Minimum-Knowledge Interactive
Proof for Decision Problems

7Zvi Galil, Stuart Haber, Moti Yung

Technical Report
CUCS-328-88

Minimum-Knowledge Interactive Proofs for Decision Problems

Zvi Galill: 25 Stuart Haber3> Moti Yung* 3.6

1 Department of Computer Science, Columbia University, New York
2 Department of Computer Science, Tel Aviv University, Tel Aviv
3'Bell Communications Research, Morristown, New Jersey
41.B.M. Almaden Research Center, San Jose, California

Abstract

We study interactive communication of knowledge from the point of view of resource-bounded
computational complexity. Extending the work of Goldwasser, Micali, and Rackoff [16], we define a
protocol transferring the result of any fixed computation to be minimum-knowledge if it communicates no
additional knowledge to the rccipicnt besides the intended computational result. 'We prove that such
protocols may be combined in a natural way so as to build more complex protocols.

We introduce a protocol for two parties, a prover and a verificr, with the following propertics:

1. Following the protocol, the prover gives to the verifier a proof of the value, 0 or 1, of a
particular Boolean predicate which is (assumed to be) hard for the verifier to compute.
Such a deciding *‘interactive proof-system’’ extends the interactive proof-systems of [16],
which are only used to confirm that a certain predicate has value 1.

2. The protocol is minimum-knowledge.

3. The protocol is result-indistinguishable: an eavesdropper, overhearing an execution of the
protocol, does not learn the value of the predicate that is proved.

The value of the predicate is a cryptographically sccurc bit, shared by the two partics Lo the protocol.
This security is achieved without the use of encryption functions, all messages being sent in the clear.
These propertics enable us 1o define a cryptosystem in which cach user receives exactly the knowledge he
is supposed to receive and nothing more,

3 Supported in part by NSF grants MCS-8303139 and DCR-8511713,

6 Supported in part by an IBM graduate fellowship.

A preliminary version of this paper appeared as ‘A Private Interactive Test of a Boolean Predicate and
Minimum-Knowledge Public-Key Cryptosystems,”” Procecdings of the 26th Symposium on the
Foundations of Computer Science, IEEE, 1985, pages 360-371. Most of this work was done while all
three authors were at Columbia University.

1. Introduction

Transfer and exchange of knowledge is the basic task of any communication system. Recently, much
attention has been given to the process of knowledge exchange in the context of distributed systems and
cryptosystems. In particular, several authors have concentrated on problems associated with the
interactive communication of proofs [16, 1, 22].

In [16] Goldwasser, Micali, and Rackoff developed a computational-complexity approach to the thcory
of knowledge; a message is said to convey knowledge if it contains information that is the result of a
computation that is intractable for the receiver. They introduce the notion of an interactive proof-system
for a language L. This is a protocol for two interacting probabilistic Turing machines, whereby one of
them, the prover, proves to the other, the verifier, that an input string x is in fact (with very high
probability) an element of L. The verifier is limited to tractable (i.e. probabilistic polynomial-time)
computations. We do not limit the computational power of the prover; in the cryptographic context, the
prover may possess some secret information --- for example, the factorization of a certain integer N.
(This is analogous to the following modecl of a *‘proof systecm’’ for a language L in NP: given an instance
xe L, an NP prover computes a string y and sends it to a deterministic polynomial-time verifier, which
uses y to check that indeed xe L.)

Goldwasser, Micali, and Rackoff called an interactive proof-system for L zero-knowledge if it releases
no additional knowledge --- that is, nothing more than the one bit of knowledge given by the asscrtion
that xe L[16]. Extending their definition, we consider all two-party protocols for the purpose of
transferring from one party to the other the result of a specified computation --- y=£x), say --- depending
on the input x, and call any such protocol minimum-knowledge if it rcleases nothing more than the
assertion that y=fx). Naturally, such interactive protocols are of particular intercst in a cryptographic
setting where distrustful users with unequal computing power communicate with each other.

After giving our definition of minimum-knowledge protocols, we prove that the concatenation of two
minimum-knowledge protocols is minimum-knowledge. This suggests the importance of the minimum-
knowledge property for the modular design of complex protocols. In fact, it is by serially composing
several minimum-knowledge sub-protocols that we formulate the more complex minimum-knowledge
protocol that we introduce in this paper.

In this paper we extend the ability of interactive proof-system protocols from confirming that a given
string x is in a language L to deciding whether xe L or xe¢ L. That is, we give the first (non-trivial)
example of a language L so that both L and its complement have minimum-knowledge interactive proof-
systems for confirming membership, where both the proof of membership in L and the proof of non-
membership in L are by means of the same protocol, which releases no more knowledge than the value of
the membership bit (xe L).

Furthermore, by following the protocol, the prover decmonstrates to the verifier cither that xe L or that
xe L, in such a way that the two cases arc indistinguishable to an cavesdropping third party that is limited
to feasible computations. In fact, the protocol rcleases no knowledge at all to such an eavesdropper. As
usual, we assume that the eavesdropper knows both the prover's and the verificr’s algorithms, and we
allow him access to all messages passed during an cxecution of the protocol. In spite of the fact that our

protocol makes no use of encryption functions, the eavesdropper reccives no knowledge about whether he
has just witnessed an interactive proof of the assertion that xe L or of the assertion that x¢ L. We call
this property of our protocol result-indistinguishability.

The proof that our protocol is minimum-knowledge with respect to the verifier and result-
indistinguishable with respect to the eavesdropper reliecs on no unproved assumptions about the
complexity of a number-theoretic problem.

The work of [16, 1, 22] concentrates on the knowledge transmitted by a prover to an active verificr.
Introducing a third party to the scenario, we analyze the knowledge gained both by an active verifier and
by a passive eavesdropper.

If membership or non-membership in L is an intractablc computation, then a result-indistinguishable
minimum-knowledge protocol for L can be used as a tool in building a cryptographic system. After an
execution of our protocol, the string x can serve as a cryptographically secure encoding --- shared only by
the prover and the verifier --- of the membership-bit (xe L). The use of x as an encoding of the
membership-bit exemplifies what we may call minimum-knowledge cryptography: it is a probabilistic
encryption with the property that neither its specification (i.c. the interactive proof of the value encoded
by x) nor its further use in communication can relcase any compromising knowledge, cither to the verifier
or to an cavesdropper. The minimum-knowledge property ensures that each party reccives cxactly the
knowledge he is supposed to receive and nothing more. A cryptosystem whose protocols are minimum-
knowledge has the strongest security against passive attack that we could hope to prove; in particular, it is
secure against both chosen-message and chosen-ciphertext attack.

The predicate that our protocol tests is that of being a quadratic residue or nonresidue modulo N for a
certain number N (whose factorization may be the prover's sccret information). We note that the
language for which we show membership and non-membership is in NP m co-NP. A conventional
membership proof for thesc languages releases the factorization of N, while in the interactive proof-
system presented below no extra knowledge (about the factorization or about anything else) is given
either to the verifier or 10 an cavesdropper.

An important motivation in our work on this protocol comes from our desire to guarantee the security
of cryptographic keys, especially in situations where the gencration of new keys is very costly or is
otherwise limited by the context. If the integer N is the prover’s public key in a public-key cryptosystem,
then N is not compromised by polynomially many executions of our protocol; a polynomially bounded
opponent knows no more aflcr witnessing or participating in these exccutions than he knew before the key
was used at all.

2. Preliminaries

2.1. Interactive Turing Machines

We specify the model for which we describc our protocol; this is an extension of the model used in
[16]. Two probabilistic Turing machines A and B form an interactive pair of Turing machines if they
share a read-only input tape and a pair of communication tapes; one of thc communication tapes is
exclusive-write for A, while the other is exclusive-write for B. (The writing heads are unidirectional; once
a symbol has been written on a communication tape, it cannot be erased.) We model each machine’s
probabilistic nature by providing it with a read-only random tape with a unidircctional read-head; the
machine **flips a coin’’ by reading the next bit from its random tape. The two machines take turns being
active. While it is active, a machine can read the communication tapes, perform computation using its
own work tape and consulting its random tape, and send a messagc to the other machine by writing the
message on its exclusive-write communication tape. In addition, B has a private output tape; whatever is
written on this tape when A and B halt is the result of their computation.

In order to modecl the fact that the systcm is not memory-less, we also assume that each machine has a
history tape, with a unidircctional write-head, on which the following records are automatically writien:
* When the machine flips a coin, the bit it reads from its random tape is recorded on its history
1ape.

o At the beginning of each active tum, when the machine reads a new message from the other
machine’s exclusive-write communication tape, it records this message on its history tape.

» At the end of each active tum, when the machine writcs a message to the other machine on its
own exclusive-write communication tape, it records this message on its history tape.

o The result written on B’s output tape is also recorded on B’s history tape.
These records are written on the history tape sequentially in order according to the machine’s
computation; for example, when the machine flips a coin several times while computing its next message,
these random bits are recorded on the history tape immediately before the message. The input tape and
communication tapes are public, or shared by the two machines; cach machine’s random tape, history
tape, and work tape are private, as is B’s output tape. This is not the only way to model the situation we
would like to describe, and some of the records written on the history tape are redundant, but without loss
of gencrality we may assume this modc of operation.

When A and B begin their computation, an infinite bit-string is written on cach of their random tapes.
The choice of these two bil-strings, independently and uniformly at random from the sct of all infinite
strings, defines a probability measure on the set of possible computation histories of (A, B) that begin in
any particular configuration.

For any strings x, & we say that the interactive pair of Turing machines (A, B) begins its computation
with input x and B’s initial history h if in their initial configuration x is writtcn on the common input tape
and h is the written portion of B’s history tape. (Throughout this paper, we arc not concemed with the
contents of A’s history tape.) We use (A, B)[x, /] 1o denote the set of computations that begin in this
configuration. In each of the protocols that we present in this paper, B never consults its history tape.
However, in discussing the properties of these protocols, we must be concerned with an arbitrary Turing

machine that may take the role of B in an interaction with A, and that may make use of its history tape.

In what follows, B is limited to expected running time that is polynomial in the length of the common
input x, while we make no limiting assumption about A’s computational resources. (For cryptographic
applications, A is also limited to feasible computation, but possesses some trapdoor information). Their
messages to each other are in cleartext, though these messages may depend on their private coin flips,
which remain hidden. We assume that both the length of B’s initial history, as well as the total length of
the messages written on the two communication tapes, arc polynomial in |x|. For any input string x, we
introduce the notation H = (4 | he {0,1}%, |h|=0(|x[°™)} for the set of associated initial histories that
we allow.

Our scenario also includes a third probabilistic Turing machine C, limited to expected polynomial-time
computation, that can read the input and communication tapes of A and B and knows their algorithms. A
is the prover, B is the verifier, and C is the eavesdropper.

2.2, Ensembles of Strings

In order to speak preciscly of the knowledge transmitied by communicated messages, we need the
following definitions [16, 24, 6]. Let /< {0,1}* be an infinite set of strings, and let ¢ be a positive
constant; for cach xe /, let w[x] be a probability distribution on a sct of bit-strings. We call
IT= {x[x] | xe I} an ensemble of strings (usually suppressing any mention of / and c).

For example, if M is a probabilistic Turing machine, then any input string x dcfincs a probability
distribution, according to the coin-tosses (i.e. the random tape) of M’s computation, on the set M[x] of
possible outputs of M on input x. Thus, for any /, { M[x] | xe I } is an ensemble.

As a second example, suppose that (A, B) is an interactive pair of Turing machines. For any strings
x, h, let VIEW{(A B)[x, h]} denote the set of private ‘“‘histories’’ that may be written on B’s history tape
during a computation that begins with input x and B’s initial history k; each of these is B's private view of
the protocol exccution. This set has a natural probability distribution according to the random tapes of A
and B. Thus, for any set /, { VIEW {(A.B)[x,h]} |xel, he H_} is an ensemble of strings.

As another example, for any string x let COM {(A,B)[x]} denote the set of possible ordered sequences
of messages writtcn on the communication tapes of A and B during a computation that begins with input
x. Each of these is the public view, and in particular that of the eavesdropper C, of a protocol execution
of A and B. This set also has a natural probability distribution. (We assume that the specified
computations do not make use of prcvious private or public history). Thus, for any set /,
{COM{(A,B)[x]) | xe I} is an ensemble of strings that we call the communications ensemble produced
by the interactive system (A, B).

A distinguisher is a family D = { D, | xe I} of circuits with a single Boolean output; we assume that
there is a constant ¢ so that circuit D_has | x| input gates and onc output gate. D is polynomial-size if
there is a constanl d so that D_ has at most Ix|% nodes. Suppose that IT= {r[x]|xe/} and
I = (n'[x]| xe 1)} are enscmbles of strings, and that D is a distinguisher (all with respect to the same
constant ¢). Let p,(n[x]) be the probability that D_outputs a 1 when it is given as input a single sample

string of length [x|, randomly sclected according to probability distribution w[x]: and let pp(wIxD),
depending on the distribution n’[x], be defined similarly. We call the two ensembles (computationally)
indistinguishable if for any polynomial-size distinguisher D, for all n and sufficiently long x,

[pp(RID —pp (XD < 1™
This condition holds, of course, if the two ensembles arc exactly identical. In this case, £(x) is exactly
zero, and therefore, for any distinguisher D the differcnce | pp(lx]) —p,(r'[x]) | is also equal to zero.

Let © and n’ be two probability distributions on strings, and suppose that the number & satisfies
0<8<1. We say that &t approximates 1’ with error probability & if

> | prob(n{x] =) — prob(n’[x] =5) | < &

(where the sum is taken over all strings s in {0,1}*). This implies that the difference
IpD(n[x])—pD(n’[x])I < 6 for any distinguishcr D, even il the definition of ‘‘distinguisher’” is relaxed to
allow as inputs to D_ a set of many samples randomly chosen either according to n[x] or according to
'[x).

2.3. Interactive Proof-Systems and Transfer Protocols

This paper is mainly dcvoted to a special sort of two-party protocol, that of interactively proving or
disproving membership in a language L. A protocol that achicves this is called an interactive
proof-system for L [16]. The prover A and the verifier B share a common input x, the string whose
membership is in question. We assume that x belongs to a fixed sct /, /2L, of input strings for (A, B).
Depending on k=|x|, the length of the (binary) represcntation of the input string, we allow an error
probability 8(k) that vanishes with increasing k. (In fact, all of the cxamples in this paper satisfy the
stronger requirement of an crror probability that is exponentially vanishing in £.)

Extending the definition of [16], we distinguish between a confirming proof-system for L, whose
purpose is that the verifier confirm membership in L for the input string, and a deciding proof-system for
L, whose purpose is that the verifier decide whether or not the input string is in L. At the end of a
confirming protocol, the verifier may either accept the proof that xe L, or reject the proof; at the end of a
deciding protocol, the verifier may either accept a proof that xe L, or accept a proof thal xe¢ L, or reject
the proof. The execution ends normally when all of B’s messages appear as if it is following the protocol;
if this is so, then A ends the execution in a success state. A may halt the execution of the protocol if it
detects that B is not following the protocol, ending the execution in a failure state.

For any input string x, let k=|x|. We say that (A, B) is a confirming interactive proof-system for L with
inputs / and error probability 8(k) if:
1. For any xe L given as input to (A, B), B accepts the proof with probability at lcast 1-6(k).
2. For any interactive Turing machine A*, and for any xe /-L given as input to (A", B), B
accepts the proof with probability at most &(k).
We say that (A, B) is a deciding interactive proof-system for L with inputs / and crror probability 8(k) if:
1. For any xe / given as input to (A, B), B accepts the proof, halting with the correct value of
the predicate (xe L) on its output tape, with probability at least 1-0(k).

2. For any interactive Turing machine A*, and for any xe / given as input to (A*, B), B accepts

a proof of the incorrect valuc of the predicate (xe L) with probability at most 8(k).
As part of the definition, we require that these conditions should hold independently of the choice of the
initial-history string (of length polynomial in £) that may be written on B’s history tape at the beginning
of the computation,

In the first definition, we require that (with high probability) B correctly accept the proof for strings
x€ L, and that no cheating adversary, no matter how powerful, can convince B incorrectly to accept the
proof for strings xe L (except with vanishingly small probability). In the second definition, we require
that (with high probability), given any input string xe /, B correctly decide whether xe L or xe L, and
that no adversary can convince B 1o accept an incorrect proof (except with vanishingly small probability).
The probability is taken over all sequences of coin-tosses (i.c. over all possible random-tape bit-strings)
uscd by the probabilistic computations of the two Turing machines.

The two definitions above describe correctness for protocols that transfer to B the computed value of a
Boolean predicate that supplies one bit of ‘ ‘knowledge’” about the input string. We can also study a more
general sort of transfer protocol whose purpose is 1o transfer the result F(x) of any specified computation
depending on the input string x. For example, a deciding intcractive proof-system for the language L is a
transfer protocol for the function F(x) taking the value 1 or 0 according to whether or not xe L. Because
the interacting machines are probabilistic, the intended result may take values in a probability distribution
whose value F(x,r) depends on x as well as on a random input string r. As in the case of an interactive
proof-system, B may either accept or reject an execution of an interaction with another Turing machine.
We say that a given protocol (A, B) is correct for a specified probability distribution of outputs if B's
computed result, when it interacts with A, has the intended distribution (with very high probability), and
no machine A*, no matter how powerful, can bias the distribution of B’s outputs (cxcept with vanishingly
small probability).

In order to define ‘‘correctness’’ more preciscly, we observe that the computations of any interactive
pair of Turing machines (A, B) dectermine a partial function f, A 3 follows. Given strings x, r,, and rg,
we define f, A_B(Jc, r,») 10 be the result written on B’s output tape at the end of an accepting computation
of (A, B) that begins with input x, when their random-tape strings begin with r, and ry (respectively); this
value is well-defined, as long as r, and r, are sufficiently long. Notice that the choice of r, and ry
defines a probability distribution f,, p(x,,).

We say that (A, B) is a correct transfer protocol for the probability distribution F(x, r), with inputs /
and error probability &(-), if:
1. For each xe I, the distribution fA’B(x, -,-) of B’s computed outputs approximales, with error
probability 6()x|), the distribution F(x,) of intended results.
2.Let A* be any interactive Turing machine. We require that for any xe / and for any
se {0,1}, the probability that B accepts the computation of (A*, B) on input x and writcs
out the string s as its output is bounded by the quantity prob(F(x, -) =s) + (| x).
Note that, according to the second part of this definition, it may be possible for a malicious adversary A*
1o bias the distribution of the set of conversations of (i.c. the sct of sequences of messages exchanged by)
A” and B on a particular input string x. But A* cannot significantly incrcasc the probability that any given

result string is accepted by B; in particular, A* cannot force B to accept an erroncous result (onc which
occurs with probability zero in the distribution F(x, -)) except with probability 8(| x|).

Observe that the probability threshold & occurs twice in the above definition. In general, there may be
protocols for which it makes sense to define correctness with two different 8’s. In all our examples, the
function 8(k) is exponentially vanishing in &; thercfore, for simplicity, we use the same § in both places.

3. Knowledge

In the sctting of complexity theory, what do we mean by ‘‘knowledge’’? Informally, a message
conveys knowledge if it communicates the result of an intractable computation. A message that consists
of the result of a computation that we can easily carry out by ourselves does not convey knowledge. In
particular, a string of random bits --- or a string of bits that is ‘‘indistinguishable’’ from a random string
(as defined above) --- docs not convey knowledge, since we can flip coins by ourselves.

3.1. Minimum Knowledge

Suppose that (A, B) is a confirming interactive proof-system for a language L, taking inputs from the
set /. Following the definition in [16], we say that the system (A, B) is minimum-knowledge if, given any
expected polynomial-time probabilistic Turing machine B*, there exists another probabilistic Turing
machine Mg+, running in expected polynomial time, such that the ensembles { My+[x, 4] |xe L, he H }
and { VIEW+{(AB)[x.h]} |xe L, he H_} are (computationally) indistinguishable. If the ensembles are
identical, we say that the proof-system is perfectly minimum-knowledge.

The output of Mg+, on input xe L and initial history A, is a simulation of B*’s view of the computation
that A and B* would have on the same input and the same initial history. Note that, in this definition, we
are not concermned with inputs that do not belong to L, When it takes part in a successful execution of the
protocol with input x, B* learns that (with high probability) the predicate of language-membership
associated with the protocol, xe L, is true; however, it gains no more knowledge than this. Note that in
our examples, B (the machine that acts according to the protocol specifications) docs not use its initial
history string at all; however, when we worry about the ‘‘knowledge’” that a cheating machine B* may try
to extract from A we have to consider the fact that B* can use its history string.

The authors of [16] called a confirming proof-system satisfying the above properties *‘zero-
knowledge.”” We now show how 1o extend this definition so as to be able to say when a more general
sort of protocol --- for example, a two-party protocol whose purpose is to transfer 1o one of the parties the
result of a hard computation --- should be called ‘‘minimum-knowledge."’

Let (A, B) be an interactive pair of Turing machines which constitute a correct transfer protocol for the
probability distribution F(x,r), with inputs / and error probability 8. We say that (A, B) is
minimum-knowledge if, given any expected polynomial-time probabilistic Turing machine B*, there cxists
another probabilistic Turing machine M+, running in expected polynomial time, such that:

1. M« has one-tlime access to an F-oracle, as follows. Given any input x and initial history A,
Mg+ queries the oracle with input x; the oracle returns a value distributed according to
F(x,-).

2. The ensembles { My+[x,h] | xe I, he H } and {VIEWBt{(A.B")[x,h]} |xel, he H } arc
indistinguishable.
If the ensembles are identical, we say that the proof-system is perfectly minimum-knowledge. Nole that,
in this definition, the simulation Mps(x, 4] is defined for any xe / and any initial history A of length
polynomial in | x|.

In order to motivate this definition, we recall that we are trying to formalize the notion ofjthe amount of
knowledge transmitted by a sequence of messages. Speaking informally, one gains no knowledge from a
message which is the result of a feasible computation that one could just as well have carried out by
onesclf. If the purpose of a protocol followed by two interacting parties A and B is that A transmit to B a
value v chosen according to the probability distribution F(x,r), we would like to be able to say exactly
when the protocol transmits no more knowledge than this value. We might also demand that the protocol
accomplish this even if B somehow tries to cheat --- that is, even if the Turing machine B is replaced by
another (polynomial-time, but possibly ‘‘cheating’’) machine B*. The simple transmission of the value v
can be modelled by a single oracle query (with input x). If the provision of this oracle query makes it
possible, by means of a feasible computation, to simulate B*'s view of the ‘‘conversation’’ that A and B*
would have had on input x, then we can say that when A and B* actually have a conversation (i.e. follow
the protocol) with the same input, there is no additional knowledge transmitted to B* besides the value v.

Note that if F is computable in expected polynomial time, then the F-oracle adds no power (0 the
machine Mg+, In this case My« can compute F without the assistance of A.

Remark: In the above definition, we allow as an initial history string h any string of length polynomial
in the length of the input string x. In recent work, Goldreich, Micali, and Wigderson introduced the
notion of an intcractive proof-system which is zero-knowledge under certain complexity-theoretic
“‘cryptographic assumptions’’ [13]. To prove the desired propertics of zero-knowledge protocols in a
cryptographic sctting (where a fixed cncryption schemc is used), onc must restrict the (ensemble of)
permitted history strings to be an ensemble that is indistinguishable from the output ensemble of a
(polynomially bounded) ‘‘adversary’’ of the encryption scheme (as in the definition of cryptographic
security of Goldwasser and Micali [15]).

In all our examples, the simulating machine Mg+ uses the program of B* as a subprogram or
subroutine. This subprogram makes usc of the simulator’s input tape (containing the input string x), a
virtual history tape (which is initialized to contain the given initial history A), a virtual random tape, a
virtual work tape, two virtual communication tapes, and a virtual output tape. Without loss of generality
we supply the probabilistic machine M+ with two random tapes; one of these is B*’s virtual random tape.
On its output tape --- which is also the virtual history tape for the subprogram B* --- the simulator uscs the
subprogram to write records that correspond to B*’s view of the simulated protocol execution.

While carrying on its computation, thc machinc M+ may back up a few steps in the simulated protocol
and restore a prcvious machine configuration: It recovers the old state of B* and the old content of the
virtual work tape, and resets both the virtual read-head of B*'s random tape and the write-head of its own

f

output tape (the virtual history tape) to where they had been earlier; then it proceeds with its simulation,
starting again from the old configuration but *‘flipping ncw coins’’ in its probabilistic computation.

The virtual communication tapes arc used to simulatc the communication activities of the simulated
protocol. The simulator ‘‘sends’’ a message to B* by writing it on the appropriate virtual dmmunication
tape and then activating the subprogram. The subprogram opcrates for (the simulation of) gne active tumn,
and then writes a message on the other virtual communication tape; this is the next message ‘received’’
from B*. Just as in the interaction of B* with A, the simulator’s subprogram B* records random bits,
messages read and written, and the computed result on the virtual history tape. The operation of the
subprogram B* during a simulated active tumn, beginning in a certain state with a certain configuration of
the virtual tapes, is identical to the operation of the interactive Turing machine B* during an active turn,
beginning in the same state with the same configuration of the actual tapes, of an actual protocol
execution with A, This matter of the difference in B*’s opcration, either as a subprogram of the simulator
or as a Turing machine interacting with A, is discussed further in Remark 2 at the end of the next scction.

3.2. Concatenation of Protocols

Next, we investigate how protocols may be concatenated in order to achieve modularfty in protocol
design, and how properties of the resulting protocol can be derived from the properties of its sub-
protocols. The protocol presented in this paper is an example of such a modular design.

We write s-s” for the concatenation of the two strings s and §”.

Suppose that we are given two protocols P, = (A, Bl) and P, = (A,, B,). We define the concatenation
of the two protocols, denoted P = P,;P,, 1o be the following two-stage protocol: Its first stage is P,. If at
the end of this stage A, is not in a failure state and B, has not rejected, the protocol continues with P,;
otherwise the protocol halts. We write A;;A, and B ;B, for the interacting machines of the concatcnated
protocol. At the end of an execution, the history tape of B,:B, contains the initial history-string, followed
by B, s private view of the exccution of P, followed by B,'s private view of the execution of P,.

Assume that P, and P, are two transfer protocols for the probability distributions F, and F,,
respeclively, both taking inputs from the set /. Then the concatenated protocol, on input x € /, transfers to
B,:B, the combincd result [F,(x, ~),F2(x, -}]. As a special case, supposc that P, is a confirming intcractive
proof-system for L, with inputs /, and that P, is a confirming interactive proof-system for L, with inputs
L,. Then the concatenated protocol is a confirming interactive proof-system for L,NL,, with inputs /.

It may not be surprising that the concatenation of two correct protocols gives the correct combined
result. The more important obscrvation is that, as we prove beclow, the concatenatcd protocol is
minimum-knowledge if P, and P, are both minimum-knowledge.

Lemma: Given two protocols P, and P, as above, with error probabilities 51(k) and 82(k),
respectively. Then the concatenation P =P P, is a protocol that transfers the combined result
[F,(x,"), Fy(x,-)] with error probability 6(k) = 8,(k)+0,(k) —~6,(k)-6,(k). Furthcrmore, if P, and P, are
both minimum-knowledge (or, respectively, both perfectly minimum-knowledge), then so is their
concatenation.

10

Proof: First we show that correctness of prolocols is preserved by concatenation. It is clear that if
(A}, B)) is correct with probability at least 1-6,, and (A,, B,) is correct with probability at least 1—82,
then (A, B) is correct with probability at least 1—(81+82—51-62). Similarly, it follows from the fact tha‘t

no interactive Turing machine A; can force B, to accept an incorrect result for P, except with probability

8, and that no A} can force B, 10 accept an incorrect result for P, except with probability}3,, that no A*
can force B to accept an incorrect result in the concatenatcd protocol cxcept wigh probability
8,+6,-98,5,.

Next we show that concatenation maintains the minimum-knowledge property. Assumejthat P, and P,
are both minimum-knowledge, and let B* be any probabilistic interactive Turing machipe, running in
expected polynomial time, that interacts with A;A,. We may write B* = B;;B; to denote the two parts of

B*'s program, For convenience, let wus write V,[xA] =VIEWB;{(A1,E;[x,h]} and
Vz[x,hj=VIEWB;{(A2,B;)[x,h]}. Thus, for any input string x and any initial histor(h, we have
VIEW »{(AB")x,h]} = {v;-v,|v eV lx hl v,e V,x, hv,]}.

To show that the concatenated protocol P is minimum-knowledge we have to show the cxistence of a
simulating expected polynomial time probabilistic Turing machine M = My« whose output ensemble

{M[x,h]lxel, he Hx} is indistinguishable from the ensemble { VIEWB»{(A,B*)[x,h]] |xel, he HI}.

Our hypothesis on P, implics that, given B;, there is a simulating machine M,, running in expected
polynomial time, with access to an F-oracle, so that the ensembles {M,[x./h]|xel he H } and

{V,lx,h]|xel he H } are indistinguishable. Similarly, our hypothesis on P, implies that, given B;,
there is a simulating machinc M, running in expected polynomial time, with access to an F),-oracle, so
that the ensembles {M,[x,h]|xel, he H_'} and {Vy[x.h]|xe] he H} are indistinguishable. We
specify M (o be the machine that operates as follows, given any input string xe / and initial history
he H . First, M runs machine M, on (x, h) to produce an output h,. Second, if A, is the simulation of a
successful execution of P, then M runs M, on (x,/)) 10 produce its final output; otherwise, M simply
writcs out A,.

For any xe I, he H_ we define the scts of strings
E[x,h]= VIEWB-{(A,B")[x,h]} = [vl-v2 lv,e Vi[x, hl, v, e Vylx, h-v1] }, and
E[x,h) = M[x,h] = {mm, | m & M,[x,h], mye M,[x, h-m|]).
(As usual, the choices of the bit-strings that are writtcn on these probabilistic machines’| random tapes
define a probability distribution on both of these scts.) We need to show that the ensembles

E1= {E\[x,h]|xel,he H_} and Fz= {E,[x,h} | xe I, he H_} arc indistinguishable. For this purpose, we

introduce the intermediate enscmble E3= (Ejlx.h] | xel he H_ }. where

Ej[x, h] = {vl-m2 | v, e Vl[x,h], mye M, [x, h-v|] }.

Assume that E,and E,are not computationally indistinguishablc. Then there is a polynomial-size
distinguisher D= { D, , | xe I,he H_} that distinguishes between the two enscmbles. In other words, in

11

the notation of Section 2.2, for some n and for infinitely many pairs (x, h) (with xe I, he H),

|Pp(E, [x. i) =pp(E,lx. A > |x[™.
This implies, by the triangle incquality, that at least one of the incqualities

1
1P pCE,Lx A =py(Esl D] > = 2])
1
| Lt AD =P Eylx,)| > = 12 @
holds infinitely often, i.e. that the circuit-family D distinguishes either between 1_22 and F3 or between Ex

and 7% (or both). We next show that either of these possibilities leads to a contradiction.

First, we show that if D distinguishes between Ezand E3 then we can construct a distinguisher D, that
distinguishes between the ensembles {M,[x,h] | xe [, he H } and { Vilx,hl1x€l, he H }, contradicting
the hypothesis that P, is minimum-knowledge. Let /, be the infinite set of pairs (x,/) for which
inequality (1) holds. Given as input a string s, chosen either from M, [x, 4] or from V,[x, h], let Cx‘h be the
(probabilistic) circuit that does the following: It simulates the operation of M, on input (x,s) for a suitable
multiple of its expected running time (o produce cither a string m, or (for those few sequences of coin-
flips which may cause M, to run 100 long) a null output, then passes h-m, o the circuit D, . which gives
its output. Since the simulation of M, is polynomial in length, and D is polynomial-size, the circuit-
family C is also polynomial-sizc. Inequality (1) shows that for all pairs (x,h)€ /,, the circuit C h
distinguishes between M, [x,#] and V,[x, h). Therefore, Cx,h can be converted into a deterministic
polynomial-size circuit (D), , that distinguishes between the same Lwo sets.

Second, we show that if D distinguishes between Fl and F3 then we can construct a distinguisher D,
that distinguishes between the ensembles {Mz[x, hl|xel, he Hx} and {V,[x,h]|xel, he HI},
contradicting the hypothesis that P, is minimum-knowledge. Let 7, be the infinite sct of pairs (x, h) for
which inequality (2) holds, and consider the infinite set 12’= {1 ve Vi[x, k], (x,)el,}. We define
(DZ)x,h to be the circuit whose output, on input s (choscn cither from M, [x, k] or from V,[x, h)) is the
output of Dz'h on input h-s. Since D is polynomial-size, it is clear that D, is polynomial-size, too.
Inequality (2) shows that (D2)x,h distinguishes bctween M,[x, 4] and V,[x, A] for infinitcly many pairs
(x, h) --- namely, for all pairs (x,v) e I,".

We therefore conclude that the concatenated protocol is minimum-knowledge. Analogous arguments
show that the concatenated protocol is perfectly minimum-knowledge if the same is true of both

component protocols.
QED

Remark 1: This lemma also holds for minimum-knowledge protocols in the cryptographic setting,
where the permitted history strings are restricted as described in the remark of Scction 3.1 above.

Remark 2: We mention here a special case of the above lemma that we use implicitly throughout the
proofs in Sections 5 and 6. Suppose that a protocol (A, B) is given, and consider a certain point in the
protocol execution when A has just sent a message and B is about to perform its next active turn. Let P,
be the protocol up 1o this point, and let P, consist just of B's next active turn. The lemma implies that if

12

P, and P, are minimum-knowledge, then so is the given protocol through the end of B’s next tum. This
allows us to specify a machine Mye for our proofs below, simply by having the machine activate a
subprogram B® as cxplained at the end of the previous section: As long as the subprogram, when
activated, has access (o a virtual history tape whose contents are indistinguishable from the history tape of
an actual protocol execution carried on with A, its operation within M, is identical to its operation
during an actual interaction,

3.3. Result Indistinguishability

Next we introduce the eavesdropper C, as described above. Recall that COM{(A,B)[x]} is the sct of
possibilities for C’s view of the computation of A and B on input x. In all our examples of interactive
pairs of Turing machines (A, B), neither machinc uses its history tape. Thus, without loss of generality
we can assume that A and B begin their computation with their history tapes initially empty.

We call an interactive pair of Turing machincs (A, B) result-indistinguishable if an eavesdropper that
has access to the communications of A and B on input x gains no knowledge. More precisely, the system
(A, B) is result-indistinguishable if there exists a probabilistic polynomial-time Turing machine M such
that the ensembles { M[x] |[xe 7} and { COM{(A.B)[x]} | xe I} are indistinguishable. If the ensembles
are exactly identical, we say that the proof-system is perfectly result-indistinguishable.

Suppose that (A, B) is a transfer protocol for the probability distribution F(x,r). Obscrve that unlike
the simulating machine in the definition of the minimum-knowledge property, this machine M does not
have access to an oracle for F. In other words, M can simulate the communications of A and B on input
x, regardless of the value F(x, r) (even if computing F is intractable). Since this simulation is by means of
a feasible computation that an eavesdropping adversary could carry out for itself, the adversary gains no
knowledge if it is given the text of a “‘conversation’” belonging to the set COM {(A,B)[x])}.

We remark that if two protocols are result-indistinguishable, then so is their concatcnation. The
simulating machine for the concatenated protocol is simply the concatenation of the two simulators for
the component protocols; neither the interacting parties nor the simulator makes any computation that
depends on the history tapes.

4. Specification of the Language

4.1. Preliminaries

We assume that the reader is familiar with the following notions from elementary number theory. (Sce,
for example, (17, 21] for the number theory, and [19] for a computational point of view.) We will be
working in the multiplicative group ZN' of integers relatively prime to N. Any clement ze ZN* is called a
quadratic residue if it is a square mod N (i.e. if the equation x2=zmod N has a solution): othcrwise, z is a
quadratic nonresidue mod N. Given N and ze Z,, the quantity called the Jacobi symbol of z with
respect 1o N, denoted (,’(’7) can be cfficiently computed (in time polynomial in logN) and takes on the
values +1 and -1. If (§)=-1, then z must be a quadratic nonresidue mod N. On the other hand, if
(%) =+1, then z may be either a residue or a nonresiduc. Determining which is the case, without knowing

13

the factorization of N, appears (o be an intractable problem, namely the quadratic residuosity problem.
(However, given the prime factorization of N, it is easy to determine whether or not z is a quadratic
residue.) Several cryptographic schemes have been proposed that base their security on the assumed
difficulty of distinguishing between residues and nonresiducs modulo an integer N that is hard to factor
{15, 3, 20].

We also make use of Bemnstein’s law of large numbers [23, 19]): Suppose that the event E occurs with
probability p, and let F(E) denote the frequency with which E occurs in k independent trials. Then for
any k21 and any positive e<p(1-p),

2
Prob{ |F(E)-p|2e} <2 e

4.2. The Language
The protocol introduced in [16] is a minimum-knowledge confirming interactive proof-system for the

language
{(N,2)|ze Z,%, za quadratic nonresidue mod N }.

The protocol that we present below is a deciding interactive proof-system. which is both minimum-
knowledge and result-indistinguishable, for a language bascd on the same problem.

We use the notation v() to represent the number of distinct prime factors of an integer N.

Our protocol is concerned with integers of a special form, namely those with prime factorization

N =Hf:] pfisuch that for some i, pfi=3mod4. Lct BL (for Blum, who pointed out their usefulness in
cryptographic protocols) denote the set of such integers. There are two equivalent formulations of
membership in BL: (1) N € BL if and only if for any quadratic residue mod N, half its square roots (mod
N) have Jacobi symbol +1 and half its square roots have Jacobi symbol —1. (2) N € BL if and only if
there exists a quadratic residue mod N which has two square roots with different Jacobi symbols [2].

The special integers that we require form a subset of BL, namely
N={N|NeBL,N=1mod4, v(N)=2 }.
It is not hard to see that this set may equivalently bc defined as
N={p'¢|p=rqprime, i j=1,p'=¢/=3mod4}.

Finally, we define the languages

I={(N,2)| Ne N, :ze ZN‘, (I%J)=+l } and L= {(N,z)el|zaquadratic residucmodN }.
Taking / as the set of inputs, this paper gives a deciding intcractive proof-system for L, Notice that
I-L = {(N,2)e I'| za quadratic nonrcsiduemod N }.

14

4.3. Outline of the Protocol

Our protocol is the concatenation of two sub-protocols. The first part is a confirming interactive
proof-system for /. If the first part is completed successfully (i.c. if A proves to B that the input string is
in /), then A and B perform the sccond part of the protocol. The second part, taking inputs from the set /,
is a deciding interactive proof-system for the language L; A proves to B either that the input string is in L
or that it is not in L. Both parts are minimum-knowledge, and the second part is result-indistinguishable
as well. The eavesdropper learns that, with high probability, the input is in /. But he gains no more
knowledge than this --- in particular, he gains no computational advantage in deciding whether the input
isin L orin/-L, i.c. whether or not z is a quadratic residue mod N.

The confirmation that an input string (N, z) belongs to / in turn requires three stages, which are carried
out in the following order; each stage confirms a property of N or of z.

1.N=1mod4, v(N)> 1, ze ZN‘, and (fv)=+1.
2.Ne BL.
3. v(N)<2.

While proving that our protocol has the propertics that we desire, we make no limiting assumption
about the computational power of Turing machinc A. However, we remark that the protocol can be
performed by a probabilistic polynomial-time Turing machine A which is given the factorization of the
rclevant integers N. (In the cryptographic applications that we discuss later, the party that performs A’s
role in our protocol chooses N along with its prime factorization.)

We now give the details of our protocol: the confirming first part in Scction 5, and the deciding second
part in Section 6.

5. Interactive Confirmation of the Input Language
In each of the protocols that we describe, we use the notation ““A — B: ..."" to indicate the

transmission of a message from A to B,

5.1. Blum’s Coin-Flip Protocol

Our confirmation protocol requires that A and B jointly generate a sequence of bits. The verifier B has
to be sure that A cannot bias these bits. They do this by following a protocol due to Blum [2].

Aninteger Ne BL, N=1mod4, is given.

A and B generate a random bit b:

1. B chooscs ue ZN* at random, and computes v := > mod N;
B—oA:v

2. A chooses 6:=+1or—1 at random, its guess for (5);
A—-Bo

3.B—>o A u

15

4.if v#u*mod N then A halts the protocol in the FAILURE state;
otherwise if 6 = (3) then b:=1 else b:=0

The message triple (v, 5, u) may be regarded as an encoding of the bit b = %+%(1'6)6.

This protocol is correct: Since B picks u at random and A picks the sign ¢ at random, the bit b chosen
by the protocol is random. Furthermore, the first alternate characterization of BL (Section 4.2) implies
that no interactive Turing machine A, no matter what its computational power, can bias the bit produced,
since it cannot guess the Jacobi symbol of the square root of v chosen by B with probability greater than
172.

We remark that a cheating Turing machine B* could bias the bit solely by using its ability to produce
two numbers u and «’, both square roots (mod N) of v, with opposite Jacobi symbols; this capacity would
enable B* to factor N simply by computing the grcatest common divisor (u—u’, N).

The protocol is perfectly minimum-knowledge. The rcason is that A's only task is to transmit a guess,
o = +1 or -1, for a sign, a task that may easily be carricd out by a simulator interacting with B*, We
formalize this argument below.

5.2. The Confirmation Protocol

This is a minimum-knowledge confirming intcractive proof-systcm by which A proves to B that the
input (N, z) is in the language / dcfined above. It consisls of the concatenation of three sub-protocols,
each of which takes, as legal input, a string that has been confirmed (with high probability) by the
preceding sub-protocol. Let & denote the length of the input string.

First Stage: The casy propertics of N and z

This stage involves no communications between A and B. Given (N,z) as input, B checks that
N=1mod4, that N is not a prime power, and that (£)=+1. Each of thesc is easily accomplished in time
polynomial in log N [19]. If any one of thesc conditions docs not hold, then B REJECTSs the proof (and
halts the entire protocol).

Second Stage: N belongs to BL

The following protocol is due to Blum [2]. The error probability of this proof-system is 82(k)=2"‘.
This stage does not concern itself with z at all. The integer N must satisfy N=1mod4; this condition

holds if the first stage has been completed successfully.

1. Repeat & times:
1.1 A chooscs a quadratic residue re Z," at random:
A—>B:r

1.2 B chooses 6:=+1or—1 at random;
B—- A:0C

16

1.3 ifoe (—1,+1} then A halts the protocol in the FAILURE stalc;
otherwise A computes s such that s>=rmod N and (§) = o
A—-B: s

1.4 B checks to make sure that s satisfies the above conditions: if not, then B REJIECTS
the proof (and halts the entire protocol).

2. B ACCEPTs the proof.

Third Stage: N has two prime factors
This stage also does not concem itself with z.

Let us use ZN*(:t 1) to denote the set of elements of ZN" with Jacobi symbol +1 (respectively), This
protocol relies on the fact that if N has exactly { prime factors (i.e. v(N)=1), then exactly 17251 of the
elements of Z,*(+1) arc quadratic residues. A and B jointly pick random elements of Z\'(+1). If Acan
show that about half of them are residues (e.g. by producing their square roots mod N), then B should be
convinced that v(¥M)<2. Since N is not a prime power, v(N) must be equal to 2.

In order to pick a list of random elements of Z,*(+1), A and B follow Blum’s coin-flip protocol, which
rcquires that Ne BLandN=1mod4. These condilions hold (with very high probability) if the second
stage has been completed successfully.

2
This proof-system has error probability 8,(k)= 27 KB,
1. A and B use Blum’s coin-flip protocol to generate k random elements r, ... ,r, € ZN‘(+I):
i:=0;
do until i=k:
a. generating it bit by bit using Blum’s coin-{lip protocol, A and B choose a number
a,0<a<N
b. if g.c.d.(a, N)# 1 (which happens with vanishingly small probability) then HALT the
protocol
c.if(g)=+1theni=i+l;r;:=a
2.for cach i=1,...,k such that r, is a quadratic residue, A computes s; such that
r.=s?mod N:
A - B: (is)

3. B checks that at least 3/8 of the r; are quadratic residues; if so then B ACCEPTs the proof
(and otherwise B REJECTs the proof and halts the entire protocol).

Theorem 1: This protocol is a perfectly minimum-knowledge confirming interactive proof-system for
the language I = {(N,2) IN=1mod4, Ne BL, v(N)=2, (§)=+1}.

Proof: We treat each of the three sub-protocol stages scparately. As a consequence of the lemma of
Section 3.2, it then follows immediately that the concatenation of the three has the required properties.

17

First Stage

The first stagc is, trivially, a confirming proof system for the language

1,={(N,2)| N=1mod4, v(N)>1, ze Z,]", (ﬁ):ﬂ 1,
since each of these conditions is validated by B in polynomial time without interacting with A at all.

Second Stage

Given an integer N=1mod4 (in particular, given input that has been confirmed in the first stage), the
second stage is a perfectly minimum-knowledge conlirming interactive proof-system for the language
I,= { (N.2) | Ne BL} with error probability 3,(k)=27*.

This stage requires O (k) communication rounds, during which O (£?) bits are exchanged.

The correctness of this stage depends on the altemate characterizations of membership in BL (Section
42). If Ne BL, then each quadratic residue r sent by A has at lcast one square root mod N with Jacobi
symbol +1 and at least one square root mod N with Jacobi symbol —1; no matter which sign ¢ B chooses,
A can respond with a square root of the appropriate sign. B accepts the proof with probability 1. On the
other hand, if N¢ BL then no quadratic residue mod N has two square roots with Jacobi symbols of
opposite sign. In this case, it is very likely that there is some i for which A will be unable to send an
appropriate 5, and B will halt the protocol. The only way for a cheating A* to convince B that Ne BL (by
sending the appropriate elements s,) is by guessing the entire sign-sequence G,0, the probability
that such a guess will be correct is at most 2"‘=52(k). Thus, this protocol is indeed a confirming
intcractive proof-system for BL.

To prove the perfect minimum-knowledge property, choose any interactive Turing machine B*; we
have to specify the computation of a Turing machine M+ whose output, on input Ne BL and initial
history h, is a simulation of B*'s view of the computation that A and B* would have performed on the
same input. This view includes a message-history that consists of triples (r, o, s) satisfying the conditions
implicitly defined by the specification of the protocol. As described above in Scction 3.1, M+ uses the
program of B* as a subroutine. After initializing B, M+ operates as [ollows:

1. repeat k times:
1.1 save the current configuration of B*

1.2 choose s€ Z," at random, compute ri=s*modN, “‘send”’ r to the simulated B*, and
‘‘receive’’ ¢ in rctum

1.3 if e {—1,+1} then append HALT to A’s message-record in B*’s virtual history,
write out the updated virtual history, and halt;
otherwise if (§)#o then restore the saved configuration of B” and go back to step
1.1;
(clse (§)=c and thc most recent exchange of messages recorded in B™'s virtual
history is the triple (r,c, 5))

18

2. write out B*’s virtual history

For each of the k iterations, the expected number of times the loop has to be repeated is 2, since for any
value of r the probability that (,{,) =0 is cxactly 1/2; thus the expected running time of M« is polynomial
ink,

The simulated messages ‘‘sent’” to B* arc drawn from the same probability distribution as the messages
sent by A in an actual execution of the protocol, and the random communications triples (r, 6, s) produced
by M+ satisfy the conditions s?=rmodN and (,’V)=G. As explained in section 3.2, these messages are
interleaved on the virtual history tape with the random-tape bits used by B*, cxactly as they would be in
an actual interaction with A. Therefore the sets M+[N, /1] and VIEWB*{(A,B*)[N, h]) are identical. This
completes the proof for the second stage.

Third Stage

Given an integer from the set

{N| Ne BLLN=1mod4,v(N)>1}
(in particular, given input that has been confirmed in the first and second stages), the third stage is a
perfectly minimum-knowledge confirming interactive proof-system for the language
I,= [(V,2)| V()=2 } with error probability 8,()=2¢™1.

This stage requires O (k%) communication rounds, during which O (k%) bits arc exchanged.

During the third stage, A and B together choose random elements of ZN"(+1). Since they do this by
means of Blum’s coin-flip protocol, and no Turing machine A* can bias the bits produced by Blum's
procedure, these elements are indeed produced at random. In order to prove that this stage is a proof-
system, consider the experiment of choosing a random element of ZN‘(+1), where the experiment is a
success if the chosen clement is a quadratic residue mod N let Fk(N) denote the frequency of successes in
k indcpendent trials. Recall that B accepts N if the frequency F (N)=3/8. As mentioned above, the
probability of success in one trial is exactly 1/2Y®-1, (Since N is known to have at least two prime
factors, this probability is at most 1/2.) If v(N) is exactly 2, then the probability that B does not accept N
is, by Bemnstein’s law of large numbers,

2
Prob{ F(N)<3/8) < Prob{ |[Fy(N)-1/2|21/8 } < 28" = § (k).
On the other hand, if N has more than two prime factors, the probability of success in one trial is at most
1/4, and thus the probability that B incorrectly accepts N (when interacting with a cheating A*) is

Prob{ F(N)23/8 } < Prob{ |[F(N)-1/4|21/8 } <2 Y - 8,(k).

To prove the minimum-knowledge property, given an interactive Turing machine B® we have to
specify the computation of a simulating Turing machine M;«. The ensemble that M+ must simulate
includes a sequence of Blum coin-flips, so we begin by showing that Blum’s coin-flip protocol is
perfectly minimum-knowledge. To prove this, we must specify the computation of a probabilistic
polynomial-time Turing machine M_.. whose output, on input N (satisfying Ne BL and N=1mod4) and

19

initial history A, is a simulation of the ensemble VIEW 3+{(A.B")[N, h]}, which includes a message triple
(v,0,u) encoding a bit as described in Scction 5.1 above. Modelling the result oracle for the protocol,
M_,;, 18 given as additional input a (presumably random) bit b.

Given any bit b, M, (initializes B* and) proceeds as follows:
a. execute the protocol with B*:
1.1et B* “‘send’’ v (simulating step 1)

2. save the current configuration of B*
3. simulate A’s aclion in step 2 by choosing ¢:= 1 at random and ‘ ‘sending’’ it to B*
4.1ct B® “‘send’’ u (simulating step 3)

b. if the bit encoded by (v,0,u) is b, then write out B*’s virtual history (which includes the
triple (v, o, #)) and halt;
otherwise:

1. restore the saved configuration of B
2. simulating step 2 again, ‘‘send’’ —o (instead of ©) 1o B*
3.1et B* “send”” i’

4. write out B*'s virtual history (which includes the triple (v,—c, «"))

Note that if B* does not follow the protocol it may happen that the numbers « and ¥ are not the same;
if their Jacobi symbol is the same the outcome of the protocol is the same random bit & and this has no
effect on the output distribution of M (since B*, when interacting with A, can decide to send either u
or —u). On the other hand, if they have opposile Jacobi symbols mod N, then the outcome bit 1-b has
been determined by B* and not chosen at random. As noted above, this can only happen if B” can factor
N, in which case it indeed has the ability to dictate the outcome of the protocol, regardless of whether it is
intcracting with A or acting as a subroutine for M .

Whether the virtual history of B* writtcn out by M_;, was generated in step a or step b of the
simulation, the distribution of its possible valucs (and thus the probability distribution of the bit encoded
by the message triple) is identical to that of V]EWB*{(A,B‘)[N, h))}. Thus the coin-flip protocol is

perfectly minimum-knowledge.

Next we describe the simulation by Mg+ of the third stage of our protocol. The set
VIEWBt{(A,B')[N, h]} that M+ must simulate begins with a sequence of Blum coin-flips, which are used
to generate random elements of ZN‘. This simulation can be performed by following the program M, ..
as just described; the difficulty for M«, a polynomial-time machine that may not be able to factor N, is
that those elements which are quadratic residues must be randomly gencrated along with their square
roots.

Given as input an integer N that has been confirmed by the first two stages and that satisfies v(N)=2,
and given an initial history A, M ,+ proceeds as follows:
1. i:=0; A = the empty list

2. do until i=k:

20

choose a random number a, 0<a<N;

if g.c.d.(a,N)#1 (which happens with vanishingly small probability) then FLAG the
number g, adjoin it to A, and go to step 3;

else;

choosc a random bit b (to decide the Jacobi symbol of the next element generated);
if b=0 then adjoin to A a random element of Z(-1);
else:
a. i=i+l
b. choose 5;€ Z,* at random
c. choose a random bit b, (to decide whether the next element generated should be a

quadratic residue);
if b=0thenr,:= s‘.2 mod N (a random residue in Z,,"(+1))

else r;:= —sl.2 mod N (a random non-residue in ZN*(+1))
d. adjoin r; to A

3. (simulatc as many executions as needed of Blum’s coin-flip in order to generate the
sequence of bits in the list A)

for each bit b in the representation of each number in A:
follow the procedure above for M (using B® as a subroutine), recording the numbers u

(and possibly u’) “‘sent’’ by B*;

coin

if the outcome of the coin-flip simulation is indeed b, then continue with the next bit in A;
otherwise B* has *‘forced’’ the complementary outcome 1-b by *‘sending’” u and u with
(#)# (%), in which case:
a. use u and & to factor N
b. discard the rest of A

c. repeatedly execute Blum's coin-flip with B* (as originally specified, without
backtracking to restore previous configurations of B*) in order to choose elements of
ZN‘, bit by bit, until the resulting list contains k elements (r,,...,r, say) with
Jacobi symbol +1; again let A denote the new list

4. if the last number in A is FLAGGED then halt
5. discard the elements in A with Jacobi symbol —1

6.1if B* has not ‘‘forced’’ the outcome of any of the coin-flip simulations of step 3, then for
each r,in A such that b=0 *‘send’’ (i,s) to B*;
otherwise, usc the factorization of N 1o test each r, in A to sce whether it is a quadratic

residue; if it is, then compute s, such that r‘.Esl.szd N and ‘“‘send”’ (i,s‘.) to B*

7. write out the virtual history of B*

If v(N)=2, then a randomly chosen element of ZN‘ --- in particular, one that has been chosen by A
intcracting with a machine B* that does not *‘force’’ the outcome of any Blum coin-{flips --- will have
Jacobi symbol +1 with probability 1/2; among these, quadratic residues will occur with probability 1/2. If
B*, as a subprogram of the simulator Mgs, docs not *‘force’” any (simulated) Blum coin-flips, then the

21

simulator gencrates elcments of Z,, with exactly the same probabilities, and then perfectly simulates the
gencrating coin-flips; on the other hand, if B* does ‘‘force'’ a coin-flip, then Mg+ simply performs with it
a sequence of Blum coin-flips, exactly as in the specification of the protocol. Either way, M+ generates
lists of elements of Z,, with the same distribution as do A and B*, and B* makes identical usc of bits from

its random tape, so that the sets V]EWB~{(A,B‘)[N, h1} and M[N, h] are identical. This completes the
proof for the third stage.

Finally, to conclude the proof of Theorem 1, we sec by the concatenation lemma that, given any input
string at all, the concatenation of the three stages is a perfectly minimum-knowledge confirming
interactive proof-system for the language /, n[,nI;=1.

QED

6. Interactive Decision of Quadratic Residuosity

If the confirming part of our prolocol has been successfully completed, then with high probability the
input string (N, 2) is in the language /. In particular, we know that v(N)=2, that ze Z,", and that (§)=+1;
these are the properties that are required of the inputs to the next part of the protocol.

This part is a deciding interactive proof-system for L, taking inputs from /. The proof-sysiem is both
perfectly minimum-knowledge and perfectly result-indistinguishable. As noted above, a pair (N, z) that is
known to belong to / cither is or is not also a member of L according to whether or not z is a quadratic
residuc mod N.

To make the exposition clearer, we present three successive versions of our protocol.

Let y=—1modN. Everything that follows holds for any non-residue y e ZN* that has Jacobi symbol +1.
As long as Ne BLand N=1mod4, we can take y=—1. (Remark: If another non-residue y is desired, A
can prove 1o B, as a preliminary sub-protocol stage, that y is a nonresidue by following the minimum-
knowledge interactive proof-system of [16].)

Let us fix some notation. For any xe ZN' we define the predicate

— J 0 ifxis a quadratic residue mod ¥V,
RES\®) 1 otherwise.

Recall that ZN'(+1) denotes the set of elements of ZN‘ with Jacobi symbol +1. Since v(N)=2, half of
thesc are quadratic residues mod N, and half of them are non-residucs.

Our protocol relies on the fact that if re ZN" is chosen at random, then 2mod N is a random quadratic
residuc in the sct Z,"(+1) and yr?mod N is a random quadratic non-residue in ZN‘(+1): similarly,
zr*mod N is either a random residue or a random non-residue in ZN‘(+1) according to whether or not z is
a residue mod N.

This interactive proof-system has error probability 8(k) =281,

First version: a deciding proof-sysicm

22

i. Repeat k times:

1. B chooses re Z" and ce {1,2,3} at random, and computes CASE c of:
1: x:=rPmodN
2: x:=yr* modN
3: x:=zr* modN
B—- A:x
2. A computes b:=RES,(x);
A—>B:b
3. B checks that if ¢=1 then b=0, if c=2 then b=1, and if ¢=3 then b is consistent

with any previous case-3 iterations; if not then B REJECTs the proof and halts the
protocol

ii. B ACCEPTs the proof that RES,(2) is equal to the consistent value of b for casc-3 itcrations.

As explained above, if z is a quadratic residue then x’s constructed in case 1 are indistinguishable from
x's constructed in case 3. If A acts as speciflied, then when the protocol finishes B will be convinced that
z is a residue. The only way that a chcating A” can convince B that z is not a residue is by correctly
guessing, among all iterations during which B has sent a rcsidue x, which of these were constructed in
case 1 and which of them in case 3; if there arc ck such iterations in a particular exccution of the protocol,
then the probability of successful cheating is 27°%. Since ¢ is very likely to be close to 2/3, a simple
calculation using Bemnstein’s law of large numbers shows that the probability of successful cheating is at
most 2¢~*¥8!, Similarly if z is a quadratic nonresidue. Hence the above version is a deciding interactive
proof-system for L.

However, this version is not result-indistinguishable. An observer of an execution of the protocol can
casily tcll whether he is watching an interactive proof that RES,(z)=1 or a proof that RES,(z)=0 by
keeping a tally of the bits b sent by A in step 2 of cach iteration.

Second version: a result-indistinguishable proof-systcm

A simple modification of the above protocol does hide the result from an eavesdropper. The only
change is that at the beginning (before step i), A flips a fair coin in order to decide whether to use
R(x)=RESN(x) or R(x)=1- (%) as the bit b to be sent to B in step 2 of each itcration throughout the
protocol. R(x) can be regarded as an encoding, chosen at random for the entire protocol, of RES(x).

In step 3, B checks for consistency in the obvious way: B should reccive the same bit b in all case-1
iterations and the complementary bit in all case-2 iterations; B should rcceive a consistent bit b in all
case-3 iterations, and its value indicates to B whether or not z is a quadratic residuc. As before, il in step
3 of any itcration B finds that the value of b is not consistent then B halts the protocol, REJECTing the
proof.

With this modification, the protocol is still --- arguing as above --- a deciding interactive proof-system
for L. Furthermore, it is result-indistinguishablc. An eavesdropper expects to overhcar one bit about 2/3
of the time during step 2 of each iteration and the complementary bit the remaining 1/3 of the time;
whether the majority bit in a particular execution of the protocol is 0 or 1 gives him no knowledge. A

23

formal proof of result-indistinguishability of the full protocol is prescnted below.

However, the version so far prescnted is not minimum-knowledge. For example, a cheating B* that
wanted to find out whether a particular number --- 17, say --- is a quadratic residuc mod N could, duting
one of the ilerations, scnd x=17 in step 1 instcad of an element x constructed at random according to%’s
program. A's response in step 2 will convey to B” the value RES,(17), which is something that B* could
not have computed by itself.

Third version: a minimum-knowledge result-indistinguishable proof-system

We can make this a minimum-knowledge protocol by rcfining step 1 of the version just presented; the
refinement consists of scveral interactive sub-steps by which B gives to A what amounts to a minimum-
knowledge proof that the element x that it sends was constructed in one of the thrce ways specified
(without giving A any knowledge about which of the three ways). The rest of the protocol is unchanged.

1.0 B chooses re ZN' and ce {1,2,3} at random, and computes CASE c of:

1: x:=?modN
2: x:=yrPmodN
3: x:=zr*modN
B— A x
1.1 B chooses s;€ ZN* atrandom (i=1,...,4k) and computes:
T,={t,....4] t;=s*modN},
T,={tyr oyl t‘.Eys‘?modN},
Ty={typys - o3yl tl.Ezs‘.ZmodN},
Ty= L3y - - - oyl 1;=yzs?mod N };

taking this to be a matrix of 4 rows [T, T,, T, T,] and k columns (where column j contains
the ele.ments LY t3k+j), B randomly permutes each column of the matrix, resulting in
amatnx T;
BoA:T

1.2 A chooses Sc{1, . .. ,k} at random (a query indicating a random subset of T's columns);
A—-B:S

1.3 forcach je S, foreach ¢,e columnj, B — A:y;
(These numbers show A that B has correctly computed the j% column of T for each je S,
and convince A that it is very likely that at least onc other column of T was also computed
corrcctly.)

1.4 A verifies (for each such) that ¢,;= cither s‘.2, ysl.z, zs‘.2

being satisfied once in each column je S;
if not, then A halts the protocol in the FAILURE statc

,or yzs‘.2 mod N, with ecach congruence

1.5 for each je S, for each t,e columnj, B compules w; according to the table below: if x was
chosen as case ¢ of step 1.0 and t,e T, then w, := the table-entry in the M row and ¢t

column;

(For cach je S, these four numbers show A that if B has correctly computed the j® column
of T, then B has correctly computed x.)

foreachsuchz, B = Arw;

1.6 A verifies (for cach such 1) that wl.2 = cither (xt), y(xt), z(xt), or yz(xt)mod N, with each

24

congrucnce being satisfied once in cach column je S;
if not, then A halts the protocol in the FAILURE state

The protocol now continues as bqforc. A sends b=R(x) 10 B (sicp 2), and B checks b for consistency
(step 3): and then they continue with step 1 of the next itcration. Note that it is in A’s ‘“‘interest’’ to
choose § at random in step 1.2, so that with overwhelming probability both S and {1, ...,k)=S are
reasonably large (and thus the probability that any particular column of T will be queried is close to 1/2).

Table for Step 1.5
(All computations of table entries are modulo N)

x=...
| r yr* 2P
L=... | (c=1) (c=2) (c=3)
size T, | rs;= yrs;= zrs.=
| Voxr) V() Va(at)
pieT, 1 ys= ys= yos=
I y(xt) V(xt) Vyz(xt)
zsi2 eT, I_ ------------ ::'r:s“=- ---------------------- yzrsi; ------------------ zrsl—= ------------
| Va(xr) Vyz(xt) Vxt)
ysteT, | oyws= yas= yrs=
I Vyz(xt)) Va(xt) Vy(xt)

The idea is that any machine playing the role of B (and desiring that the protocol succced) must follow
the protocol, because if it trics to cheal during any iteration --- either by sending a number x in stcp 1.0 for
which it does not ‘*know’’ the corresponding number r, or by sending numbers ¢, in step 1.1 for which it
does not ‘‘know’’ the corresponding numbers s, --- then A will, with overwhelming probability, detect its
cheating cither in step 1.6 or in step 1.4. This is formalized in the following proof.

Theorem 2: Given input belonging to /= {(N,z)| N=1mod4, Ne BL, v(N)=2, (,';'7)=+1 }, this
protocol is a perfectly minimum-knowledge and perfectly result-indistinguishable deciding interactive
proof-system for L = { (N, z) e I | za quadratic residuemod N }.

Proof: First we prove that the protocol is a deciding proof-system for L. Since we have alrecady shown
that the second version prescnted above is a proof-system, it suffices to show that the refinement of step 1
preserves this property.

Suppose that z is a quadratic residuc. The question is whether a cheating A* --- even if it does not
choose S at random in step 1.2 --- can use the numbers scnt by B during step 1 to correctly distinguish
between case-1 iterations (x=r2mod N for a random r) and case-3 iterations (x=zr*modN). Sincc B has

25

chosen them at random, A® is unable to distinguish between residues t; of the form si2 and residues ¢; of

the form zs.2. The sub-table corresponding to these four possibilities has rows that are permutations of

$
cach other, and thus A* is not able to tell whether B is using column c¢=1 or column c=3 of the whole
table.

c=1 c=3
s | */@ Vz(xt)
L= .. e o e — e mmmmmem e e m e
252 | Vz(xt.) \/(x_t‘)

Similarly for nonresidues ¢; of the form ys‘.2 or yzsiz. A like analysis holds if z is a nonresidue mod M.
Hence the protocol is indeed a deciding interactive proof-system for L.

In order to prove the minimum-knowledge property, we choose an interactive Turing machine B* that
runs in expected polynomial time; we must describe the computation of a simulating machine M = M=,

M has one-time access (o an oracle for the result of the protocol, as explained in Section 3.1. M begins
by querying the oraclc on the input string (N, z), the initial history 4, and B*'s random-tape string, and
learns (with very high probability) the value of RES,(z). The rest of the simulation is similar to that of
the proof that the protocol of [16] is minimum-knowledge.

As its next step, M flips a coin to simulatc A’s choice of whether to compute R(x)=RES,(x) or
R(x)=1-RES,(x) during the protocol.

In each iteration, M carrics on the protocol through the cnd of (the refincment of) step 1 in a
straightforward manner: M uses B* to perform its own version of B’s role, and M casily simulates A’s
role, choosing a random query S in step 1.2 and checking scveral congruences mod N in steps 1.4 and 1.6.
If these congruences do satisfy the check, the difficulty comes in simulating A’s communication in step 2,
which consists of the bit R(x); how can M quickly calculate the correct value of RES (x)? M
accomplishes this by following the EXTRACTION procedure described below.

After B* has performed its computations in the simulation of step 1.1 and ‘‘sent’’ the matrix 7, M saves
the current configuration C,, of B*. At this point, given C,, (which includes a fixed random-tape string)
and any fixed query-set Sc{1, ... ,k} that A might choose in step 1.2, the lists of numbers that B* would
“‘send’’ in steps 1.3 and 1.5 in answer to the qucry S are determined. Let us call S a satisfiable query if
these answers would satisfy A's verifying checks of steps 1.4 and 1.6, causing the protocol to continue
with step 2. (A query that is not satisfiable would cause A to halt the protocol in its failure state.) It is
easy to check whether or not a query S is satisfiable, by sctting B*’s configuration to C;, *‘sending’’ S to
B*, and checking the numbers that B® ‘ ‘sends’’ in retum.

In its simulation, M makes use of an auxiliary matrix 7” that contains two data ficlds for each entry ¢, of
the matrix T, one for the number s and one for the number w;, (where $; and w, are related to £, as in the
specification of the protocol). Note that if M succeeds in filling both fields for any single entry ¢, then M

26

can easily deduce the value R(x) that it needs in order to simulate step 2: M can use §; to see how £, was
compuled in step 1.1 (i.e. which set Tj contains ¢, and hence which row of the table B* must use in step

1.5); next M can use w; to sec which column c of the table B* must use; and then the choice of column
gives M the value of RESN(x), and hence of R(x).

Next we describe the EXTRACTION procedurc that M performs in cach itcration following the
simulation of step 1.1.
1. save the current machine configuration €,

2. choose a query Sc({1, . . ., k} at random, store it, and “‘send’’ it to B* (simulating step 1.2)

3.let B* “‘send’’ its answers to S (the numbers s; ol step 1.3 and w, of step 1.5), and check the
congruences of steps 1.4 and 1.6;
if the congruences do not check, then halt the simulation;
otherwise, storc B*’s answers in the auxiliary matrix 77 and repeat the following two loops
concurrently until success:

a. sampling the query space (without repetition):
i. restore configuration C,,
ii. choose a new query S’c{1,...,k} at random that has not already been

chosen (if there is one; if none exists, then halt the sampling loop);
store S’ and ‘‘send’’ it to B*

iii, let B* “*send’’ its answers to S’

iv. for each j=1...k if B*'s answers for column j of the matrix T satisfy the
congruences of 1.4 (if je S’) or of 1.6 (if j¢ §'), then enter them in the
auxiliary matrix T”;
if any of these new entrics is an s, for which 7" already contains w; or vice
versa then (as explained above) use s,w, o compute R(x) and sct
success .=TRUE

b. use any [actoring algorithm F to factor N:
i. until (success or {F has successfully factored N}) do the next step of F

ii.usc the prime factors of N to compute RESN(x) and R(x), and set
success :=TRUE
4. restore configuration Cj and “‘send’” 1o B* the original query S
5.let B* “‘send’ its answers and update its history tape (cxactly as it did the first time it
received the query S)

Simulating step 2, M sets b:=R(x) (as computed either in a or b of the last inner loop) and “‘sends’” b to
B*, which performs its version of step 3 of the protocol. If B* is following the instructions of step 3, then
it is indeed “‘expecting’’ the computed value of b, and the simulation continues with the next iteration,

We need to show that M’s expected running time is polynomial (in &, the length of the input), and that
its output cnsemble is identical to B*’s view. To bound the running time, it sufficcs to prove a
polynomial bound on the expected time required by cach of the k itcrations of M’s program. First observe
that the outer loop of the EXTRACTION procedure takes polynomial time. The same is true for any single
execution of the inner loop: queries may be stored in a lexicographically ordered tree (so that choosing a
new one costs O (k)); the rest of the sampling loop is polynomial-time, and in each inner loop only one

27

step of the factoring algorithm is performed. Thercfore, it is enough to show that, for any fixed
configuration C), the expected number of repetitions of the inner loop is polynomial in k.

In fact, we show that this number is constant. In configuration Cyp letp (0<p<2% be the number of
queries that are satisfiable. When M performs the EXTRACTION proccdure, with probability 1-p/2¥ its
first query § will not be satisfiable, in which case the inner loop is not exccuted at all. If p=0, we have no
other case to consider; so assume p=1. With probability p/2%, S is satisfiable, and the inner loop is
repeated until success is set to TRUE (cither in the sampling process or after factoring N). Each sampling
loop begins with the choice of a new random query. Of the 21 possible querics, at least the p—1
satisfiable queries (besides S) lead to success; that is, the probability of a successful inner loop is at least

1 . . . - .

”k'—. Hence if p>1, the expected number of attempts after choosing a satisfiable original query is at most

2%-1

k k

251 - . . - .

-1 over all, the expected number of repetitions of the inner loop is at most % . zp_—ll < 2. We consider
2

below the special case p=1.

Next, we show that the sets VIEW g« ((AB)I[(N,z),h]} and M[(N, z), h] are identical; following Remark
2 of Section 3.2, it suffices to show that this is so for any one of the & itcrations of the protocol. Consider,
therefore, an iteration --- either of an actual protocol execution by A and B* or of the simulation by M ---
at the beginning of which B* sends the matrix T, and let p (0<p <2% be the number of satisfiablc queries.
With probability 1-p/2* a randomly chosen query is not satisfiable, causing either the protocol exccution
or the simulation to halt; in this case, the actual history and the virtual history are identical. If p=0, then
this is the only case that occurs. Otherwise, with probability p/2k, the original query S is satisfiable, and
both the actual protocol and the simulation continue with step 2. As long as p22, there is at lcast one
other query that leads to success in the inner loop of M’s EXTRACTION procedure, enabling M to *‘send”’
in its simulation of step 2 the correct value of b=R(x), the same one that A would send during an actual
execution. The factoring algorithm may be faster then the sampling process, in which case the correct
value of b is computed dircctly. Either way, the actual history and the virtual history arc identical.

If p=1, then the probability that M’s original query is satisfiable is only 2% In this rare case, the
sampling process in the inner loop of the EXTRACTION procedure might never lead to success; the inner
loop might not terminate until after N has been factored. Since the cost of factoring N is less than 0(2"),
the total expected number of repetitions of the inner loop when p=1 is less than 27*%.2k=1. In this case, as
before, the actual history and the virtual history are identical. This concludes the proof that the protocol is
perfectly minimum-knowledge.

In order to prove that the protocol is result-indistinguishable, we must specify the computation of a
probabilistic Turing machine M’, running in expected polynomial time, that simulates the
communications ensemble COM ((A, B)[N, z]}. (Recall that M” does not have access 10 any oracle.) M’
begins by flipping a coin to decide whether to simulate the choice R(z)=0 or the choice R(z)=1. Then in
each iteration M’ simulates the specified computations of A and B, except for the following changes. In
(simulated) step 1.0, M’ chooses x:=zr*mod N with probability 2/3 and x:= yzr? mod N with probability
1/3. In (simulated) step 2, M’ outputs b=R(z) if x=2r% and b=1-R(z) il x=yzr*. (Here the simulation of
step 2 is much simpler than in the minimum-knowledge proof above, since M” “*knows’’ how each x was
constructed.) In (simulated) step 1.5, M’ outputs w; computed according to the following table:

28

xX=
I zr? yzr?
L= |
s | 2rs; = yars,=
| “Z(XI") yZ(Xt)
ys? | yers;= yzrs;=
| Vyz(xt) Vz(xt)
:zs‘.2 | zrs;= yzrs;=
| (xtl.) Vy(xt,.)
yzs‘.2 | yzrs;= yzrs.=
I Vy(xz) Vixr)

The numbers x output by M’ have the same distribution as the numbers x output by B; the same is true
of the 5; and the w,. Hence, as requircd, the set of outputs M’[N,z] is identical to the sct
COM({(A,B)[N,z]}, so the protocol is perfectly result-indistinguishable.

As presented, the protocol takes O (k) communication rounds, during which O (k%) bits arc exchanged.
However, all & itcrations of the main loop can be performed in parallel, taking O(1) rounds. The
simulator M can perform in parallel all & itcrations of its main loop, and its cxpected running time is still
polynomial in £. Similarly, M’ can operate in parallel. Thus the parallelized version of the protocol is
also perfectly minimum-knowledge and perfectly result-indistinguishable. This concludes the proof of

Theorem 2.
QED

We note that there is another modification of the first version of our protocol that also achicves result-
indistinguishability. A can always respond in step 2 with the true value of RES,(x) if B computes each x
in step 1 according to a random choice among four varieties: o the types %, yr2, and zr? mod N we add the
fourth type yzrmodN. If the protocol is to be minimum-knowledge as well, we can refine step 1 as in
the third version of our protocol, adding an appropriate fourth column to the table used to compute w,.

7. Cryptographic Applications

In all our applications, we let N be the public key of a user A who knows its factorization. Within the
set N, it is most advantageous 10 A to choose N to be of the form N=pgq, with p and g of approximatcly
the same size. A can follow our confirming protocol in order to prove to any other user that Ne BL and
v(N)=2. For these applications, we assume that the residuosity problem is intractable.

When A communicates with another user B, any element ze Z,*(+1) can scrve as an encoding of the
bit RESN(z), as soon as A has used our protocol to prove to B the value of this bit. According to need, z
can be chosen by A or by both A and B together (say, by flipping coins). Beccause of the result-

29

indistinguishability of the protocol, this encoding is cryptographically secure.

In contrast, the conventional approach to hiding knowledge from an eavesdropper is to use encryption.
(For cxample, given two different protocols, one for membership in a language L and the other for
non-membership in L, one could “‘pad’’ the protocols so that they both caused messages of the same
length to be sent at each round of communications, and then encrypt all messages.) However, in this
approach, proving a theorem about the security of the protocol against eavesdroppers usually requires an
assumption about the security of the encryption scheme used.

Thus a sequence of random numbers Z,,Zy, ...,Z, Can scrve as a probabilistic encryption [15] of the
bit-sequence RES, (z,), RES, (z,), ..., RES,(z)), which in turn can be used as a one-time pad, sent either
from A to B or from B to A.

Instead of using the z; dircctly to encrypt the bits RES (z), we can define a much more efficient
scheme for probabilistic encryption by using the sequence RES (z,). RES\(z,). ... ,RES,\(z,) as the
random seed for a cryptographically securc pscudo-random bit generator (5, 24, 6] whose security may be
based on the unknown factorization of N (e.g. [3, 4]). Sharing the seed, A and B can efficiently generate
polynomially many bits and use them as a (very long) one-time pad with which to send messages back
and forth. The pad bits alone arc secure against any polynomially bounded adversary; furthermore, the
adversary gains no computational advantage in guessing any pad bit when he is given probabilistic
encryptions of the bits of the seed, nor when he is allowed to overhear the protocol interactions that define
these encrypted bits. Because our protocol is only used in order to initializc the system, this scheme has

low amortized cost.

Whether the bits RES,(z,) arc used directly or to form the sced of a pseudom-random bit generator, the
resulting schemes have the minimum-knowledge property with respect to B as well as with respect to an
cavesdropper C. In particular, they are provably securc against both choscn-message and chosen-
ciphertext attack. For further study of the power that interaction scems to add to public-key cryptography,
see [10].

Another application of our protocol gives a new private unbiased coin-flip, generated jointly by A and
B. The two users simply choose z at random --- for example, choosing its bits by mcans of Blum’s
coin-flip. Note that the bits of z are public; it is RES,(z), the result of the coin-{lip, which is private.

In certain applications we can omit the confirming proof that N is of the required form. Suppose in fact
that N has more than two prime factors. For any ze Z,"(+1), A can carry out the deciding protocol as
before. Now, however, if y and z --- both quadratic nonresiducs in ZN*(+1) --- have different quadratic
character modulo several of the prime factors of N, then A can distinguish numbers of the form 7 from
numbers of the form yr*modN, and can distinguish each of these from numbers of the form z*modN.
(This is not true if v(N)=2; recall that for such N any nonresidue in ZN‘(+1) is a nonresiduc modulo both
prime factors of N.) Thus A can, at will, use our deciding protocol to ‘‘prove’’ to B either that z is a
residue or that z is a nonresiduc. In either casc, the intcractively proved valuc of RES,(z) --- whether or
not it is the true value --- is cryptographically secure. This value gives B no knowledge whatever. The
‘*proof’’ only convinces B that A can distinguish between numbers with different quadratic characters

30

mod N, without releasing to B any information about the quadratic character mod N of any particular
number. (This can be formalized in terms of a simulator M = Mg+ for any given verifier B*. Note that at
the beginning of the program for M given in the proof of Theorem 2, we can replace the oracle query for
RES,(2) with a simple coin-flip; then exactly as in that proof, the two scls VIEWBt{(A,B‘)[(N, z),h]} and
MI(W, 2), h] are identical.) Thus, we may say that in this case, the protocol is result-indistinguishable even
with respect to B,

In this situation, when N has more than two prime factors, we can define the following game: A picks a
random nonresidue z with quadratic character different from that of y. A then “‘proves’ to user B; that
RES\(z)=b,, and ‘‘proves’’ to uscr B, that RES,\(z2)=b,. The *‘proven’ value of RES,(z) in each
execution of the protocol is sharcd only by the prover A and the verificr By or B,. In fact, user B, has
absolutely no computational advantage in deciding whether or not b,=b,, and neither docs user B.

8. Conclusions

Approaching knowledge from the point of view of computational complexity, we have studied the
interactive transmission of computational results. The protocol that we introduce gives a proof of the
value, O or 1, of a number-theorctic predicate, RESN(-). In a sense that we make precisc (extending the
definitions of [16]), the verifier gains no more knowledge from an exccution of the protocol than this
value; this is the ‘‘minimum-knowledge’’ property of the protocol. Furthermore, we arc able 10 analyze
the difference between the knowledge gained by the active verifier and that gained by a passive
eavesdropper of equal computational power; the protocol is ‘‘result-indistinguishable™, in that an
cavesdropper gains no knowledge at all by overhearing the messages passed during an execution. As a
formalization of the notion of a cryptosystem’s privacy and security against any passive attack, the
minimum-knowledge property seems to be the strongest possible.

Recent work on minimum-knowledge protocols has taken scveral different directions. Feige, Fiat, and
Shamir adapted the result-indistinguishable protocol of this paper (originally presented in [11]) and the
protocols of [16] in order to give an efficient minimum-knowledge (and thercfore cryptographically
secure) identification scheme [9]. Their paper proposes a formalization of the notion that a protocol can
supply a ‘‘proof’’ that the prover knows some fact or posscsses somc computational ability, while
completely hiding this piece of knowledge. (For cxample, in case N has more than two prime factors, our
deciding proof-system for RES,(-) may be regarded as demonstrating the prover’s ability to distinguish
between numbers with different quadratic characters mod »; sce Section 7).

Goldreich, Micali, and Wigderson proved that, under the assumption that onc-way functions exist,
every language in NP has a minimum-knowledge confirming interactive proof-system; this result has
important conscquences for the design of cryptographic protocols [13]. Under the assumption that certain
number-theoretic computations are infeasible, a similar result was proved by Brassard and Crepeau, both
for prover and verifier as described in this paper (7], and for the dual situation in which a resource-
bounded prover interacts with a verificr of unlimited computational power [8]. Impagliazzo and Yung
gave a construction for the dircct minimum-knowledge transfer of the result of any given computation
(both for the usual and for the dual model of the computational power of the prover and the verifier),
under the more general assumption that any of a large class of one-way functions cxist [18].

31

In a recent paper, instead of considering only protocols for transferring a computational result from one
party to another, Yao studied a broad class of two-party protocols for what may be called * ‘cryptographic
computation”’, in which the (polynomially bounded) uscrs combine their private inputs in order to
compule private outputs in a minimum-knowledge fashion, preserving the privacy of these inputs and
outputs and hiding partial computational results as much as possible; it may also be required that both
uscrs compute their final results simultaneously {25]. Under the assumption that factoring is hard, Yao
showed how to design such a protocol for any given cryptographic computation problem. Continuing this
work, Goldreich, Micali, and Wigderson proved similar results for multi-party protocols, assuming that
one-way functions exist, and showed how such protocols could be made to tolerate faults [14]. Galil,
Haber, and Yung simplified and extended these constructions for cryptographic computation, giving new
methods for the design of fault-tolerant multi-party cryptographic protocols [12].

In summary, the complexity-theoretic approach to measuring and controlling the knowledge
transmitted in various distributed and cryptographic settings has proved to be a useful tool in protocol
design.

Acknowledgements

We would like to thank Silvio Micali and Charles Rackoff for their helpful discussions, and Paul
Beame, Gilles Brassard, Joan Feigenbaum, Shafi Goldwasser, and David Lichtenstein for their insightful
remarks.

References

[11 L. Babai.
Trading group theory for randomness.
In Proc. 17th STOC, pages 421-429. ACM, 1985.

(2] M.Blum.
Coin flipping by phone.
In COMPCON, pages 133-137. IEEE, Fcbruary, 1982.

(3] L. Blum, M. Blum, and M. Shub.
A simple sccure pseudo-random number generator.
In Crypto '82. 1982.

(4] M. Blum and S. Goldwasser.
An efficient probabilistic public-key encryption scheme which hides all partial information.
In Crypto’84. Springer-Verlag, 1984,

(5] M. Blum and S. Micali.
How to gencrate cryptographically strong sequences of pseudo-random bits.
SIAM J. Comput. 13(4):850-864, Nov., 1984,

[6] R.B. Boppana and R. Hirschfeld.
Pseudorandom generators and complexity classes.
Advances in Computer Research. Volume on Randomness and Computation.
JAI Press, 1987.
To appear.

32

(7] G. Brassard and C. Crepcau.
Zcro-knowledge simulation of Boolean circuits.
In Proceedings of Crypto '86. 1987.

(8] G. Brassard and C. Crepeau.
Non-transitive transfer of confidence: a perfect zero-knowledge interactive protocol for SAT and
beyond.
In Proc. 27th FOCS, pages 188-195. 1EEE, 1986.

(9] U. Feige, A, Fiat, and A. Shamir.
Zero knowledge proofs of identity.
In Proc. 19th STOC, pages 210-217. ACM, 1987.

[10] Z. Galil, S. Haber, and M. Yung.
Symmetric public-key encryption.
In Crypto’85, pages 128-137. Springer-Verlag, 1985.

[11] Z.Galil, S. Haber, and M. Yung.
A privale interactive test of a Boolean predicate and minimum-knowledge public-key
Cryplosystems.
In Proc. 26th FOCS, pages 360-371. IEEE, 1985.

[12] Z.Galil, S. Haber, and M. Yung.
Cryptographic computation: secure fault-tolerant protocols in the public-key model.
In Crypto 87. Springer-Verlag, 1987.
To appear.

[13] O. Goldreich, S. Micali, and A. Wigderson.
Proofs that yield nothing but their validity and a methodology of cryptographic protocol design.
In Proc. 27th FOCS, pages 174-187. 1EEE, 1986.

[14] O. Goldreich, S. Micali, and A. Wigderson.
How to play any mental game.
In Proc. 19th STOC, pages 218-229. ACM, 1987.

[15] S. Goldwasscr and S. Micali.
Probabilistic encryption.
JCSS 28:270-299, April, 1984,

[16] S. Goldwasser, S. Micali, and C. RackofT.
The knowledge complexity of interactive proof systems.
In Proc. 17th STOC, pages 291-304. ACM, 1985.

[17) G.H. Hardy and E.M. Wright.
An Introduction to the Theory of Numbers.
Oxford University Press, 1954.

[18] R.Impagliazzo and M. Yung.
Dircct minimum-knowledge computations.
In Crypto 87. Springer-Verlag, 1987.
To appear.

[19] E.Kranakis.
Primality and Cryptography.
John Wiley & Sons, 1986.

[20] M. Luby, S. Micali, and C, Rackoff.
How to simultancously exchange a secret bit by flipping a symmetrically-biased coin.
In Proc. 24th FOCS, pages 11-22. IEEE, 1983,

(21]

(22]

(23]

(24]

33

L. Niven and H.S. Zuckerman,
An Introduction to the Theory of Numbers.
John Wiley & Sons, New York, 1972.

C. H. Papadimitriou.
Games against nature.

In Proc. 24th FOCS, pages 446-450. IEEE, 1983,

A. Renyi.
Foundations of Probability.
Holden-Day, 1970.

A.C. Yao.
Theory and applications of trapdoor functions.
In Proc. 23rd FOCS, pages 80-91. [EEE, 1982.

A.C. Yao.
How to generate and exchange secrets.

In Proc. 27th FOCS, pages 162-167. 1EEE, 1986.

-

