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Abstract:

We describe the solution of a two dimensional recurrence used to compute the secondary structure
of RNA. A naive dynamic programming solution to this recurrence takes time O(n'); this time
had previously been improved to O(n3). Our new algorithm makes use of the convexity of the.
energy functions for RNA secondary structure to reduce the time to O(n?log’n). When the
energy function is modeled by logarithms or other simple functions we solve the recurrence in time
O(n® lognloglogn). Our algorithms are simple and practical.
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Introduction

A number of researchers have recently examined the following recurrence relation:

Elj] = min. DIl + w(i,j) M

We assume that the values of D are easily computed from the corresponding values of E; in
particular we might take D[i] = E[i]. To begin the recurrence we are given the value of E[1]. The
values of E[j] for 1 < j < n can be computed from the above recurrence using a simple dynamic
program, in time O(n?), and if we don’t know anything about w we must use that amount of time.
However in many important applications of equation 1, the following inequality (or its inverse)
holds foralli < i < j < j":

w(i, §) + w(@, ') < w(i,5') + w(@, 5) (2)

We will refer to inequality 2 as the quadrangle inequality, and call any function w satisfying it
concave; we call the inverse of inequality 2 the inverse quadrangle inequality, and call any function
w satisfying it convez. If w is convex or concave, recurrence 1 can be solved in linear or close to
linear time [4, 5, 10].

In this paper we examine the following two dimensional generalization of the above recurrence:

Eli,j] = lgﬁgi D[, j'1+ w(i’ + §',i + j) (3)
1<5'<5

In this recurrence, we again assume that D[i, j] can be easily computed from the corresponding
value of E[7, j]. We are given as initial values E[1, j] and Efi, 1] for each i and j from 1 to n, and we
require the values for each Efi, j], again with ¢ and j chosen between 1 and n. The recurrence can
be solved by a simple dynamic program in time O(n*); the techniques described in the next section
suffice to reduce this time to close to O(n®). In this paper we present a new algorithm, which
when w is convex or concave solves recurrence 3 in time O(n? log? n). Our algorithm is simple and
practical. For many common choices of w, a more complicated version of the algorithm solves the
recurrence in time O(n? log nloglogn).

The recurrence above has an important application to the computation of RNA secondary
structure (7, 9]. After a simple change of variables, one can use it to solve the following recurrence:

Clp.q) = mgg;l, <qG[p', 1+ 9((p —p)+(a—-1¢)) (4)

In particular, let f(z) = n + 1 — z, and take C[p,q] = E[f(p),q] and D[i,j] = G[f(3), ).
Then w(z,y) = g(y — z) is convex when g is convex, and with these substitutions recurrence 3 also
solves recurrence 4. There is one small complication, which is that to take into account the extra
inequality p' < ¢' in recurrence 4, we let the value of D[i, j] be +o0o for those values i, j such that
£(0) 2 3.

Recurrence 4 is used to calculate the secondary structure of RNA, assuming the structure
contains no multiple loops [7]. Our algorithm computes this structure in time O(n? log® n), under
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the realistic assumption that the energy function w of a loop is a convex function of the number of
exposed bases in that loop. It is possible to calculate RN A secondary structure with multiple loops,
but this seems to require time O(n?) for linear energy functions, or O(n*) for general functions [9).

Waterman and Smith [9] also claim to have an algorithm for single loop RNA secondary
structure, which they believe runs in time O(n?). However no proof is given, except in the (easy)
case that w is linear (both convex and concave).

We describe here only the convex version of our algorithm. The concave version is very similar,
but we know of no applications for that case.

Contention Within a Diagonal

In recurrence 3, we call each of the points (¢, j') that may possibly contribute to the value of E[z, j]
candidates. We consider the computation of Ei, j] as a contest between candidates; the winner
is the point (7', j') with the minimum value of D[¢', j'] + w(i’ + 7',7 + 7). If we can find a way of
eliminating many candidates at once, we can use this to reduce the time of an algorithm for solving
recurrence 3.

We say that two points (¢, j) and (¢, ) in the matrices D or E are on the same diagonal when
i+ j =i+ j. By the length of a diagonal we mean the number of points on it; e.g. the longest
diagonal in the matrix has length n rather than nv/2. We say that (k,l) is in the range of (i, §)
when k > i and | > j; that is, when point (i, 7) is a candidate for the value of E[k,i].

In this section we describe a way of eliminating candidates within the same diagonal. Using
these methods, any given point (i, ) need only compare the values of candidates from different
diagonals; there will be only one possible choice for the winning candidate from any given diagonal.
Since there are O(n) diagonals, each computation of E[7, j] need involve only finding the minimum
of O(n) values; this gives us an algorithm for solving recurrence 3 having total time O(n?). We will
also use the methods of this section in our O(n? log? n) time algorithm for convex and concave w.

In what follows we will assume that the region below a diagonal is a right triangle, having as
its hypotenuse the diagonal below the given one, and having as its opposite right angled corner the
point (n,n). In fact this region need not be triangular, but if we pretend that our matrices D and
E are at the bottom right corner of 2n x 2n matrices we can extend the region to a triangle of the
given form (figure 1). This extension will not change the time bounds of our algorithms.

We denote rectangles by their upper left and lower right corners; that is, by the rectangle
extending from (i, j) to (¢, j') we mean the set of points (z,y) such that i <z < ' and j <y < j".

Lemma 1. If (i, j) and (', j') are on the same diagonal, and if D[i, ] < D[i’,j'], then for all (k, )
in the range of both points, D[¢, 5] + w(i + 7,k + 1) < D[, 7'] + w(i' + ',k + ). In other words,
(¥',j') need not be considered as a candidate for those points in the range of (3, ).

Proof: Immediate from the assumption that i+ j = ¢ + j'. e

Lemma 2. Each point (4, j) of a given diagonal need only be considered as a candidate for some
rectangular subset of the range of (i,j), which we call the domain of (i,). The domains for all
points on the diagonal are disjoint and together cover the set of all points below the diagonal.
Proof: Consider the point (4, j) such that D[z, 5] is the minimum such value for all the points
on the diagonal. Then by lemma 1, no other point than (i, j) of the diagonal need be considered
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as a candidate for any of the points in the range of (i,7), so we may take the domain of (7, 7) to be
the range itself. This range is a rectangle, extending from (i + 1,5 + 1) to (n,n).

When we remove the domain for (7, j) from the triangle of points below the diagonal, we are
left with two regions, each again a triangle (figure 2). By a similar argument, only the points in
the corresponding portions of the diagonal with the minimum values of D need be considered as
candidates for a rectangular region within each such triangle, and by induction we see that to each
point on the diagonal there corresponds a domain having the properties described in the statement
of the lemma.

We can calculate the domains for each point (¢,7) of a diagonal as follows. First we sort the
points by the value of D[z, j], lower values first. We will compute the domains for the points in this
sorted order.

At any point in the computation, as in the proof of lemma 2, the remaining points below the
diagonal will fall into a collection of triangles (the small triangles along the diagonal in figure 3).
No two triangles overlap, so there is a natural ordering of the triangles according to the position of
their hypotenuses along the diagonal. We will use a balanced search tree to represent the ordered
list of triangles. Initially this search tree will contain only the triangle of all points below the
diagonal.

To find the domain for point (i, j), we first use the search tree to find the triangle having (i, j)
on its hypotenuse. Then, because of the sorted ordering of the points, the ranges of all points (i’,j")
such that D[¢, j'] < D[¢, j] have already been removed from the triangles in the search tree, and all
points (i, j') not yet processed have D[4, j'] > D[i, j]. Further, the intersection of the range of (4, j)
with the remaining triangles in the search tree is exactly the rectangle extending from (i + 1,5+ 1)
to the corner of the triangle containing (%, ). Therefore we can take the domain of (7, ;) to be this
rectangle. We remove the triangle from the search tree and add the two new triangles left by the
removal of the domain.

Lemma 3. The domains for each of the points on a diagonal having m total points can be found
in time O(mlogm).

Proof: Each point adds at most one triangle to the search tree of triangles, so there are at most
m + 1 triangles ever in the search tree. Each domain is found in a constant number of search tree
operations, taking time O(logm) each, and a constant number of other computations. Therefore
the total time taken to compute the domains is O(m logm). e

Theorem 1. Recurrence 3 can be solved for general w in time O(n?).

Proof: We maintain a matrix of the best candidates seen so far for all points (i, 7). We process
a diagonal at a time; all candidates for points on the diagonal will have been processed already so
to compute E[i, j] we need only look up the winning candidate in our matrix. Then we compute
the domains for the diagonal; for each point (i, j) on the diagonal, and for each point (¢, ;') in the
domain of (¢, j), we compare (i, j) with the previous best candidate recorded for (¢', j'), and update
the matrix of candidates if (i, 7) is better.

There are O(n) diagonals; for each diagonal we take time O(n) to compute the values of
E[i,j], time O(nlogn) to compute the domains, and time O(n?) to update the candidate matrix.
Therefore the total time is O(n?3). o



We should note that recurrence 3 can also be solved in time O(n3) by a simple three dimensional
dynamic program, where the three dimensions are ¢, 7, and the diagonal i’ + j' of a candidate [9]. In
effect this alternate method computes the domains of points (i’, ') a diagonal at a time, by noting
that the domain containing (7, 7) is either that containing (¢ — 1, 5) or (¢,5 — 1). We will need to
use our more complicated domain computation algorithm in the next section, because this simple
method requires time O(n®) to compute the domains of all diagonals.

Convex and Concave Weight Functions

We describe now an improved algorithm for the important case that the weight function w is either
convex or concave. In fact we describe only the convex algorithm, and note without proof how
to change it to solve the concave case. In the previous section we described a method for quickly
resolving the competition between candidates from a single diagonal; here we will add to this an
algorithm for resolving competition between candidates from different diagonals.

We will need for our algorithm a data structure that maintains a partition of the sequence of
numbers from 1 through n into intervals. We perform the following operations in the data structure:

(1) Find which interval contains a given number.

(2) Find which interval follows another given interval in the sequence.
(3) Join two adjacent intervals into one larger interval.

(4) Split an interval at a given point into two smaller intervals.

Such a data structure may be implemented at a cost of O(logn) per operation using balanced
search trees (2, 6, 8]. A different algorithm, due to Peter van Emde Boas (3], implements these
operations at a cost of O(loglogn) per operation. In general the simple search tree version of the
data structure will be sufficient.

We keep a separate such partition for each row and column of the matrix of the original
problem. Each interval in each partition will have a pointer to its owner, one of the points (¢, 5) for
which we have already calculated E[i, j]. Any point (i,j) may own either some set of row intervals
in the row partitions, or some set of column intervals in the column partitions; but no point may
own both row and column intervals.

We will maintain as an invariant that, if the owner of the row interval containing point (i, 7)
is (¢7,Jjr), then (i,j) is in the range of (i.,j.), and D[iy, jr] + w(iy + jr,1 + j) is the minimum
such value among all points (i’, ) owning rows. Similarly, the owner (i., j.) of the column interval
containing (¢, j) is the best point among all points owning columns. When we compute Efi, j] it
will be the case for each point (¢, j') such that (7, j) is in the range of (¢, j'), that either (¢, ;")
owns some intervals or else (i, j') can not be the winning candidate for (i, j). Therefore we may
calculate E[i, j] as the minimum between D[ir, j-] + w(ir + jr, i+ ) and Dl[ic, jc] 4 w(ic + je, i + J),
which requires only two queries to the interval data structures, followed by a constant number of
arithmetic operations.

It remains to show how to add a point (i, j) to the interval data structures, after E[i,j] has
been computed, so that the invariants above are maintained. We will add points a diagonal at
a time. First we use the previously described algorithm to compute the domains for each point
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on the diagonal. Each domain is a rectangle; we cut it into strips, which will be intervals either
of rows or columns. We choose whether to cut the domain into row intervals or column intervals
according to which direction results in the fewer strips (figure 4). Then we combine each strip with
the corresponding row or column partition so that (7, 7) ends up owning the subinterval of the strip
containing exactly those points for which (i, 7) is better than the points previously owning intervals
in the partition. First let us compute a bound on the number of strips formed when we cut the
domains.

Lemma 4. The total number of strips from a single diagonal is O(n logn).

Proof: Assume without loss of generality, as in the previous section, that the region to be cut
into domains and then strips is a triangle, rather than having its corners cut off. The length of the
diagonal of the triangle is at most 2n.

Let T(m) be the largest number of strips obtainable from a triangle having m elements on
the diagonal. As in the proof of lemma 3, the point on the diagonal having the least value has a
rectangular domain extending to the corner of the triangle, leaving two smaller triangular regions to
be divided up among the remaining diagonal points. Let us say the sides of this outer rectangular
domain are ¢ + 1 and j + 1; then 7 and j are the diagonal lengths of the smaller triangles, and
t4+j=m—1. The number of strips formed by this outer domain is the smaller of i + 1 and j + 1;
without loss of generality we will assume this to be ¢ + 1. Then

T(m) = .‘+I'I—1ir§;1-1 TE)+T(G)+i+1. (5)
i<
Now assume inductively that T(k) < cklogk for k < m and some constant ¢ > 1. Let ¢ and
J be the indices giving the minimum in equation 5; note that i < m/2. Plugging these values into
equation 5, we see that
T(m) = c(ilogi+ jlogj)+i+1

< c(i(logm—1)+ jlogm)+i+1 (6)

=c(m-1)logm+ (1 -¢)i+1

< emlogm.

By induction, T(m) = O(mlog m) for all m. But the number of strips for any diagonal is certainly
no more than T(2n) = O(nlogn). e '

Now if we can add a single strip to our row and column partition data structures in logarithmic
time, the resulting algorithm will take the time bounds claimed in the introduction. In fact our
algorithm may take more than logarithmic time to add a strip, so we cannot bound the time so
easily. The result of adding a strip will be the creation of at most two intervals in the partition, so
the total number of intervals ever created is proportional to the number of strips. When we add
a strip to the partition, we may also remove some intervals from the partition; we will charge the
time for this removal to the previous creation of these intervals. Therefore when we add a strip
to the data structure we will be charged O(logn) time for the creation of intervals, and another
O(logn) for those intervals’ later removal, for a total time of O(logn) per strip.

Before we describe how to perform the insertion of a strip, we need the following lemma, which
is where we use the assumption that w is convex.
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Lemma 5. If w is convex, and if all intervals in the partition of a row (or column) currently
belong to points on an earlier diagonal or the same diagonal as that of point (¢, 7), then if (¢,j) is
better than the the previous owners for any points in that row (or column) contained within the
domain of (i, 7), it is better in a single interval starting at the lowest numbered point of the row
(or column) in the domain for (3, 7).

Proof: We prove the lemma for rows; the proof for columns is the same.

We know from lemma 2 that (7,7) is the best of all points on the diagonal within its own
domain. An alternate way of stating the lemma is that, if (¢’, j) comes from an earlier diagonal
and is better than (7, j), then it continues to be better for later points in the row. If this holds,
we know that (¢, 5) is worse than the previous owners of all remaining points in the row, for if it is
worse than (4', j') it is certainly worse than any points which have already been found to be better
than (7, 7).

Let (3", ") be the first point in the row for which (¢, 7) is worse than (', j'); that is,

Dli, 5]+ w(i +5,3" +5") 2 DI, /'l + w(@ +5',4" + j"). (7)

Then if &k > 1, point (¢”, j" + k) follows (2", ") in this row, and " + ;" < i" + 7' +k. By assumption
i +j' < i+ j. Then by convexity of w, the inverse quadrangle inequality

w(i+ 5,3 + 5" + k) +w(@ + 7,8+ ") 2 w@ 45,3+ ) (@ + 5+ k) (8)
holds. Equation 8 can be rewritten as
w(i+g, " + 57"+ k) —w(i+5,7" +5") 2wl + 5, + 7"+ k) —w(@ + 7,8+ 5", (9)
and adding equations 7 and 9 gives
Dli, jl + w(i+j,i" + 7" + k) > D[', j'] + w(@’ + 7',i" + " + k), (10)

which states exactly that (%, j) continues to be worse than (i, j'). The proof for columns is identical
to that for rows. e

We note without proof that, when w is concave, the points of the row for which (7, j) is best
again form a single interval, this time ending at the last point in the domain.

We are now ready to describe how to insert the strip for (%, j) into the row (or column) interval
partition, once we have calculated the domain as described in the previous section. We first look
at the first point (i', j') of the row contained in the domain, and find the interval containing that
point. If the previous owner is better at that point, then (7, 7) is never better in this row, and we
are done inserting its strip. Otherwise, we split the interval containing (i', ;') into two intervals, so
that the second of the two starts at (i', j'). But for now we leave both intervals having the same
original owner. It may be that when we have finished, more than one interval in the row has the
same owner; this is not a problem.

We have found an interval at the start of which (i, 7) is better than the other points owning
intervals in this row. This interval, which we call the candidate interval, is currently owned by
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some other point; this owner may be better than (i, j) at the other end of the candidate interval.
We also need to remember the interval we have already assigned to owner (i, j); for now this is the
empty interval,

We repeat the following steps: First we find the next interval following the candidate interval.
If this interval starts within the domain of (¢, 7), and if (7, j) is better than the owner of this new
interval at the first point of the interval, then (7, j) must be better than the owner of the candidate
interval for all of the candidate interval by lemma 5, and because it is better at the start of the
new interval. In this case we merge the candidate interval with the interval owned by (i, ), and set
the owner of the merged interval to be again (i, j). We remember the following interval as the new
candidate interval, and continue the loop. Otherwise the interval in which (7, j) is best is contained
within the candidate interval, so we halt the loop.

We now know that the interval in which (i, j) is best stops somewhere in the candidate interval.
The interval needs to be divided into two parts; the first part will be owned by (i, j), and the second
part left to its original owner. We find the point at which to split the interval by binary search, at
each step comparing the value of D + w for (%, ) with that of the previous owner of the candidate
interval. The points searched start at the start of the candidate interval and end either at the end
of the interval or the end of the strip, whichever comes first.

At each step of the loop other than the last, an interval is removed from the partition, and we
can charge the costs of that step to the interval being removed as mentioned earlier. The costs not
charged are a constant number of interval operations, including the creation of a constant number
of new intervals, for a cost of O(logn), and the binary search to find the split point, for another
O(logn). For many functions w we can compute the split point directly, without performing a
binary search; if w is such a function we can use the more complicated data structure of van Emde
Boas [3] to achieve a time of O(loglogn) per strip insertion.

The algorithm as a whole proceeds as follows. For each diagonal i + j = k, k from 2 to 2n, we
perform the following steps:

(1) Look up the owners of each point (4, j) of the diagonal in the row and column partition data
structures, and compute E[t, 5] and D[i, j].

(2) Compute the domains of the diagonal points.

(3) For each point (i,j), cut the domain into strips, either by rows or by columns depending on
which gives fewer strips, and combine the strips with the appropriate partitions.

Theorem 2. The above algorithm computes the values of E[i, j] in total time O(n?log® n) for
general w, or O(nlognloglogn) for simple w.

Proof: The time taken for each diagonal is as follows. Step 1 takes at most O(logn) time for
each point, for a time of O(nlogn). Step 2 takes time (nlogn) as described in the previous section.
Step 3 takes time O(logn) time per strip for convex or concave w, and O(loglogn) per strip for
simple w. There are O(n logn) strips, so step 3 takes time O(n log? n) or O(nlog n loglogn). There
are O(n) diagonals, so the total time for the algorithm is O(n? log® n) for convex or concave w, and
O(n?logn loglogn) for simple w. o
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Figure 1. Making the region below a diagonal triangular.

Figure 2. Removing a rectangle leaves two triangles.
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Figure 3. Domains of the points on a single diagonal.

Il
= |

Figure 4. Cutting domains into strips.




