source-pmd
in the specified direction (’e 'w ’n or ’s) and puts the resulting level in the op-
tionally specified dest-pmd and returns it. For example: (shift-level-pmd!!
1 ’e pmd-in pmd-out :border-pmd zero-pmd) shifts level 1 in pmd-in to
the east and stores the result in level 1 of pmd-out which is returned. The
border-pmd is used in the same way the border-pvars are used in *lisp
commands such as pref-grid!!.

(shift-pmd!! direction source-pmd &optional dest-pmd &key border-pmd)

This is the same as the above function except all levesl are shifted and
stored in dest-pmd and returned.

8 Vertical Communications

The following functions execute top-down communications between levels of
the pyramid. They work according the scheme specified in section 4 of the
article “Pyramid Algorithms Implementation on the Connection Machine.”
Top-down communications either transfer (and ‘combine) data from 1 or
more children up the pyramid or from a single parent to 1 or more of its
children. Children are specified as ’a ’b 'c or 'd. When communicating up
the pyramid an operation is specified which indicates how the four children
are combined before setting the parent value. The operation can be any
parallel operation such as +!! or *!!.

(send-level-parent-pmd!! level operation source-pmd &optional dest-pmd)

5



(send-level-children-pmd!! level source-pmd &optional dest-pmd)
(send-level-child-pmd!! level child source &optional dest-pmd)

(ave-pmd!! level source-pmd &optional dest-pmd)

The command ave-pmd!! is used to make a pmd using an image stored
in the lowest level and making each successive level above by averaging the
four children of each parent. This is a typical example of a function which
uses the vertical communication functions to make an image pyramid.

9 Pyramid Display

These routines can be used to print the data stored in a pyramid either as
a single level or the entire pyramid.

(*display-level-pmd pmd level)

(*display-pmd pmd)

10 Pyramid Input/Output

These routines can be used to store a pyramid or pvar into a file for use with
standard sequential image processing routines or for reading such a file into
a pyramid or pvar for use with this system. Typically a pvar represents an
image from which a pyramid can be constructed.

(read-pvar!! ‘‘filename’’ &optional pvar)
(read-pmd!! ‘‘filename’’ &optional pmd)
(vrite-pvar!! pvar ‘‘filename’’)

(write-pmd!! pmd ‘‘filename’’)



