IMPROC: AN INTERACTIVE
IMAGE PROCESSING SOFTWARE PACKAGE

George Wolberg

Department of Computer Science
Columbia University
New York, NY 10027
wolberg@cs.columbia.edu

April 14, 1988
Technical Report CUCS-330-88

ABSTRACT

IMPROC is a general-purpose interactive image processing software package. The system
includes a collection of library routines and a menu-driven environment in which to invoke all
supported image operators. A wide range of image operations are available, including point,
neighborhood, arithmetic, logic, and geometric processes. In addition, there are utilities for
image transforms, compositing, colorization, look-up tables, and graphic display of images.

Key features of IMPROC include its emphasis on simplicity, generality, and device
independence. Flexibilty and software udlity is augmented by the simple, and general, canonical
representation of internal images. Unlike most systems that place strict restrictions on the pixel
data type, IMPROC accomodates images having pixels of variable precision and arbitrary
dimensions. A consequence of this feature is that all supported image operations are equally
useful for general-format data. This uniform treatment of data that vary in size and type is criti-
cal to advanced processing techniques. Finally, device independence protects IMPROC from the
inevitable obsolesence of the supporting hardware.

This paper is a complete guide to IMPROC. It includes a user’s guide, programmer’s
manual, numerous examples, and an extensive bibligraphy. In addition, a discussion of the
design philosophy is given to supply insight that maximizes user productivity and promotes uni-
form practices for code integration.

SECTION 1

SECTION 2

SECTION 3

SECTION 4

SECTIONS

SECTION 6

TABLE OF CONTENTS

INTRODUCTION

IMAGE OPERATIONS

2.1 Point Processes / Single Image
2.2 Point Processes / Dual Images
2.3 Neighborhood Processes

2.4 Geometric Processes

2.5 Transforms

DESIGN PHILOSOPHY

3.1 General Format Image Representation

3.2 Uniform Treatment of Arbitrary Data Formats
3.3 Device Independence

3.4 Easy Code Integration

3.5 Keep It Simple

IMAGE DATA

4.1 Interleaved vs. Non-Interleaved Format
4.2 Channels

4.3 Image Types

4.4 Image File Formats

INTERACTIVE USE OF IMPROC
5.1 Screen Layout
5.2 Parameter Collection
5.3 Image Display
5.3.1 Clipping
5.3.2 Embedding Intensities Into the Valid Range
5.4 Command Line Arguments
5.5 Getting Started
5.6 Menu Hierarchy

DESCRIPTION OF MENU OPTIONS
6.1 Main Menu
6.2 Point Operation Submenus
6.2.1 The Treatment of Color Images
6.2.2 Point Ops Submenu
6.2.3 Arithmetic Submenu
6.2.4 Logic Ops Submenu
6.3 Neighborhood Ops Submenu
6.4 Geometric Ops Submenu
6.5 Matte Ops Submenu
6.6 Image Conversion
6.7 Image Transforms Submenu

(o NV, R SR O SR VA

O 00 00 00 I

10
10
10
12

13
14
14
14
14
16
16
17

19
21
21
22
28
30
31
35
37
41

SECTION 7

SECTION 8

SECTION 9

SECTION 10

6.8 Image Intensity Plot Submenu

COLORIZATION
7.1 Overview
7.2 Color Information
7.2.1 Color Data Structure
7.2.2 Color Database
7.2.3 The C Buffer
7.3 Colorization Submenu
7.4 Display Images Sub-submenu
7.5 Color Palette Sub-submenu

LIBRARY FUNCTIONS

8.1 Data Structures

8.2 Quad Manipulation Functions
8.3 Channel Manipulation Functions
8.4 Type Conversion

8.5 Image /O Functions

8.6 Display Operations

8.7 Point Operations: Single Image
8.8 Point Operations: Arithmetic
8.9 Point Operations: Logic

8.10 Neighborhood Operations

8.11 Geometric Operations

8.12 Image Compositing Operations
8.13 Image Transforms

8.14 Image Utility Routines

8.15 Query Routines

8.16 Frame Buffer Functions

PUTTING IT ALL TOGETHER

9.1 Basic Usage

9.2 An Example

9.3 Another Example: Bandpass Filters

9.4 Channel Manipulation

9.5 Yet Another Example: Image Halftones
9.6 Adding Source Code to IMPROC

REFERENCES AND SUGGESTED READING

46
46
47
48
49
50
52
52

55
57
59
61
62
63

67
68
70
71
73
75
77
78

81
81
82
84
85
86

87

1. INTRODUCTION

IMPROC is a general-purpose interactive image processing software package. It consists
of a collection of library routines which facilitate operations on images. The routines, written in
C, may be called from within a user’s program or may be invoked within the interactive menu-
driven environment provided by the system. The software runs on the EDGE 1200, HP 9000,
and DEC VAX-11/750 machines under the UNIXt operating system. It currently uses a Raster
Technology, HP, or Grinnell frame buffer. This can be easily extended to other hardware by
modifying a configuration definition file which specifies all hardware specific features.

IMPROC was originally motivated by the desire to minimize the time and effort between
considering an image processing routine, and viewing its effects. This conforms with the experi-
mentalist spirit of asking ‘‘what if I were to ...”" and then shortly seeing the resulting image. Of
course the intervening time is spent either invoking already available routines upon the input
image, or creating one yourself. By establishing standards on the treatment of image data, pro-
viding core routines and an image I/O facility, that interval is greatly reduced. Consequently,
IMPROC provides a comprehensive and conducive environment in which to experiment with
image processing routines and extend them. Its function as a testbed has obvious educational
value.

This paper is a complete guide to IMPROC. It is divided into three parts: design philoso-
phy, user’s guide, and programmer’s manual. The design philosophy is given to supply insight
into the directions and consequences of design decisions. This is intended to be interpreted by
two sets of readers: users and programmers. To the user, it is hoped that a greater awareness of
the toolkit environment will enhance productivity and results. To the programmer, it is given to
promote uniform practices in the design and integration of additional image processing routines.

The rudimentary classes of image operations that are supported by the system are explained
in section 2. Since it is a brief and incomplete description of image processing, the user is
encouraged to refer to the books and articles listed at the end of the paper. Section 3 describes
the design philosophy. A description of the image data representation is given in section 4.

The user’s guide begins in section 5 which describes the interactive menu-driven system.
The supported functions are explained in section 6. Section 7 is devoted to a discussion of the
colorization subsystem.

The programmer’s manual begins in section 8 with a discussion of system internals. It is
intended for those who wish to add new code to the system as well as maintain existing software.
Section 9 presents useful examples. Finally, section 10 lists references and suggested readings
in image processing.

t UNIX is a trademark of AT&T Bell Laboratories.

2. IMAGE OPERATIONS

Image processing can be categorized as transforming an input image o yield an output
image or an alternate image representation. The objective is to visually enhance or statistically
evaluate some aspect of an image not readily apparent in its original form. The transformation
can make use of a variety of operations that may be broadly classified as point, neighborhood,
and geometric processes.

2.1. Point Processes / Single Image

The most basic transformation is one in which the new pixel value (in the output image) is
simply a function of the corresponding pixel value in the input image. This simple class of
operations is known as point processes over single images. An example of this is thresholding,
where the new value a pixel takes on is dependent on whether its value lies above or below a
specified threshold value. Operations of this kind may be conveniently precomputed to yield a
look-up table (LUT) whose contents at the location specified by the pixel value is the new value
(Fig. 1). In general, all functions that can be implemented through a LUT are considered point
processes. Other functions in this class include pseudo coloring, quantization, contrast enhance-
ment, histogram sliding/stretching, and histogram equalization.

Input Image Output image

_. /

LUt

Figure 1: Point process / single image

2.2. Point Processes / Dual Images

Point processing on image pairs is a simple extension of the single image case. Instead of
mapping a pixel value from a single input image onto an output image, we now map two pixel
values, one from each input image, onto an output image. Arithmetic and logic combination of
images are typical of this class of processes. Arithmetic operations are those producing an out-
put image which is the pixel-by-pixel sum, difference, product, or quotient of two input images.
Note that when a constant value is to be used in place of a second image (histogram sliding), the
operation can be treated as a point process on a single image. Point processing on dual images is
particularly useful for functions which make composite images, detect motion, and alter

brightness (histogram stretching).

Logic operations consist of performing pixel-by-pixel bitwise AND, OR, XOR, and NOT
operations among two input images. The AND function can be used to mask off portions of an
image. The mask image, or matte, is composed of pixels having a binary value equal to all Os
(black), where the original image should be masked, or 1s (white) where it should be allowed to
appear in the output image. Combining the two images with the AND operation produces the
final masked image. The OR operation allows the compositing of two images, given that they
do not spatially overlap. The XOR (exclusive-OR) combination can be useful for identifying
identical pixels in two images.

Figure 2 illustrates this class, where F(A,B) represents an arithmetic or logic function.

LS

LS

Input Image 1

S

SN c

LS LS
LSS LS

Input Image 2 Output Lmage

F(A,B)

Figure 2: Point process / dual image

2.3. Neighborhood Processes

Neighborhood processes generate new values for a pixel based on the values of pixels in
some neighborhood surrounding it. The size and shape of the neighborhood is defined by the
user. A typical example is image smoothing (blurring, low-pass filtering) which involves replac-
ing the luminance value of each pixel with a weighted average of luminance values of its neigh-
boring pixels. Averaging over larger neighborhoods results in more smoothing, although 3 x 3
neighborhoods are typically used. The matrix of numbers that comprise the weights is known as
the convolution mask or kernel. The spatial extent of the mask is known as the window. Spatial
convolution is the process of shifting the mask across the image to different offsets, multiplying
the superimposed mask values with the corresponding pixel values, and replacing the appropri-
ate pixel in the output image with the sum of the product terms. Figure 3 illustrates the determi-
nation of an output pixel from the convolution mask and the underlying neighborhood. Convo-
lution is a typical neighborhood operation. Other functions of this class include image

sharpening, edge detection (highpass filtering), and other forms of linear and nonlinear filtering.
(Pizel 1) X (A) =
(Pixe 2) x (B) -
(Pxed 3) 2 (C) -
(Pixel 4) x (D) -
(Plxel 5) x (E) =
(Pxed 6) x (F) -
(Pud) x(0) -
(Pixel £ x () =
Pue 91 (M-

Convolution A ° c 5/ Puxet $ (O
Mask o 3

[~]
N

N
N\
N

/
W S S A S S S

Input Image Output Image
Figure 3: Neighborhood process

2.4. Geometric Processes

Geometric operations provide for the spatial reorientation of pixel data within an image.
Typical operations include image scaling, rotation, and translation. In scaling and rotation, spe-
cial care must be taken to avoid the artifacts that arise as a result of pixels not falling evenly on
the sampling grid. This is characteristic of a problem in which the correspondence between the
input and output images is not one-to-one and not oriented properly along the scanline direction.
Technically, these artifacts arise from the undersampling of the image’s higher spatial frequen-
cies which give rise to a fictitious low frequency appearancet. The filtering used to combat this
problem is called anrigliasing. It consists of smoothing the image prior to the initial processing.
This attenuates the high frequencies which are folding over to the low frequency components.
Notice that geometric processes must therefore make use of neighborhood operations as a
preprocessing antialiasing stage.

t Spatial frequency is the rate at which image brightness changes from dark to light. It is used in
quantifying visual detail.

2.5. Transforms

Additional to the processes listed above are transforms. Frequency transforms (Fourier) are
powerful operations that can be used to give a pictorial view of the spatial frequency component
breakdown of an image. In addition, it can be used to aid in the specific filtering of undesired
components. Image filtering may be carried out in the frequency domain in a more straightfor-
ward manner than convolution in the spatial domain. Although Fourier Transforms are compu-
tationally expensive, for large kemel sizes they are more practical, particularly using a Fast
Fourier Transform (FFT) algorithm. Furthermore, a variant of Fourier Transform, called
Discrete Cosine Transform (DCT), is useful for image compression. Since DCT decorrelates
data (and consists exclusively of real numbers), an efficient quantization may be achieved over
the spectrum of numbers to achieve an approximation of the image data with fewer bits. There
exist other transforms, such as thinning and morphological operations, which yield alternate
representations of the image. These will be discussed in more detail in the following sections.

The above summary of image operations is brief and incomplete. For more background
into the subject refer to the books listed in section 10.

3. DESIGN PHILOSOPHY

This section reviews the system design issues addressed in IMPROC. The purpose of this
discussion is to highlight system goals, features, and constraints. Among users, a greater aware-
ness of these considerations is likely to enhance productive use of the toolkit environment.
Among programmers, a fuller understanding of the design framework is critical to promoting
uniform practices in software design and integration.

IMPROC was designed with the following issues in mind.
1) General format image representation
2) Uniform treatment of arbitrary data formats
3) Device independence
4) Easy code integration
S) *“‘Keepitsimple’’ philosophy

3.1. General Format Image Representation

Image data can be represented in many different formats. Underlying these formats are
implicit assumptions about the data usage and its domain. For instance, images intended to be
displayed on conventional frame buffers are usually represented in files as streams of pixels hav-
ing three interleaved eight-bit color components. Images intended for use in image compositing
operations will usually require an additional opacity component to each pixel. In other applica-
tions, images may contain floating point pixels as obtained from range data, surface normal esti-
mations, and a variety of other input sources.

Despite the diversity of image formats, all images share many common filtering require-
ments. Consequently, image operators must treat general-format data uniformly. As a result,
images must be represented in a single internal format that accomodates pixels with varying
fields and precision. Establishing such a standard within IMPROC serves to maximize the util-
ity of the library routines by allowing them to operate over a broad range of data. Furthermore,
it separates IMPROC from the diversity of image file formats that exist.

Accomodating images of various data types has important consequences. Image processing
routines that are have traditionally been suitable for low precision images are now available for
high precision data as well. Since one-dimensional list of numbers often appear in high preci-
sion, they now become candidates for processing by the same image processing software. This
opens the door to more innovative processing techniques since all data is subject to manipula-
tion. Clever algorithms, for instance, can make use of multiple input sources to control the pro-
cessing of images. Examples of this kind will appear throughout the paper.

Section 4 describes the internal image representation used in IMPROC. A review of the
issues that were addressed in designing the format is given for clarity and insight. A more com-
plete presentation of the actual data structure used is given in the programmer’s manual in sec-
tion 8.

8-

3.2. Uniform Treatment of Arbitrary Data Formats

The general format is convenient for imposing uniform treatment upon image data that vary
in size and type. However, in order to accomodate images with variable data types, each image
processing routine must be prepared to work with all permutations of data types. This is
achieved by having each routine convert the incoming image to the highest precision data type,
compute the result, and convert the output image to the appropriate type (usually the same type
as the input). The conversion procedure is known as type casting. Since images are often
represented with low precision (one byte per pixel component), the software is made to test for
this image type. If the image is found to satisfy this (common) special case, the computations
are directly implemented with this data type, performing all necessary clipping operations.
However, upon failure to satisfy this special case, the image is converted to an appropriate
higher precision form upon which the image calculations take place. Since the necessary type
casting consumes memory and time, the user is always advised to operate in low precision mode
whenever possible. In other words, even if the ability to operate in any precision exists, there is
no need to be wasteful.

3.3. Device Independence

IMPROC derives all of its flexibility from its collection of software tools. The library con-
taining these tools is written in C and is portable across many machines. All frame buffer
device-dependent details are isolated into a configuration definition file which specifies
hardware specific features and software. The device independence offered by this software
package has the obvious benefit of providing library routines that are accessible to a wide range
of users and immune to the obsolescence of the supporting hardware. Consequently, the reliance
on hardware functions are reduced to a minimum.

There have been no attempts at providing graphic interfaces for interactive use since they
are outside the scope of the toolkit development. Instead, the image processing options are
presented in a menu hierarchy that is invoked by entering corresponding option numbers. This
method is direct, runs on all standard terminals, and can be easily upgraded to more sophisti-
cated interfaces according to user needs. The menu interface is described in section 5.

It is, of course, productive to integrate special-purpose hardware if it is available. How-
ever, to keep in line with the emphasis towards portability, it is advised that a software-based
version of the same operation be available as well.

3.4. Easy Code Integration

Serving its role as a software testbed for image processing algorithms, IMPROC has provi-
sions for integrating new code easily. Only a simple three step procedure is necessary. Briefly,
the programmer must install a menu entry, a function to collect user parameters, and a declara-
tion of that function in the IMPROC header file. The details, and guidelines for new code, are
given in section 9.

3.5. Keep It Simple

IMPROC is based on a philosophy which stresses the use of existing software tools to build
larger, more sophisticated, routines. In this manner, it shares the same spirit as the UNIX pro-
gramming environment [Kernighan 84].

For users, this synergism offers quick and powerful solutions to many image processing
problems. Often, clever solutions will require the tools to be used in ways that were not origi-
nally anticipated. The ability to use the same set of library routines to process arbitrary data
types and dimensions is an outgrowth of this goal towards conceptual simplicity.

For programmers, this approach maximizes the utility of the software. When new code can
not make use of existing library routines, it should remain modular and simple so that it may
serve as useful tools to others. Underlying much of the software design philosophy is that
people’s time is more valuable than computer resources. This is justified by the trend toward
lower cost and higher performance hardware. Therefore, whenever this tradeoff emerged the
decision has always favored the path most amenable to simplicity of design, readability, and
maintenance.

210 -

4. IMAGE DATA

This section describes the internal representation of images in IMPROC. Knowledge of the
internal image format is necessary to maximize full utility of the image operators available. In
addition, descriptions of library routines will assume familiarity with the contents of this section.
Motivation for the image format is included in the discussion for a fuller understanding of the
design considerations.

4.1. Interleaved vs. Non-interleaved Format

Images generally exist as a two-dimensional array of data structures. Each data structure is
a picture element, or pixel, and consists of several fields. Typically, monochrome images have
only one field for luminance, while color images have three for the red, green, and blue (RGB)
primary colors.

Pixel fields may be stored in interleaved or non-interleaved formats. Interleaved format is
convenient when the entire pixel structure must be present together. Applications include pipe-
line processing, concatenation of image data, and compatibility with many file and display for-
mats. Non-interleaved formats, however, are more convenient when it is desirable to modify the
number and data type of pixel fields. In this form, no reshuffling of data is required upon modif-
ication of the pixel fields. Applications include pyramid construction, image composition, and
arbitrary concatenation and type conversion of pixel fields.

Given the above tradeoffs, the non-interleaved format has been chosen due to its flexibility.
In addition, programming issues are simplified by avoiding cumbersome indexing through the
data, memory management becomes more efficient, and the conceptual view of the image
becomes simple and concise. The only drawback of converting to/from interleaved format is
relatively small when compared with the actual processing that takes place.

4.2. Channels

The non-interleaved form unscrambles the alternating pixel fields into channels, two-
dimensional arrays each containing a field partition, e.g. a color component. Channels are com-
monly viewed as planes slicing through the pixels. There are typically three channels per image
(RGB) and usually no more than four (RGB and opacity). IMPROC allows up to 16 channels per
image, with more possible by resetting a system variable. Each channel has a distinct data type,
allowing variable precision among the individual pixel fields. In this paper, we consider only
the fundamental data types found in C: unsigned char, short, int, long, float, and double. Their
sizes are 1, 2, 4, 4, 4, and 8 bytes, respectively, on most machines.

4.3. Image Types

Image processing operators often require semantic rules to define meaningful processing
actions. These rules, for example, must know whether the image determined by the ensemble of
channels is black-and-white, color, etc. Consequently, an imgrype attribute, defining the image

- 11 -

type (not data type), is associated with each image. Its purpose is to label the image with a code
that routines may use for determining appropriate processing actions. Currently available
imgtype values are given below.

Image Types

imgrype Channels Data Type Description
NULL_IMG 0 — null image with no memory
DAT_IMG 0 — frame buffer plotted data
BW_IMG 1 unsigned char | black-and-white image
MAT_IMG 1 unsigned char | matte image (for compositing operations)
BWA_IMG 2 unsigned char | black-and-white image with a matte
RGB_IMG 3 unsigned char | RGB color image
RGBA_IMG 4 unsigned char | RGB color image with a matte
YIQ_IMG 3 short YIQ color image
VHS_IMG 3 short (Value,Hue,Saturation) color image
LUT_IMG 1 double one-dimensional look-up table
BIT_IMG 1 unsigned char | bitmap image
FFT_IMG 2 float (Real,Imaginary) FFT image

Table 1: Image types

The numeric values assigned to these global variables are found in the IMPROC ip.h
header file. Of course, user-defined images can be defined as well. By default, their imgtype
attributes are initialized to the number of channels present.

Notice that without the imgtype attribute, there would be no way of distinguishing between,
say, RGB and YIQ images. Although conceptually, both of these images can be treated identi-
cally, they have different domains and require different color conversion routines. Upon display,
for example, a Y/Q image must be converted to RGB. This information is crucial.

A second example can be given for the image compositing application. If an image is
“‘held out’’ (like a cookie-cutter) by an image of type BW_IMG, the latter image must be con-
verted to BWA_IMG before the operation can be performed. The conversion consists of
appending a white channel to indicate constant opacity everywhere. However, had the latter
image been of type MAT_IMG, no conversion would have been necessary. The imgtype attri-
bute therefore provides the only semantic information about the image necessary for proper han-
dling.

Each image type listed above has associated with it a default set of channel data types,
shown in the “‘Data type’’ column. By default, all channels initially assume these types. At the
user’s option, they may later be cast into other types to meet the needs of the application at hand.

4.4. Image File Formats

When an image is first read into the system, it must be converted into the cauonical image
format used by IMPROC. Image I/O routines are responsible for selecting and applying the
appropriate conversion function. The selection is based on the filename suffix, or ragname,
which identifies the image file format. Each image format must therefore have a unique tag-
name to identify itself from other formats.

Filenames are composed of two components, the basename and the tagname. The
basename is a descriptive image name, and the tagname is a suffix preceded by a dot. A typical
filename might be sphere.r. In this case, sphere is the basename and r is the tagname. The tag-
names are known to the IMPROC I/O routines for proper image input and output among files.
The currently supported file formats are listed below.

Image File Formats

Tagname Header Data
rgb widthy heights) redggreengblueg
bw width3, heightsy luminanceg
US,LLF.D | widths, heights, General format
p width g height g redggreengblue gag
T 050540 g height (gwidth g | redggreengblueg
lut length ¢ datatype (g List of LUT entries
cm length ¢ datatype (¢ List of colormap entries
sunl SUN raster header SUN bitmap

Table 2: Image file formats

The subscripts denoted above specify the length (in bits) of the associated number. Note
that in all cases, the data is interleaved. In .p images, an additional o component is added to
specify opacity information useful in compositing operations. The datatype entry refers to the
values assigned to the channel data types in the IMPROC ip.h header file. The data types sup-
ported are: unsigned char, short, int, long, float, and double. Their respective datatype values
are 0, 1, 2, 3, 4, and 5, and their tagname symbols are U, S, I, L, F, and D.

The most general format may be specified by concatenating the tagname symbols U, S, I,
L, F, or D, to represent the channel data types. In this scheme, the number of tagname symbols
denote the number of channels present, and the actual symbols determine their respective types.
For example, the file sphere. UUU denotes an image with three interleaved channels, each of
type unsigned char (identical to the rgb tagname). Types may be mixed, as in cube.FLU which
contains three interleaved channels of type float, long, and unsigned char, respectively. Note
that since a 16-channel limit is currently imposed, general format tagnames must not exceed 16
symbols.

S 13-

5. INTERACTIVE USE OF IMPROC

IMPROC is a menu-driven image processing system. Before getting started with a descrip-
tion of the system, a brief explanation of the user interface is in order. There are three points
which must be addressed before plunging ahead: the issues of screen layout, parameter collec-
tion, and image display.

S.1. Screen Layout

In doing image processing work it is critical to see more than one image on the monitor at
once. Namely, it is desirable to see the input and output images simultaneously to quickly ascer-
tain the result of the processing. As a result, IMPROC partitions the screen into square blocks,
known as quads. Quads are identified by a numbering system that increases from left to right,
and top to bottom. By default, the screen is split into four quadst as shown in Fig. 4, although
any number may be specified by the user. All examples that follow will assume this default con-
figuration.

Although the images may have to be scaled down in order to fit into the quads, this reduc-
tion in resolution is a small sacrifice for the benefit of comparing images and testing image pro-
cessing algorithms over less data. Once an algorithm is fully tested and optimized in this testbed
provided by IMPROC, it may then be put into a larger production system where interaction and
visual feedback are no longer a priority.

Figure 4: The four display quads

The quad containing the input image is referred to as acriveqd, the active quad. It is clearly
marked with a blue border. The output image is displayed in the next available quad, nextgd.
Nextqd cycles around the screen, its value being incremented by one (modulo 4) after each
image display. It, however, can never overwrite the acriveqd, thus leaving the input image
intact. Therefore, if the input image is currently in quad 1, subsequent image operations will
display its output in quads 2, 3, 0, 2, 3, 0, etc. Options of course exist for allowing the user to
change the activeqd and nextqd values.

t The term quad is derived from the default quadrant partition.

-14 -

5.2. Parameter Collection

Now we discuss the method by which parameters are passed along to the system. At vari-
ous times during the execution of a function, the user may be requested to supply parameters.
The message prompts come in two formats:

Request for character string . <default>
Request for integer/real/ hex: (min, max) <default>

In the first instance, a character string prompt is specified by two fields: the request and the
default response. Defaults are always surrounded by ‘<’ and ‘>’, and are used whenever a car-
riage return is entered in response to a prompt.

In the second instance, a request is made for an integer, real, or hex number. Notice that
this prompt is specified by three fields: the request, a range for the response, and the default
value. The min and max values are always surrounded by ‘(" and ‘)’. This is not to be confused
with the possible parentheses that may be contained in the request field. As long as the response
does not lie within the range given (inclusive), the request is continually re-issued.

The distinction between an integer, real, or hex request is made as follows. If the number
has any alphabetic characters between A and F (in upper or lowercase), it is in hex and a hex
response is valid (i.e. 3F). If a decimal point appears in the number, then a real number is a valid
response (an integer suffices as well). Any other number is an integer. If a real is given in
response to an integer request, the fractional part is lost.

5.3. Image Display

Images must be properly converted to the appropriate data type and range required by the
frame buffer before they can be displayed. Almost always, frame buffers require pixel intensi-
ties to lie between O (black) and 255 (white). IMPROC allows for two methods of constraining
the range of displayed images: clipping and embedding.

5.3.1. Clipping

Clipping simply replaces all values below black and above white to black and white,
respectively. It retains the dynamic range in the displayed interval while eliminating all infor-
mation in the invalid range.

5.3.2. Embedding Intensities Into the Valid Range

Embedding refers to a combination of histogram sliding and histogram stretching per-
formed on each channel independently. This means that additive and multiplicative constants
are applied to the image to respectively slide and stretch the dynamic range. The result must, of
course, lie within the valid range. In contrast to clipping, embedding intensities does not discard
information from view. However, the contrast of the image may diminish due to excessive

- 15 -

values that force the dynamic range to undergo extreme compression,

These operations makes use of /,,;, and /4., the minimum and maximum image channel
values. By comparing them against black and white, we can determine the sequence of actions
necessary to embed the image in the valid range. The following four cases are considered.

Embedding Intensities Into the Valid Range

black/white difference.
Must anchor minimum
to black, and maximum
to white.

Test Condition Comment Action
Inin>black, I, <white Range is already valid. No action.
(Imax—Imin) > (white—black) | Range exceeds | Slide range by adding

—Imin to all values.
Then scale resulting
values so that /.~ nin
is fixed at white.

I.in < black

Range must be slid up
to anchor /,,;, to black.

Slide range by subtract-
ing I pmin from all values.

L g > White

Range must be slid
down to anchor /,,,, at
white.

Slide range by adding
(white—1 ;) to all
values.

Table 3: Embedding the intensity range

Note that the above set of conditions are tested in the order given. Therefore, we first
check whether the range is already valid. If this test fails, then we test to see whether the range
exceeds the 8-bit display range. If so, histogram sliding and stretching is necessary. Otherwise,
we continue to test for the direction in which histogram sliding must take place.

The result of clipping or embedding is an image which satisfies the frame buffer constraints
for display purposes. In addition to displaying this image, the user has the option of storing the
result back into the originating quad.

Clip(-/+1) or Embed(-/+2) to 0-255 range? (-2,2) <l>

A reply of 1 or 2 will display a clipped or embedded image, respectively. This permits the inter-
nal image to retain its precision while its lower precision counterpart is displayed. In this mode,
“‘what you see is nor what you get.”” However, responding with a negative value will cause the
contents of the quad to be overwritten with the displayed image. This latter option enforces
‘‘what you see is what you get.”’

-16 -

5.4. Command Line Arguments

IMPROC can be invoked with several options:
improc [—b] [—gnum | [—qnum | [—snum) [—xnum)} [—ynum]

—b selects the secondary frame buffer as the raster device (/dev/rasterl).

—gnum sets the maximum valid gray level to be num. All intensities computed to be greater
than num are clipped to that value.

—qnum partitions the screen into nwmn quads.
—snum sets the quad size to num.

—xnum sets the leftmost quad column to nwm.
—Yynum sets the topmost quad row to num.

If any of the above options are not specified, default values are used. By default, the max-
imum gray value is 255, and the screen is partitioned into four quads, centered on the screen,
each having dimensions of 256 x 256. The examples throughout this paper will assume this
default configuration.

Input to IMPROC may be redirected from a file instead of the terminal. The file contains
the same menu options and parameters that would have been entered directly. The only format
provisions is that each number must be on a separate line. Furthermore, lines beginning with a
‘#’ symbol serve as comments and are ignored. This redirection is useful if the user has a partic-
ular sequence of commands that is used repeatedly. Although the file is usually generated from
the Show history option in the main menu, it may be edited at will by the user. When the file is
consumed, IMPROC will reopen the terminal as the source of its input. Therefore, the input file
serves to place the user in a particular state from which direct user interaction will proceed.

5.5. Getting Started

The program is invoked by typing ‘‘improc’’ at the command level. A list of menu options
will flash by, and the user will then be prompted for a filename containing the input image:

Filename: <junk.r>

The name junk.r is a default filename. The user-specified file is then opened and read. If all is
in order, a message is printed on the terminal indicating the height, width, and additional posi-
tioning information for the image. Note that if the specified file could not be opened, the user is
continually prompted for a filename until one is found. At this point, IMPROC must be told
whether to interpret the contents of the file as a black-and-white image or as a color image.

Color image? (O=no: 1=yes) (0, 1) <1>

17 -

Although most applications would normally retain the color information, this request is inserted
to reduce processing time on images that are known in advance to be black-and-white. This is
the case since treating color images involves three times the effort and space (RGB channels).

The system will now display the image in quad O (default), surrounded by a blue border
indicating it as the active quad. The user can now select an operation by entering the desired
option number.

Since it is not uncommon to forget the option numbers or have the list scroll off the termi-
nal screen, the default option was chosen to be ‘*"Menu display.’’ The user may thus enter a car-
riage return to see the list again. This practice is done uniformly in all the submenus of the sys-
tem as well.

5.6. Menu Hierarchy

The image processing operations are organized in a hierarchy. The main menu offers
options for image /O operations and entry into submenus. Each of the basic classes discussed in
section 2 are contained in separate submenus. Since the software continues to evolve (as it
should since it is intended to encourage users to add their code), the description of the supported
functions and the menu entries may be subject to change. Figure 5 illustrates the current menu
hierarchy.

Improc Point Ops Neighborhood Ops Geometric Ops
Menu display Menu display Menu display Menu display
Set next quad Set next quad Set next quad Set next quad
Set active quad Set active quad Set active quad Set active quad
Read image from file Histogram Blur Scale
Write image to file Threshold Blur with mask Rotate
Point Ops Threshold (color) Edge preserving blur Translate
Neighborhood Ops Clip Mate-nomalized blur Warp
Geometric Ops Quantization Image sharpening Exit submenu
Arithmetic Ops Histogram flaitening Convolution
Logic Ops Histogram equalization Median filter
Mare Ops Intensiry scaling Laplacian image
Image Conversion Dither (Unordered) Thresholded Laplacian
Image Transforms Dither (Ordered) Relief map effect
Image Intensity Plot Dither (diffuse error) Exit submenu
Colorize Halftone
Shell Command Make LUT
Run script Edit LUT
Show history Apply LUT
Quad status Exit submenu
Exit

18 -

Arithmetic Ops

Matte Ops

Menu display
Set next quad
Set active quad
Image! - Image2
Image! - const
Imagel + Image2
Image!l + const
Imagel * Image2
Image] * const
Imagel / Image2
Imagel / const

A + (B-C)*const
Histogram

Exit submenu

Logic Ops

Menu display

Set next quad

Set active quad
Imagel & Image2
Imagel & const
Imagel | Image2
Imagel | const
Imagel xor [mage2
Imagel xor const
Image! bic Image2
not Imagel

Exit submenu

Menu display

Set next quad

Set active quad

Cut out subimage

Acuts B when A>0
AoverB when A>0

Maue cut (A)aA)

AoverB (AR(B)(1-aA)
AinB (AXaB)

Aout B (AX1-aB)
AsopB (AXaBR(BX1-1A)
Axor B (AX1-aB}(BX1-2A)
Hicon A (aA)

Darken A (f*nonalphaA)
Opaque A (f*2A)

Dissolve A (f*A)

Read pixel value

Read pixel location

Exit submenu

Image Intensity Plot

Menu display
Set next quad
Set acuve quad
Plot

Set plot scale
Set z scale
Exit submenu

Set gray level for traces

Image Conversion

Menu display

Set next quad

Set active quad
Convert channel type
Convert image type
Extract channels
Append channels
Copy channels
Color shift

Set global args
Exit submenu

Image Transforms

Menu display

Set next quad

Set acuve quad
Fourner transform (1D)
Founer transform (2D)
Thn

Exit submenu

Figure 5: Menu hierarchy

Colorize

Menu display

Set next quad

Set active quad
Display Images
Color Paleue

Cut out subimage
Color entire region
Color gray levels
Fast region coloring
Thresholding
Read pixel value
Read color masks
Save color masks
Save color image
Change picture
Exit submenu

Display Images

Menu display

Set next quad

Set active quad

Display picure

Display mask

Display colored image
Highlight (un)colored regions
Exit sub-submenu

Color Palette

Menu display

Set next quad

Set active quad
List colors

Add colors
Modify color
Display all coloes
Display group
Select and modify
[nit and modify
Regenenite color maps
Exit sub-submenu

-19 -

6. DESCRIPTION OF MENU OPTIONS

This section describes the entries in the various IMPROC submenus. Each subsection is
devoted to a different submenu. Examples of message prompts, parameters, and applications are
given for clarification.

6.1. Main Menu

e Menu display: List the menu options and their option numbers on the terminal screen. Since
this command is always the default option (for every submenu), the user must only enter a car-
riage return to list the menu choices.

o Set next quad: Set the next quad variable, nextqd, to the specified value. The default value is
the current nextgd value. Changing this value is useful to prevent overwriting desirable quads.
By default, the nextqd variable increments (modulo 4) after each image display. This results in a
cyclic display order, with the exception of automatically skipping over the active quad.

e Set active quad: Set the active quad variable, activeqd, to the specified value. The default
provided in the message prompt is the current activeqd value. This option is used to specify the
quad containing the input image. It is necessary only when selecting a new input image.

¢ Read image from file: Read an image from a file. The user is prompted for the filename, as
well as information on whether it should be treated as a color or black-and-white image. This
information is identical to that requested when first entering IMPROC. An example is given in
section 5.

o Write image to file: Save an image to a file. The following sequence of message prompts and
responses illustrates this command.

Quad (-1=all): (-1,3) <activeqd> 1

Filename: <junk.r> file.r
Provide scale(0) or dimensions(1) ? (0,1) <0> O
Xscale: (0.pnax_xscale) <1.> 1.
Yscale: (0.,max_yscale) <1.> 1.

The user first enters the quad number containing the image to be saved. A -1 response is entered
to save the whole screen. The filename is then specified by the user. Here, as in other requests,
a response that cannot be satisfied causes the request to be issued again. Causes for failure
include files that fail to open or parameters that do not fall within the specified range (the
numbers between the parentheses). Finally, the user may select to save the image in any arbi-
trary size. The parameters to rescale the image can be relayed as scale factors or dimensions. In
the example above the user entered 0, thereby desiring to input scale factors. The factor in the x
direction (along scanline) can take on any value between 0 and max_xscale, where max_xscale is
the maximum allowed resolution, XMXRES, (in x direction) divided by the current width.
Selecting it will scale the x direction so that the resulting width will be XMXRES. Currently, this

-20 -

value is 1280 so that it may be displayed on High Definition Television (HDTV) monitors. The
default value of 1. will leave the image size intact. An identical request occurs for the scale fac-
tor in the y direction (perpendicular to scanline), where YMXRES is 1028. Had the user desired
to enter dimensions, a 1 would have been entered:

Provide scale(0) or dimensions(1) ? (0,1) <0> 1
Height: (1,YMXREYS) <height> 256
Width: (1,XMXRES) <width> 256

Here the user selects a 256 x 256 final image size. The default values of height and width are
the current dimensions of the image. Entering two carriage returns would have therefore left the
image size intact. Note that image rescaling here only specifies the size of the image to be saved
in the file. It does not alter the size of the image resident in the quad.

¢ Point Ops: Select the submenu containing point operations.

e Neighborhood Ops: Select the submenu containing neighborhood operations.

e Geometric Ops: Select the submenu containing geometric operations.

e Arithmetic Ops: Select the submenu containing arithmetic operations.

¢ Logic Ops: Select the submenu containing logic bitwise operations.

e Matte Ops: Select the submenu containing image compositing operations.

e Image Conversion: Select the submenu containing image conversion operations. This
includes routines for channel type casting, color space conversion, and image reconfiguration.
e Image Transforms: Select the submenu containing transform operations.

¢ Image Intensity Plot: Select the submenu containing 3-D plotting routines.

¢ Colorize: Select the colorization submenu to apply color to monochrome images.

e Shell command: Enter interactive ksh. This permits the user to temporarily leave the
IMPROC environment and return to the shell. Note that the frame buffer is made available to
other users during that time. To re-enter IMPROC, simply type exit, <ctrl > C, or <ctrl > D.

¢ Run script: Run a user-specified program given in file ipdo.c. This option allows users to con-
veniently test new algorithms without having to make any serious modifications to the IMPROC
source code. By replacing the default dummy function in ipdo.c with new code, the user must
only recompile the package (explained in section 9) in order to integrate the test routine into the
system. This proves workable when users are allowed to have direct access to the source code,
or maintain private copies.

e Show history: Print the history of the IMPROC session.

¢ Quad status: List the entries to the quad and channel data structures.

e Exit: Exit program; terminate session.

221 -

6.2. Point Operation Submenus

This section describes the point operations that are supported. They are divided into three
submenus: Point Ops, Arithmetic Ops, and Logic Ops. Operations that exclusively deal with the
arithmetic and logic (bitwise) combination of images are found in the Arithmetic Ops and Logic
Ops submenus, respectively. The remainder are contained in the Point Ops submenu.

6.2.1. The Treatment of Color Images

Before considering the operations available, it is necessary to address the issue related to
the treatment of color images. Since color images have three channels (RGB), the question
naturally arises as to whether the channels should be treated independently or coupled.

If we choose to couple the channels, we must operate on the luminance component since it
implicitly couples the RGB information. The results of processing the luminance image then
dictate the new values for the color channels. In particular, the luminance channel, C 1, under-
goes processing, yielding a monochrome output image, C 2. For each pixel pc, in C2, the fol-
lowing computations are applied.

IF(pca2>pci1) {

fe (pc2-pc1)
(255-pc1)
PR=PR+(255—-pR) X f
} Else {
_pcr
Pci
PR=Pr*Xf

The above rule first checks whether pc, is closer to white than pc . If this condition is
found to be true, fis initialized with the normalized distance of pc, from pc,. It measures the
proximity of pc, from white. This factor is then applied to pg, a corresponding color com-
ponent (i.e. red) to yield a value that is proportionately pulled to white. However, if pc, is
found to be less than pc, f reflects the normalized distance from black. Applied to pg, the
resulting value is similarly pulled towards black. This approach generates intuitive results since
all three channels undergo the same transformation.

Decoupling the RGB channels often yields unpredictable and visually interesting images. It
is useful in neighborhood operations where the output value is a weighted average of its neigh-
bors. It is not recommended for operations that make abrupt value reassignments. Examples of
the latter include thresholding, quantization, and histogram equalization.

The option of decoupling color images is common to a variety of point and neighborhood
processes. The following message prompt appears when necessary:

_22.
Decouple RGB? (O=no; l=yes) 0,1) <0>

The default is O (for no decoupling) since it yields more predictable results. Selecting to decou-
ple the RGB channels increases the entropy of the resulting image. This has the visual effect of
increasing the range of colors in the output image.

6.2.2, Point Ops Submenu

e Menu display: List menu options and their option numbers.

o Set next quad: Specify the quad in which to display the next image.

o Set active quad: Specify quad containing the input image.

o Histogram: Display histogram of the image channels. A histogram is the graphical representa-
tion of the intensity distribution of an image. The horizontal axis denotes intensity, and the vert-
ical axis represents the number of pixels at the given intensity. A histogram presents a clear

indication of image contrast and brightness dynamic range. The user must specify which histo-
gram to plot:

Channels (in hex): <ffff>

The supplied hexadecimal number indicates the channels which will be used for the histogram
display. The default option of ffff specifies all channels. Note that the channels are encoded as
bits in the format (blue,green,red). That is, the least significant bit represents the red channel.
Therefore, to specify the red and green channels we want bits 00...011, or hex number 0003.
The green and blue channels are denoted by bits 00...0110, or hex number 0006, etc. Any
request that refers to a non-existing channel is ignored.

The histograms are superimposed and plotted in a cycle of red, green, blue, and white colors,
with each cycle using darker intensity levels. Since the range of each channel may be arbitrary,
there are tick marks displayed along the horizontal axis, with their corresponding values speci-
fied on the terminal. In addition, the minimum and maximum values for each range is provided
as well.

e Thresholding: Threshold the input image.

Lower threshold level: (0,256) <128> 95
Higher threshold level: (95,256) <95> 150

The user selects two threshold levels, T1 and T2, with T1 < T2. All pixels with gray values
below T1 are displayed as black. Those greater than or equal to T1 and less than T2 are
displayed with a single gray value. Pixels having gray values greater than or equal to T2
become white. Displaying the thresholded image with these three levels offers additional visual
information than the standard bilevel format. The standard black-and-white thresholded image

223

can be obtained by setting T 1 equal to T 2. Note that T' 1 is the default value for T 2.
e Threshold (color): Threshold the input image about a user-specified color.

Read value (0=no; 1=yes)

Confirm: (0=no; 1=yes) ©,1) <1>
Color space: (0=RGB; 1=Y1Q; 2=VHS) (0,1) <0> 0
Tolerance in R: 0,r) <0>
Tolerance in G: 0,g) <0>
Tolerance in B: 0,b) <0>

The user positions the activated mouse upon a desired color pixel. The color value of that pixel
is printed on the terminal by entering a 1 to the first message prompt. As long as the user fails to
enter 1 to the confirmation prompt, the user may continuously sample points. Once the loop is
broken with an affirmative confirmation, the last sampled point is used to threshold the color
image. The user must first specify the color space in which to perform the operation. Either the
RGB, YIQ, or VHS color spaces may be selected. In the example above, the RGB space is used.
The r, g, and b, values represent the maximal allowable deviations from the red, green, and blue
color components, respectively. Their values are limited by their distance to either range limits.

e Clip: Clip the input image to a specified range.

Lower clip level: <0.>
Higher clip level: <255.>

The user selects two clip levels, C1 and C2, with C1 < C2. All image values below C1 or
greater than C 2 are set equal to C 1 or C 2, respectively.

¢ Quantization: Perform gray scale quantization on the input image.

Number of levels: (2,256) <8>
Method: (O=scale; 1=plain) 0,1) <0>

The number of gray levels, L, used to display the image is first specified. Next, the user must
select one of two modes in which to perform quantization. In quantization, the full gray scale
range is divided into L equal intervals. The plain mode simply reassigns gray values based on
which interval they lie. The scale alternative performs intensity scaling on the input image
before reassigning gray levels. This makes the input image occupy the full dynamic range prior
to quantization. The user must select whether to decouple a color input image.

¢ Histogram Flattening: Reassign gray levels in order to achieve a flat histogram over the entire
intensity range for the input image. This corresponds to an image with maximum entropy —
exhibiting the widest possible dynamic range. Visually, this enhances contrast and accentuates
details that were not readily apparent originally. This operation is useful for normalizing images

-24 -

before further processing. It has been used extensively for enhancing medical X-rays and satel-
lite imagery. Again, the user must select whether to decouple a color input image.

e Histogram Equalization: Reassign gray levels in order to achieve a user-specified histogram
shape for the input image. For each image channel, the user must specify a look-up table (LUT)
which is used to drive the equalization procedure. The LUT defines the shape of the resulting
histogram. As a result, the LUT values can take on any range, and are not required to specify
absolute histogram values.

LUT 0O: (-1=file; o/w quad) 3
LUT 1: (-1=file; o/w quad) -1
LUT file: <> hist.lut
LUT 2: (-1=file; o/w quad) 2

The LUT may come from a file or a quad. In the example above, the image has three channels,
and the LUTs are found in quad 3, file hisr.lur, and quad 2, respectively.

e Intensity scaling: Scales the intensity range of the input image to fit user-specified limits.

Lower limit: (0.,255.) <0.>
Higher limit: (10.,255.) <255.>

The user selects two scaling limits S1 and S2, with S1 £ §2. The minimum and maximum
image values are mapped to S 1 and S 2, respectively. All intermediate values are linearly scaled
appropriately. Note that S 1 is the default value for S2. Again, the user must select whether to
decouple a color input image.

e Dither (Unordered): Apply random noise to the input image prior to performing quantization.
This technique attempts to diffuse the false contour artifacts present in quantization by sprin-
kling random noise on the image as a preprocessing step. In doing so, harsh edges in the quan-
tized image become less noticeable since the added randomness push some pixels to neighboring
intensity intervals.

Number of levels: (2,255) <8>
Gamma (>1 darkens result): (0.,5.) <l.>

As in the quantization option, the user must enter the number of gray levels in which the image
is to be displayed. Prior to dithering, the image is passed through a look-up table to alter the
intensities for gamma correction. This serves to modify the perceived brightness of the image.

'Y . .
It replaces all values v by v x (-2—;—3—) . This relation yields the family of curves shown in Fig. 7.

Note that y > 1 corresponds to the curves that lie below the ramp and therefore darkens the
result. In contrast, the family of curves having y < 1 lie above the ramp and thus brighten the
result. The ramp coincides with y = 1, denoting that the output image is a copy of the input.

225 -

Picking excessive values will cause saturation. Also, notice that the black and white extremes
stay intact.

¢ Dither (Ordered): Perform ordered dither on the input image to yield a bi-level output. In
ordered dither, the output value of each pixel is dependent on its intensity and location, and on
an n X n dither matrix D. Each pixel is thresholded on the basis of the value in the correspond-
ing position of D. Larger dither matrices yield better results due to the fewer constraints they
impose on the periodicity of the texture patterns. Furthermore, larger matrices accomodate more
gray levels in the output image. A complete description can be found in [Foley 82].

Dither matrix size 4 or 8 (0=4; 1=8) (0,1) <1>
Gamma (>1 darkens result): (0.,5.) <l.>

The user must select between the use of a 4 x4 or 8 x 8 dither matrix. The elements in these
matrices are those given in the above reference. The user must also select a gamma value for
altering the image brightness prior to dithering. This operation is necessary to compensate for
the display device resolution and the visual perception of brightness driven by the discrete place-
ment of dots. See the first dither entry for more detail.

e Dither (error diffusion): Dither the input image using error diffusion algorithms. Error diffu-
sion dithering techniques are generally considered to be the best methods for converting
continuous-tone images into bi-level output. The central idea here is that errors generated
between the true value and its thresholded output should be spread to neighboring points for
compensation. It is therefore a sequential adaptive thresholding technique where the threshold
values are biased based on errors accrued from neighboring points. This approach serves to
overcome the sharply noticeable textured characteristics of the other dithering approaches.

Method: (O=Floyd-Steinberg; 1=Jarvis) o,1) <1> 0

Coefficients (O=default; 1=enter) 0,1) <0> 1
f0: <.4375>
fl: <.1875>
f2: <3125>
f3: <.0625>

Gamma (>1 darkens result): (0.,5.) <l.>

Two error diffusion methods are offered: Floyd-Steinberg [Floyd 75] and Jarvis-Judice-Ninke
[Jarvis 76]. The only difference between the Floyd-Steinberg and Jarvis approaches is the area
in which the error is spread and the applied weights. Figure 6 shows the neighborhoods in which
the error is diffused about pixel X for both cases.

The four default weights, (f0,f1,f2,f3), used in the Floyd-Steinberg method are

(L,i,i,L). Those used in the Jarvis method are (l 5 3 L). The user is free to
16 16 16 16

48°°48° 48 48
enter arbitrary weights by replying appropriately to the request for coefficients, as shown above.

226 -

Notice that the defaults supplied above while entering coefficients are those values recom-
mended by the algorithm. Again, the user must select a gamma value for altering the image
brightness prior to dithering. See the first dither entry for more detail.

fl 2 f3 f2 fl f0 f1 f2

(@ ®)

Figure 6: Error diffusion neighborhoods: (a) Floyd-Steinberg and (b) Jarvis methods.

o Halftone: Perform digital halftoning on the input image to generate a bi-level output. The
halftone procedure replaces each pixel p with an n x n set of pixels s, called a superpixel. The
number of white pixels in s is proportional to the intensity of p. These pixels are organized to
take on a spiral pattern. This attempts to simulate the analog halftone process in which the area
around each superpixel center is inversely proportional to the intensity.

Superpixel sz: (1,10) <4>
Gamma (>1 darkens result): (0.,5.) <l.>

The user is requested for the dimension of the superpixel block. Note that the maximum block
size is 10 x 10. Again, the user must select a gamma value for altering the image brightness
prior to dithering. See the first dither entry for more detail.

e Make LUT: Generate a look-up table (LUT) and apply it to an input image. The user is
prompted to specify intensity ranges, and corresponding constants for the ranges which are then
applied to the input image.

LUT dimension: (0,1000) <256> 256
0) UCHAR

1) SHORT

2)INT

3) LONG

4) FLOAT

5) DOUBLE

LUT type: (0,5) <0> §

227 -

Xfrom: (0,255) <0> 30
Xto: (30,255) <255> 80
Yfrom: (-1000.,1000.) <0> 20
Yto: (-1000.,1000.) <len> 120

Op: (O=exp; 1=ramp) (0,1) <I> 1

Xfrom: (80,255) <80> 80

Xto: (80,255) <255> 255
Yfrom: (-1000.,1000.) <120> 120
Yto: (-1000.,1000.) <255> 200

Op: (O=exp; 1=ramp) (0,1) <1> O
Exp: (0.,100.) <1> .5

In the example above, a LUT is created with 256 entries of type double. By default, the LUT is
initialized with a ramp. That is, all inputs pass untouched onto the output. Intervals of input
values that are to be reassigned are specified by responding to the Xfrom and Xto prompts. The
reassignment values are determined by responding to the Yfrom and Yto prompts.

The shape of the curves in the intervals may be given as a ramp or an exponential function.
By default, the ramp is selected to yield linear interpolation between the user-specified interval
endpoints. If the alternate option is chosen, an exponent must be supplied. The family of
exponential curves is defined by the function

exponent
x—-x1

x2-x1

y=(v2—y1)><[

This class of functions is given in Fig. 7. The (y2-y 1) term guarantees that the interval end-
points equate to the user’s entries. The second term normalizes the distance of the current point
between the interval endpoints. Since its value is between O and 1, we can take advantage of the
properties of f&P°™™ Note that exponent =1 yields a ramp. As exponent increases, curves are
generated that lie farther below the ramp. When exponent decreases above 1, curves lie farther
below the ramp.

The above sequence iterates until a range specifying the LUT entry for the maximum entry
(255) has been defined. Even if no assignment of 255 is desired, it must be specified since it is
recognized as the exit condition. In that case, the user may simply specify 255 for Xfrom, Xto,
Yfrom, and Yto. This will avoid redefining the entry for that interval while, at the same time,
signaling the termination of this operation.

e Edit LUT: Edit LUT. The procedure is analogous to Make LUT.

e Exit submenu: Return to the main menu.

Ye<!

“«— s

- X

Figure 7: The family of exponential LUT curves
6.2.3. Arithmetic Submenu

All arithmetic operations are contained in this submenu. When combining images of dif-
ferent sizes or positions, the system automatically pads the two images with 0 (black) so that
they are mutually superimposed. Note that the original dimensions of a padded image are not
restored after the operation is executed (i.e. images retain their padding). Furthermore, when
combining a color image with a monochrome image, the system will correctly duplicate the
operations between each of the 3 color channels and the single monochrome channel.

e Menu display: List menu options and their option numbers.

o Set next quad: Specify the quad in which to display the next image.
o Set active quad: Specify quad containing the input image.

e Imagel - Image2: Subtract image 2 from image 1.

Imagel: (0,3) <activeqd>
Image2: (0,3) <activeqd>

The user is prompted for the quads containing these images. If the data type of the image is
unsigned char, all negative values are clipped at 0. A message of the form bctr =number is
printed, stating that nwumber pixels were computed to be negative and clipped. Alternatively,
unsigned char subtraction computations may be evaluated with the absolute value taken instead.
This is achieved by setting the ABSVAL global variable to 1 in the Set args option. Two
predominant uses for image subtraction are motion detection and background subtraction. Medi-
cal blood flow analysis and X-ray imagery often use this type of operation.

e Imagel - const: Subtract a constant value from all pixels of the specified image. This opera-
tion has the visible effect of darkening the image. Since the histogram of the processed image is
only shifted downwards towards the lower intensities, the contrast of the output image will be
identical to that of the input image. Again, all negative values in unsigned char computations
are clipped at 0 unless ABSVAL is 1. Note that there is no clipping and ABSVAL is ignored if the
computations are performed on elements with higher precision. Clipped pixels contribute to
gray level saturation which results in a visual loss of intensity resolution. To preclude saturation

-29 -

effects, it is recommended to select a constant that is less than the minimum gray level present in
the image.

e Imagel + Image2: Add two images together. All results are clipped at white, the maximum
gray level. The user is made aware of pixels that are clipped by a message of the form
wctr =number. This states that number pixels were computed to be above the maximum gray
level and clipped.

e Imagel + const: Add a positive constant value to an image. This operation shifts the histo-
gram towards the higher intensity range, thereby brightening the image. Again, the results are
clipped at white. Earlier remarks about saturation effects apply here as well.

e Imagel * Image2: Multiply two images together.

e Imagel * const: Multiply an image by a constant. The constant may be a real number. If the
number is negative and the channel data type is unsigned char the magnitude of the result is sub-
tracted from white. Therefore, multiplying an unsigned char image by -1 yields a negative
image having the same appearance as a film negative of the original. That is, black pixels
become white, white pixels become black, and the intermediate gray levels take on their respec-
tive reverse brightnesses. Saturation and quantization become more pronounced with larger con-
stants.

e Imagel / Image2: Divide image 1 by image 2. In order to avoid divide-by-zero errors, the out-
put image takes on the value of image 1 at all positions where image 2 is 0.

¢ Imagel / const: Divide all pixels of the specified image by an integer constant.

e A + (B - C) * const: Add image A to the scaled difference of B and C. This operation is used
to implement bandpass filtering, where A is the original image, B is a blurred copy, C is more

blurred, and const is a brightness factor. This is introduced as a convenient shorthand for the
necessary steps. Note that the (B — C) term above is correctly left unclipped in the calculation.

¢ Exit submenu: Retumn to the main menu.

-30 -

6.2.4. Logic Ops Submenu

e Menu display: List menu options and their option numbers.

e Imagel & Image2: Perform the logic pixel-by-pixel AND operation among the two specified
images. This operation is usually used to mask off portions of an image. One of the images
serves as a mask, containing black wherever the second image is to be masked, and white wher-
ever the second image is to be allowed to appear.

e Imagel & const: AND each pixel of image 1 with the specified constant.

e Imagel | Image2: Perform the logic OR operation among the two specified images. This
operation is used to add together subimages into a composite output image. Given that two
subimages do not spatially overlap and are masked, they may be ORed together combining both
into a single output image.

e Imagel | const: OR each pixel of image 1 with the specified constant.

e Imagel XOR Image2: Perform the EXclusive-OR operation amng the two specified images.
This operation may be useful for identifying those pixels which are identical in both images.
Identical pixels will be displayed as black, otherwise they will be something other than black,
depending on the actual bit-for-bit comparison.

e Imagel XOR const: Perform an XOR operation on image 1 with a specified constant.

e Imagel BIC Image2: Non-black pixels in image 2 mask out pixels in image 1. Black pixels in
image 2 allow the corresponding pixels in image 1 to be displayed. This is an alternate instance
of the AND operation in which the mask values must be black or white to achieve equivalent
results.

¢ NOT Imagel: Complement the pixels in the specified image. This achieves a negative image
in which black pixels become white, white pixels become black, and intermediate gray levels
take on their corresponding reverse brightness. This operation is useful in analyzing details
characterized by small brightness deviations in the white regions. Due to the logarithmic
response of the eye to intensity, equal brightness deviations in the black regions are more visible
than that in the white regions. Therefore, complementing an image may be helpful in detecting
these changes by bringing them into the darker intensity range.

¢ Exit submenu: Return to the main menu.

=31 -

6.3. Neighborhood Ops Submenu

e Menu display: List menu options and their option numbers.
o Set next quad: Specify the quad in which to display the next image.
e Set active quad: Specify quad containing the input image.

e Blur: Blur the input image with a box filter. Also known as low-pass filtering and image
smoothing, this operation is useful in removing visual noise, albeit it sacrifices edge clarity.
Each output pixel value is simply the average of the neighboring pixels. Although a weighted
average is generally more desirable than an unweighted average, the latter is used here since if
affords high computational savings. (It is based on an optimal implementation of summed-area
tables based on [Crow 84]).

Convolution with a box filter is synonymous with unweighted averaging. For improved
results, the image may undergo several recursive blurring iterations. This filter, known as
repeated box filter, is discussed in [Heckbert 86]. Due to the Central Limit Theorem, repeated
convolution with any single filter ultimately approximates a Gaussian (bell-shaped) filter. Gaus-
sian filters are noted for their smooth frequency attenuation properties?.

The user is requested for a window size of the box filter. The window dimensions are taken
as floating point numbers. This allows blurring with subpixel accuracy thereby permitting
smoothly varying blur operations. Increasingly blurred images are generated by using larger
window sizes.

Directional blur may be achieved by selecting different dimensions for the window height
and width. This, however, only yields directional blur along the horizontal or vertical directions.
We may achieve this effect for any orientation by first rotating the image so that the desired
orientation now lies horizontally or vertically, and then apply the appropriate window. For
example, a significant 30° blur is realized by a rotation of 330° (-30°), a blur window of, say,
height 3 and width 9, followed by a rotation of 30°.

Due to the manner of implementation, there are no run-time differences between filtering
with large or small window sizes. However, filtering with odd window dimensions run slightly
faster than using even window dimensions. This is due to the fact that odd windows are sym-
metric, positioning their centers directly on a whole pixel. Windows with even dimensions, on
the other hand, must position their centers on a fractional pixel thereby requiring additional com-
putation.

e Blur with mask: Blur the input image, with the extent of blurring specified by a second image
serving as a mask. The luminance values of the mask image are used to interpolate between the
input image and a maximal blurred version of it. Higher pixel values in the mask cause more
blurring for the corresponding pixel in the output image. The following parameters are
requested:

+ This is due to the fact that the Fourier Transform of a Gaussian is a Gaussian itself.

-32-

Mask quad: (0,3) <nextqd>

Window width (x): (1.,256.) <3.>
Window height (y): (1.,256.) <3.>
Order of blur fall-off: (.01,10.) <l1.>

The user first specifies the quad containing the mask image. The mask should be mono-
chromatic. In the event that it is a color image, the luminance component is used. If necessary,
the mask is padded with O (black) in order to take on the same dimensions and position as the
input image. The largest mask values yield the greatest blur which is specified by the given win-
dow size of the box filter. All other mask values index between the original input image, and its
maximal blurred copy. Note that the dynamic range of the masked image is first normalized.

Ideally, a stack of successively blurred copies of the input image would be precomputed.
Then, the mask value would index into this stack and read the output value for its corresponding
pixel. Lower values would index into the low end of the stack that is closer to the original
(unblurred) image. Higher values would index into the higher, more blurred, portion of the
stack. However, to approximate this procedure, we simply use the mask value to interpolate
between the corresponding pixels in the blurred and unblurred copies of the input image. Impli-
cit here is the critical assumption that the intensity variance is monotonically decreasing as the
image is increasingly blurred. This approximation is adequate in most cases.

The user is given partial control in the method of interpolation by means of specifying the
order of fall-off for the blur function. Let min and max be the minimum and maximum values in
the mask image, respectively. They are used to normalize the mask value, mask, that is used to
interpolate between original and blur, the unblurred and blurred pixels, respectively. The output
pixel is new.
mask — min

f::

max — min
new = original + (blur — original) x fo%"

For each pixel in the input image, the corresponding pixel in the mask and blurred image are
used to compute f, the blurring index. The higher its value, the more blurred will be the output
pixel. Since direct use of f may not provide the desired visual effect (a subjective matter), the
user may skew the effect of the blur index by specifying order, the rate of fall-off. Since f is
always in the range between 0 and 1, higher values of order will cause a rapid fall-off of added
blur, yielding mildly blurred images. Lower values of order will exaggerate the blur index and
generate more greatly blurred images.

e Edge preserving blur: Blur the input image, with the extent of blur determined by the spatial
frequency content at each pixel. This makes use of the Blur with mask option, with the mask
specified by the output of a highpass filter. The highpass image is simply the difference between
the original and a blurred copy of it. Such an operation yields high values where the edge con-
tent is strong (high frequency details), and low values where there is little gray level activity.

-33-

Since decreased blurring is to correspond to high values in the mask image (stronger edges), a
negative of the mask is computed and vsed in the calculations.

Window width (x): (1.,256.) <3.>
Window height (y): (1.,256.) <3.>
Order of blur fall-off: (.01,10.) <.5>

The window size indicates the width of the highpass filter. Larger window sizes yield stronger
highpass filter output, consequently increasing the dynamic range (resolution) of the blur
indices. This, in turn, can lead to smoother images. The user can control the effect of the com-
puted blur indices by specifying the order of blur fall-off.

e Image sharpening: Enhances the visual details in the input image. Also known as unsharp
masking enhancement, this operation produces an output image in which high frequency details
are improved. It does so by passing the image through a highpass filter, and adding that output
back onto itself. Since the highpass filter has high values in areas of high visual detail, adding
its output onto the original image puts emphasis on the high frequency range of the image. The
variables in this process are the extent of the low pass filtering to be applied upon the original
image before subtraction, and the amount of brightness scaling to be used on the difference
image before adding it to the original.

Window width (x): (1.,256.) <3.>
Window height (y): (1.,256.) <3.>
Emphasis factor: (1.,10) <l.>

Smaller windows yield more granular images. This is due to the poorer noise discrimination that
accompanies filters of small extent. The granularity disappears with larger windows since the
noise power diminishes relative to the admitted signal. This translates into an increased signal-
to-noise ratio.

When applied over an already blurred version of an image, this operation can be used to
boost a frequency band of that image. This generates interesting visual results.

e Median filter: Apply a median filter upon the input image. A median filter selects the median
value of the neighborhood as the output pixel. It is a nonlinear filter that attempts to remove
image noise (i.e. speckles) without smearing the edges. Although it is a neighborhood operation,
it does not fall within the category of spatial convolution since its result is not based on a
weighted average of the neighborhood pixels. An extension of the median filter is to take the
average of the L nearest pixels to the median. This process is known as an L-smooth filter. It
yields better smoothing properties than straightforward median filtering alone.

Number of neighbors about median: (0,4) <0>

-34 -

The default is O for a median filter without the additional smoothing option.

e Thresholded Laplacian: Restore a bilevel image that has undergone smoothing degradation.
This algorithm was originally designed to recover black-and-white images of text that had been
corrupted by the digitizer point spread error function. It is based on the observation that the con-
volution of a step function (bilevel image), h(¢), with a bell shaped function (such as the point

spread function of digitizers) is convex where A () is high (white) and concave where A (z) is low
(black).

It operates by first approximating the Laplacian, L, of the image at each positiont. If the
absolute value of L is below a user-specified threshold, the input image pixel is copied to the
output image. Otherwise, if L is positive, A (¢) is high and the output pixel is made white. If L is
negative, A (¢) is low and the output pixel is made black. Details of the algorithm can be found
in [Pavlidis and Wolberg 86].

Although this operation is meaningful only over images that were originally bilevel, it
yields interesting visual results over continous tone images as well. Selecting a low threshold
value causes increased noise sensitivity. This generates images that have a highly granular
appearance — the granularity due to highlighting the noise present in the image. Interesting
results can also be produced by applying this operation over images that have undergone severe
blurring. The white streaks can be extracted (by thresholding) and reapplied onto the original
image (by image summation). In general, an increase in threshold value corresponds to a
decrease in noise sensitivity, yielding a lower density of edge elements.

e Laplace image: Display the edge contribution of each pixel. This operation is actually the
application of a Laplacian operator on the input image. All negative values computed on
unsigned char images are clipped at 0. Like the highpass filter, the output values are propor-
tional to the strength of the edge passing through that point. Whereas, the highpass filter uses an
adjustable window size, this is strictly a local operation using a 3 X 3 window. The user must
specify a brightness factor to scale the computed values.

e Relief map effect: Compute the Laplacian of the input image, scale the results, and display it
with an added offset. This is similar to the previous operation except that negative values are
not clipped and the dynamic range is compressed.

¢ Exit submenu; Return to the main menu.

1 The Laplacian in a 3 X 3 window is taken to be the maximum difference of slopes of two col-
linear diagonals passing through the center pixel, computed along the horizontal, vertical, and two
diagonal orientations.

-35-

6.4. Geometric Ops Submenu

e Menu display: List menu options and their option numbers.

o Set next quad: Specify the quad in which to display the next image.

o Set active quad: Specify quad containing the input image.

e Scale: Scale the input image to arbitrary user-specified dimensions. The parameters collected
for this operation are identical to those specified in the Write image to file option in the main
menu. The user is referred to the description of that option for an example. In addition, the user
is requested to input the degree, a parameter which determines the method of scaling. Current
allowable values for degree are 0, 1, and 3. When enlarging the image, they invoke pixel repli-
cation, linear interpolation, and cubic interpolation, respectively.

Pixel replication, also known as the nearest neighbor technique, simply duplicates pixels.
This is identical to hardware zooms available on frame buffers and yields a blocky appearance.
Linear interpolation and cubic interpolation apply 1st and 3rd degree splines to the image points
before resampling. This yields smoother results. Typically, linear interpolation is adequate
unless excessive enlargements are specified in which case artifacts due to first derivative discon-
tinuities appear. In these cases, the more expensive cubic interpolation method is in order.

When shrinking, the scaling function automatically blurs the image to prevent aliasing
problems. This antialiasing is bypassed when degree is O, thereby allowing faster, but poorer,
renditions of minified images.

¢ Rotate: Rotate the input image. The user supplies 6, the angle of rotation, and (x,y,z), a point
in 3—space. The rotation algorithm produces an output image geometrically rotated counter-
clockwise, about the rotation axis, through the angle 6. The rotation axis is taken to go through
the origin and (x,y,z). A right-hand coordinate system is used in which x increases from left to
right, y increases from bottom to top, and positive z comes out of the screen towards the viewer.
There is no foreshortening due to perspective — it is an affine transformation. The implementa-
tion is based entirely on skew transformations as documented in [Tanaka 1986] and {Paeth
1986].

e Translate: Shift the input image in the horizontal and vertical directions. The message prompt
indicates the range of values that may be supplied in the x and y directions to avoid clipping.
Beyond that range, the image will be clipped. Note that the input values may be floating point.
This allows for shifts involving fractional pixel sizes.

e Warp: Warp a source image to occupy the space defined by a mask image. Unlike other
rubber sheet transformations, the user is not required to supply a deformation mapping function.
The user must only enter, via a mouse, the locations of corresponding points on the source and
destination (mask) images. This operation can be used to create interesting visual effects.

Image 1: (0,3) <activeqd>
Read value? (O=no; 1=yes) O, <1>

=36 -

Image 2: (0,3) <activeqd>
Read value? (O=no; I=yes) (0,1) <l>

The first message requests the user for the quad containing the source image. The user must
then specify correspondence points on the contour of the source image. The mouse is activated
and the user must position the mouse on the desired point(s), responding to the second message
with a 1 as long as more points are desired. Entering a 0 will break this loop. The procedure is
repeated again for the destination image. Notice that after each point is entered, a number is
displayed at the position. The numbered points of the source image is made to correspond to
those in the destination image. An error will occur if the number of points marked on each
image are not equal.

¢ Exit submenu: Return to the main menu.

237

6.5. Matte Ops Submenu

The image compositing operations described in this section are taken from [Porter 84].
These operations facilitate the aggregation of foreground and background elements to generate
more sophisticated images. Underlying this process is the ability to control opacity information
for each element to retain proper balance and soft edges. Consequently, an additional com-
ponent is added to each pixel to determine opacity of that point. This number specifies the mix-
ing factor required to control the linear interpolation of foreground and background colors.
These opacity components comprise a /matte or alpha channel. For anti-aliasing purposes, their
range is of comparable resolution to the color channels — the 0 to 255 range. A value of 255 is
taken to mean total opacity, O means total transparency.

Some of the supported compositing operations are illustrated below in Fig. 8. The exam-
ples make use of images A and B. Note that image A is depicted with the coarse texture, and
image B is shown with the fine texture. The F, and Fp entries represent the multiplicative fac-
tors applied to A and B, respectively.

IMPORTANT : All images involved in these compositing operations are assumed to have
already been premultiplied with the alpha channel. If this is not the case, then the user must
apply the Matte Cut option first before proceeding.

operation | disgram F, Fg

A i 0

B \ 0 1
A over B : :‘. 1 1-a,

Bover A @\‘ l-ag 1
Ala B W ag 0
Bin A o a,
4 out 8 l-ay o
Bout A : 0 l-a,
A atop B AT l-a,
Batop A 5,,?' l-ap a,
A xor B § 1 l-ag | l-a,

u

Figure 8: Image compositing operations

-38 -

e Menu display: List menu options and their option numbers.
o Set next quad: Specify the quad in which to display the next image.
e Set active quad: Specify quad containing the input image.

e Cut out subimage: Cut out a subimage from the input image.

Active quad: (0,3) <activeqd>
Enter O (quit) or 1 (abort): 0,1) <0>

The first message requests the user for the quad containing the input image. A crosshair then
appears and the mouse is activated, allowing the user to draw an outline around the area to be
extracted. Drawing is initiated by clicking the mouse button. The mouse is then tracked, leay-
ing a trail of blue pixels in its path. Note that image memory is not overwritten by this process.
Successive clicking on the mouse button repeatedly activates and deactivates drawing. This
allows the user to move to a new position without drawing a line. Note that the drawn contour
must be closed. When the contour is completed, the user responds to the second message with a
0. The contour is then flooded with a blue fill, the input image is erased, and the extracted
subimage is displayed. The user may decide to abort by entering a 1 to the second message. In
that case, the input image is left intact.

e A cuts B when A>0: Display image B where the corresponding pixels in image A are non-
zero. This is useful for having a cutting template defined directly by the non-zero intensities in
an image. Since A effectively defines a bilevel matte, the edges are likely to appear jagged.

e A over B when A>0: Overlay image A upon image B for non-zero pixels in A. This allows
images, without matte information, to be used directly in overlay operations by considering their
intensities alone. Note that this is equivalent to a bilevel matte and thereby yields hard (jagged)
edges.

e Matte cut: Multiply the color components of the input image by the corresponding value in the
alpha channel. Recall that the compositing operations require the input image to be pre-
multiplied with the alpha channel. Therefore, this function should be used to make images suit-
able for subsequent compositing operators.

e A over B (A)+(B)(1-aA): Foreground A is placed in front of background B. The expression
in the option name defines the actual computation. It says that A is added to the product of B
and (1-aA), where aA is the alpha channel of A. In this notation, these values are taken to lie
between O and 1. Therefore, the amount in which B participates in each pixel is determined by
the opacity of A’s pixel. Note that because A has been pre-multiplied with its alpha channel, it
can be added directly. If it had not been pre-multiplied, then it would be possible to have fore-
ground elements with alpha=0, which when added to B x (1-aA) would yield values outside the
valid range. Unlike the previous A over B when A>0 option, this function uses a matte and
yields soft edges.

-39

A: (0,3) <activeqd>
B: (0,3) <activeqd>
Alpha mtd: (O=add; 1-max) (0,1) <0>

The last prompt refers to the manner in which to compute the alpha component of the output
image. Depending on the model of the pixel coverage, the output alpha value can either be the
sum or maximum of the input alpha values. The sum is appropriate when it is assumed that the
pixels at the border of A and B do not have overlapping contributions. Otherwise, the maximum
is in order. If the addition mode is wrongly chosen, then successive overlays will generate an
output image which has high opacity, possibly yielding hard edges. On the other hand, this
method is cheaper to compute and is not normally subjected to the unfortunate scenario above.

eAin B (A)(aB): Take only that part of A which lies inside B. As indicated in the expression,
the pixels are weighted by B’s alpha channel.

s Aout B (A)(1-aB): Take only that part of A that lies outside B.

e A atop B (A)(aB)+(B)(1-aA): Take the union of A in B and B out A. Thus, A atop B
includes A where it is on top of B, and B otherwise.

e A xor B (A)(1-aB)+(B)(1-aA): Take the union of A out B and B out A. This includes those
areas which are mutually exclusive among A and B.

e Hicon A (aA): This refers to the alpha channel of A.

e Darken A (f*nonalphaA): This function requests the user for a darkening factor between O
and 1. It applies that factor to the color components of A. Note that it is not applied to the alpha
channel, and so A is simply darkened but not faded.

e Opaque A (f*aA): This function requests the user for an opacity factor. It applies that factor
to the alpha channel of A. Note that it is not applied to the color components, and so only the
pixel coverage information changes.

e Dissolve A (f*A): Requests the user for a dissolve factor between 0 and 1. It applies that fac-
tor to the color and alpha components. This results is a darkening and fading of the image. The
operation is useful in cross-dissolves, or linear interpolation, between images A and B. This
takes the form dissolve(A,a) + dissolve(B,1-a).

¢ Read pixel value: Print the color value of a screen pixel. The user must position the mouse on
the desired pixel and respond to the following message.

Read value? (O=no; 1=yes) 0,1 <l1>

The user may repeatedly read color values from the screen by responding to the message with a
1. The loop is broken by entering a 0. The color values are given in the RGB, YIQ, and HVS
color spaces.

e Read pixel location: Print the (x,y) position of a screen pixel. The user must position the
mouse on the desired pixel and respond to the following message.

_40 -

Read value? (O=no; 1=yes) (0,1) <l>

The user may repeatedly read (x,y) positions from the screen by responding to the message with

a 1. The loop is broken by entering a 0.

¢ Exit submenu: Return to the main menu.

-4] -

6.6. Image Conversion

e Menu display: List menu options and their option numbers.
e Set next quad: Specify the quad in which to display the next image.
o Set active quad: Specify quad containing the input image.

e Convert channel type: Convert the data type of the input image channels. The available data
types are: unsigned char, short, int, long, float, and double. These types are listed with numbers
and the user selects the desired number for each of the input image channels.

e Convert image type: Convert the input image to a new image type. The valid image types are
listed with corresponding numbers. These types are identical to those listed in section 4.

0) MAT

1) BW

2) BWA

3) RGB

4) RGBA

5) VHS

6) YIQ

Image type: (0,6) <imgrype>

Note that the default value denotes the current imgtype of the input image.

e Extract channels: Extract user-specified channels from the input image. Copy them into
nextqd.

Extract Channels: (hex) <ffff>

The channels to be extracted are specified by a hex number. Each channel corresponds to suc-
cessive bits in the hex number, with the first channel given by the least significant bit. For
example, extracting the first and third channels is indicated by bits 00...0101, or hex number
000S. This operation is useful for viewing individual channels.

e Append channels: Append channels onto the end of nexzqd.

Append channels (0) or quad (1) to target? (0,1) <1> O
Target quad: (0,3) <actriveqd>

Enter quad -1 to exit loop

Source quad: (-1,3) <activeqd>

Channel: (0,maxch-1) <0>

The user first selects between two modes: appending channels, or appending an entire quad. In
the above example, a O response indicates that individual channels will be appended onto the

-42 -

specified target quad. These channels are denoted by their source quads and channel numbers.
The user thus enters a cycle requesting this information. Note that the source quad refers to that
quad containing the desired channel, and the channel number specifies the actual channel in the
quad. The valid channel range is from O to maxch-1, where maxch is the number of channels

present in the quad. The loop is broken by entering a -1 to the prompt requesting the source
quad.

Had the user wanted to append a quad to the input image, a 1 would be entered to the initial
prompt. The user would then specify the source quad, containing the appending channels, and
the target quad onto which the channels will be appended. Typical applications for this opera-
tion is to convert a single-channel black-and-white image into a three-channel color image, or
adding an alpha channel to an image for compositing operations.

e Copy channels: Copy quad channels from input image(s) into nextqd.

Target quad: (0,3) <activeqd>
Enter quad -1 to exit loop

Source quad: (-1,3) <activeqd>
Source channel: (0,maxch) <0>
Target channel: (O,maxch) <0>

The target quad refers to that quad into which the channels will be copied. These channels are
denoted by their source quads and channel numbers. The user thus enters a cycle requesting this
information. Note that the source quad refers to that quad containing the desired channel, and
the channel number specifies the actual channel in the quad. The valid channel range is from O
to maxch-1, where maxch is the number of channels present in the quad. The loop is broken by
entering a -1 to the prompt requesting the source quad. Note that the channels copied into the
target quad retain the same data types they had in their source quads. This operation is used to
overwrite channels.

e Color shift: Apply a color shift operation on the input image.

VHS op; (0=add; 1=mult) 0,1) <0> 0
Add to V: (0,255) <0>
Addto H: (0,359) <0>
Addto S: (0,255) <0>

The color shift is realized by eithering adding or multiplying constants to the (Value, Hue,
Saturation) color components of the input image. In the above example, the user selected to add
"constants to the VHS components. This operation is particularly useful for shifting the hue
between 0 and 360° . The VHS hexcone is shown below in Fig. 9. Notice, for instance, that by
adding a constant of 60°, we can shift the colors such that red becomes yellow, yellow becomes
green, etc.

Red
Cvan

Figure 9: Single hexcone VHS color model.
o Set global args: Initialize several global variables useful for determining processing modes of
operation. These variables include ABSVAL, ROTCLIP, and READ FIT. If ABSVAL=1, the
absolute value is taken for low-precision (unsigned char) subtracted images. Otherwise, they are
clipped. If ROTCLIP =1, the rotated images are clipped to fit in the quad. Otherwise, they are
initially scaled down so that the rotated result will fit without any clipping required.

READ FIT determines the sampling technique used to fit images that are read into quads
from files. A value of O performs uniform scaling with no anti-aliasing filtering. This point
samples the image at appropriate positions so that the image takes on its specified dimensions
exactly. A value of 1 performs integral point sampling. Again, there is no anti-aliasing filtering
here. In addition, the dimensions of the resulting image are not guaranteed to match the
requested dimensions since the sampling is constrained to be taken at regular integral intervals.
A value of 3 forces the whole image to be read into the quad. If the quad is too small, it is
replaced by a sufficiently larger one. A value of 4 performs uniform scaling with anti-aliasing
filtering. Although this method is the most expensive of those listed above, it yields the best
rendition of minified images. Note that the READ FIT values are irrelevant if the image already
fits into a quad without any down-sampling.

The values assigned to these global variables stay intact until another call to Set args resets
them.

¢ Exit submenu; Return to the main menu.

6.7. Image Transforms Submenu

e Menu display: List menu options and their option numbers.

o Set next quad: Specify the quad in which to display the next image.

e Set active quad: Specify quad containing the input image.

e Fourier transform (1D): Take the Fourier transform of a specified cross-section of the input

image. The input, as well as the computed amplitude response, are plotted. The user first enters
the orientation of the image cross-section, followed by its position.

o Fourier transform (2D): Take the Fourier tranform of the input image, and display the power
spectrum. The spectrum is displayed with the zero frequency located in the center. This tool is
insightful into the role of frequency analysis in image filtering.

e Thinning: Generate the skeleton of the input image, assumed to be black and white (fore-
ground and background). The thinning process successively removes the outer perimeter of
foreground pixels in a manner similar to peeling an onion. If, however, the deletion of a point is
found to change the connectivity of the local pixel neighborhood, then that pixel is considered to
lie on the skeleton. The resulting skeleton permits us to more readily determine its essential
topology and measure its components. Skeletons are guaranteed to be fully connected and retain
the equivalent topology of the input image. This process is most meaningful when applied upon
shapes with lineal properties. Implementation details and examples can be found in [Wolberg
1985].

The algorithm assumes that the input image has already been thresholded. The user must
respond to the following message sequence:

Thinning method: (O=normal; 1=enhanced) G,1) <0>
Foreground: (0O=blk; 1=white) 0,1) «1>

There are two thinning modes: normal and enhanced. In the normal mode, skeletal pixels take
on gray values proportional to their distance from the contour, with the furthest distance
displayed as white. All deleted pixels are displayed as black.

The enhanced mode extends the thinning process by further classifying skeletal pixels as
either SKL or BRIDGE. SKL pixels, like the skeletal pixels of the normal mode, have the pro-
perty that they are necessary to maintain the connectivity of their local neighborhoods. BRIDGE
pixels identify those skeletal pixels which exist only to maintain the connectivity of the skeleton
itself. This additional label is useful for the rubber sheet image transformation (warping) dis-
cussed later. The SKL pixels are all displayed at the same bright gray level. BRIDGE pixels are
displayed at a lower gray level.

e Exit submenu: Return to the main menu.

- 45 -

6.8. Image Intensity Plot Submenu

e Menu display: List menu options and their option numbers.

e Set next quad: Specify the quad in which to display the next image.
e Set active quad: Specify quad containing the input image.

e Plot: Plot a 3D relief of an input image channel.

Angle between x-axis and horizontal: (-89,89) <30>
Channel: (0,maxch) <0>

Sample: O,width) <8>

Blur? (0=no; l=yes) (0,1) <1>

The orientation of the displayed axes is given in Figure 10. Angle 8 is supplied by the user. If
the image has more than one channel, the user must indicate the channel to be plotted. In addi-
tion, the user must specify the desired sampling rate for generating the resulting grid. Selecting
a high sampling rate yields a more accurate plot. However, the drawback is that the points are
plotted more densely, making it difficult to observe. The user has the option to blur the image
data prior to subsampling it. This is the appropriate filter useful for preventing aliasing. The
relief surface is plotted with all hidden lines removed.

R\

> X

Figure 10: Orientation of displayed axes

e Set gray for y-traces: Set the gray level for lines drawn in the y—direction. This is useful in
improving the display of the plotted surface.

e Set z-scale: Scale the relief map in the z—direction. This is useful to normalize and amplify
features in the plot.

¢ Exit submenu: Return to the main menu.

- 46 -

7. COLORIZATION

This section deals with the operations available to apply color onto black-and-white
images. The implemented approach differs from that of commercial paint-box systems. The
process of assigning color information using paint-box systems is a tedious procedure of actually
passing an electronic paintbrush over the image and an equally painful process of arriving at the
desired color.

There were several major considerations in the design of the colorization system described
below.

1) Minimize the effort in accurately extracting the regions to be colored by using histogram
analysis.

2) Ease in assigning color to the extracted regions.
3) A facility for the quick editing of color in already colored regions.
4) An intuitive method of generating the color database.

5) A fast mode in which to fine tune the color prior to actually writing the information to the
pixels.

7.1. Overview

The application of color consists of a cycle of three events: roughly outlining the desired
region, applying a threshold operation to extract the region of interest, and specifying the color
of the extracted region. Given an image of a face, for example, we might begin by colorizing the
lips. The user would begin by using the mouse to draw a rough outline around the lips. Examin-
ing the histogram for that subimage, a range may be specified in which to threshold the subim-
age into three intensities: black, constant gray, and white. The objective in selecting the thres-
hold is to capture all the pixels of interest between the two supplied threshold levels, thereby
displayed with a constant gray in the thresholded image. In this case, only pixels lying on the
lips should appear as gray. The user may then specify that all pixels at that particular gray level
be assigned a certain color.

In cases where the dynamic range of the extracted subimage is too wide to discriminate
between the foreground and background a simple flood fill must be used. For instance, care
must be taken to cut out the hair region more carefully when it cannot be accurately discrim-
inated from the neighboring facial pixels of similar intensities. Options also exist for adding
color within a region without overwriting already colored pixels.

7.2. Color Information

There are various color spaces in which to define the applied color. We have chosen to use
the YIQ color space. The Y channel is the luminance information, already provided by the origi-
nal black-and-white image. The user must therefore assign the / and Q values. Although it is
possible to allow the user to create a color palette by trying combinations of I and Q, the more

- 47 -

straightforward approach consists of reading a digitized image or video frame containing the
desired color. For example, suppose that a particular blonde hair is sought. The user may then
find a picture or video containing that blonde color, digitize it, and read pixel values off of that
region. Taking the average of the recorded values, the user has the proper / and Q values. This
approach is often more reliable and faster then starting from scratch.

7.2.1. Color Data Structure

Each color in the system is specified internally with the data structure given below.

typedef struct {
char colomame[MXSTRLEN]; /* color name */
unsigned char Yref; /* reference Y */
intl, Q; /* 1,Q define color */
int offst; /* bias for Yref */
unsigned char red[MXGRYNUM]; /* color maps */

unsigned char green[MXGRYNUM];
unsigned char blue[MXGRYNUM];
} colorS, *colorP;

The values for MXSTRLEN and MXGRYNUM are defined in the IMPROC ip.h header file as 80
and 256, respectively.

Each color must have a name, a unique (/,Q) pair, and additional information needed to
create its color maps. The color maps are used to provide the RGB values needed to display a
colored image on a monitor, or store it in a frame buffer. Therefore, assigning color ¢ to pixel p,
simply causes p to index into ¢’s color map.

Given the (/,Q) pair, together with the input Y, RGB color maps may be generated using
the following relation.

R =Y +.9483] + .624Q
G =Y - 2760 - .640Q
B=Y-1110/ + 1.73Q

Recall, however, that it is possible to derive the / and Q values by reading them off of a digitized
color image. In doing so, that (/,Q) pair is actually coupled to a particular Y, call it Yref, to
yield a reference color. Blindly applying the above transformation to the full range of luminance
values may yield artifacts, such as colored shadows and highlights. This problem is due to the
saturation of one or more RGB color channels that, in turn, is due to the generation of color
values outside the allowable range. This problem is corrected in this system by performing color
interpolation between the reference color and the black and white extremes of the spectrum.
Therefore, pixels below Yref are mapped onto a color ramp between black and Yref. In practice,

- 48 -

(Yref,I, Q) 1s f:ust converted to (11’ é l§) Pixels above Yref are mapped onto a color ramp
between (R G ,B) and white. Those pixels below Yref are mapped between (R G B) and black.
This is illustrated for the R channel in Figure 11. Higher order interpolation may be used in
place of linear interpolation for different effects. For instance, colors to be applied over specular
surfaces may use higher order interpolation than colors to be applied over matte surfaces.

.~ R=R

Figure 11: Color interpolation

The offst member in the color data structure is used in cases where the reference color is to
appear on a particular Y value. If Y is not equal to Yref a bias must be added to Y in order to
achieve -the desired effect. The bias value, offst, must be added to the input image luminance
values prior to computing the output color. Nonzero offst values alter the luminance of the out-
put image. It may be used to advantage to correct for over/underexposure in the original image,
and thereby generate superior color images. However, if the color is suppressed (using the
monitor’s color knob), blotches would appear in the resulting black-and-white image indicating
the presence of various nonzero offst values applied to the original intensities. Therefore, offst
must be zero when used to colorize images in which the viewer has the means of suppressing the
color information. This includes the colorization of movies that are shown on television.

It is noteworthy here to draw a comparison to an alternate coloring scheme devised by
Colorization Inc. of Toronto, a major colorization company. They use the HVS color space,
where H is hue, V is value (identical to Y in Y/Q), and S is saturation. In their system, the ongi-
nal black-and-white image serves as the V and S channels. The user must only provide H, the
hue. While initializing H is less work than having to initialize both / and Q, their system is inca-
pable of refining the color maps due to their restricted input. The system implemented here
allows for that extra degree of freedom in selecting arbitrary interpolation methods between the
reference color and the spectrum extremes.

7.2.2. Color Database

Each color is identified by its group name and color name. The color name is simply the
colorname member of the color data structure. The group name is used to add meaninfulness to
the large collection of colors that may accrue. An example of typical (group,name) pairs are
(hair,brown), (hair,blond1), (hair,blond2), (eyes,blue), etc. This information is defined to the
system by the user adding it to the session color list. It may be saved and used again in another
session through system-maintained color files.

At the start of every colorization session, the user is prompted for a color file to initialize
the color database for that session. Color files should be named with a .colors extension. Each

- 49 -
line in the file specifies a color and has the format shown below.

group name, color name, Yref, I, Q, offst

Each color list must contain one color indicating an uninitialized state which can be used to clear
(uncolor) C buffer entries:

UNINIT, UNINIT, 0,0,0,0
At the end of each colorization session, the color database is written back into the same file.

7.2.3. The C Buffer

The color information is overlayed upon the luminance channel provided by the black-
and-white input image. Consequently, a C buffer is defined consisting of pointers to the color
data structures. The combination of the C buffer with the underlying luminance values of the
original image yields a colored image. The color is derived from the luminance indexing into
the color maps of the corresponding color data structure.

In order to conserve memory and reduce execution time, the colorization is performed at
half the resolution of the original image. This is adequate since the human visual system is not
acutely sensitive to color discrimination in small areas. Luminance information provides the
major cue in these instances. Therefore, the active quad providing the black-and-white input
image must be point sampled (not uniformly sampled) by a factor of 2. In this instance, point
sampling is necessary since the eventual enlargement of the C buffer must be done by replication
since it is meaningless to speak of interpolating color pointers.

As stated earlier, the area of interest must first be extracted by drawing a rough outline
around the desired region and then performing thresholding to display all desired pixels at a con-
stant gray value. The gray pixels in the thresholded image serve as a mask indicating that the
overlaying positions in the C buffer must be assigned the specified color (actually a pointer to
the color data structure). This organization also allows easy editing of color by simply substitut-
ing one color (pointer) with another.

The C buffer may be saved into a file for use in a subsequent session. The only information
actually saved are the (/,Q) pairs for each pixel. This data is expanded into a color data struc-
ture when read back into the system. This is done by matching each input (/,Q) pair with that of
each color in the database. For this reason, no two colors in the database are allowed to share
the same (/,Q) pair. Conversely, two colors may share the same colorname and be considered
different colors as long as they do not both belong to the same group.

-50 -

7.3. Colorization Submenu

e Menu display: List menu options and their option numbers.
e Set next quad: Specify the quad in which to display the next image.
e Set active quad: Specify quad containing the input image.

e Display Images: Select the sub-submenu containing operations in which to display and
highlight (un)colored images.

¢ Color Palette: Select the sub-submenu operating on the color database.
e Cut out subimage: See identical entry in Matte Ops submenu.

e Color entire region: Apply a color to the entire subimage contained in the active quad. Since
the subimage may already be partially colored, the user must indicate whether only the
uncolored regions are to be colored, or whether all pixels are to be colored, irregardless if they
are already initialized.

Overwrite? (O=no; 1=yes) 0,1) <1>
Group name: <>
Color name: <>

Responding to the first message with a 1 causes all subimage pixels to be colored. A 0 response
causes only uncolored pixels to be colored. The applied color is specified by the group and
color names. If the user enters a name which is not currently in the color database, the option
aborts and no color is applied. In general, this option is used to color regions which cannot be
extracted more precisely (and easily) by means of thresholding. This includes regions contain-
ing a wide range of intensities.

¢ Color gray levels: Apply a color to those pixels displayed at specified gray levels. This option
follows a thresholding operation in which pixels lying in the region of interest are now displayed
at a constant intensity.

Active quad: (0,3) <activeqd>
Inclusive? (O=no; 1=yes) ©,1) <1>
Read value? (O=no; 1=yes) 0,1) <1>
Overwrite? (O=no; 1=yes) 0,1 <1>
Group name: <>

Color name: <>

The first message requests the user for the quad containing the thresholded image. In the second
message, responding with a 1 (inclusive) indicates that the set of intensities to be entered should
be regarded as those pixels which are to be colored. A response of 0 indicates that all other
intensities are to be colored instead. The user must now specify the intensities. This is done by
positioning the mouse upon any pixel of the appropriate intensity and responding to the “‘read

-51 -

value?”’ prompt with a 1. That message prompt is continually re-issued as long as a 1 is entered.
The loop is broken by entering a 0. As in the color entire region menu option, the user must
specify whether already colored pixels may be overwritten, as well as the group and color names
of the applied color.

e Fast region coloring: Colors a specified region interactively using a mouse to vary the color
parameters.

Point to region and enter: (O=clr; 1=nonclr; 2=abort) (0,2) <0>
Color map (O=linear; 1=tint) (0,1) <0>

Fix white at MXGRAY? (O=no; 1=yes) 0,1) <0>

YIQ or VHS (0=YIQ; 1=VHS): 0,1) <1>

The mouse is activated and the user may position it over a desired pixel. Entering a O to the
above message will read the C buffer entry for that pixel and perform fast recoloring on those
pixels with identical entries. See the Regenerate color maps option in the Color Palette sub-
menu for an explanation of the next two messages. See the Select and modify option in the
Color Palette submenu for a description of the selection of a color space and the layout of the
interactive parameter settings. Like that option, movement of the mouse causes color parameters
to change and an immediate update of color over the specified pixels. This is due to the continu-
ous update of the frame buffer LUTs and no update to the C buffer. It is recommended as a tool
in which to quickly run through a range of colors for specified regions. Once the user is satisfied
with a given color, the update session may be terminated by moving the mouse to the exit box
and confirming the desire to exit. The color values are printed on the terminal. From there, the
user may add them to the color database and apply them to the region.

e Thresholding: See identical entry in the Point Ops submenu.
e Histogram: See identical entry in the Point Ops submenu.

¢ Read pixel value: Print the color value of a screen pixel. The user must position the mouse on
the desired pixel and respond to the following message.

Read value? (O=no; 1=yes) G,1) <i>

The user may repeatedly read color values from the screen by responding to the message with a
1. The loop is broken by entering a 0. The color values are given in the RGB, YIQ, and HVS
color spaces.

e Read color masks: Read color information from a file. This serves to initialize C with
pointers associated to the newly read color values.

e Save color masks: Save color information into a user-specified file.

e Save color image: Combine the color information with the original black-and-white image.
Save the resulting color image in a user-specified file. The C buffer is scaled to take on the

-52-

same dimensions as the original black-and-white image. Scaling is done by means of replica-
tion. An error message will appear if the dimensions of the original image are not integer multi-
ples of the C buffer.

e Change picture: Assign image of specified quad as the new image to be colorized.

¢ Exit submenu: Return to the main menu.

7.4. Display Images Sub-submenu

¢ Menu display: List menu options and their option numbers.

o Set next quad: Specify the quad in which to display the next image.

e Set active quad: Specify quad containing the input image.

e Display picture: Display the black-and-white image being colorized.

e Display mask: Display the image from which the current subimage is derived.
o Display colored image: Display the colorized image.

e Highlight (un)colored regions: All regions that have been assigned a specified color are
displayed in white. The remaining regions are displayed with their original intensities. This is
useful for clearly verifying the status of the colorized image.

Point to region and enter: (O=clr; 1=nonclr; 2=abort) (0,2) <0>

The mouse is activated and the user may position it over a desired pixel. Entering a 0 to the
above message will read the C buffer entry for that pixel and display in white all pixels with
identical entries. Also, the position, quad number, and color data is printed on the terminal. If
all uncolored pixels are to be highlighted, the user must enter 1 to the above message. The
mouse will be ignored and all uninitialized entries are displayed in white. Finally, a 2 entry
aborts the operation.

¢ Exit sub-submenu: Return to the main menu.

7.5. Color Palette Sub-submenu

e Menu display: List menu options and their option numbers.

¢ Set next quad: Specify the quad in which to display the next image.

e Set active quad: Specify quad containing the input image.

e List colors: Lists all groups, colors, and color data defined in the session’s color database.

e Add color: Add color to the database.

Group name: <>
Color name:<test>
Y: (0,255) <128>

- 53 -

I: (-.6Y,.6Y) <0>
Q. (-.520,.520) <0>
Yref: (0,255) <Y>

The user enters the group name, color name, and the color data.

e Delete color: Delete color from the database.

Group name: <>
Delete entire group? (O=no; 1=yes) <0>
Color name:<>

The user first indicates the group name containing the color to be deleted. If the user chooses to
delete all colors in the group, a 1 is entered in response to the second message. Otherwise, a 0 is
entered and the third prompt appears requesting the user for the color name.

¢ Modify color: Modify a color in the database.

¢ Display all colors: Displays the colors of each entry in the database in small squares on the
monitor.

¢ Display group: Display the colors of a specified group in small squares on the monitor.

e Select and modify: Point to a color on the monitor and interactively edit its values, seeing the
resulting color on the monitor.

Read value? (O=no; 1=yes) o, <1>
YIQ or VHS (0=Y1Q); 1=VHS): 0,1) <1>

The first message requests the user to position the mouse above a desired pixel. Entering a 1
will then cause that pixel’s color to be read (in RGB). A O entry will abort the operation. The
second message requests the user for the color space in which to edit. Five rectangular boxes are
then displayed in the lower half of a quad. They represent the ranges for the 3 color values (Y/Q
or VHS), the offst entry, and an exir box. Position the mouse on the any of the first four boxes
causes a horizontal crossbar to track the mouse. Moving the crossbar up (down) raises (lowers)
the value of that paramater. Notice that the values are printed under the boxes. The upper half is
used to display the color resulting from the current settings. As the parameter is changed, the
color is continually updated. To exit the color editing session, position the mouse over the exiz
box and reply to the confirmation message. After exiting, the final color parameters are printed
on the terminal in the RGB, YIQ, and HVS color spaces.

e Init and modify: This is identical to the select and modify option except that the user is
expected to provide the color data numerically, rather than pointing to a colored pixel.

o Regenerate color maps: Regenerate all the color maps using the specified form of color inter-
polation.

-354 -

Color map (O=linear: l=tint) (0,1) <0>
Fix white at MXGRAY? (O=no; 1=yes) ©,1) <0>

The user first specifies whether a linear interpolation, or “‘tint’’ is to be used. The linear interpo-
lation makes use of the Yref member of the color data structure and is described in section 7.
The *‘tint”’ method ignores the Yref value and simply uses the straightforward conversion from
YIQ to RGB. If linear interpolation is used, the second message appears. If white is not fixed at
MXGRAY, the maximum valid intensity, then it is allowed to be offset by the offst parameter. In
standard colorization, this has no effect since offst must be 0 (see section 7). Subsequent
displaying of the colorized image make use of the updated color maps.

¢ Exit sub-submenu: Return to the main menu.

-55.-

8. LIBRARY FUNCTIONS

All menu options invoke functions contained in the IMPROC library. These functions
serve as useful building blocks for customized software. This section lists the available func-
tions and their arguments. Since there is generally a correspondence between the function and a
menu option, the user is directed to section 6 for a description of the function. As before, the list
is partitioned into classes of image operations.

8.1. Data Structures

The most fundamental data structures in IMPROC, given below, specify all relevant infor-
mation about quads and channels.

typedef struct qdformat {

unsigned char *buffMXCHANNEL]; /* ptrs to channels */

int chtype[MXCHANNELY]; * list of channel element types */

int x, y; /* location of upper left corner */

int height, width; /* image dimensions */

int xoffst, yoffst; /* offsets from upper left corner of qd */

int imgtype; /* label of image type */

char status; /* FREE or NOTFREE (for memory management) */
1 qdS, *qdP;
typedef struct chformat {

unsigned char *buf; /* ptr to channel memory */

int links; /* number of links to quads */

long chsize; /* size of channel (in bytes) */

char status; /* FREE or NOTFREE (for memory management) */
} chS, *chP;

Each quad holds exactly one image. It can be considered as an image control block, con-
taining information about the image and quad display data. The quad data includes the screen
coordinate of the upper left corner of the screen partition, a flag indicating whether the quad is
currently linked to an image (for memory allocation purposes), and x and y offsets for the con-
tained image. These offsets are useful for performing image translation without actually modi-
fying the image memory.

The image data includes a list of pointers to image channels, a list of codes denoting the
corresponding channel data types, the image type, and the image dimensions. Up to MXCHAN-
NEL channels may be attributed to an image. By default, MXCHANNEL is set to 16.

Any number of quads may be displayed during an IMPROC session. The user may specify
this number by invoking IMPROC with a —¢ flag. By default, only four quads are displayed at

- 56-

any time. Beyond the visible quads, an arbitrary number of additional off-screen quads may be
requested by the user. Off-screen quads may be brought into view by simply copying them into
any of the visible quads. Note that the x and y members in the quad structure are only meaning-
ful for the visible quads.

The library functions described below are those routines which are invoked by the menu
system in the interactive mode. They facilitate the non-interactive processing necessary in many
image processing applications. All functions are fully general in the sense that they properly
deal with all image types with channels of arbitrary data types. In addition, the output image can
be designated to be the same as the input. All the necessary buffering is handled automatically.
Finally, any operation which requires a channel to be replaced takes care of memory reallocation
and its effects on any other quads which may be linked to it.

-57-
8.2. Quad Manipulation Functions

qdP getqd(height,width,chtype) int height, width, *chtype;

Return a pointer to a quad structure. Sufficient memory is allocated to accomodate an image
with dimensions height x width. Furthermore, the data types of the channels are specified in the
chrype list. The values of the channel types are defined in the ip.h header file and are listed in
section 4. Since these values are positive, a -1 is used to terminate the list. When the quad is no
longer needed, the user should use freeqd to release the quad. In this manner, a subsequent
request for an image of compatible size may avoid having to allocate more memory and thereby
optimize system performance.

qdP getqd_qdp(q) qdP g;
Identical to getqd except that the argument values are provided by those corresponding to quad
g. That is, the height, width, and chtype values are taken from gq.

freeqd(q) qdP q;
Free quad ¢. This places ¢ on a free-list so that it may be reused upon a subsequent call to
getqd.

cpqd(ql,q2) qdP ql, q2;
Copy quad ¢ 1 to quad ¢2. This includes the members of the quad structure as well as image
memory.

cpqdinfo(ql,q2) qdP q1, q2;
Copy the members of quad structure ¢ 1 to g2. It does not copy the image pointers or image
memory. This is useful for initializing the size and type of an output image.

cpqdinfo3(ql,q2,q3) qdP ql, q2, q3;

Similar to cpqdinfo except that the information is determined from both g1 and ¢2. That is, the
dimensions and data types of the output image, ¢ 3, are taken to be the maximum (most precise)
of those offered by ¢ 1 and g2, on a channel-by-channel basis. This is useful to assure that the
output of a binary operation will yield an image that properly passes the precision and member
information of the two input quads prior to the operation.

clearqd(q) qdP g;
This clears all the pixels in quad g to 0.

setaquad()

Print a message requesting the new active quad. It initializes the variable activeqd and draws a
blue border around the image. setaquad is useful for software that will be installed into
IMPROC and that must request a new active quad.

-58 -

setnquad()
Request the user for the next quad in which to display an image. The request is re-issued if the
active quad is specified (since it may not be overwritten).

incnextqd()

Initialize the nextqd variable to the next valid value. That is, nextqd is incremented and com-
pared to activeqd. If they are found to be equal, it is incremented again (modulo the number of
visible quads). This is useful following line plotting routines that write to a quad. Since only
dsply (see later) increments nextqd, any other writing to a quad must use incnextqd to avoid
overwriting that quad when displaying the next image.

qdstatus()
Prints the quad status information. This is the function used by the Quad Status option. It is
useful for debugging purposes.

-59 .
8.3. Channel Manipulation Functions

initchinfo(q,chtype) qdP q; int *chtype;

Assign suitably sized memory channels to g based on the image dimensions and the correspond-
ing entry in chrype, the list of channel data types. If the current memory channel is larger than
the required size, then it is retained. Otherwise, it is replaced by a channel of the determined
size. This function serves to initialize the channel pointers stored in the g data structure. Note
that there is no initialization of the channel elements.

nextch(q,num,ptr,type) qdP q; int num, *type; unsigned char *ptr;

Pass the memory pointer and data type corresponding to channel nwn in quad g through parame-
ters prr and type, respectively. If num refers to an existing channel, then the function returns a 1
in addition to the passed parameters. However, if num exceeds the number of channels actually
contained in ¢, the function returns a 0 signaling this condition, in addition to the data pertaining
to the last channel in q. This feature allows two images to be treated channel-by-channel
eventhough they don’t have the same number of channels. This is intuitive in cases where, say,
a single channel BW image must be combined in some way with a 3 channel RGB image. By
repeatedly passing the last available channel, the BW image is implicitly treated as a compatible
RGB image, allowing the operation to proceed normally. When the nextch function for both
images return Os, then we know that neither image has any more channels to offer, and the
operation may terminate. This routine is used in all functions that access successive channels.

cpch(ql,cl,q2,c2) qdP ql, q2; int cl, ¢2;

Copy channel ¢ 1 of quad ¢ 1 into channel ¢ 2 of quad ¢2. Channel ¢ 2 inherits the data type of
channel c1. If the channel numbers do not refer to valid channels, then an error message is
issued.

cpchend(ql,cl,q2) qdP ql, q2; int cl;

Copy channel c 1 of quad q 1 onto the end of quad ¢2. An additional channel is allotted to g2
prior to appending channel c 1. An error message is issued of the dimensions of g1 and ¢2 do
not agree. It normally follows a call to NEWQD, a macro which returns a new quad with null
dimensions and type.

linkch(ql,cl,q2,c2) qdP ql, q2; int cl, ¢2;

Link channel ¢ 1 of quad ¢ 1 onto channel ¢ 2 of quad ¢2. This function effectively aliases chan-
nel ¢l in g1 as a channel in ¢2. This permits a filter operating upon g2 to access a channel
actually contained in g 1. linkch is useful for passing a specified set of channels to an image
operation. For example, if we wish to process only channels 0 and 2, we may link them to a new
quad and subject that quad to an image operation. The output of this operation will contain the
processed channels O and 2. Note that no copying of memory was involved; only a link, or
renaming procedure, was needed. It is inherent that the dimensions of all linked channel agree.

- 60 -

linkchend(ql,c1,q2) qdP ql, q2; int cl;

Link channel ¢ 1 of quad ¢ 1 onto the end of quad ¢ 2. This is similar to appending a channel to
q 2 except that the channel memory is only renamed, not copied. linkchend is commonly used
to collect, without the expense of copying, those channels which are to undergo the same filter-
ing. It normally follows a call to NEWQD, a macro which returns a new quad with null dimen-
sions and type.

tfrch(q,ch,h,w,type) qdP q; int ch, h, w, type;
Transfers a channel pointer to channel ch in quad q accommadating memory with dimension A x
w and rype data type.

tfrchbf(q,ch,h,w,type,bf) qdP q; int ch, h, w, type; unsigned char *bf;

Replace channel ch in quad ¢ with the channel pointed to by bf. The new channel has dimen-
sions h x w and data type rype. Note that all quad channels that are linked to the replaced chan-
nel are updated.

maxch(q) qdP g;
Return the number of channels present in quad q.

maxtype(q) qdP q;
Return the maximum channel data type in quad q.

-6l -
8.4. Type Conversion

ch_conv(ql,types,q2) qdP ql, q2; int *types;

Convert the channel data types in ql to those specified by the types list, with the result going in
quad ¢2. The types list contains the channel data type codes given in section 4. A -1 terminator
is used to signal the end of the list.

Let ¢ be the number of elements in rypes, and ¢ be the number of channels in g 1. Typically, ¢
equals c¢ to denote a straightforward conversion of each channel in g 1. However, if ¢ < ¢, then
the r channels are converted and the remaining channels in g 1 are not passed onto g2. If t > ¢,
then the last channel in ¢ 1 is replicated into g 2 having the type specified by the rypes entries.

ch_conveq(ql,type,q2) qdP ql, q2; int type;

Converts all g1 channels into datatype type. The result goes into g2. Note that by forcing all
channels to have the same data type, this is more limited than the ch_conv function which per-
mits arbitrary types for each channel. However, this function provides a shorthand means of
specifying the new channel data type without having to initialize a channel type list containing
identical entries.

ch_convmin(ql,type,q2) qdP ql, q2; int type;
Convert all channels having data types less than type into type. The result goes into g2. Here,
the order of the data types refers to their numerical codes. This is used to assure that all channels
have at least as much precision as that associated with rype.

ch_convmax(ql,type,q2) qdP ql, q2; int type;
Convert all channels having data types greater than rype into type. The result goes into g2. This
is used to assure than no channel has precision greater than rype.

ch_convl(ql,cl,q2,c2,type) qdP ql, q2; int cl, c2, type;
Convert channel c 1 of quad ¢ 1 into channel c2 of quad ¢ 2, Channel ¢ 2 is cast to the data type
specified by rype.

img_conv(ql,imgtype,q2) qdP q1, q2; int imgtype;

Convert quad ¢ 1 into an image having the imgrype specified. This involves performing the type
casting and color space conversion necessary to make g1 conform to the default data types
characterized by that imgtype value. These default types are found in file ipdecl.h and are
described in section 4. The result is stored in quad g 2.

8.5. Image I/O Functions

qdP read_image(filename) char *filename;
Return a quad containing the image in file filename. Note that the format of the image is deter-
mined from the tagname of filename.

save_image(q,filename) qdP q; char *filename;
Save quad q in file filename. The tagname of filename must be compatible with the type of
image being saved.

rd_image(fd,q) qdP q; int fd;
Read an image into quad g from a file specified by file descriptor fd.

sv_image(q,fd) qdP q; int fd;
Save quad q into the file specified by the file descriptor fd.

rd_imghdr(fd,tag,q) qdP q; int fd; char *tag;

Read the image header from the file specified by file descriptor fd. The tagname zag is used to
indicate the format in which the image header is stored. The resulting height and width data are
initialized in quad 4.

sv_imghdr(q,fd,tag) qdP q; int fd; char *tag;
Save the image header of quad q into file filename. The tagname tag specifies which format to
write the header.

sv_screen(fd,tag) int fd; char *tag;
Dump the screen contents into an RGB file with format specified by the tagname tag.

- 63 -
8.6. Display Operations

dsply()
Display the contents of quad nextqd. When bringing an off-screen quad to view, it must be
copied to nextqd (using cpqd) and then displayed.

plot(ql,ch,smplxtheta,q2) qdP ql, q2; int ch, smpl, xtheta;

Plot a relief surface of ¢ 1’s channel ch into g2. The y—axis is displayed at an angle of xthera
counter-clockwise to the x—axis. One in every smpl pixels is sampled and used to plot the sur-
face. For best results, be sure to blur the channel before subsampling to prevent aliasing
artifacts.

dsplyhist(ql,q2,channels) qdP ql, q2; int channels;

Display histogram of ¢ 1 channels in quad q2. The channels displayed are specified by the hex
number channels. The least significant bit refers to channel 0 with each successive bit
corresponding to increasing channel numbers. The displayed histograms are color-coded in
cycles of red, green, blue, and white colors. The first four channels are displayed in bright red,
green, blue and white, respectively. Subsequent channels are displayed with darker values of the
same cycle. g 1 and ¢2 must be on-screen (visible) quads.

drawborder(qd) int qd;
Draw a blue border around quad gd, where gd is a visible quad.

eraseqd(qd) int qd;
Erase quad ¢d on monitor. Fill area with black.

8.7. Point Operations: Single Image

histeval(q,ch,histo,len,hmin,hmax)

qdP q; intch,len; long *histo; double *hmin, *hmax;

Evaluate the histogram of channel ch in quad q. The histogram is stored in histo which has len
entries. If the range of the channel does not lie properly between 0 and len, then the histogram is
evaluated on an embedded version of the channel. See section 5 for a definition of embedding.
The minimum and maximum values in the channel are returned in Amin and hmax, respectively.

thr(ql,t1,t2,g1,g2,23,q2) qdP ql, q2; double t1, t2, g1, g2, g3;

Threshold the image in quad ¢ 1 and store the output image in quad g 2. 1 and ¢2 are the thres-
hold levels. g1, g2, and g3 are the intensity levels displayed in the thresholded image. They
correspond to the three ranges delimited by ¢ 1 and £2.

qntize(ql,levels,q2) qdP ql, q2; int levels;
Quantize the image in q 1 into levels intensities per channel, storing the result in g 2.

histflat(ql,q2) qdP ql, q2;
Perform histogram flattening on the image in quad q 1, storing the result in quad g 2.

histeq(ql,qlut,q2) qdP ql, q2, qlut;

Perform histogram equalization on the image in quad q 1, storing the result in quad ¢2. The his-
tograms to which g 1 must conform are given in quad glur. Note that the histograms of g2’s
channels will thereby resemble those given in glur. As usual, if glur has fewer channels than g 1,
its last channel supplies the histograms for the remainder of g 1s channels.

clip(ql,tl1,t2,q2) qdP ql, q2; double t1, t2;
Clip the values in ¢ 1 to lie between ¢ 1 and ¢2, where ¢ 1 <¢2. The result goes in q 2.

scale_range(ql,t1,t2,q2) qdP ql, q2; double t1, t2;
Scale the values in g 1 to lie between ¢ 1 and r2, where 1 < 2. The output goes in g 2.

embed_range(ql,t1,t2,q2) qdP ql, q2; double t1, t2;
Embed range of ¢ 1 to lie between values ¢ 1 and r2, where 11 <¢2. The result goes in g 2.

gamma_correct(ql,expo,q2) qdP ql, q2; double expo;

Perform gamma correction on quad gl. The gamma curve is defined as f?°, where f
represents the intensity range normalized to lie between 0 and 1. Note that the image need not
lie in this range. An expo value of 1 represents a ramp in which the intensities are unaltered.
Larger values yield a family of curves that lie below the ramp and thereby darken the output
image. Smaller values brighten the image.

- 65 -

applylut(ql,qlut,q2) qdP ql, qlut, q2;
Apply the LUT in quad qluz upon quad ¢ 1. The result is stored in quad 4 2.

applylut_intrp(ql,qlut,q2) qdP ql, qlut, q2;

Identical to applylut except that floating point data in ¢ 1 serves to interpolate into the LUT of
quad qlur. That is, instead of truncating fractional parts when indexing the LUT, that fraction is
used to interpolate between adjacent table entries.

dither unorder(ql,levels,expo,q2) qdP ql, q2; int levels; double expo;

Perform unordered (random) dithering on the image in quad ¢ 1. The output image, with levels
intensities per channel, is stored in quad g2. Prior to dithering the image is gamma corrected
with the expo parameter (see gamma_correct).

dither order(ql,dim,expo,q2) qdP ql, q2; int dim; double expo;

Perform ordered dithering on the image in quad g 1, storing the output in quad ¢2. The dimen-
sions of the square dither matrix is dim. This value is restricted to be either 4 or 8. Again, the
image is first gamma corrected with the expo parameter used to specify the correction curve.

dither_floyd(ql,coeff,expo,q2) qdP ql, q2; double *coeff, expo;

Perform error diffusion dithering on quad g 1 based on the Floyd-Steinberg 4 neighborhood algo-
rithm. The output goes in quad g 2. The coefficients of the 4 neighborhood weights are given in
the coeff list. If coeff is O (null pointer), then default coefficient values are used. Gamma correc-
tion is specified by the expo value.

dither_jarvis(ql,coeff,expo,q2) qdP ql, q2; double *coeff, expo;

Perform error diffusion dithering on quad g 1 based on the Jarvis-Judice-Ninke 12 neighborhood
algorithm. The output goes in quad g2. The coefficients of the 12 neighborhood weights are
given in the coeff list. If coeff is 0 (null pointer), then default coefficient values are used.
Gamma correction is specified by the expo value.

halftone(ql,sz,expo,q2) qdP ql, q2; int sz; double expo;

Halftone the image in quad ¢ 1 using sz X sz superpixels. These superpixels contain spiral pat-
terns whose density reflects the intensity it is intended to represent. The maximum value of sz is
10. Again, the image first undergoes gamma correction with the value expo. The output image
is stored in quad g 2. Note that the dimensions of ¢ 2 will be sz times larger than those of g 1.

- 66 -
8.8. Point Operations: Arithmetic

subtrct(ql,q2,q3) qdP ql, q2, q3;
q3=ql-q2.

subconst(ql,const,q2) qdP ql, q2; double *const;
g@2=q1 - const. The constant values applied to each channel are given in the const array.

add(ql,q2,q3) qdP ql, q2, q3;
q3=ql+q2.

addconst(ql,const,q2) qdP ql, q2; double *const;
g2 =q1 + const. The constant values applied to each channel are given in the const array.

mult(ql,q2,q3) qdP ql, q2, q3;
q3=q1xq?2.

multconst(ql,const,q2) qdP ql, q2; double *const;
q2 =q1 x const. The constant values applied to each channel are given in the const array.

divide(ql,q2,q3) qdP ql, q2, q3;
q3=ql/q2.

divconst(ql,const,q2) qdP ql, q2; double *const;
q2 =gq1 / const. The constant values applied to each channel are given in the const array.

add_dolp(ql,q2,q3,const,q4) qdP ql, q2, q3, q4; double const;
q4=q1+(q2-q3)* const. The name is derived from adding the difference of lowpass (dolp)
between two blurred versions of the original, back onto the original.

-67 -
8.9. Point Operations: Logic

and(ql,q2,q3) qdP ql, q2, q3;
q3=ql & ql.

andconst(ql,const,q2) qdP ql, q2; unsigned char *const;
g2 =q1 & const. The constant values applied to each channel are given in the const array.

or(q1,q2,q3) qdP ql, q2, q3;
q3=ql | q2.

orconst(ql,const,q2) qdP ql, q2; unsigned char *const;
g2 =q1 | const. The constant values applied to each channel are given in the const array.

xor(ql,q2,93) qdP ql, q2, q3;
q3=9q1XO0OR q2.

xorconst(ql,const,q2) qdP ql, q2; unsigned char *const;
g2 =q1 XOR const. The constant values applied to each channel are given in the consr array.

bic(ql,q42,q93) qdP ql, q2, q3;
g3 =qlbicq.
not(ql,q2) qdP ql, q2;

q2 = COMPLEMENT OF q 1.

- 68 -
8.10. Neighborhood Operations

blur(ql,xsz,ysz,q2) qdP ql, q2; double xsz, ysz;
Blur the image in quad ¢ 1 with a box filter of dimensions xsz x ysz. The output image is stored
in quad g 2.

blur1D(src,len,offst,winsz,dst)

unsigned char *src, *dst;

int len, offst;

double winsz;

Blur the 1D list of values in src using a box filter with window size winsz. The increment
between successive elements in src is offsr. This permits scanline processing along rows
(offst=1) or columns (offst =width of row). The result is stored in dst.

fblur1D(src,len,offst,winsz,dst)

float *src, *dst;

int len, offst;

double winsz;

Identical to blur1D except that the blurring is applied over floating point data.

blur_mask(q1l,qmsk,qblur,order,q2) qdP ql, qmsk, gblur, q2; double order;

Blur g 1, using gmsk as the mask image specifying values for which to interpolate between g1
and its maximally blurred version, gblur. order specifies the blur fall-off. The output image is
stored in quad g 2.

sharpen(ql,xszyszfctr,q2) qdP ql, q2; double xsz, ysz, fctr;
Sharpen ¢ 1 using a box filter of dimensions xsz x ysz and a multiplicative factor of fcrr. The
result is put in quad q 2.

median(ql,k,q2) qdP ql, q2; int k; ’
Apply a median filter on q 1, averaging the k nearest pixels to the median. The result is stored in

q2.

thr_laplace(ql,thresh,q2) qdP ql, q2; double *thresh;

Threshold the Laplacian of the image in quad ¢ 1 using threshold levels given in list thresh. Suc-
cessive thresh entries correspond to successive quad channels. The output image is stored in
quad q 2.

laplace(ql,mid,fctr,relief,q2) qdP ql, q2; double *mid, *fctr; int relief; '
Apply a Laplacian operator on q 1, storing the results in g2. The mid list supplies the bias
values for each channel. Laplacian results are scaled by the appropriate fctr entry before being

-69 -

added to the bias. If relief is O, the absolute value of the Laplacian are used in the computations.
If relief is 1, the Laplacian results are used directly.

-70 -
8.11. Geometric Operations

scale(ql,newh,neww,degree,q2) qdP ql, q2; int newh, neww, degree;

Scale the image in quad ¢ 1 so that it takes on the dimensions of height newh and width neww.
The method in which to scale is specified by degree. Current allowable values are 0, 1, and 3 to
denote pixel replication, linear, and cubic interpolations, respectively. The result is stored in
quad g 2.

scalelD(src,len,nlen,offst,degree,dst)

unsigned char *src, *dst;

int len, nlen, offst, degree;

Scale the 1D list of values in src so that its length is resized from len to nlen. The increment
between successive elements in src is offst. This permits scanline processing along rows
(offst=1) or columns (offst=width of row). As in scale, the method in which to scale is specified
by degree. The result is stored in dst.

fscalelD(src,len,nlen,offst,degree,dst)

float *src, *dst;

int len, nlen, offst, degree;

Identical to scalelD except that the scaling is applied over floating point data.

rotate(ql,nl,n2,ang,q2) qdP ql, q2; double nl, n2, ang;

Rotate the image in quad g 1 by angle ang about the rotation axis, specified by direction cosines
n1and n2 and the image center. n 1 is equal to the x—projection of the rotation axis divided by
the axis’ length. n2 is computed using the y—projection. The z—projection is not needed since
it is determined by n 1 and n 2. The rotated image is stored in quad q 2.

translate(ql,dx,dy,q2) qdP ql, q2; double dx, dy;
Translate the image in quad g 1 by dx and dy in the x and y directions, respectively. The result
goes into quad ¢ 2.

-71 -
8.12. Image Compositing Operations

fg_extract(ql,q2,q3) qdP ql, q2, q3;
g2 cuts g1 where g2 pixels are non-zero. The result goes into g 3. This version yields hard
edges since g 2 effectively defines a bilevel matte.

fg_overlay(ql,q2,q3) qdP ql, q2, ¢3;
Overlay ¢2 upon g 1 where g 2 pixels are non-zero. The result is found in ¢3.

mat_cut(ql,fig,q2) qdP ql, q2; int flg;
Compute soft matte cut of ¢ 1 into g 2. If flg =0, then a 1, ¢ 1’s alpha channel, is used directly in
the operation. Otherwise, (1-a 1) is used to compute the soft matte cut.

mat_over(ql,q2,flg,q3) qdP ql, q2, q3; int flg;
g3 =q1 over g2. If flg=0, the resulting alpha channel is the sum of the input alpha channels.
Otherwise, the maximum of the alpha channels is taken at each pixel.

mat_in(ql,q2,q3) qdP ql, q2, q3;
g3=qling2.

mat_out(ql,q2,q3) qdP ql, q2, q3;
gq3=qloutqg?2.

mat_atop(ql,q2,f1g,q3) qdP ql, q2, q3; int flg;
g3 =q1 atop q2. If flg=0, the resulting alpha channel is the sum of the input alpha channels.
Otherwise, the maximum of the alpha channels is taken at each pixel.

mat_xor(ql,q2,flg,q3) qdP ql, q2, q3; int flg;
g3 =gl xor q2. If flg=0, the resulting alpha channel is the sum of the input alpha channels.
Otherwise, the maximum of the alpha channels is taken at each pixel.

mat_hicon(ql,q2) qdP ql, q2;
The alpha channel of g 1 is stored in g 2.

mat_darken(ql,num,q2) qdP q1, q2; double num;

Applies the multiplicative factor num to the non-alpha channels of ¢ 1. The result is stored in
g2. This darkens/brightens the image without introducing fading. Despite the function’s name,
num is not restricted to be less than 1.

mat_opaque(ql,num,q2) qdP ql, q2; double num;
Applies the multiplicative factor num to the alpha channel of g 1, storing the result in g2. This

-72-
causes the image to become more faded/opaque. There are no restrictions on the value of num.

mat_dissolve(ql,num,qZ) qdP ql, q2; double num;

Applies the multiplicative factor nwm to all the channels of g 1, storing the result in ¢ 2. This
causes the image to both darken/brighten and become more opaque/faded. Note that there are no
restrictions on the value of num.

-73 -
8.13. Image Transforms

fft1D(ql,dir,q2) qdP g1, q2; char dir;

Perform the Fast Fourier Transform on N complex numbers (N pairs of real and imaginary
numbers) contained in quad g 1. The real and imaginary numbers are found in channels O and 1,
respectively. N is taken as the height x width product of ¢ 1. If dir is ‘f’, the forward FFT is
taken. Otherwise, if dir is ‘i’, the inverse FFT is taken. The real and imaginary results are
stored in g 2 in channels O and 1, respectively, and are taken as type float.

fft2d(ql,dir,q2) qdP ql, q2; char dir;
Perform a 2D FFT on ¢ 1, storing the results in ¢2. Again, dir specifies whether a forward or
inverse FFT is computed. The real and imaginary numbers are stored in channels O and 1 as

type float.

Id_fftnum(ql,q2) qdP ql, q2;

Load channel ch in quad g1 into quad ¢2, so that it is compatible with the input expected by
fft 1D or fft2D. This involves converting the channel to be of type FLOAT TYPE (a float chan-
nel), and appending a second channel of Os, representing the null imaginary terms. Therefore,
q 2 is made to have two channels, one for the real components and one for the imaginary terms.

Idchar(ql,dir,q2) qdP ql, q2; char dir;
If dir is ‘f*, store the amplitude spectrum, contained in g 1, into g2 with the zero frequency in
the center. Otherwise, if dir is ‘i’, load the image, stored in ¢ 1 as complex numbers, into g 2.

thin(q,fg,iterations,acted) qdP q; int fg, *iterations, *acted;

Thin image in quad ¢q, putting the skeleton back in q. fg is the foreground pixel value. The
background is taken as 1 — fg. Thinning iterates for *irerations times unless *iterations is less
than 0, in which case thinning proceeds until completion. The number of iterations completed is
returned in iterations. The number of pixels changed from foreground to skeleton is returned in
acred.

warpthin(q,fg, DELPXL,SKL,BRIDGE,iterations,acted)

qdP q;

int fg, DELPXL, SKL, BRIDGE, *iterations, *acted;

The enhanced thinning procedure described in section 6. DELPXL is the value given to pixels
which are deleted and labeled as background. The DELPXL may be used to traverse the contour.
As each of these pixels is visited, the DELPXL label may be reset to the background value,
1 — fg. The remaining parameters are described in section 6 and thin.

shrink(ql,q2,cnct) qdP ql, q2; int cnct;
Shrink binary image ¢ 1 by peeling away outermost layer. The background is taken to be cnct-

-74 -
connected, where cnct is either 4 or 8. The result of a one iteration shrink is stored in g 2.
dilate(ql,q2,cnct) qdP ql, q2; int cnct;

Dilate binary image g1 by coating outermost layer. The background is taken to be cnct-
connected, where cnct is either 4 or 8. The result of a one iteration dilation is stored in q 2.

275 -
8.14. Image Utility Routines

interlv(ql,q2) qdP ql, q2;
Interleave the channels of quad ¢ 1. The data is stored in the first channel of g 2.

uninterlv(ql,q2) qdP ql, q2;
Uninterleave the interleaved data stored in g 1’s first channel. Store the result in the channels of
quad g 2.

normalsz(ql,q2) qdP ql, q2;
Normalize ¢ 1 and g2 to take on identical dimensions. The normalization takes the form of
added padding such that they mutually superimpose.

fixborder(ql,xmin,ymin,xmax,ymax,q2) qdP ql, q2; int xmin, ymin, xmax, ymax;

Resize the image to fit in the window given by diagonal endpoints (xmin,ymin) and
(xmax,ymax). The size adjustment is made by either clipping or padding the border with a null
(0) border. Note that the minimum x and y values of the image are denoted by the xoffst and
yoffst entries in the quad header. These values must be greater than 0. The maximum coordinate
values are determined by the addition of the width and height to the xoffst and yoffst values. As
an example, if xoffst = 0 and xmin = -3, then the left side of the image will be padded with a 3-
column null border. On the other hand, if xmin was given as 3, then the first 3 columns on the
left side of the image would be clipped off. This operation is useful for normalizing the dimen-
sions of an image which must be superimposed upon a second image.

rgbdcpl(ql,q2) qdP ql, *q2;

If quad ¢ 1 is a black-and-white image, return it in g2. Otherwise, prompt the user to determine
whether the RGB image should be decoupled for subsequent processing. If the user wishes to
decouple the channels, ¢ 1 is returned through ¢ 2 since all routines treat the channels indepen-
dently anyway. Otherwise, the luminance of the color image is computed and returned in g 2.
An eventual invocation of rgbcouple will adjust the color components based on this luminance
image its computed result.

rgbcouple(ql,q2,q3) qdP ql, q2, q3;

Update the RGB values of g 1 to follow the result of operating on a (coupled) luminance image.
If g1 is the same value as ¢ 3, no previous coupling was performed, and there is therefore no
need to update any values. However, if g 1 is distinct from g 3, then a luminance image had been
previously computed (in ¢ 3) and together with its result (in g 2) are used to determined the new
color values to be stored in the output image ¢2. The method used for this computation is
described in section 6.

minmax(q,minval,maxval) qdP q; double *minval, *maxval;

-76 -
Return the minimum and maximum values of quad q in minval and maxval, respectively.
minmax1(q,ch,minval,maxval) qdP q; double *minval, *maxval;

Return the minimum and maximum values of quad ¢’s channel ch in minval and maxval, respec-
tively.

-7 -
8.15. Query Routines

askint(str,min,max,default) char *str; int min, max, default;

Print message str, range min and max, and default. Re-issue the message as long as the response
is not within the range specified. If a newline is entered, return defaulr. Otherwise, return valid
response.

askstring(strl,str2,str3) char *strl, *str2, *str3;
Print message str 1, default response str 2, and return response in str 3.

askdouble(str,min,max,default) char *str; double min, max, default;
Identical to askint except that the parameters now have data type double instead of inz.

askhex(str,default) char *str, *default;
Print message str 1 and default. Return hex response.

-78 -

8.16. Frame Buffer Functions

In an effort to make IMPROC portable across different frame buffers, all device-dependent
routines are contained in file ipdev*.c. In addition, some definitions are found in the header file
ip.h.

init_fb()
Initialize the frame buffer device, making it available to the user.

flush_fb()
Flush buffers to make the frame buffer picture current.

close_fb()
Close the frame buffer device, making it available for other users.

setrgb(r,g,b) intr, g, b;
Set the current color to be (r,g,b). Subsequent plotting uses this color.

readrgb(r,g,b) int *r, *g, *b;
Return the RGB value of the current position in (r,g,b).

readcrsr(x,y) int *x, *y;
Return the current cursor position in (x,y).

moveto(x,y) int x, y;
Move to screen position (x,y), making it the current position.

drawto(x,y) int x, y;
Draw a line from the current position to (x,y).

drawrel(dx,dy) int dx, dy;
Draw a line relative from the current position by (dx,dy).

line(x1,y1,x2,y2) int x1, yl, x2, y2;
Draw a line from position (x 1,y 1) to (x 2,y 2).

rect(x1l,yl,x2,y2) int x1, yl, x2, y2;
Draw a rectangle with diagonal vertices (x 1,y 1) and (x2,y 2).

rectrel(dx,dy) int dx, dy;
Draw a rectangle with one diagonal vertex at the current position and the second vertex at a rela-

tive distance of (dx,dy).

-9 .

text(x,y,str) int x, y; char *str;
Draw text in str at position (x,y).

writepix(height,width,q) int height, width; qdP q;

Write a height x width image into the frame buffer at the current position. The image is con-
tained in quad ¢. Note that the format in which the image is stored is device-dependent. Thus,
some devices will require the data to be interleaved or uninterleaved. Instead, for such low-level
access, the user is advised to use put_urows or put_irows to make this distinction clear.

readpix(height,width,q) int height, width; qdP q;

Read an image from the frame buffer. Store the height X width image in quad g. Note that the
format in which the image is stored in q is device-dependent. Thus, some devices will naturally
leave the data interleaved or uninterleaved in the quad. Instead, for such low-level access, the
user is advised to use get urows or get_irows to make this distinction clear.

put_urows(x,y,q) int x, y; qdP q;

Display the uninterleaved image stored in quad g. Its upper left corner is positioned at location
(x,y). Note that the buffer memory stores scanlines in top-to-bottom order. Also, device-
dependent issues in display format are automatically handled by this function.

put_irows(x,y,q) int x, y; qdP q;
Identical to put_urows except that the image is stored in interleaved format in quad q.

get_urows(x,y,h,w,q) int x, y, h, w; qdP q;

Read an image from the frame buffer and stores it into quad g in uninterleaved format. The
image has dimensions h X w beginning from the upper left corner at location (x,y). Note that the
buffer memory stores scanlines in top-to-bottom order. Also, this function handles the device-
dependent issues regarding frame buffer display format.

get_irows(x,y,h,w,q) int x, y, h, w; qdP q;
Identical to get_urows except that the image is stored into quad ¢ in interleaved format.

erase(x1,yl,x2,y2) int x1, y1, x2, y2;
Erase area on screen bounded by (x 1,y 1) and (x 2,y 2).

prmfill(flg) int flg;
If flg is 1, fill subsequent drawn primitives (i.e. rectangle) with current color. Otherwise, leave
the primitives unfilled.

clipwndw(x1,yl,x2,y2) int x1, ylI, x2, y2;
Define a clipping window with diagonal vertices (x 1,y 1) and (x2,y 2).

- 80 -

start()
Gain access to the Raster Technology frame buffer.

quit()
Quit access from the Raster Technology frame buffer.

mversr()
Have the cursor follow the mouse movement.

pen()
Draw a streak of blue pixels following the mouse movement.

followcrsr()
Track the mouse position. This is similar to mversr except that the screen position of the mov-
ing current point is put in a predefined frame buffer register.

clear()
Turn off the cursor tracking and crosshair.

rdpxlval()
Prompt user to read value from the screen.

rdpxlloc()
Prompt user to read the cursor location.

flood()
Flood the entire frame buffer screen, making it take on the current color. Useful for clearing the
screen.

areafill()

Prompt the user to position the mouse in the interior of a region closed by a curve drawn with
blue color (0,0,MXGRAY). When the user confirms the point, the area is filled with the same
blue color.

-81-

9. EXAMPLES: PUTTING IT ALL TOGETHER

This section provides some examples that are intended to clarify the usage of library func-
tions. In addition, it is shown how the combination of some basic functions can yield interesting
and useful operations.

9.1. Basic Usage

All software invoking IMPROC functions must include the header file ip.h. This file con-
tains macros, typedefs, and external declarations. The file containing the main function must
also include ipdecl.h which contains the definitions for the global variables. These variables,
some of which are listed below, may be redefined by the programmer. This should be done at
the outset in main. See ip.h and ipdecl.h for the full list of global variables and macros. In par-
ticular, the data type definitions for image channelsis found in ipdecl.h. To register some vari-
ables which may be dependent on these newly initialized data, the programmer must call
init vars(). This should be included even if no global variables are redefined. If the frame
buffer is to be accessed by the program, make sure to insert the function init_fb () to initialize the
frame buffer. If the program will be using dsply () to display images, the programmer must also
include init visqd () to initialize the visible quads. IMPORTANT : init_vars() must precede
either init_fb () or init_visqd ().

Here are various global variables and macros that the programmer should be aware.

activeqdp The active quad, activeqd, is actually a number between O and 3. It serves as an
index into gdptr, a list of quads, to yield activeqdp, the pointer to the active quad.
init_vars () sets activeqd to 0, and activeqdp to qdptr [0].

nextqdp The next quad, nextqd, is set to 0 in inir_vars, and its corresponding quad pointer,
nextqdp, is initialized to gdprr [0].

MXGRAY This is the maximum allowable gray level. By default, it is set to 255. However,
this value is reserved by IMPROC for other use. The maximum intensity value
for image data is set to MXGRAY 1, which is MXGRAY -1.

YSZ XSZ This specifies the maximum height and width, respectively, of each quad. It is
used as the dimensions of the visible quads. For convenience, YSZ 1 and XSZ'1
are automatically defined as YSZ -1 and XSZ -1, respectively.

NEWQD This returns a new quad with null dimensions and data type (uninitialized). It is
used to obtain a quad which will be initialized in some processing operation. It is
implied here that it must first be used as a destination quad, in which its attributes
will be assigned by the processing function.

9.2. An Example

The partial program shown below reads an image from file.r, displays it, performs histo-
gram equalization, displays the result, and saves it in output.r.

#include "ip.h"
#include "ipdecl.h"
main() {
qdP q;
I* preliminary initialization */
init_vars(); /* init global variables and pointers */
init_visqd(); * init visible quads */
init_fb(); * init frame butfer */

" read image file; display image in activeqd (=0) */

q = read_image("file.r');

cpqd(qg.nextqdp); " copy into nextqd for dsply() */

dsply(); I* display inputimage; nextqd is incremented to 1 */

I* perform histogram flattening, save, and display resutt */

histflat(activeqdp,nextqdp); " perform hist fiattening */
save_image(nextqdp, histflat.r);
dsply(); I display result */

I* Note: had dsply() gone before save_image(), then nextqdp
would have been pointing to another quad, resulting in the
saving of an uninitialized quad.

*f

freeqd(a); " release quadq */
close_fb(); " close access to frame buffer */

The IMPROC library must be linked at compile time with a —limproc appendage. For conveni-
ence, a command is available for compiling the user programs with all the necessary frame
buffer, math, and IMPROC libraries. Just type ipcc with any number of source files.

ipcc file.c

9.3. Another Example: Bandpass Filters

Bandpass filters attenuate all frequency components outside their ranges. They are speci-
fied by their cut-in and cut-off frequencies, as well as their gain within the working range. For
convenience, we will assume unity gain. The Fourier transform is obviously a straightforward
tool to use in implementing a bandpass filter. Here we will show a far cheaper method of arriv-

ing at the same result: taking the difference of two lowpass filters. We can expect to make use
of the blur function since it is implements a lowpass filter.

-83 -
main(} {
double const[3];

qdPq1,q2;

q1 = read_image("input.r’);

blur(q1,5.,5.,q1); * blur q1 by 5 x 5 window */
blur(q1,5.,5.,.92); I* g2 is q1 blurred by 5 x 5 window */
subtret(q1.92.93); rq3=qt-q2*

const[0] = const[1] = const[2] = 15.; * RGB factors */
muitconst(q3,const,nextqdp); I nextqdp=q3* 15.*/

dsply(); " display resuit */

)

The segment of code given above implements a bandpass filter. It knocks out some high fre-
quencies with the first blur. The result is stored in ¢ 1. Some more of the higher frequencies are
attenuated with the second blur, where the results are stored in ¢2. Subtracting g2 from g1
leaves us with the frequencies that exist in g 1 but were attenuated in g2. Since this difference
tends to be dim when displayed, each channel was multiplied by 15. In order to preclude satura-
tion effects, it is advised to avoid such magic numbers and instead convert the image to higher
precision (to avoid clipping) and then scale the intensity range to maximize the full dynamic
range. The segment below converts the image to have data type short and then scales the inten-

sity range to lie between O and MXGRAY 1. Recall that MXGRAY is reserved by IMPROC,
therefore the maximum displayable intensity is MXGRAY 1, one value less than MXGRAY.

blur(q1.5.,5.,q1);

blur(q1,5.,5.,q2);

ch_convmin(q1,SHORT_TYPE,q1);

ch_convmin(q2, SHORT_TYPE,q2);

subtrct{q1,q2,93);

* scale intensity range of q3 to lie between 0 and MXGRAY1 */
scale_range(q3, 0., (double) MXGRAY1, nextqdp);

dsply();

Had we not converted g1 and q2 to at least have data type short, the above examples
would have failed to generate exact bandpassed images because subtrcr clips negative values to
0 when operating upon unsigned char (1 byte per component) images. This is reasonable since
displayed pixel values must be positive. However, in order to compute an unclipped bandpassed
image without explicit conversion we may use the add_dolp function. This function will add the
unclipped difference of two blurred images back onto an original image.

An interesting variation can be generated by applying the imgsharp function to an already
blurred image. Recall that imgsharp amplifies the high frequency components of an input image
without clipping intermediate results. Since boosting the high frequencies of a blurred image is
equivalent to boosting an intermediate frequency range of the original image while simultane-
ously attenuating the highest frequencies, imgsharp can be used to correctly add a bandpassed

-84 -

image back onto the original with suppressed noise. This yields visually interesting results.

9.4. Channel Manipulation

There are instances when only a subset of the available channels are to undergo processing.
Since IMPROC routines uniformly treat all channels of the input quad, we must isolate indivi-
dual channels into a new quad. That quad is then sent to be processed. In order to avoid exces-

sive copying, we use linkchend to link the desired channels to the end of the new quad. The fol-
lowing code segment quantizes only the red and blue channels.

gtmp = NEWQD,;

linkchend(qinput, 0, gtmp); * link channel 0 (red) to gtmp */
linkchend(qinput, 2, gtmp); I link channel 2 (blue) to gtmp */
gntize(qtmp,8,qtmp); I’ quantize channels to 8 levels */
freeqd(qtmp);

Note that the linking process does not actually copy the channel memory (that would be
cpchend). Instead, the pointer of the channel is copied and used to index into channel memory.
As a result, it is necessary to pass the input quad through the filter and back into itself. Other-
wise, a new two-channel quad would have been generated. Since this does not comply with the
intent of the user, an additional (and wasteful) copying stage would have been necessary to copy
the two channels back into their appropriate place in the input quad. As a result, the output quad
should be the same as the input quad for all routines exploiting the linking capability.

In some instances, the user may wish to avoid decoupling the RGB channels. That is,
instead of allowing the processing routines to handle each channel independently, it may be
desired to couple the channels so that they follow the values of a single computed channel. This
is particularly useful in routines that make discontinuous value reassignments, i.e. thresholding,

quantization, etc. The following code segment illustrates the use of rgbcouple to perform this
channel coupling.

img_conv(q1,BW_IMG,q2); I* compute luminance of input g1 */
qntize(q2, 8, q3); * result of quantization is in g3 */
rgbcouple(q1,63,q2); " restore color values with new result in g3 */

Note that the coupling of channel data was performed by computing the luminance image using
img_conv. The rgbcouple routine then uses the input luminance and the quantized luminance to
determine the necessary multiplicative factors to apply to the color channels in g 1. The new
result overwrites the previous contents of g3. Channel coupling is explained in more detail in
section 6.

.85 -

9.5. Yet Another Example: Image Halftones

The code given below invokes a halftone operation upon an input image with user parame-
ters given on a command line. Due to the fact that this program is intended to generate bitmap
images to be outputted by a printer, the pixel values must be flipped. This makes ‘‘on’’ pixels
black, and ‘‘off’’ pixels white. An example of the usage is

halftone input.r 8 2.4 1024 1024 output.sunl

#include "ip.h"
#include "ipdecl.h”

main({argc,angv)

int arge;

char **argv;

{
int i, pxlsz, rows, cols;
unsigned char *p;
double gamma;

qdP q0, q1, q2, qflip;

iflargc 1= 7) {
fprintf{stderr,
"Usage: halftone infile pxlsz gamma rows cols outfile\n");
exit();

}

pxisz = atoi(argv(2));
gamma = atof(argv{3]);
rows = atoi(argv[4]);
cols = atoi(argv{9));

XSZ = YSZ = MAX(rows, cols);

if(XSZ > MXRES) {
fprintf(stderr,"Error: a dimension exceeds %d\n",MXRES);
exit();

}

init_vars();

fprintf(stderr,"Reading image: ");
q0 = read_image(argvi1]);
img_conv(q0,BW_IMG q0);

ql1 = NEWQD;

q2 = NEWQD;

-86 -

I* init LUT to make negative due to printing process */

* black (0) becomes white; >1 becomes black */

qflip = getqd(1, 256, BW_TYPE);

p = qflip->buf[0];

*p++ = 255; " black becomes white */
for(i=0; i<256; i++) pli] = 0; /* non-black becomes black */

fprintf(stderr,"Scaling ...);
scale(qO, rows/pxlsz, cols/pxlsz, 1, q1);

fprintf(stderr,"Halftoning ... *);
halftone(q1, pxlsz, gamma, q2);

fprintf(stderr,"Negative ... ");
applylut(q2, qflip, g2);

fprintf(stderr,"Saving bitmap\n™);
save_image(q2,argv[6]);

9.6. Adding Source Code to IMPROC

Adding source code to IMPROC is performed by the system administrator to incorporate
additional debugged image processing functions. It involves three steps. Firstly, an entry is
made to the appropriate place in the menu system. This requires adding a line in ipmenus.c
which defines the menu message and the function that is referenced upon an invocation.
Secondly, this function must be declared with an extern statement in ip.h, the IMPROC header
file. Thirdly, the calling function is included in ipfcrcall.c, the file that contains all the functions
invoked via the menu.

The calling function must collect all user parameters necessary for the filtering routine.
Since parameters cannot be entered directly through the menu invocation, the installed code
must prompt the user for this data, pass it onto the processing function, and display the result.
When these three procedures are completed, the entire package is recompiled by typing make in
the directory containing these files. Of course, the added processing function, invoked by the
new calling function, must either be appended to one of the files already listed in the makefile,
or its file must be added to the list. To reassemble the library archive, type make iplib. This
generates an archive file called libimproc.a which must be moved into /usr/include for public
access.

-87-

1. REFERENCES AND SUGGESTED READING

[Baxes 84]

[Crow 84]

[Castleman 79]

[Floyd 75]

[Gonzalez 77]

[Green 83]

[Heckbert 86]

[Jarvis 76]

[Kernighan 84]

[Paeth 86]

[Pavlidis 82]

[Pavlidis 86]

[Porter 84]

[Pratt 78]
[Rosenfeld 82]

[Tanaka 86]

Baxes, G., Digital Image Processing : A Practical Primer, Prentice-Hall,
Englewood Cliffs, NJ, 1984.

Crow, F., ‘“‘Summed-Area Tables for Texture Mapping,”’ Computer
Graphics, (SIGGRAPH ’84 Proceedings), vol. 18, no. 3, July 1984, pp.
207-212.

Castleman, K., Digital Image Processing, Prentice-Hall, Englewood
Cliffs, NJ, 1979.

Floyd, R.W. and L. Steinberg, ‘‘Adaptive Algorithm for Spatial Grey
Scale,”’ SID In:l. Sym. Dig. Tech. Papers, pp. 36-37, 1975.

Gonazalez, F. and P. Wintz, Digital Image Processing, Addison-Wesley,
Reading, MA, 1977.

Green, W.B., Digital Image Processing: A Systems Approach, Van Nos-
trand Reinhold, New York, NY, 1983.

Heckbert, P., ‘‘Filtering by Repeated Filtering,”’ Computer Graphics,
(SIGGRAPH ’'86 Proceedings), vol. 20, no. 4, July 1986, pp. 315-321.
Jarvis, J.F., C.N. Judice, and W.H. Ninke, ‘‘A Survey of Techniques for
the Display of Continuous-Tone Pictures on Bilevel Displays,”’ Comp.
Graph. Image Processing, vol. 5, pp. 13-40, 1976.

Kernighan, B. and R. Pike, ‘‘The UNIX Programming Environment,”’
Prentice-Hall, Englewood Cliffs, NJ, 1984.

Paeth, A., ‘‘A Fast Algorithm for General Raster Rotation,”’ Graphics
Interface 1986, pp. 77-81.

Pavlidis, T., Algorithms for Graphics and Image Procesing, Computer
Science Press, Rockville, MD, 1982.

Pavlidis, T. and G. Wolberg, ‘‘An Algorithm for the Segmentation of
Bilevel Images,”’ Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition, Miami, Florida, June 1986, pp. 570-575.

Porter, T. and T. Duff, ‘‘Compositing Digital Images,”” Computer Graph-
ics, (SIGGRAPH ’84 Proceedings), vol. 18, no. 3, July 1984, pp. 253-259.

Pratt, W., Digital Image Processing, John Wiley, NY, 1978.
Rosenfeld, A. and A. Kak, Digital Image Processing, Academic Press,
NY, 1982.

Tanaka, A., M. Kameyama, S. Kazama, and O. Watanabe, ‘‘A Rotation
Method for Raster Image Using Skew Transformation,”’ Proceedings of
IEEE Conference on Computer Vision and Pattern Recognition, Miami,
Florida, June 1986, pp. 272-277.

bR

- 88 -

[Wolberg 85] Wolberg, G., ‘“‘An Omni-font Character Recognition System,”” M.E.E.
thesis, Cooper Union School of Engineering, Oct. 1985. (Available from
UMLI, Ann Arbor, Michigan).

[Wolberg 88] Wolberg, G., ‘‘Image Warping Among Arbitrary Planar Shapes,”
Proceedings of Computer Graphics International, Geneva, Switzerland,
May 1988.

