The Expected-Outcome Model
of Two-Player Games

Bruce Abramson

Submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in the Graduate School of Arts and Sciences
COLUMBIA UNIVERSITY
1987

Cups-315-3T

©1987
Bruce Abramson
All rights reserved

ABSTRACT

The Expected-Outcome Model of Two-Player Games
Bruce Abramson

Long before computer games became popular recreations, mathematicians
viewed games as models of decision making. The general understanding of
decisions, however, has been impeded by the ambiguity of some of the basic
components of game-tree search. In particular, the static evaluation function,
or determination of a node's merit based on directly detectable features, has
never been adequately defined. The ezpected-outcome model proposes that the
appropriate value to assign a node is the expected value of a game'’s outcome
given random play from that node on. This proposal is supported by both an-
alytic proofs and experimental evidence: the model’s optimality on a class of
simple game-trees is derived analytically, and the popular statistical techniques
of random sampling and regression analysis produce efficient expected-outcome
estimators in real games. Overall, the expected-outcome model of two-player
games is shown to be precise, accurate, easily estimable, efficiently calculable,

and domain-independent.

Contents

I
1

2

Introduction
Prelude: Why Study Games?
Overview: What Lies Ahead?

Background: What is Known Already?
3.1 Preliminaries
3.2 Heuristic Evaluation Functions

3.3 Control Strategies
3.4 Summary e e e

IT The Model

Proposal: What is the Basic Model?

Support: Does the Model Work?

5.1 Analytical Evidence
5.1.1 An Analytic Game-Tree Model
5.1.2 Decisions Based on Leaf Distributions
5.1.3 Non-uniform Game-tree Models

5.2 Empirical Evidence
5.2.1 Decision Quality
5.2.2 Random Sampling Strategies
5.2.3 Learning Expected-Outcome Functions

ITII Conclusions

6

7

8

Contributions: What’s Been Accomplished?
Implications: Where Might the Model Lead?

Reprise: Why Study Games?

A Standard Evaluation Functions

B The Random Sampler

...........

...........

...........

...........

...........

...........

...........

98

101

107

114

119

List of Figures

=1 O U e WO =

= O
(@]

An Example of Minmmmaxo L0000 11
The Problem with Classification 17
An Exampleofa-8 Lo 24
An Ilustration of Expected-Outcome 31
Error percentages in tic-tac-toe o L. 62
Error percentages in Othello. 63
Othello Square-classes 75
The Open-Lines-Advantage Function 115
An Expert-Designed Weighted-Squares Function 117
Reduced Expert-Designed Weighted-Squares Functions 118

List of Tables

D U R WY

A test of decision quality 61
Weighted-squares Coefficients 78
Othello Tournament: Match-by-Match 82
Othello Tournament: Totals 83
Othello Tournament: Analysis. oo 85
Chess Material Functions and Tournament 95

1

Acknowledgments

Tlus dissertation involved a great deal of time and effort, and I'm grateful to
many people for both helping hands and shoulders to cry on.

First and foremost, I'd like to thank my thesis advisor, Richard Korf, who
gave me support and encouragement throughout my graduate career, and who
invited me to join him at UCLA when he decided to move west. A close second,
however, would have to be Jonathan Gross. As my Columbia liaison and official
advisor, Jonathan made it possible for me to remain a Columbia student while
in residence at UCLA.

Over the years, I've gotten useful tips from many of my colleagues, in par-
ticular Othar Hansson, Andrew Mayer, and Mordechi Yung, who were helpful
and interested beyond the call of duty. I've also lucked out with five great of-
ficemates, Jed Schwartz, Jon Rynn, Russell Mills, Arthur Goldberg, and Maria
Pozzo, who've helped create a series of comfortable working environments.

Then, of course, there are my parents, grandparents, sisters, brother-in-law,
friends, lovers, and all the folks who alternately let me ramble on about my work
and pretend that it didn’t exist, and put up with all of my neuroses, (only some
of which can be blamed on this thesis).

Finally, if there’s anvone else out there that I talked to between mid-1983 and

mid-1987, thanks. I made it.

11

Part I
Introduction

1 Prelude: Why Study Games?

The mathematical study of games predates digital computers by several decades
[NM44). With the coming of the computer age, the marriage of games, as de-
cision making models, to computers, as decision making machines, was swift
and natural. In 1950, with computer science in its infancy and the term “arti-
ficial intelligence” as yet unborn, Claude Shannon’s Programming a Computer
for Playing Chess [Sha30] begat the computer game. In this classic work, Shan-
non justified chess programming as a valid scientific pursuit by claiming that
aside from being an interesting problem in its own right, chess bears a close re-
semblance to a wide variety of more significant problems, including translation,
logical deduction, symbolic computation, military decision making, and musical
composition; in any of these fields, skillful performance requires thought, and
satisfactory solutions, although generally attainable, are rarely trivial'. In ad-
dition, he pointed out that chess has an attractive feature that its more complex

relatives lack: both the options (moves) and the goal (checkmate) are sharply

'The idea of studying simplified models is characteristic of most basic research in artificial
intelligence. Battlefield management and stock-market investment are two examples of decision-
making in (semi-)adversarial settings. One of the motivations behind studying games is that they
model the decisions and the adversary, without worrying about the complexities of the particular
domain.

(%]

defined.

The original objective behind game programming, then, was to understand
how decisions are made. To this end, researchers have discovered some general
algorithms that have led to the development of powerful, albeit domain-specific
programs, perhaps culminating in special purpose chess architectures that were
able to compete at the master level [BE86] [CT82]. Despite the superiority of
these machines to any existing software-based programs, their implicit require-
ment of a machine per domain is clearly unacceptable. Thus, the understanding
(and hopefully the eventual automation) of the decision-making process requires
an ongoing investigation of the underlying principles, definitions, and algorithms
for searching simple models such as game-trees.

One particular key question faced by decision makers that has never been
adequately addressed is how potential domain configurations can be quantified.
Without a reasonable assignment of values, comparison of, and choices among
alternative possible states, is impossible. In game-theoretic terminology, this
assignment is known as a static evaluation function. In the past, all game eval-
uators have concentrated on defining aspects of a specific domain that relate to
the ultimate goal of winning. No effort has been expended seeking an invariant
trait of the genus ludus (game) that could serve as the paradigm of evaluators.

The focal point of this research has been the determination of an unambigu-

ous, domain-independent model of the static evaluation function. The proposed
definition, the projected outcome of a game given random play, leads to the
ezpected-outcome model of two-player evaluators, in which the relative merit
of game-tree nodes, rather than board positions, is considered. Since game-trees
are general mathematical models while game boards are domain-specific state de-
scriptions, this distinction immediately increases a function’s extensibility from
a specific game to the class of two-player zero-sum games of perfect information.
In addition, the introduction of the random-play assumption suggests a radi-
cal rethinking of virtually every component of game-tree search. The resultant
model of the game-tree is essentially probabilistic in nature, rather than deter-
ministic. Node values become random variables, and search procedures attempt
to maximize expected values. In the long run, this model may be applicable to a
wide variety of domains, and may begin bridging the gap between simple parlor
games and their more complex relatives. For the moment, however, the redefini-
tion of node values in game-trees as probabilistic entities helps resolve one of the
most basic and ambiguous components of two-player search systems by giving a

general characterization of static evaluation.

2 Overview: What Lies Ahead?

This document is divided into three parts. Part I, the Introduction, explains
the fundamental problems that motivated the research. In particular, section 3
contains background information which briefly outlines some previous artificial
intelligence research efforts on game-trees. The thrust of this survey is that the
ambiguity of static evaluation sends a ripple of problems through the search
system: functions can’t be compared, backup algorithms can’t be justified, and
frontiers can’t be set intelligently. Although each of these shortcomings has been
discussed in the past, the effects that they have on the performance of game-
playing programs is frequently unidentifiable; it is not difficult to ignore one or
more of them when designing a program that plays a specific game. Since the
primary objective of this work was the development of a domain-independent
static evaluator, however, all three had to be considered.

Part II, the Model, opens with the definition of a node’s ezpected-outcome
value as the expected value of the leaves beneath it. The basic model is out;
lined in section 4. Unlike all previous models, these functions are probabilistic
in nature. Game-trees have long been viewed in a strictly deterministic context;
leaves have exact values corresponding to their payoffs, and internal nodes have
exact values determined by the minimax algorithm [NM44]. Under the expected-

ontcome model. only leaf values are exact. Internal nodes are viewed as random

[$]]

variables whose expected values depend on the distribution of leaves beneath
them. This definition immediately offers a criterion for evaluator comparison:
the more closely a function approximates the expected value, the stronger it
1s. In addition, the obvious method of approximating expected values is random
sampling. Rather than performing a full-width search as deeply as possible, sam-
pling strategies rely on as many full-depth searches as time permits. By searching
a randomly chosen subset of the paths between the node being evaluated and the
leaves, full-depth searches suggest some directions in which valid justifications
of backup algorithms and criteria for setting search frontiers may lie. These are
outlined briefly in section 7. Unfortunately, although the new model addresses
some major issues left hanging by the standard definitions, it also introduces its
own set of problems. Perhaps the two most pressing charges against it involve the
inaccuracy of the implicit random-play assumption and the relative inefficiency
of random samplers. Since accuracy and efficiency are the two major concerns in
system (e.g., model or program) design, these are potentially damning objections.

In an attempt to dispel any skepticism brought about by these (or other)
difficulties, the rest of part II scrutinizes both the rationality of the random-
play assumption and the validity of the expected-outcome model. The studies

described in section 5 answer four questions, all in the affirmative:

¢ Is the model’s ideal implementation optimal on simplified game-trees?

¢ Do completely informed (exact) expected-outcome functions make good

decisions in small games?

e Can estimated functions compete favorably within the realm of expert-

designed evaluators?

¢ Is expected-outcome useful in the design of efficiently calculable static eval-

uation functions?

Section 5.1 analyzes the model’s theoretical accuracy on some simple uniform
game-trees. Of course, interesting games generate trees that are much too irreg-
ular to be analyzed, and thus the applicability of the model to real domains must
be discussed empirically.

Section 5.2.1 considers the performance of exact expected-outcome functions
on some small variants of tic-tac-toe and Othello. Since optimal moves are cal-
culable in small trees, there is an absolute standard against which a function’s
performance can be judged. Thus, these experiments not only investigate the
relative standing of expected-outcome and some expert-designed evaluators with
respect to the frequency with which they move correctly, but determine each
function’s absolute decision quality, as well. These tests, however, are limited
to games that are small enough to be searched exhaustively. Thus, section 5.2.2

studies the performance of an estimated expected-outcome function that com-

putes the average value of a randomly sampled subset of leaves beneath each
node. To compare the levels of play achieved by generated and designed func-
tions, the estimator is pitted directly (no lookahead) against an expert-designed
evaluator on the full (8-by-8) game of Othello. Unfortunately, the cost of imple-
menting the random sampler is prohibitive, thereby motivating section 5.2.3's use
of regression analysis on the sampler’s estimates to produce an efficient expected-
outcome function. This technique automatically learns coefficients that define
polynomial evaluators for Othello and chess; tournament play among a group of
related functions indicates that even under this approximation, twice removed
from the original definition, the model still performs well.

These experiments bring the reader up to date on the expected-outcome
model. Part III lists some of its potential future extensions, summarizes what

has been done already, and recaps the major contributions of the research.

3 Background: What is Known Already?

Although many key questions in the study of two-player games have never been
adequately addressed, there are quite a few that have been. In order to fully
appreciate the place that games hold in artificial intelligence research, it is nec-
essary to backtrack a bit and examine work that has been done on them in

the past. Throughout this discussion. the importance of developing a well un-

derstood model for the static evaluator will be stressed. It will be shown that
without a reasonable definition of evaluation functions, a series of ambiguities
that pervades the search system leads to many of the major problems that have

been identified by game researchers.

3.1 Preliminaries

One of the most widely applied problem-solving techniques in artificial intelli-
gence is the heuristic search of state-space graphs. Nodes in a state-space graph
represent states of the world, and arcs indicate the legal transformations between
states. In a graph, every node is unique; no two nodes describe the same world.
Sometimes, however, space considerations make it necessary to consider a state
that can be arrived at through two (or V) distinct sets of legal transformations
as two (or N) nodes. This type of graph is called a tree. Games are modeled
with a special class of trees called game-trees, in which the nodes are board con-
figurations, the arcs legal moves, and the players take turns moving. Game-trees
are the general mathematical model on which the theory of two-player zero-sum
games of perfect information is based [NM44]. Many popular parlor games, such
as chess, checkers, Othello, tic-tac-toe, and Go belong to this class of games;
they are perfect informgtion because all legal moves are known to both players

at all times, and zero-sum because one player’s loss equals the other’s gain. An

example of the game-tree of 5-stone Nim, (a simple game which forms the basis
of much of the mathematical theory of games [BCG82]), is shown in figure 1.
At the top of a game-tree is a single node, known as the initial state, (or
root), which represents the initial setup of the board. For each legal opening
move, there is an arc leading to another node, corresponding to the board after
that move has been made. There is one arc leaving the initial state for each
legal opening, and the nodes that they lead to define the setups possible after
one move has been made. More generally, a game-tree is a recursively defined
structure that consists of a root node representing the current state and a finite
set of arcs representing legal moves. The arcs point to the potential next states,
each of which, in turn, is a smaller game tree. The number of arcs leaving a
node is referred to as its branching factor, and the distance of a node from the
root is its depth. If b and d are the average branching factor and depth of a tree,
respectively, the tree contains approximately b4 nodes. A node with no outgoing
arcs is a leaf, or terminal node, and represents a position from which no legal
moves can be made. When the current state of the game is a leaf, the game is
over. Each leaf has a value associated with it, corresponding to the payoff of that
particular outcome. Technically, a game can have any payoff, (say a dollar value

associated with each outcome), but for most standard parlor games, the values

are restricted to WIN and LOSS (and sometimes DRAW),

10

In two-player games, the players take turns moving, or alternate choosing next
moves from among the children of the current state. In addition, if the game is
zero-sum, one player attempts to choose the move of maximum value, and the
other that of minimum value. A procedure that tells a player which move to
choose is a strategy for controlling the flow of the game, or a control strategy. In
principle, the procedure of assigning values to nodes and then choosing a move is
a simple one. Any state one move away from the leaves can be assigned the value
of its best child, where best is either the maximum or minimum, depending on
whose turn it is. States two moves away from the leaves then take on the value
of their best children, and so on, until each child of the current state is assigned
a value. The best move is then made. This method of assigning values and
choosing moves is called the (complete) minimaz algorithm, and it defines the

optimal move to be made from each state in the game [NM44].

3.2 Heuristic Evaluation Functions

The applicability of optimal control strategies, such as complete minimax, is de-
pendent on a tree’s size. Some state-space graphs, such as the Nim tree, are small
enough for every node to be examined. Interesting problems, however, tend to

define graphs which are too large to be searched exhaustively?. Thus, some

2For example, complete trees have been estimated at 78¢ (a 103%) nodes for Othello, 104° for
checkers, 1012 for chess, and 361! (> 10%%°) for Go.

11

-1
B
—1 = -1
4 3 2
n—nl o o AN e\
L3 I T i2f f1iiolillio
—1%[\ -1 —1/\+1 -1 +1 /\—1—1 —1|
2 1lofoll1]]o 1|loflo 0
afanl o al +]

.............................

Figure 1: The game of Nim is played with piles of stones. In this version, the players
take turns removing 1, 2, or 3 stones from the initial pile, (in this case, of five stones),
and the player removing the last stone loses. The numbers in the squares indicate the
size of the pile at the beginning of the player’s turn. If MAX (dashed box) victories
are denoted by +1, and MIN (solid box) victories by —1, then the complete minimax
algorithm assigns the values shown outside the boxes. Since the root valueis —1, 5-stone

Nim is a forced win for MIN.

12

nodes must be ignored. Guidelines that indicate which nodes should be ignored
and which should be examined result in a systematic search of the graph. Per-
haps the simplest guideline suggests extending search depth uniformly to view as
many nodes as time permits; in trees whose leaves are too far from the root for
exhaustive searches to be performed, search to some limit, (generally set by the
computational power available), and study the tip nodes at the search frontier
instead of the leaves. When the tip nodes are leaves, the values are exact and
the tree is complete. Otherwise, the tips are internal nodes, and the tree is par-
tial®>. Complete trees are well understood but rarely applicable — applications
must rely on partial trees. Since tip nodes in partial game trees do not have
immediately discernible payoffs associated with them, additional guidelines are
necessary to decide on the proper heuristic estimate to give them, which paths
should be searched further, and how the estimates should combine to recommend
a move. The most desirable heuristics are easy to calculate, highly accurate, ap-
plicable to many problems, and lead to good solutions. Heuristic search theory
is, in large part, the study of necessary tradeoffs among these features and the
design of heuristics that combine them in the desired proportions.

One of the major components of the theory of heuristic search is the evaluation

3Technically, it is possible to have internal nodes with exact values, as well. However, once
the outcome of a game is known, the game is effectively over. Thus, any node with a known exact
value can be treated like a leaf, and the distinction between complete and partial trees remains
valid.

13

of nodes using only static information, (features directly detectable in the state)
to determine their relative merit. Static evaluators have been studied in two
fundamentally different contexts: single-agent (i.e., puzzles) and dual-agent (i.e.,
games). One essential difference between these settings is the objective of the
search system. In one-player puzzles, the standard goal is to reach a specific state
via the least expensive path, whereas the goal of a typical two-playel; game is to
be in a winning state when the game ends. The intuitive single-agent evaluator,
then, is an estimate of the cost of the cheapest path from a given state to the goal.
This fairly rigorous definition offers a method for comparing the accuracy of any
two functions proposed for the same task — the more accurate the estimate, the
better the function — and has spawned many studies which relate the accuracy
of an evaluator to the solution quality and algorithmic complexity of heuristic
searches that use it [Pea84]. For example, one single-agent domain that has
received a great deal of attention is the 8-puzzle. This puzzle consists of eight
tiles numbered 1 through 8 arranged in a 3-by-3 grid, with one space in the grid
left blank. The objective is to transform an arbitrary initial configuration into a
given final configuration by sliding tiles either horizontally or vertically into the
blank space. Each move, of course, shifts the blank to the location vacated by
the most recently moved tile, and opens up new possibilities for the next move.

The goal of the search is to effect the desired transformation in as few moves as

14

possible. A popular static evaluator. Manhattan Distance [Pea84], develops an
estimate of the number of moves needed by ignoring the rule that only allows
tiles to be shifted into the blank space. With this restriction gone, the number of
moves needed to change one configuration to another is the sum, over Vall tiles, of
the number of rows plus the number of columns separating a. tile from its desired
final position. For a detailed discussion of the 8-puzzle and Manhattan Distance,
see [Pea84].

Since the goal of a two-player game is to win, a similar intuitive definition
of the two-player evaluator should be an estimate of whether a given node will
result in a winning state. Unfortunately, no firm understanding of what this
means has ever been developed. The literature has been uniformly vague in
its interpretation of game evaluation functions, describing them with a series of
equivalent qualitative terms, including measures of a position’s “worth”[Nil80],
“merit”, “strength” [Pea84], “quality” [Win77|, or “promise”[Ric83]. For exam-
ple, the best known two-player evaluation function is material advantage in chess.
In this family of chess functions each chessman is assigned a certain weight, say
one for pawns, three for knights and bishops, five for rooks, and nine for queens.
On any board, each player’s score is given by the weighted sum of his pieces.
The value of the board is the difference between black’s score and white’s score.

The justiﬁéation behind using this evaluator is that when combined with several

15

other chess features, material advantage should correspond to board strength
[Sha50]. This is, of course, rather imprecise; the closest thing to a precise task
that has ever been proposed for two-player evaluators is that the ideal function
should return a node’s complete minimax value, and an heuristic function should
estimate it. The difficulty with this definition is that there are no known general
procedures for estimating minimax values, judging heuristic quality, comparing
different functions, or learning static evaluators. Proponents of this proposal
have claimed that minimax values can be approximated by considering the ease
with which a game can be won [Sha50]. Exactly what this means, why it should
be so, and how it could be calculated, however, are questions that have never
been satisfactorily answered.

Without an adequate understanding of what an evaluator is attempting to
estimate, it is impossible to devise a general guideline for evaluator design. This,
in turn, points out another deficiency in the standard approach to two-player

~games: there is no known a priori method for determining function accuracy. In
a game whose leaf values are restricted to WIN and LOSS, an ideal evaluator
would return the appropriate value. Thus, the implicit task of such an evaluator
is classification, and a function’s strength should be directly proportional to
its ability to correctly identify internal WINs and LOSSes. The obvious way

to determine strength, then, is to divide the range of returned values into two

16

classes and calculate the percentage of nodes that were correctly identified. One
problem with this approach is that it completely ignores the issue of decision
quality, or the frequency with which the best move is made. Since the a priori
notion of evaluator strength is only useful if it can serve as a useful predictor
of the a posteriori notion of evaluator performance, the quality of a function’s
decisions is crucial to predicting its strength.

To see what can happen if decision quality is ignored, consider two evaluators
for the same game, A and B. Function A classifies 90% of all nodes correctly,
but most of the erroneous 10% are LOSSes which are given very high values (or
WINs given very low ones). Any time one of these LOSSes is available it will be
selected, despite the existence of many WINs which were correctly classified but 4
given lower values. Function B, on the other hand, only classifies 60% of the nodes
accurately, but most of its errors occur in fields of similar siblings. For example,
when given a choice of eight WINs and two LOSSes, B may correctly classify
- only the two LOSSes and four of the WINs; four WINs will appear as LOSSes,
but an optimal move will still be made. Thus, B’s errors rarely affect play, and
its decision quality is rather strong. If two such functions were pitted against
each other, B would probably win more games, thereby reversing the predictions

that were based on classification strength. This is illustrated in figure 2.

Although the above scenario appears somewhat contrived, it may actually

-

-

17

's estimates
's estimates

o

\'% w L w w w L w w w
.80 .08 .95 .70 01 95 27 .85 .81 02
.75 .40 .40 .75 .40 47 .25 .90 .80 45
A's clxoice B’s choice
Figure 2: This demonstrates the problem with using classification strength as an a

priori predictor of playing quality. There are ten available moves, eight wins and two

losses. If both evaluators assume that values above .5 are wins and those below .5 are

losses, function A classifies 90% correctly, and makes the wrong move. Function B, on

the other hand, only gets 60% of the nodes right, but makes an optimal move, anyway.

18

arise from a realistic set of circumstances quite similar to those that cause a well
known game-tree phenomenon. the horizon effect (the tendency to push foregone
conclusions beyond the search frontier) [Ber73]. Errors of the type made by
function A frequently arise from the evaluation of board positions that occur in
the middle of a combination of moves or a series of exchanges. These nodes are
not quiescent, and should not be evaluated statically. Evaluations thz;t are made
on non-quiescent nodes are highly unreliable because the static information is
likely to change radically as soon as the horizon is extended [Sha50)]. The classic
non-quiescent position, for example, appears halfway through a queen trade in
chess. Although the trade’s completion may lead directly to a LOSS, mid-trade
nodes tend to indicate very strong positions, in which a queen advantage suggest;
a WIN. As soon as play continues and the horizon is extended, however, the
trade’s completion will become evident, as will the error in static evaluation.
Unfortunately, non-quiescent nodes are not always easily recognizable, and are
thus frequently unavoidable. The problem of quiescence has been characterized
as a necessary outcome of the standard definition of the evaluator. Since the
evaluator is designed to estimate the value of a node as it relates to the goal,
there is no logical point for terminating search other than reaching a goal node
(leaf) [Bot84] [Ber73] [Ber79]. Thus, the search frontier must be set arbitrarily,

and anomalies of the horizon abound.

19

Of course, nobody ever said that evaluation functions had to be comparable
a prfori; a posteriori operational comparisons are also possible. Defining an
evaluator’s strength as proportional to the strength of its play allo‘;ys any two
heuristic functions to be compared via head-to-head competition. There are,
however, two major drawbacks to this approach. First, comparative studies fail to
provide an absolute measure of heuristic function quality, and second, evaluator
strength is not the sole determining factor of a program'’s decision quality and

performance level.

3.3 Control Strategies

The performance of a game program is dependent on several components of
its search system, including the static evaluator, backup algorithm, and search
depth. Decisions are based on the recommendations of a control strategy, which
specifies both how the static values assigned across the search frontier should
be combined, and which move should ultimately be made. Complete minimax,
for example, is the optimal control strategy on game-trees that can be searched
exhaustively. When complete minimax is inapplicable, however, an alternative
strategy is necessary. Unlike evaluation functions, which in the past have been
addressed in a strictly domain-specific manner, much of the work done on control

strategies has been domain-independent.

20

In his original analysis of chess programming, Shannon described two families
of coﬁtrol strategies, type-A and type-B. A type-A strategy behaves exactly as if
the tip nodes are leaves, and applies partial minimaz to the estimates calculated
by the static evaluator. This involves a full-width fixed-depth search (consid-
eration of all possibilities up to a set distance away from the root), and uses
heuristic in assigning the values to the tips. Because the values it minimaxes
are estimates, this technique does not always make the optimal move, and rthus
should be distinguished from complete minimax, which does. The assumption
underlying the use of partial minimax is that the estimates are accurate; the suc-
cess of the strategy depends on the validity of this assumption. This “face-value
principle” of perfect estimates is generally taken for granted, not because it is
believed to be true, but rather because no stronger assumptions are available
[Pea84]. Type-B strategies, which do not perform full-width searches, but rather
consider only reasonable moves, similarly rely on the face-value principle; in these
systems, not only are heuristic estimates assumed to be accurate as static values,
but guidelines of indeterminate value are accepted as valid criteria for deciding
which lines of play are reasonable, as well.

In 1975, Monroe Newborn wrote that “all the chess programs that have ever
been written and that are of any significance today are based on Shannon’s

ideas,” and “improvements in programs are due primarily to advances in com-

21

puter hardware, software, and programming efforts, rather than fundamental
break.throughs in how to program computers to play better” [New75]. For the
most part, this remains true in 1987. Nearly all control strategies contain an el-
ement of Shannon’s analysis; the major distinction between them is whether all
paths are searched to the same depth (type-A) or not (type-B), and if not, what
the criterion for expanding nodes is. There is, however, one highly significant
(now standard) technique that was developed after Shannon’s work, namely o-8
pruning. The basis of this algorithm lies in the observation that there is an eas-
ily recognizable class of moves that will obviously not be selected by minimax.
The exact origins of a-f are disputed, but the first paper to discuss it in de-
tail was probably [EH63]. The -8 algorithm (see figure 3) prunes by recording
boundaries within which the minimax value of a node may fall. The parameter
a represents a lower bound on the value that will be assigned to a maximizing
node, and 8 an upper bound on the value of a minimizing node. Descendants
whose minimax values must fall outside the range are pruned, and their subtrees
can be ignored.

The a-f algorithm always chooses the same move as a minimax search to
the same depth. Thus, when the tree is complete, the choice is optimal. In a
partial tree, however, it is the face-value principle that justifies pruning. Since

partial minimax implicitly assumes that the estimated tip values are accurate.

3%
(3%

they can be pruned as easily as exact values. The move made, then, although
unde£ no promise of optimality, is guaranteed to remain the same. To insure
that the minimax choice is not missed, a and 3 start at minus and plus infinity,
respectively, and are updated as the tree is traversed.

To date, the efficiency of pruning algorithms has been the most frequently
analyzed aspect of two player search systems. The sensitivity of a-3 to the order
in which nodes are examined was first pointed out in [SD69]. The algorithm’s
behavior under several different orders was analyzed in [FGG73] [KMT75], where
it was shown that in the average case, a-f cuts the effective branching factor
from b to approximately 534, and allows the search depth to be extended by
33%. The asymptotic optimality of -8 over the class of all game searching algo-
rithms, in terms of the average branching factor, was proved in [Pea82]. Parallel
implementations for even further speedup were surveyed in [MC82]. Two more
recent pruning techniques, SSS* [Sto79] and SCOUT [Pea80] have been shown to
be comparable to (and occasionally better than) a-3, [CM83] [RP83]. Although
SSS*, on the average, expands between one-third and one-half of the nodes that
a-f does, the speedup is not sufficient to offset the additional bookkeeping and
storage costs incurred. SCOUT, on the other hand, not only fails to offer much in
the way of a speedup over a-f, but is also less familiar and harder to implement.

For these reasons, neither SSS* nor SCOUT has ever been used in a successful

performance oriented game program!.

The primary importance of these pruning algorithms is that they increase the
efficiency of partial minimax, allow larger portions of the tree to be searched, and
as a result, make more accurate decisions. Although a-f-partial-minimax is far
and away the most popular control strategy, it is by no means the only one. I have
presented a survey of game-playing strategies in [Abr86a]. One common thread
running through all previously proposed search strategies is their (at least partial)
reliance on the face-value principle. Given this universal dependence on accurate
estimates, the importance of determining a precise, useful aim for the evaluator
should be obvious. Nevertheless, no such definition exists. The use of partial
minimax to back up estimated information, for example, has never been justified
analytically; it was originally used because it would be optimal if the information
were accurate, and retained solely on the strength of empirical evidence. In fact,
the few attempts at analytic justification that have been made have discovered
that for an infinite class of game-trees, partial minimax propagates errors, rather
than filtering them out [Nau83a] [Pea83] [Bea80]. According to these studies,
deeper searches should lead to poorer play, thereby contradicting the algorithm’s

observable performance.

! An iterative algorithm based on SSS* has recently been developed [BB86). This technique,
which involves trading off space for time, retains a good deal of SSS*’s speedup without exceeding
the available memory.

A
8
/ B
< -
g ! 1> 10!
L o
/\ c /\
-3 8 10

Figure 3: The a-f pruning algorithm is based on the observation that some nodes will
obviously not be selected by minimax. Once 2 node has been removed from consideration
due to the evaluation of one of its descendants, no further paths beneath it need be
evaluated. For this reason, no evaluations were made on the node containing a 7. To see
-8 in action, look at nodes A, B, and C. C is a leaf, statically evaluated at 10. This
means that B (a MAX node) must have a value no less than 10. Since A (a MIN node)
already has a child valued at 8, B will not be chosen, and its remaining child may be

pruned.

o
ot

This rift between predictions and observations calls the propriety of partial
minimax into question. One of the algorithm’s most obvious drawbacks is its
immediate adoption of the single best child of each parent. If that one crucial
estimate is wrong, the justification underlying the strategy’s use is unfounded. It
has been fairly well established that given the same search depth, strategies that
account for multiple children make stronger decisions than minimax. Studies
done on the M&N algorithm demonstrated that adding “some (experimentally
determined) function of the M maximum or N minimum values” to the minimax
value increases the accuracy of the decisions made [SD70]. This algorithm is not
widely used, however, because it allows many fewer a and 3 cutoffs than minimax.
The efficiency of a-ﬂ-partial-miﬁimax allows deeper searches than M&N, which
(apparently) more than compensates for the reduced accuracy. Nevertheless, it i;
possible that if the appropriate “experimental” addition could be determined an-
alytically, a stronger pruning companion might lead to deeper M&N searches and
even more accurate decisions. In addition, the discovery of minimaz pathology
[Nau83a] has led to the investigation of product propagation [Pea8l], a control
strategy that backs up the product of the values of a node’s children. Despite the
clearly inaccurate assumption of independence among sibling nodes required to
justify this type of strategy, some surprising experiments have been run in which

product propagation outplayed partial minimax [NPT83] [CN86] [CN87]. This

26

result alone should be enough to indicate that partial minimax is not always the
strongest possible strategy, and highlight the importance of understanding static

evaluation before devising backup strategies.

3.4 Summary

The study of game-tree search has been of continuous interest to artificial intel-
ligence researchers. Early work on type-A strategies led to the partial minimax
and a-B pruning algorithms for backing up node values, while quiescence analysis
and type-B strategies considered the horizon effect and the need for intelligently
set search frontiers. Despite the tremendous effort that has gone into under-
standing game-trees, the face-value assumption of accurate estimates has been
universally accepted without a thorough investigation of its implications. Ironi-
cally, it may well be that this very principle is the source of most open problems
in game-tree search; because of the ambiguity of static éva.luators, functions can’t
be compared, the justification of backup algorithms relies heavily on the accu-
racy of estimated tip values, and search frontiers fall prey to the horizon effect.
In addition, Newborn’s 1975 observation that all successful chess programs were
based on ideas developed in 1950 remains essentially true in 1987. This points out
the importanf:e of reassessing some of Shannon’s original assumptions; in 1950,

human labor was cheap, computation expensive, and probabilistic algorithms

o
-3

[Rab76] undefined. Nearly four decades of technological advances should make

new ‘mathematical models — which may address some of these long-standing

open problems — reasonable, and worthy of investigation.

28

Part II

The Model

4 Proposal: What is the Basic Model?

In a broad sense, the purpose of an evaluation function in a two-player domain
is to indicate whether a given node on the search frontier will result in a victory.
The standard assumption, forwarded by proponents of approximating minimax
values, has been that this corresponds to an estimate of the outcome that would
be arrived at by perfect play, even though it is universally acknowledged that
play will not, in fact, be perfect. The implicit justification of the perfect-play
assumption is that it is useful as a defense mechanism. After all, defense against
a perfect opponent should work against an imperfect one as well. N evertheless,
this approach has some significant drawbacks: it tends to make defense against
imperfect play considerably more difficult than necessary [Bra80], it assigns the
evaluator a task that does not allow efficient estimation, and it fails to recognize
the possibility of escaping from a forced LOSS position by later capitalizing
on an opponent’s error. This is not surprising. Perfection, as a deterministic

all-or-nothing goal, frequently depends on omniscience — the concept of near-

29

perfection is not well defined, and the performance of algorithms that require
complete information but are given only partial data is unpredictable. Thus,
alternatives to the perfect-play assumption should be considered.

At the opposite end of the spectrum from perfection stands randomness. The
interpretation of an evaluator based on the random-play assumption is straight-
forward. The value of a game is known only when play is over. ’i‘hus, only
leaves should have exact values; internal nodes can be characterized as proba-
bility distributions with values that will be instantiated by the leaf eventually
reached. Since the single most important parameter of any distribution is its
mean, the values associated with an internal node should be the expected value
of the leaves beneath it (if necessary, any set of non-numeric outcomes, such as
{WIN,LOSS,DRAW}, can easily be quantified). This is precisely the outcome
of the game under the random-play assumption, and gives rise to the ezpected-
outcome model.

Definition: Ezpected- Outcome Values

The expected-outcome value of a game-tree node, G, is given by a player's ex-
pected payoff over an infinite number of random completions of a game beginning
at G, or

k
EO(G)I Z Weafpleafa

leaf=1

where k is the number of leaves in the subtree, Vi, is a leaf’s value, and Pl is

30

the probability that it will be reached, given random play. It is important to note
that P,y is not necessarily equal to ;. The probability that a leaf will be reached
is one over the product of its ancestors’ branching factors; a node with no siblings
is twice as likely to be reached as a node with one sibling. For example, consider a
node N with two children, A and B, and three leaf grandchildren, one LOSS from
A and two WINs from B, as shown in figure 4. Although the probability that a
randomly selected leaf will be a WIN is two-thirds, the probability that random
play from N will end in a WIN is one-half, and thus N’s expected-outcome value is
one-half. Leaves are only equiprobable if all nodes of equal depth are constrained

to have identical branching factors.

While the assumption of random play may seem unrealistic, evaluation func-
tions in two-player games are normally applied only at the frontier of the search.
By definition, the frontier is the limit beyond which the program cannot gather
any further data about the game-tree, and in the absence of such information,
random play is the only practical assumption. While this approach stands in
stark contrast to the usual one, its utility to specific domains is primarily an
empirical question. Setting the issue of plausibility aside for a moment, the
expected-outcome model has a number of attractive features. First, it is pre-
cise. Second, it allows heuristic quality to be measured in terms of proximity

to this ideal; an estimated mean is a well-defined statistical quantity, whereas

31

N (D)
A (0) B (1)
L) W) W (1)!

Figure 4: A node’s expected-outcome value is defined as the expected payoff over an
infinite number of random games that begin from it. In this picture, the three leaves
are shown with their exact values of 0 for LOSS and 1 for WIN. Nodes A, B, and N
are then assigned their expected-outcome values: all completions from A pay 0, and all
completions from B pay 1. Since half of the games begun at N will pass through A and

half through B, N is valued at 1/2.

32

an approximate minimax value is not. (Note that this also provides a method
for comparing any two evaluators). Finally, and most significantly, it provides
a practical means of devising heuristic functions — expected values can be ap-
proximated by random sampling. Along with their many advantages, of course,
expected values (and other statistical parameters) do bear a serious onus: they
can be very misleading when population sizes are relatively small. Thus, care
must be taken not to rely too heavily on expected-outcome values in end-game
play. In the end-game, however, exhaustive searches are frequently possible and

special techniques are usually adopted anyway.

5 Support: Does the Model Work?

The expected-outcome model tends to elicit two immediate reactions, one pos-
itive, the other negative. The model has a very strong appeal because it is
elegant, crisply defined, easily estimable, and above all, domain independent —
its reliance on nothing more than a game’s rules and outcomes makes it equally
applicable to all two-player games. Its use of the random-play assumption, on
the other hand, is at least mildly distressing; in addition to appearing even less
accurate than the perfect-play assumption, it sacrifices the defensive edge gained
by assuming a perfect opponent. Substantial supporting evidence will be nec-

essary to dispel the apprehension caused by this approach. Like most heuristic

33

techniques, expected-outcome’s performance in a specific game can only be deter-
mined empirically. Due to its claim of domain-independence, however, analytic
support for the model should be derivable from generic game-trees.

There is a simple class of game-trees that has been analyzed fairly extensively,
those with uniform branching factors and depths, and leaf values restricted to
{WIN,LOSS}. It was on this class of trees that the minimax convergence [Pea80]
and last player [Nau82b| theorems were derived, and minimax pathology has been
studied in the context of one particular subclass [Nau82a] [Nau83b] [Nau83a]
[Pea83) [Pea84] [Abr86b]. In another subclass, to be described more fully in
section 5.1, ideal expected-outcome functions are provably (with probability ap-
proaching one) optimal. In addition, if the trees are a bit more complex, but
some fairly reasonable conditions are met, expected-outcome retains its optimal-
ity. Real games, of course, generate trees that are too irregular to be treated
analytically, and thus the utility of expected-outcome functions must be demon-
strated experimentally. Although it is clearly impossible to verify the full extent
of a model’s applicability on a game-by-game basis, testing it on a variety of
popular games should validate the claim that the utility of expected-outcome
functions is not restricted to a single domain. An effective investigation of the
expected-outcome model, then, must yield answers to four questions: When are

the decisions it recommends optimal? If non-optimal, does the decision qual-

34

ity remain high? If exact information is unavailable, can an estimated function
perform well? and Is it possible to implement the model efficiently? If all of
these questions can be answered in the affirmative, the expected-outcome model
will fulfill the purpose for which it was designed: a precise, useful, and domain-
independent model for two-player static evaluators.

Before proceeding with the investigation, it is interesting to note that most
previous research in computer game-playing has been characterized by a division
between analysis and empiricism; it has been fairly rare for a technique motivated
by the study of simple models to be immediately applied to real games. For the
most part, analyses have been performed on simplified models. Quantitative con-
clusions have depended on the models studied, and few qualitative leaps to “real”
games have been made. Actual programs, on the other hand, have implemented
many heuristics that have never been analyzed. Although the efficiency of a-g
and other backup algorithms has been studied [KM75] [RP83] [Pea84] [FGGT73)
[SD69], that of most forward pruning techniques used by type-B strategies has
not been, and discussions of heuristic accuracy are virtually nonexistent. The
different emphases of analysts and empiricists have effectively split the study of
game-trees between two fields, heuristic analysis and game programming. Since
expected-outcome can be discussed in both frameworks, it should be of interest

to programmers and analysts alike. The model’s simultaneous treatment by two

35

fields, however, may obscure the need for both the theorems of section 5.1 and the
experiments of section 5.2. These sections demonstrate the utility of parameter-
based evaluators (that is, functions that study the parameters of leaf-value dis-
tributions) in two different contexts: section 5.1 demonstrates that on a large
subclass of a well-established analytic model, conclusions based on the perfect-
play and random-play assumptions are identical. Thus, the expected-outcome
model should be of theoretical interest to heuristic analysts. Section 5.2, on
the other hand, culminates in the demonstration of a viable machine-generated
static evaluator, that requires a minimum of expert input. This indicates that
the model should be of interest to game programmers as well. In addition, by
allowing a qualitative leap to be made between theory and practice, the intro-
duction of “probabilistic game-trees” may suggest many areas in which further

feedback between them is possible.

5.1 Analytical Evidence

Historically, the study of computer game playing has been an empirical field.
Primarily due to the complexity of game-tree models, analyses have been few and
far between. Games like chess were chosen as abstractions of the real world that
were simple enough to allow computer simulation and experimentation. They

remained, however, way too complex to allow mathematical analysis. Thus, a

36

new model had to be defined which was an abstraction of the game-tree. This
section shows that on an infinite class of analyzable game-trees, the perfect-play
and random-play assumptions lead to identical moves: section 5.1.1 discusses
some of the properties of a popular analytic model called the (d, b, f)-tree, while
sections 5.2.2 and 5.2.3 show how these properties imply the equivalence of the

two assumptions.

5.1.1 An Analytic Game-Tree Model

The most frequently analyzed game-tree models to date have all been variations
of the (d,b,f)-tree [Pea80] [Pea84], which are game-trees with uniform leaf depth
d, uniform branching factor b, and leaf values assigned by a set of independent
identically distributed random variables drawn from a common distribution func-
tion (p.d.f.), f (with the corresponding cumulative distribution function, or c.d ..,
represented by F)).

Although (d, b, f)-trees do not correspond to the trees generated by chess or
other popular games, there is a class of games, called board splitting, that was
designed to fit perfectly into the (d,b, f) paradigm [Pea84]. In these games, a
square bd-by-b? board is covered with randomly distributed H’s and V’s, (where
the distribution of H’s and V’s is described by f). The first player splits the

board vertically into b sections, keeps one in play, and discards the rest. The

37
second player splits the remaining portion horizontally, doing the same. After d
rounds, only one square remains. If that square contains an H, the horizontal
splitter wins. Otherwise, the vertical splitter wins.

Many interesting results have been derived on (d, b, f)-trees and board split-
ting games, but of particular relevance to expected-outcome are the minimax
convergence [Pea80] and last player [Nau82b] theorems. According to these the-
orems, the minimax value of the root of a (d, b, f)-tree is essentially (with prob-
ability approaching one) determined as soon as the parameters of the tree are
set. In a tree with leaf values restricted to WIN and LOSS, for example, there is
a threshold value, denoted by =, such that if WIN leaves were generated with
probability greater than =, the tree’s minimax value is almost certain to be a
WIN. If WINs were generated with probability less than =, on the other hand,
the root value will be a LOSS. A general statement of the theorem is given below

without proof. For a proof, see [Pea80] [Nau82b] [Pea84].

Theorem 1: Minimaz Convergence [Pea84]

The root value of a (d, b, f)-tree with continuous terminal c.d.f. F' converges
(in probability), as d = oo to the (1 — &)-quantile of F', where & is the solution
in (0.0,1.0) toz®+z —1=0.

(Recall that the Q*’-quantile of a distribution is defined as the value y, s.t.

Pr[A leaf has a value < y] = Q and Pr[A leaf has a value > y] =1 - Q).

38

It is important to note that as stated, the minimax convergence theorem is
incomplete. To begin with, if leaf values are restricted to WIN (with probability
p) and LOSS (probability (1 — p)), the convergence is to 0 if & > p and 1 if
€& < p. This, of course, is nothing more than a special case of the general
theorem. In a binary distribution, the value at all quantiles (1 - Q) < pis 0, and
otherwise, it is 1. Of greater significance, however, is that according to the last
player theorem [Nau82b), these values are only correct if MAX has the last move
(uniform leaf depth guarantess that the last move will always belong to the same
player). When the “last player” is MIN, the minimaxed root values converge to
a different set of quantiles, specified by replacing &, with (1 — &). The complete
theorem, then, would have to specify four sets of equations to account for minor
discrepancies caused by restricting leaves to binary values vs. allowing them to
cover an arbitrary range, and by shifting the last move from MAX to MIN. If a

general threshold, =, is defined by

- _ { 1-¢& 1if MAX is the last player
=76 if MIN is the last player,

however, it is possible to speak in terms of values = that fall either above or
below the relevant Z,-quantile of the c.d.f.?

In a nutshell, what these theorems say is that the root value of a (d, b, f)-tree

SNote that this means that binary distributions converge to 1 if p > (1 — Z;) and to 0 if
p<(1-23).

39

is dependent only on the parameters of the tree, not the actual arrangement
of its. leaves. The tree’s depth is significant in two respects: it determines the
last player and the rate of convergence. The branching factor and last player
determine the quantile to which convergence will occur, and the leaf distribution
function provides the value at that quantile. This convergence of minimax values
is not terribly surprising. One of the general principles underlying the study of
statistics is that as population sizes tend to infinity, behavior patterns become
increasingly predictable. Minimax convergence simply states that game-trees

' or root values, approach a

are no exception; as they grow, their “personalities,’
predestined norm.

Consider, for example, the case of binary valued leaves®. If the distribution

of level-d nodes (leaves) is described by

_ { WIN(forM AX) with probability p
f= LOSS(forM AX) with probability 1 — p,

then the distribution of root minimax values can be defined as

f'a,(p)dé’c Pr[Root (level-0) is a WIN for MAX, given p and d).

When d is small, Fy(p) is S-shaped — the S’s left tail indicates values of p that

are certain losses, its right tail certain wins, and its central diagonal encompasses

6In cases where f takes on an arbitrary set of leaf values, everything can be defined analo-

gously: for all real leaf values r, F(z) &g f(t)dt, and

-o0
Fa(z) et Pr[A node d ply above leaves has a minimax value < z]. _
Clearly, this subsumes the binary case. To simplify the discussion, binomial distributions have
generally been considered. -

40
all values of p that may lead to either. As d — oo, however, Fy(p) approaches
a step function, and the range of p values that may lead to either wins or losses
shrinks to a point. In other words, if the value at the Z,-quantile of F is 1,
Fa(p) will converge to 1, if it is 0, convergence will be to 0. The only instance
in which the value of the root may be either 0 or 1, then, is when the value at
the appropriate quantile is in some neighborhood around =Z;. On an S-curve, this
may involve a significant portion of the curve. In a step function, however, the
“neighborhood” is a point, and unless p is set at ezactly that point, it will either
be above or below the relevant threshold. In practice, d does not have to be very
large for the step functions to appear, because the rate of convergence is super-
exponential in d [Pea84). Furthermoré, If d is not large enough for convergence
to occur, the tree is probably small enough to permit exhaustive search, and the
size of the leaf population is too small for statistical parameters to give useful
information to decision makers, anyway.

The convergence of minimax values poses an interesting problem for re-
searchers who wish to study issues related to dgcision quality on (d, b, f)-trees.
Since a tree’s value is strictly determined by its parameters for nearly all f, no
errors can be made by any evaluator; with probability approaching one as the
trees approach infinite depth, any two (d, b, f)-trees with identical b, d, and f will

either both be forced wins or both be forced losses, and thus in the limiting case,

41

even a random function will choose “optimally” among a set of (d, b, f)-trees
with identical parameters. In order to study issues related to decision quality
on (d,b, f)-trees, then, some mechanism for introducing the possibility of error
must be adopted. One solution, used in the study of minimax pathology, was
to define a class of “fair” board splitting games [Pea84] [Nau82a]. Since board
splitting games were designed as physical embodiments of (d, b, f)-trees [Pea84],
the outcome of a game is preordained as soon as the probability p of generat-
ing a V is set; after all, the first move amounts to choosing among a set of b
(d—1,b, f)-trees with identical parameters, or no choice at all. The game can be
made fair, however, if p = £. Ounly in this case will the game’s outcome remain
undetermined — either player may win with a non-zero probability [Nau82a].v
Although the class of fair board splitting games has served quite nicely as an
illustration of issues related to minimax pathology [Nau82a] [Nau83b] [Nau83a]
[Pea83] [Pea84] [Abr86b], it is not particularly useful in the context of expected-
outcome. At any point in a board splitting game, the potential moves are all
(d,b, f)-trees generated with identical d,b, and p. If the game is unfair, in the
limiting case any evaluator will play optimally. If the game is fair, however,
there will be some legitimate choices to be made between forced wins and forced
losses. In these cases, the performance of expected-outcome should be suspect

for two reasons. First, if the trees are even reasonably large, (say depth eight in

42
a binary tree, or 22 leaves), all of the expected-outcome values will fall in a very
small' range, and thus not offer much in the way of discriminating power. Second,
because the game was made fair, the moves were all drawn from the small group
of trees whose minimax values are not determined by their parameters. Prelim-
inary experiments run on binary trees indicate that in this particular case, not
only does expected-outcome fail to perform well, but as the trees grow, it perfor-
mance deteriorates. This is not completely unexpected — evaluation functions
that choose among game-trees based on their respective leaf-value distributions
can not discriminate effectively among trees designed with identical parameters
because the same value will be assigned to each option. As the trees grow, the
discriminating power of expected-outcome diminishes to the point where all de-
cisions are made by a (secondary) tie-breaking rule. This difficulty suggests that
fair board splitting games are not a useful vehicle for introducing the possibility
of error in the context of the decision quality of expected-outcome, and motivates

the need for a somewhat different approach.

5.1.2 Decisions Based on Leaf Distributions

The issue at hand, of course, is not the convergence of root values, but rather
the decision quality of expected-outcome evaluators. The relationship between

these issues, however, is rather straightforward: in (d, b, f)-trees, minimax values

43

are determined by the parameters used to design the trees and the observed
expected-outcome values indicate precisely what these parameters are. This
suggests investigating whether given the choice of b moves, m,, my,...my, rep-
resenting the roots of b (d, b, f)-trees with identical depths and branching factors
but different leaf distributions, expected-outcome will select the best move. The
resultant model for studying the decision quality of expected-outcome is a tree
constructed by generating b (d, b, f)-trees with identical b’s and d’s, but different
f’s, and linking them together to a single parent. The lone decison in such a tree
is which subtree should be chosen. Although this may seem like a trivial test, it
does have the desired effect of a (d, b, f)-tree model in which it is both possible to
distinguish among subt.ree parameters and make real choices. As a simple corol-
lary to the minimax convergence theorem, knowledge of the relevant parameters
will lead to perfect decisions. Since the significance of (d, b, f)-trees lies in the
implications that they have to real games, any techniques derived in the context
of simple, analytically tractable models should serve primarily as motivation for
studying their implementations in progressively more realistic domains to de-
termine how much of their power remains as the simplifications are dropped.
With this in mind, then, the correspondence between assuming randomness and
perfection on (d, b, f)-trees is enough to indicate that expected-outcome and re-

lated distribution-based functions are worth studying‘even in domains in which

44
convergence can not be expected to occur.

On (d, b, f)-trees, however, convergence does occur, and determining the de-
cision quality of expected-outcome is quite simple — it is optimal wherever root
values converge. The convergence theorems indicate that in the limiting case, a
tree’s minimax value is completely determined by the parameters tha.t went into
designing it, namely d,b, and f. Expected-outcome, as a statistical measure of
distribution means, is governed by the law of large numbers, which states that
as the size of a population grows, the observed mean approaches the distribu-
tion’s actual mean at a rate linear in the population size [Fel57]. In the case of
(d, b, f)-trees, this means that as the trees get deeper_, expected-outcome values
(observed means) become increasingly accurate measures of f’s theoretical mean.
Since the size of the leaf population is given by b4, the rate of increased accuracy
is exponential in d. Thus, as d — o0, knowledge of a move’s expected-outcome
value will be sufficient to determine its minimax value.

Proving the optimality of distribution-based-evaluators given converged root
values, then, simply involves combining the law of large numbers with minimax
convergence: as larger leaf populations are observed, the empirical estimations
of the distribution’s parameters approach their true values. Since the tree's
minimax value is strictly determined by the distribution used in its design, f,

the observations also become progressively more accurate predictors of the root

45

values. Thus, as the trees grow, knowledge of the outcome given random play
(assuming binary valued leaves) accurately predicts the outcome given perfect
play. With this information, not only can optimal moves always be made, but a
perfect correspondence between optimality given perfection and giveﬁ random-

ness becomes evident.

Binary Valued Leaves The utility of expected-outcome functions to (d,b, f)-
trees whose outcomes are limited to WIN and LOSS should be immediately
obvious. The probability that random play on a (d,b, f)-tree with binomially
distributed leaves will lead to a win is defined as the probability that a random
path from the root to the leaves will terminate at a WIN leaf. In a uniform
tree, this is exactly the probability that a randomly chosen leaf will be a WIN,
or p. Since the mean of a binomial distribution is given by the parameter p,
ideal expected-outcome functions calculate the de facto values of p for each of
the b moves, and select the best one. Without loss of generality, order the
moves such that p; > p, > -+ > Py, (where p; is the expected-outcome value
of move m;). If the players both based their decisions on expected-outcome
values, MAX would choose m; and MIN m,;. By the law of large numbers, as
the trees grow, the expected-outcome values p; will approach the corresponding
theoretical parameters, p;, that were used in generating the trees. In other words,

Vi limg_. p; = pi. Assuming that none of the p; are set in the transition region

46

(that is, all root values converge), then, there are only two possibilities (for MAX,

say):-

(a) If pp > (1 —), then limy_oo Fy(p1) = 1. This means that m, is a WIN,

and thus optimal for MAX.

(b) If ;y < (1 —Z4), then as d — oo, Fa(p1) = Fu(pz) = -+ = Fa(ps) = 0. Since

all of the moves are LOSSes, they are all equally “optimal”.

This leads to the following corollary to the convergence theorems:
Corollary 1: Optimality of Binary Ezpected-Outcome

Let my, m,, ..., mp be(d, b, f)-trees with identical branching factors and depths,
and binomially distributed leaf values with expected-outcome values of
D1 2 D2 2 -+ 2 Dy, respectively, where all roots converge. Then,

limy_.o (Pr[m, is optimal for MAX] = Pr[m, is optimal for MIN]) = 1.

Arbitrary Leaf Values One of the benefits of performing analyses on trees
with leaf values restricted to WIN and LOSS is that given a move’s true value,
it is fairly simple to determine whether or not it is optimal. Under any set of
circumstances a move whose value is WIN is optimal, and, unless there are no
WINSs available, one labelled LOSS is not. When leaves are allowed to take on an
arbitrary set of values, however, any value may be optimal at any time. Thus,

even knowledge of a move'’s true minimax value is insufficient to determine its

47
optimality; the values of all of its siblings must be known as well. An ideal min-
imax evaluator, then, would rank the moves according to their minimax values,
My, My, ..., My, and (correctly) recommend My to MAX and M, to MIN. How
closely does the ideal expected-outcome ranking of observed distribution meauns,
f1, ft2, -, fib, correspond to the optimal one? For the moment, consider one of
expected-outcome’s relatives, @-outcome. Both functions belong to a family of
evaluators that assigns each node a value corresponding to some statistical pa-
rameter of its leaf distribution. In the case of expected-outcome, the parameter
is p, with Q-outcome it’s the Q**-quantile’. Thus, Q-outcome ranks the moves
d1, G2, ---, b, 10 order of their @-quantiles, and recommends m, to MAX and m,
to MIN. Once again, Vilimgy_.. §; = ¢;- The same argument that was used to
demonstrate the optimality of binary expected-outcome may be used to validate
Q-outcome, where Q = Z,.

For any real value z, there are three significant ranges in which F(z) can fall:

(a) If F(z) = Z,, then by definition, z lies on the Z,-quantile of F'. Call this

point z*. Note that z} is the value assigned to ¢; by Zp-outcome.

(b) If F(z) > Zp, limg—ooFa(z) = 0. Any = > z*, then, is essentially guaran-

teed to exceed the root value.

"The mean, u, does not necessarily correspond to any particular quantile. One notable ex-
ception, to be considered in section 5.1.3, is the family of normal curves, in which the mean is
the median. thereby equating expected-outcome and .5-outcome.

43

(c) If F(z) < Z,, then limy_.o Fa(z) = 1. In other words, any z that falls on
a quantile smaller than =, is almost certain to be less than or equal to the
root value. Thus, any =z < z" gives a lower bound on the root value, and

the closer z is to z*, the tighter the bound.

This leads to a second simple convergence corollary:
Corollary 2: Optimality of Q-Outcome
Let m;, m,, ..., mp be(d, b, f)-trees with identical branching factors and depths,
and leaf distributions specified by p.d.f’s fi(z), fo(z),- - -, fo(z), respectively.
Order the moves by (observed) =,-outcome. Then

limg_.co (Pr[m, is optimal for MAX] = Pr[m, is optimal for MIN]) = 1.

5.1.3 Non-uniform Game-tree Models

The optimality of leaf-distribution-based evaluators suggest simple, optimal strate-
gies for all games played on (d, b, f)-trees: if f describes a binary random variable,
choose the first move for which p > (1—Z,;). Otherwise, rank the moves according
to =-outcome and select the best one. Unfortunately, (d, b, f)-trees are highly
unrealistic models, and almost never correspond to real world (or even real game)
situations. Several complications arise when the models being studied move from
the simple to the complex. First, exact statistical parameters are as difficult to

calculate as complete minimax values. Their advantage lies in being easier to

49

estimate, and with estimation comes error. In the binary case, these errors mean
that .a node’s likelihood of being classified correctly is directly proportional to
its distance from the threshold; although two moves with theoretical parameters
of p; and py, p1 > p; > (1 — Z;) may be equally good options, if the values are
estimates, p is less likely to be classified correctly than p, and is thus a weaker
move. This justifies expending the effort necessary to evaluate all nodes, rather
than just selecting the first one that looks good.

A second, and more significant, difficulty introduced by complex models arises
from the absence of uniform branching factors and depths. The uniformity of 5
is a necessary factor in the definition of =;, and even if b is constant, an unknown
depth and unidentified last player make it impossible to know whether nodes
should be ranked according to (1 — &;)-outcome or £-outcome. Without this
information, there is no way for a player using a Q-outcome function to know
which quantile of the leaf-distribution to study. These difficulties strongly imply
that the optimal (d, b, f)-tree strategies are not widely applicable. Therefore,
some modifications must be made to insure that play will be at least reasonable.
Perhaps the most obvious idea is to set Q = .5; the median is equidistant from the
two candidate quantiles, and likely to give useful, albeit nonoptimal information,
regardless of the value of =;. The use of the median to evaluate nodes, in turn,

suggests considering other central tendencies of leaf distributions, in particular,

50

their means. Unlike medians, means are not restricted to actual leaf values, and
thus ﬁave significantly greater discriminating power. This strength is particularly
important when the number of possible leaf values is small.

This defense of expected-outcome on (d, b, f)-trees with non-binary leaf val-
ues is rather weak. It is possible, however, to show that under a fairly realistic set
of circumstances, the ordering imposed on a set of moves by expected-outcome
is identical to that imposed by Z,-outcome. Consider the case of two normally
distributed random variables, X; and X, that correspond to leaf-value distribu-
tions for two moves in a game-tree, m; and m,, with expected-outcome values
defined by fi; > fig, respectively. In order to discuss the relationship between
the evaluators, it is important to recall that quantiles are defined in terms of
area under a distribution curve. On normal curves, there is a measure related to
the c.d.f. known as the z-score. Given an area under a normal curve, a quantile
function returns the x-intercept of the area’s upper bound. The z-score returns
the same value, but in units of standard deviations from the mean. Thus, if a
point z > y is described by both quantile @ and z-score z, then F(z) = p + 20,
and the area under the curve from —oo to (i + z0) is Q.

The general formula for calculating the z-score of a point z on a normal curve

with mean g and standard deviation o is:

(-'v—u)-

Z(z) =

The function Z(z) is uniquely invertible; for any z-score, the value of
z=2"Y)=zo+pu

can be calculated. A quantile-based evaluation function inputs its relevant pa-
rameter zq into the two Z~! functions, (one for each distribution being consid-
ered), receives as output the values z; = Z['(2q) and z, = Z;'(2q), and chooses

the best move.

Lemma 1:
If two evaluators, Q,-outcome and Q.-outcome, recommend different moves,
then there is some z-score y, zg, < y < zg,, for which the two leaf distributions

share a common z-intercept.

Proof:

If a function inputting zg, selects m;, then the value at the Q;-quantile of
the m; curve exceeds the the one at Q,-quantile of the m, curve, or
Z7Y(2q.) > Z7'(2q.)- If, at the same time, an evaluator relying on zq, opts for
mz.) then Z7'(2q.) > Z1(2q.)-

By a trivial corollary of the intermediate value theorem, Z7! and Z;' must

cross at some point y, z9, < y < 2q.. Thus, Z7*(y) = Z;7'(y), and the two

c.d.f.’s share a common z-intercept. O

By the definition of Z7!. this means that yo; + p, = yo2 + p2. Solving for y

yields

U2
02—0'1.

y
Since y is the point at which the Z functions cross, any two evaluators that
consider z-scores on the same side of y will reach the same conclusion; any two
that examine opposites sides of y will disagree. This immediately confirms the
intuition that to be problematic, the distribution with the smaller mean must
also have a larger variance, because y > 0 immediately implies o7 > 0y. It also
leads to the following theorem:
Theorem 2: Limited Optimality of Normal Ezpected- Outcome

Let M;, M,,...,M;, be an optimal ordering of (d,b, f)-trees with identical
branching factors and depths, and normal leaf distributions specified by means
L1, tay -+, s, and standard deviations oy, 0, -+, 03, respectively.

VM, M;: (i <j)= (ui — ;) > 25,(0j — i), then

limy_. Pr{expected-outcome will make optimal moves] = 1.
Proof:

Any two evaluators, such as expected-outcome and Zp-outcome, will agree
over a set of moves if and only if they agree on a choice between any two elements
of the set. Lemma 1 reduces the problem to determining how often expected-

outcome and =j-outcome will fall on different sides of y. The equivalence of the

median and mean on normal curves casts expected-outcome as a quantile-based

53

function for which zg = 0. Disagreement between the evaluators will occur if and
only if 0 < y < 2z. Since y = (yy — p2)/(o, — 03), which by assumption is greater
than zz,, expected-outcome and zz,-outcome will agree on a choice between any
two moves. According to corollary 2, Z;-outcome makes optimal moves in the

case described, and thus expected-outcome will, as well. O

In general, agreement between any two evaluators can be promoted by as-
suming that (o2 — 01) < 2z(p1 — p2). According to [Nau82b), limy_..& = 0. For
example, £ = .382, while €50 = .056. Z-scores grow slowly, however, so that in a
tree with a branching factor of 2, (.618)-outcome sets z= = 0.3, and with b = 50,
(.944)-outcome sets zz ~ 1.6. Since z-scores greater than three never occur, if
(u1—p2) > 3(o2—01), ideal expected-outcome will always make the same move as
ideal =y-outcome, for any b. Disagreement between the evaluators, then, implies
one of two occurrences: either there is a very large discrepancy in variances, or
a very small difference in means. At least in the latter case, Even an incorrect
decision on the part of expected-outcome will probably not be catastrophic.

The remaining question, then, is will the leaf distributions beneath sibling
nodes in a game-tree have similar variances? If the leaf values are generated
randomly using different distribution functions, there is no reason to assume
that they should. In a real game, however, trees are built and leaf values as-

signed according to the rules of the game. It has been fairly well established

54

that sibling nodes in real game-trees have tightly correlated values, primarily
because the static information they contain differs by at most one application
of the game’s rules (i.e., one move) [Nau83b]. Since the subtrees beneath them
are generated by a consistent rule set, the distributions will probably be quite
similar. Differences among their means, then, are much more likely to occur
than differences among their variances, and thus the assumptions necessary to
vindicate expected-outcome users are reasonable.

The justification behind using expected-outcome to rank moves in games with
arbitrary leaf values, then, is a combination of three factors. First, it is impossi-
ble to calculate the value of Q that would guarantee optimal ordering. Second,
distribution means contain more inforrﬁation than any other single statistical
parameter. Third, and most significantly, under a rather reasonable set of as-
sumptions, namely normally distributed leaf values with larger differences among
sibling means than variances, the ordering imposed by expected-outcome will be
correct. Thus, the use of expected-outcome functions even in game-trees with
arbitrary distributions of leaf values remains theoretically sound.

The support offered by (d, b, f)-trees to expected-outcome, then, can be summed
up as follows: In these games, minimax values are (with high probability) deter-
mined by a set of theoretical parameters. Expected-outcome functions observe

the actual occurence of these parameters, and indicate their true theoretical

55
values. As the trees grow, both relationships become increasingly strong, and
expected-outcome functions become powerful indicators of the moves that would
be made by a minimax oracle. Although the proofs all depend on simplifica-

tions of the model, the qualitative implications of this result suggest studying

expected-outcome in a series of progressively more realistic domains.

5.2 Empirical Evidence

Real games introduce an even further complication: the entire discussion so far
has been predicated on the assumption that all available subtrees have iden-
tical structures. Although it is not unreasonable to assume that siblings will
frequently be structured similarly, they will rarely, if ever, be identical. '.fhis
realism may shatter any remaining claims regarding the optimality of expected-
outcome functions. Unlike most previous work done on (d, b, f)-trees, however,
the expected-outcome model does have qualitative implications that should be
directly applicable to real games. In general, heuristics are used in domains in
which optimal solutions are either unnecessary or not effectively computable.
Instead, satisfactory solutions are sought. Without making any pretense of opti-
mality, then, expected-outcome functions can be applied to real games to deter-
mine their merit.

Since the ultimate criterion by which an evaluator is judged is its performance

56

in actual competition, three sets of experiments were run to verify both the ratio-
nality of the random-play assumption and the strength of the expected-outcome
model in real-game settings. The first set generated some small complete game-
trees, calculated the exact numbers of WINs, LOSSes, and DRAWs beneath every
position, and compared the completely informed expected-outcome function with
a well-known game-specific evaluator. In this context, expected-outcome’s deci-
sion quality was superior to that of the more standard functions. While these
results are encouraging, they are limited to games that are small enough to be
searched exhaustively. In the second set of experiments, a regulation-sized game
was used to test the accuracy of estimated expected-outcome functions by basing
its decisions on the average value of randomly sampled paths. A player relying
on this sampler was pitted directly (no lookahead) against a standard evaluator,
with the result that expected-outcome significantly outplayed its opponent. Un-
fortunately, the cost of random sampling is prohibitive. Thus, the objective of
the final set of experiments was to produce an efficient estimator. By perform-
ing a regression analysis on the sampler’s estimated expected-outcome values,
a learning preprocessor was able to automatically generate the coefficients in
polynomial scoring functions. Once again, the results were positive: a player
using the learned coefficients played as well as one using coefficients that had

been designed by an exf)ert, even though the learning procedure had no infor-

|

<t

mation about the game other than its rules, leaf values, and an easily observable
set of game features. Taken as a whole, this series of experiments offers strong
empirical support for the expected-outcome model.

Before proceeding with the details of these experiments, it is important to
point out that because the theoretical development of the model occurred concur-
rently with the empirical testing, several marginally different implementations of
expected-outcome were studied. One particular deviation from the final model
that warrants mention is the assignment of values to DRAWSs in the random
sampling (section 5.2.2) and Othello learning (section 5.2.3) experiments. These
tests were run under the assumption that DRAWSs can be ignored completely
(i.e., they were not counted as leaves). Although this treatment of DRAWs may
be justifiable on rational grounds, (no one plays to draw while they can still
win, and thus, at least during the mid-game, DRAWSs have minimal impact on
decisions), it is not consistent with the final definition of expected-outcome, and
should be avoided in the future. Fortunately, the experiments ignoring DRAWs
all involved Othello trees, in which the miniscule percentage (less than .5%) of
DRAW leaves effectively avoids the issue of proper quantification. Tests run on
chess trees, in which between one-third and one-half of the leaves were DRAWs,
showed that conclusions reached under the two formulations were essentially

equivalent; DRAWs had a very marginal impact on the learned coefficients, and

would thus only infrequently affect the decisions made.

5.2.1 Decision Quality

The first step in investigating a model’s propriety is determining its decision
quality, or the frequency with which it recommends correct moves. In the case of
expected-outcome, this is tantamount to inquiring how often the move with the
largest (or smallest, as appropriate) weighted average of WIN leaves beneath it is,
in fact, optimal. Since optimal moves are defined by complete minimax searches,
their calculation is contingent upon knowledge of the entire subtree beneath
them. Thus, for this first set of experiments, only fairly small games could be
studied. Moreover, in order to compare the decision quaiity of expected-outcome
with that of a more standard function, popular games with small variants were
needed. Tic-tac-toe and Othello were chosen. Tic-tac-toe (naughts-and-crosses
in the UK) is a game that should be familiar to everyone; Othello, although
of growing popularity, may not be. The standard game is played on an 8-by-8
board. The playing pieces are discs which are white on one side and black on
the other. Each player, in turn, fills a legal vacant square with a disc showing
his own color. Whenever the newly placed disc completes a sandwich consisting
of an unbroken straight line of hostile discs between two friendly ones, the entire

opposing line is captured and flipped to the color of the current mover. A move

59
is legal if and only if at least one disc is captured. When neither player can
move, the one with the most discs is declared the winner. (For a more detailed
description, see [Fre80] [Mag79] [Ros82)).

These games contributed four small variants for study, although vonly two
of them, 3-by-3 tic-tac-toe and 4-by-4 Othello, actually have game-trees that
are small enough to generate entirely. The other two, 4-by-4 tic-tac-toe and 6-
by-6 Othello, were chosen because they are small enough for large portions of
their trees to be examined, yet large enough to offer more interesting testbeds
than their smaller cousins. For each of these medium-sized games, ten initial
configurations were generated by making a set number of random moves, twenty
for 6-by-6 Othello and seven for 4;by-4 tic-tac-toe. The entire trees beneath
these setups — involving the last nine moves in tic-tac-toe and the last twelve in
Othello — were examined.

For each game studied, every node in the tree (beneath the initial configu-
ration) was considered by four functions: complete minimax, expected-outcome,
a previously studied standard, and worst-possible-choice. The decisions recom-
mended by these evaluators were compared with the optimal move, or the move
recommended by minimax, and a record was kept of their performance. Minimax,
by definition, never made an error, and worst-possible-choice served as a record

of all errors possible. Unlike complete minimax, expected-outcome did not use a

60

backup algorithm to combine leaf values; its decisions were based strictly on eval-
uations of a pode’s immediate descendants. Finally, the standard evaluators were
taken from published literature (see the appendix for a detailed description) and
calculated using only static information: the open-lines-advantage for tic-tac-toe
described in [Nil80], and an Othello weighted-squares function based on the one
in [Mag79). The number of errors made by each function is shown in table 1,
as is the number of decision nodes in each tree. Since most evaluators recognize
leaves as a special case, decisions made in the presence of leaves is not indicative
of a function’s true quality. Thus, only nodes whose best successor (as selected
by minimax) were not leaves, were considered decision nodes. Figures 5 and 6
graph the relative percentage of possible errors made by each of the imperfect

functions (i.e., expected-outcome, open-lines-advantage, weighted-squares).

A quick glance at the results reveals several interesting points, perhaps the
most significant of which is the evaluators’ relative error-frequency — in tic-
tac-toe, expected-outcome made roughly one-sixth as many errors as open-lines-
advantage, and in Othello about one-third as many as weighted-squares. Al-
though the relative number of incorrect decisions in a search space is a fair basis
for comparing two evaluators, the absolute accuracy of the functions depends
on the percentage of possible errors that they make. In all instances tested,

expected-outcome made only a small percentage of the errors possible. In terms

61

L Decision Quality |
Game Decisions Errors
Standard E-O | Possible
3x3 Tic-tac-toe 69945 4384 676 35839
4x4 Tic-tac-toe 201179 1924 368 52492
188316 2138 328 63983
135123 2510 414 28204
130929 2427 394 40942
125303 1672 994 40219
124439 3214 1188 38735
108301 4115 382 35539
85887 1613 224 30479
72227 2619 328 23336
56395 2118 334 24627
4x4 Othello 69308 3396 1632 6632

6x6 Othello 1151130 46221) 19513 | 106136
1119937 11945 | 3528 29257
856265 59076 | 14982 [114240
840106 66310 | 20837 | 150864
334440 38052 | 14053 84448
826710 83046 | 22676 | 173716
458663 26000 | 10319 59547
377671 14712 | 5074 35221
210004 11104 { 5393 24117
196446 11551 | 3768 22428

Table 1: This table contains the output of the decision quality experiments. The deci-
sions column records the number of nodes whose best successor, as selected by minimax,
was not a leaf. The number of possible errors was determined by a function that always
selected the successor with the worst minimax value; if it did not err, no error was pos-
sible. For the other two evaluators, a move was considered an error if its minimax value

was non-optimal.

151
144
131
124 .
114

3>

.09 4 * .
.08
074
.06 - *
05
041
034 f
0244
014

— =t —+
B T+
-t -+

9 10

Figure 5: The percentage of possible errors made by open-lines-advantage (*) and
expected-outcome (1) on eleven tic-tac-toe trees. Entry 0, (% and t, respectively), corre-
sponds to the 3-by-3 tree. The other ten entries are complete subtrees beneath randomly
generated 4-by-4 tic-tac-toe positions with seven markers already on the board. Approx-

imate average accuracy: open-lines-advantage 92.3%, expected-outcome 98.6%.

o

o tio N

o

63

1% . . *) \ . .) . *
1t
- f
11 tt ot by by f

i] 1 |]]

| | | | I | | | | T
0 1 2 3 4 5 6 7 8 9 10

Figure 6: The percentage of possible errors made by weighted-squares (*) and expected-
outcome () on eleven Othello trees. Entry 0, (* and {, respectively), corresponds to the
4-by-4 tree. The other ten entries are complete subtrees beneath randomly generated 6-
by-6 Othello positions with twenty-four discs already on the board. Approximate average

accuracy: weighted-squares 58.2%, expected-outcome 83.4%.

64

of the standard evaluators, the results are consistent with observed performance.
The 6pen-lines-advantage function for tic-tac-toe is known to be fairly strong
[Nil80]. When implemented with sufficient lookahead, it can both force a draw
and take advantage of its opponent’s errors. (A simple set of tests showed that
in the 3-by-3 case, a one-ply lookahead is generally sufficient). Weighted-squares,
with a mean accuracy of roughly 58% on trees with an average branching fac-
tor around seven is reasonable, but not overwhelmingly effective, as an Othello
evaluator. This is not surprising. A thorough analysis of the game showed that
weighted-squares strategies were overly simplistic, unable to account for issues
like mobility and stability, and not sensitive to the differences between open-
ing, mid-game, and end-game strategies. An evaluator that took these items
into consideration formed the basis of IAGO [Ros82], a world-championship level
program®. Since expected-outcome consistently outperformed both of its expert-
designed competitors, it is possible to conclude that, at the very least, expected-
outcome evaluators are strong in tic-tac-toe and reasonable in Othello.

In addition to performing well, the expected-outcome model offers a means of

8JAGO is more than just a sophisticated static evaluation function. Among other things, it
considers phase-of-game, completely solves end-game positions, and uses a precomputed table
to determine a configuration’s “edge-stability”. This is the most significant component of its
evaluator, and the algorithm used to derive the table relies on a weighted-squares formulation.
Because of its complexity and extensive use of table look-up, I did not feel that IAGO was a
particularly appropriate challenger for the early testing stages of a new model. The purpose of
these experiments was simply to test the decision quality of a new model of evaluation functions:
any expert-designed function, such as weighted-squares, should provide a useful comparison.

65

quantifying some long-standing observations that have generally been discussed
qualitatively. For example, the decision quality of all tested functions deteri-
orated greatly as the tree was descended. Most previously studied evaluators
have claimed not to be tailored to end-game play, without really explaining why.
In the case of expected-outcome, the reason is clear: statistical parameters like
distribution means are only useful for large populations. Since end-game nodes
have relatively few descendants, the utility of expected-outcome to the end-game
should be suspect. The basic point made by these experiments, however, is that
in all cases tested, expected-outcome not only made fewer errors than the stan-
dard functions, but chose the optimal move with relatively high frequency. This
’indicates that guiding play in the direction of maximum win percentage consti-
tutes a reasonable heuristic. Thus, the expected-outcome model has passed its

first test: exact values generally lead to good moves.

5.2.2 Random Sampling Strategies

According to the the decision quality results, if complete information is available,
moving in the direction of maximum win percentage is frequently beneficial. Of
course, these are precisely the cases in which optimal moves are always com-
putable. Since probabilistic (and for that matter, heuristic) models are only

interesting when knowledge is incomplete, some method of estimating expected-

66

outcome values based on partial information is necessary. The obvious technique
is random sampling. Expected-outcome values, by their very definition, rep-
resent the means of leaf-value distributions. In the second set of experiments,
a sampler-based estimate of expected-outcome was pitted against a weighted-
squares function in several matches of (8-by-8) Othello. Although Othello, like
most parlor games, actually ends in one of {WIN,LOSS,DRAW}, ratings in tour-
nament play are adjusted based on the final victory margin. For the momént,
only the friendly interpretation of the game will be considered. Victory margin
statistics are useful for comparing player strength, and will be used in section
5.2.3 to learn evaluation functioqs. For the remainder of this section, however, an
Othello game will be considered either won, lost, or tied. These experiments, like
those which investigated decision quality, were designed as pure tests of evaluator
strength — neither player used any lookahead. The aim of these tests, then, was
to show that sampler-based functions can compete favorably with those designed
by experts, at least in terms of playing strength. As far as efficiency goes, they
are not comparable. The sampler consistently required orders of magnitude more
time than the static player. Efficiency, however, will be considered later. The
purpose of these matches was simply to investigate the competitive abilities of

estimated expected-outcome.

68

matches of regulation-size (8-by-8) Othello. To show the relationship between
estimation quality and performance level, several different samplers were tested.
Those that were able to derive estimates fairly quickly were soundly trounced by
weighted-squares. The performance of two time consuming samplers, however,
helps stress both the potential value of expected-outcome and the po.tential in-
efficiency of random sampling. The first, and weaker of the two, set ¢ = .05,
N = 8, and stopped checking for convergence if none had been found by the
time 256 samples were taken. For the most part, this sampler needed between
one and ten minutes per move, as opposed to a maximum of two seconds for
weighted-squares. Their accuracy, however, was nearly identical. Four 100-game
matches were played, and in each, the competition was about even; in no case
did either evaluator win enough games to make a viable claim of superiority.
From the sampler’s viewpoint, the win-loss-draw scores of the four matches were
46-48-6, 41-53-6, 48-49-3, and 54-41-5, for a total score of 189-191-20. The sec-
ond sampler made several further sacrifices of efficiency for accuracy to ensure
improved performance. In this implementation, N was set to 16, a maximum
of 1024 samples were taken, and progressively smaller discrepancies (€) were al-

1

lowed between successive ji;'s!'. The resulting program ran roughly one-tenth

1For each sample size between 16 and 1024, the number of expected wins out of 1024 games was
predicted. If two consecutive estimates were within the given range of tolerable error. convergence
was assumed. Between 16 and 32 samples, the tolerable error was 0. For 32 and 64 it was 186,
for 64 and 128, 24, for 128 and 256, 20, for 256 and 512, 18, and for 512 and 1024, 9.

69

as fast as the first one, but with much greater success. In a 50-game match, this
sampler defeated its weighted-squares opponent 48-2, a victory so overwhelming
that its superiority should be evident.

Veteran Othello players may feel that the number of victories alone is insuf-
ficient to accurately gauge the relative strength of two players. Perhaps of even
greater significance is the margin of victory — the single most important feature
in determining a player’s USOA (United States Othello Association) rating'?.
Over the first 400 games, weighted-squares outscored the weaker sampler 13,295
to 11,748, for an overall advantage of 1547 discs. As expected, it did not fare
as well against stronger opposition; its 50 game total of 894 discs was 1,079 shy
of the 1,973 racked up by the stronger sampler. To effectively study the victory
margins, a random variable that represents the disc differential,

D = (weighted-squares’ score) — (sampler’s score),
must be defined. Assuming that D is distributed approximately normally, stan-
dard tests regarding the means of normal distributions can be used to answer
some questions about the functions’ relative strengths. First, using the disc-
differential criterion, does the weaker sampler still appear equivalent to weighted-

squares? In other words, given that D’s mean and standard deviation for the

2During tournament play, ratings are adjusted to reflect the projected margin of victory in a
game between two rated players. Although it is not the only factor considered when determining
a player’s rating, disc differential is a highly significant one. As a general rule, every ten rating
points separating two players adds a disc to the anticipated margin of victory. The interval
between player classes is about 200 points, for a projected differential of 20 discs {Ric81].

400-game match were experimentally estimated at jip = 3.87 and dp = 14.69,
respectively, what is the probability that the true value pp = 0? The two-tailed
hypothesis testing procedure indicates that this probability is smaller than .005
— it is fairly safe to say that the first sampler is not quite as good as weighted-
squares. The test also indicates, however, that with probability .95, the actual
difference between them is up € [2.80,4.94]. Given the USOA rating system,
a projected victory margin of 2 to 5 discs is not particularly significant. Thus,
it is clear that although the functions are not identical, their caliber of play is
essentially equivalent. Second, what does the rating system have to say about
the stronger sampler? For its 50 game match, the experimental estimates were
fgp = —21.58 and -5"1) = 11.21 (negative means favor the sampler). The possi-
bility of function equivalence is not even worth considering; the 95% confidence
interval for pp is [—24.97,—18.19), rating the second sampler about a full class
better than weighted-squares!3.

These studies show that efficiency considerations aside, sampler-based func-
tions can compete within the realm of expert-designed evaluators. It is impor-

tant, however, to keep the results in their proper perspective. Asa demonstration

of the world’s best Othello evaluator, they are woefully inadequate — the absence

13The correspondence between player strength and disc-differential suggests designing samplers
that estimate expected-disc-differential-outcome. Since this idea was developed long after the
initial sampling experiments were run, I felt that its implementation was not crucial. In the next
section, however, an Othello function learned to approximate expected-disc-differential-outcome
is shown to be superior to two that were learned to estimate expected-outcome.

71

of lookahead makes the games unrealistic, the difference in computation times
skews the results, and the competition is not as strong as it could be. Their sole
purpose was to establish estimated expected-outcome as a function that can play
at least on par with those designed by experts, and the data clearly substantiates
the claim. Expected-outcome functions, then, do appear to make useful decisions
in interesting settings. Given no expert information, the ability to evaluate only
leaves, and a good deal of computation time, they were able to play better than
a competent (albeit non-masterful) function that had been hand-crafted by an
expert. Thus, the second challenge has been met: in the absence of perfect

information, an expected-outcome estimator made reasonably good decisions.

5.2.3 Learning Expected-Outcome Functions

Although the results of the random sampling experiments are strongly positive
as far as they go, they do leave a good deal to be desired. As things stand, the
estimation of expected-outcome values gives evaluation functions a clear sense
of purpose. It does not, however, provide function designers with any useful
tips. In fact, the clearly unacceptable time discrepancy between the samplers
and their static opponent points out the difficulty of sampling in competition-
oriented settings. This situation may satisfy theoreticians, who are primarily

interested in understanding models, but it is anathema to programmers, who

~1
N

would like to use said models to design stronger programs. Thus, efficiency
considerations must now be addressed.

Like most products, evaluation functions incur costs in two phases of their
development, design and implementation. The inefficiency of sampler-based func-
tions is accrued during implementation; their design is simple and cheap, because
an effective sampler need only understand the game’s rules and be able to identify
leaves as WINs, LOSSes, or DRAWSs. Static evaluators, on the other hand, rely
on detailed game-specific analyses, frequently at the cost of many man-years of
work. To help reduce these design costs, a variety of automatic tools that improve
static evaluators have been developed, the simplest of which attempt to deter-
mine the relative significance of several given game features. Techniques of this
sort are called parameter learning {Sam63] [Sam67] [Gri74] [CK86], and should
be applicable to learning the relationship between game features and expected-
outcome values. The use of parameter learning introduces two deviations from
the ideal expected-outcome function. The first, reliance on an estimated esti-
mate is easily justified by efficiency considerations and empirical evidence. The
second, and perhaps more problematic, involves the use of expert-selected do-
main features in what claims to be a domain-independent model. It is important
to point out, however, that the experiments described in this section are sig-

nificant primarily from an implementation point of view. A model’s theoretical

73

accuracy is not effected by the (in)efficiency of its implementations. Although
the model itself remains domain-independent, then, expertise helps increase its
efficiency to the point where it may be used to make real-time decisions. Thus,
even though reliance on predetermined game features limits a function’s confor-
mity to the domain-independent ideal, scoring polynomials are the backbone of
most competitive game programs, and if done properly, the learned. functions
should combine the statistical precision and uncomplicated design of sampler-
based functions with the implementation efficiency of static evaluators. The
next set of experiments involved learning static expected-outcome estimators of
just this sort.

Static evaluation functions contain two components — a finite feature set,
F;,j =1,...,n, and a corresponding coefficient set, C;,j = 1,...,n — which
combine to specify a unique value for any given board, V = ¥.7_,(C;F}). Prob-
ably the best known example of a feature set is used by material functions in
chess, P (pawn), R (rook), N (krﬁght), B (bishop), and Q (queen)!*. Any
assignment of values to the pieces represents a valid evaluator. As a further
example, the weighted-squares function that was studied in the decision quality
and random sampling experiments used a feature set consisting of ten equiva-

lence classes of squares (figure 7), and a coefficient set defined by the weights

14In general, these functions work with material advantage, and thus the feature value (not
the coefficient) for P, say, would be given by (Black Pawns — White Pawns).

T4

assigned to each class. Each set of game features defines an infinite family of
evaluators; differing coefficients define distinct, albeit related, functions, and as-
sign boards different values. Once again, the absence of a well-defined model of
evaluation functions makes it difficult to either design appropriate coefficient sets
or understand the static values. The expected-outcome model, however, suggests
both a clear objective and a definite interpretation: determine the relationship
between the expected-outcome value, (EO), and the game features, and set the

coefficients such that V = EO = ¥7_,(C; Fj).

The simplest method for deriving the appropriate weights is regression anal-
¥s13, a statistical technique for developing predictors of a single dependent ran-
c-lom variable, Y, given the values of some more easily observable independent
variables, X;,j = 1,...,n. The input into a regression procedure is a matrix
with (n 4+ 1) columns and m rows, m > n. Each row corresponds to an ob-
served instance of the problem. Within a row, the entry in the j** column
represents either the observed value of X;, if 1 < j < n, or the calculated
value of Y, if j = (n + 1). Since a system of simultaneous equations with more
equations than variables is overspecified, (assume w.l.o.g. that no two rows dif-
fer by only a multiplicative constant), there is no set of coeflicients such that
Vi,(1 <7< m),27.1(C;Xi;) = Y. This forces the definition of an estimated

variable, Y, by vi,(1 <1 < m), ;»"=1(C)-.X';j)(!=eff'. The purpose of a regression

2,9 3,10 6 6 6 6 3,10 | 2,9

4 6 7 8 8 T 6 4
5 6 8 8 8 8 6 5
5 6 8 8 8 8 6 S

29 | 310]| 6 6 6 6 | 3,10 2,9

1 |29 4 5 5 4 |29 1

Figure 7: These equivalence classes of squares were defined implicitly by the weighted-
squares function outlined in the appendix. Squares adjacent to vacant and occupied
corners belong to distinct classes. The ability to recognize these ten (and only these
ten) game features is the characteristic of the weighted-squares evaluator family. Each

member of the family defines its own set of weights.

76

procedure is to find the set of coefficients that produce the “best” estimate, or the
set that minimizes the sum of the squared errors, .72 (Y, — f’,)z Consider, for
example, the problem of fitting a line to a series of points. In general, if there are
more than two points involved, no straight line will pass through all of them. It is
possible, however, to find the closest straight line approximations by minimizing
the sum of the squared errors. In addition to line fitting, regression techniques
have become quite popular among economists and other social scientists,rand
were first successfully implemented as a method of developing polynomial scor-
ing functions in [CK86]. A related statistical technique, factor analysis, may be
able to retain the performance characteristics of regression while requiring less

in the way of expert input. This idea will be discussed in section 7.

Othello To find a member of the weighted-squares family that estimates expected;
outcome values, a regression procedure can be used to learn square-class weights
that approximate EO. Since the exact expected-outcome value is not computable
in interesting games, the regression’s dependent variable, Y = EO, must be de-
termined by a random sampler. The first stage of the learning experiments was
implemented by setting the dependent variable, ¥ = EO, to an estimate deter-
mined by the stronger of the samplers described in the previous section. Recall
that this sampler predicted the number of games that black would win if 1024

were completed randomly, and stopped when it converged. 5000 random initial

~1
-1

configurations were generated, with no attempt made to introduce the exper-
tise necessary to determine whether they represented “realistic” positions. Each
row of the resultant 5000-by-11 input matrix contained the square-class'®> and
EO values of a different board. These configurations were devised by randomly
choosing a start depth between 0 and 60, (with 30 being the most likely and prob-
abilities decreasing symmetrically as distance from the mid-game increased), and
then making the specified number of random moves. The resulting board served
as the instance recorded in the matrix. Two independently generated matrices
were used to derive evaluators L1 and L2 of table 2. The development of two dif-
ferent coefficient sets should come as no surprise; regression analysis is concerned
only with finding best fits to the observed instances. Coefficients yielding good
fits need not be unique, the difference of a few key observations may shift the
choice of “best” between them, and larger input matrices might force them to
converge to a single set. Nevertheless, since most of the values in the two sets are
fairly similar, (as is the performance level that they generated), the coefficients
both define reasonable evaluators, and both warrant investigation.

Evaluator L3 was learned using the same technique, but a different inter-
pretation of expected-outcome. As mentioned before, the USOA rating sys-

tem is highly dependent on a player’s victory margin. This suggests studying

'*For each square in the class, a black disc added +1 and a white disc -1, to the square-class
value.

[Coefficients for Weighted-Squares Functions |

Square-class | M | A L1 L2 L3
1 64 | 64 | 33.57 | 56.16 | 56.77
2 -30 | -30 | -4.83 | -7.38 | -5.59
3 -40 | -40 | -3.23 | -6.20 | -36.46
4 10 | 10 | 3.84 | 6.63 5.88
5 5 5 3.00 | 4.19 4.73
6 2 1-3 | 179 | 3.13 2.75
7 S 2 2.10 | 3.38 2.43
8 1 1 1.00 | 1.00 1.00
9 5 5 [10.77 | 13.40 | 17.54
10 5 -2 | 1.62 | 3.87 1.67

Table 2: The coefficients used by each of five weighted-squares evaluators. Function
M was copied directly from [Mag79]. A is a modification of M which accounts for my
personal experience. Functions L1, L2, and L3, were learned by regression analysis
as static estimators of expected-outcome values. L1 and L2 considered leaves as either
WINs or LOSSes, and attempted to estimate the percentage of WINs beneath each node,

while L3 approximated a node’s expected-disc-differential.

expected-disc-differential-outcome, the first application of expected-outcome to
a leaf distribution with a large range of potential values (specifically, all integers
in [—64,64]). Recall that even on (d,b, f)-trees, expected-outcome may not be
optimal in instances of arbitrary leaf distributions. However, since no notion of
£, can conceivably be defined for Othello, it should be reasonable to assume that
the disc-differentials are distributed normally. In any event, this assumption was

tested empirically, and shown to be correct.

79

The regression was performed by SAS'®, a popular commercially available
statistical applications package, which, in addition to performing regression anal-
yses, also returns an analysis of the variance (ANOVA) over the instances re-
ported in the input matrix. ANOVA data characterizes the probable accuracy
of the regression’s determined parameters and the predictive value of the inde-
pendent variables on the dependent one. Without getting sidetracked into the
specifics of the regression, there are a few points that are worth mentioning.
First, any time a regression procedure is used on a feature set, F’, to predict the
value of a dependent variable, ¥, two crucial questions arise: do the individual
elements of F' contribute to Y? and does the model described by F effectively
predict Y? SAS provides answers to both: with probability > .9999, each of the
square-classes contributes to EO, and, in all three cases tested, the overall model
has a fit somewhere in the (0.6,0.7) range, (where 0.0 indicates no relation and
1.0 is a perfect predictor). Second, it is important to consider confidence in a set
of coefficients before they are applied to some further problem, such as the design
of an evaluation function. As probabilistic entities, the parameters returned by
SAS, in this case the coefficients, should be reported along with their standard
errors (standard deviations). According to the SAS analysis of square-classes,

the standard errors were all fairly small, and thus, the determined coefficients

185 AS is the registered trademark of SAS Institute Inc., Cary, N.C., U.S.A.

80

are sufficiently reliable to be incorporated with confidence into an evaluator.

Mea.surgs of model fit between 0.6 and 0.7 indicate that weighted-squares
functions provide reasonable, albeit not overwhelmingly powerful predictors of
expected-outcome values. This is directly analogous to the assertion that weighted-
squares functions can play up to a certain level, but for championship play, other
factors must be considered [Ros82]. The correspondence between a feature set’s
ability to predict expected-outcome values and the quality of play that it gener-
ates, offers another piece of evidence that the expected-outcome model does, in
fact, provide an accurate characterization of static evaluator strength.

The accepted test of evaluation functions, however, is how well a program that
uses them plays. Two of the weighted-squares functions shown in table 2, (M and
A), were designed by experts",' while the others (L1, L2, and L3) were learned by
regression analysis. Competition among them demonstrated how well coeficients
learned to approximate expected-outcome values fare against those developed by
experts as measures of “node strength”, for the same feature set. Prior to setting
up a tournament, however, it is interesting to consider whether these are, in fact,
the same goal. Have previous evaluators actually (subconsciously) been designed
to approximate expected-outcome? A comparison of the designed and learned

functions do not give a conclusive answer. In many respects, the coeflicient sets

'"Function M was copied directly from [Mag79]. Function A is a modification of M to account
for my personal experience. Most of the tests run indicate that A is slightly stronger than M.

81

are similar; they all recognize the supreme importance of corners, the relative
advantage of edge squares over non-edges, and the danger of taking a square near
a vacant corner. They differ greatly, however, in many of their actual weights.
While this strongly indicates the exstence of a realtionship between the precise
model of expected-outcome and the intuitive notion of node strength, the values
are hardly close enough to substantiate a claim that they are identical.

The second stage of the learning experiments consisted of a series of Othello
matches. Unlike the functions studied in the decision quality and random sam-
pling experiments, all weighted-squares evaluators are efficiently calculable. This
finally allows the lookahead ban to be lifted, and more realistic games to be stud-
ied. The rules of the tournament were simple. Every pair of functions met in one
400-game match, broken down into four 100-game sets, one each with lookahead
length fixed at 0, 1, 2, and 3. The first six moves of a game were made randomly,
and the evaluators took over at move seven. When the game was completed,
the functions swapped colors, and replayed all but the first six moves. This was
done to insure a wide variety of games without introducing an unfair bias. Thus,
in each set, games were played beginning from each of fifty different initial se-
tups. Over the course of 400 games, only the ezpected-disc-differential function
(L3) consistently outplayed its opposition; none of the others, either learned or

designed, were able to do so. It is interesting to note that there are only minor

Othello Tournament:

400 games per match

Scores (number of discs)

Match Function WI|[L |D Total L o
M 181 | 212 | 7 11906 29.765 | 10.06
1 A 212 | 181 | 7 12467 | 31.1675 | 10.99
Difference (A — M) | — | — | — 561 | 1.4025 | 19.77
M 196 { 193 | 11 || 12088 30.22 | 12.82
2 L1 193 1196 | 11 || 11750 29.375 | 11.05
Difference (L1 — M) || — | — | — || —338 | —-0.845 | 21.78
M 191 | 198 | 11 || 12112 30.28 | 12.93
3 L2 198 | 191 |11 || 11863 | 29.6575 | 11.50
Difference (L2 — M) | — | — | — || —249 | —0.6225 | 22.88
A 213|178 [9 12267 | 30.6675 | 12.17
4 L1 178 | 213 | 9 11613 | 29.0325 | 9.34
Difference (L1 — A) || — | — | — || —654| —1.635] 19.70
A 200 | 184 { 16 || 12154 30.385 | 12.38
5 L2 184 | 200 | 16 || 11411 | 28.5275 | 9.39
Difference (L2 — A) || — | — | —)| —743 | —1.8575 | 19.77
L2 03 | 186 | 11 || 12538 31.345 | 12.33
6 L1 186 1 203 | 11 || 11869 | 29.6725 | 11.30
Difference (L2 —= L1) || — | — | — || —669 | —1.6725 | 22.25
L3 252 | 141 | 7 13564 33.91 | 11.42
7 M 41 1252 | 7 10856 27.14 | 11.52
Difference (L3 — M) || — | — | — || —2708 —6.77 | 21.99
L3 215 (176 | 9 12554 31.385 | 10.26
8 A 176 | 215 | 9 11481 | 28.7025 | 11.52
Difference (L3 — A) || — | — | —]| —1073 | —2.6825 | 20.39
L3 260 | 132 | 8 13743 | 34.3575 | 11.57
9 L1 132 (260 | 8 10537 | 26.3425 | 9.94
Difference (L3 — L1) || — { — | — || —3206 | —8.015 [19.99
L3 269 | 124 | 7 13917 | 34.7925 | 12.29
10 L2 124 1269 | 7 10187 | 25.4675 | 10.55
Difference (L3 — L2) | — | — | — || —3730 | —9.325 | 21.01

Table 3: A match-by-match recap of the tournament among five weighted-squares eval-

uators.

83

| 4 Match (1600 Game) Totals |
Function | W | L | D || Points For | Points Against | Difference
L3 996 | 573 | 31 53778 43061 +10717
A 801 | 658 | 41 48369 47484 +875
M 709 | 855 | 36 46962 49644 —2682
L2 709 | 846 | 45 45999 50152 —4153
L1 689 | 872 | 39 45769 50636 —4867

Table 4: Totals from the weighted-squares tournament.

differences between L3’s coefficients and those used by its competitors. Like L1
and L2, L3 felt that the experts both undervalued classes 2 and 9, overvalued
class 4, and straddled class 10 (M was too high, A too low). It agreed with the
expert analysis of class 3, however, and agreed with M on class 6 and A on class
7. Apparently, the five coefficient sets are all close enough to play comparably.
L3’s slight edge may be attributable to choosing correctly among some of these
more controversial class values.

In the matches among A, M, L1, and L2, not only were the scores fairly close,
(see tables 3 and 4), but the disc-differential statistics were, as well. An analysis
of the victory margins shows that with probability .95, no two of these func-
tions would be rated more than 35 USOA points apart. Since roughly 200 points
(actually, 207 [Ric81]), separate the player classes, the rating spread is rather in-
significant — it should be clear that all four functions are essentially equivalent.
L3, on the other hand, was noticeably stronger than the other functions, albeit

not overwhelmingly so; its victory margins ranged from 39 to 145, and its pro-

84

jected ratings were 12 to 109 points above its competitors. The disc-differential
statistics also offer some specific characterizations of relative evaluator strength
(see table 5). In each match, the player who scored the greater number of total
discs (not the one with the most victories) is assumed to be the stroﬁger of the
two. Hypothesis testing techniques for normal distributions indicate both the
significance of the distinction between players and, (with 95% confidence), the
actual difference in their playing strengths. In match 3, for example, function
M appeared to be very slightly stronger than function L2. The significance of
this advantage, however, was only .4 — not terribly convincing. In fact, with
probability .95, M’s true advantage is between —1.07 (actually, a disadvantage
of 1.07 discs) and 2.32. Overall, it is unlikely that the functions are of identical

strength. It is clear, however, that their playing ability is essentially equivalent.

The superiority of L3 over L1 and L2 adds credibility to the claim that the
conditions needed for the use of expected-outcome with arbitrary leaf distribu-
tions are reasonable; the performance of all three learned functions shows that
machine generated, expected-outcome based coefficients are at least as good as
those designed by experts. One potential counter-claim, of course, is that a func-
tion’s strength is derived primarily from its feature set, not its coefficient set. If
this is true, any two members of the same family should perform comparably,

and it's not surprising that the new functions competed favorably with the old

98uel woAld oY} UIY}Im SOT[20T
-TepyTp any oyl ‘ge” Amiqeqold [iipy ‘eiep [RIUeWIedxe oY} ULALS ‘sradeld oY) Weamyeq
9dUeIoPIp [eN}O® 9Y) S2)E[MO[Ed umn[od sSuel-gs' Y] ‘Peideler aq wed stsaqpodAy A3t
-1ed 30epred o3 YOrym Ui A1Miqeqoid (sremixordde) aq) seALS UUWIN{OD 92UBDIYTUBIS YT,

-198U013S PaIdPISUOI SI 902 [B10% I2YSIY a7} Y3la Iaked ay3 ‘yojew yes 10 :¢ d[qeL

g8

[16°01 ‘p2°L) 66" < e1 z1'¢e1 01
1¢°6°C8°9 66 < e1 17'¢T 6
6T % LT T 66° g1 v'ed 8

[og'8‘81°¢) 66" < g1 W'el L

[1e°¢‘€0°0) 98’ z1 1121 9
[8e¢‘eg 0] 76 \i c1'V g
1€ ‘e1 0] 6 v TV 4

z€T L0 T—] g W AR g

0S¢ ‘18°0— 9’ W ITIN z

98'C ‘90°0— cg v Y'IN 1
aSm.rH 150 QDII’EZ)QUI%!S Qg‘e‘ul'GApV SIS&’B[CI qD;'B]’,\[

JUSUIRTINOY O[[9Y1() 2Y} JO SIsA[eUy

86

ones. To squelch any doubts that may arise along these lines, some further fam-
ily members were generated. A, M, L1, and L2 each played an additional match
against a weighted-squares cousin with a randomly generated set of coeflicients.
All four random functions were trounced — they rarely won at all, and would be
rated at least a player class behind the four that had been intelligently designed.
With its strong showing in the tournament, the expected-outcome model has met

the third challenge: an efficiently calculable estimator played fairly well.

Chess The efficient implementation of expected-outcome estimators in Othello
suggests the first general guideline for designing two-player evaluators. Neverthe-
less, although the model was defined in a domain-independent manner, its utility
has only been demonstrated in two domains, tic-tac-toe and Othello. Most as-
pects of these games are quite different, yet they do share certain gross character-
istics: in both games, the playing pieces (markers or discs) are differentiated only
by owner, and once played, are fixed in position. A convincing demonstration of
the model’s generality should involve a game that is as dissimilar to the first two
as possible. The obvious choice is chess; computer chess has generated a larger
corpus of expert literature than all other games combined, and thus there are
many conventional wisdoms that can be used as bases of comparison {discussions
of absolute accuracy are obviously out of the question).

One challenge posed by chess to expected-outcome is to learn material values

87

for the chess pieces. This problem has been studied extensively, dating back
at least to the 18" century, when Euler suggested that a piece’s value should
be proportional to its average mobility. Over the years, a general consensus
has developed regarding the appropriate values, although there have been many
variations on the basic theme. Mikhail Botvinnik’s chess program, PIONEER
[Bot84], used the values
P=1, R=5,N=3, B=3, Q=9

as part of its evaluation module. Other experts may value a bishop slightly
higher than a knight or assign ten to a queen, but the modifications are mi-
nor; for all intents and purposes, Botvinnik’s coeficients are representative of
expert-designed material functions. As a standalone static evaluator, material
is known to be rather weak [Sha50) [Lev76] [Bot84]. In addition to ignoring
positional and phase-of-game considerations, material evaluators tend to pro-
duce essentially random openings and end-games. Nevertheless, the design of an
expected-outcome based material evaluator is a sophisticated enough task to test
the model’s applicability to chess, and the plethora of available expertise should
make the results’ interpretation fairly ﬁoncontroversial.

Chess pieces, like square-classes, constitute a feature set for which coeffi-
cients must be learned to define an evaluation function. Once again, learning-by-

regression is an appropriate method for coefficient set design. Regression analy-

88

sis has been used in the past as a method for learning material values, although
its previous implementation was iterative, as a progressive coefficient improver
[CK86]. These experiments, by way of contrast, use the same single regression
technique that was so successful at learning weighted-squares functions for Oth-
ello. Asin the Othello experiments, the regression’s dependent Variablg, Y = EO,
was determined by a random sampler that predicted the number of games that
black would win if 1024 were completed randomly from the given random initial
configuration, and stopped when it converged!®. Since the relative tree sizes
and DRAW-leaf densities of the two games cause chess samplers to be orders
of magnitude slower than Othello samplers, fewer initial configurations could be
generated. In this case, the starting depth was set (with uniform probability)
between 0 and 125, and the appropriate number of random moves were made.
The resultant 350-by-6 matrix!®, however, was large enough for the regression to
be fairly confident in the coefficients that it developed, albeit slightly less so than
it was for the square-class weights; the standard errors were all small, (relative to
the reported parameters), and in every case tested, all pieces contributed to EO

with probability > .99. Another interesting statistic reported by SAS involves

13nlike the Othello samplers, these did consider DRAWSs. This will be discussed in detail
momentarily.

19 Additional configurations were later generated to verify the stability of the coefficients. A
regression run on a 1000-by-6 matrix showed only slight perturbations in the relationships learned.
I did not feel that these minor deviations warranted re-running any of the other experiments.

89

the proximity of the tightness (or perhaps more precisely, the looseness) of fit for
the model to the observed strength of material functions. Recall that ANOVA
data indicates the predictive value of the model, in this case material, on the
dependent variable, or expected-outcome. Whereas the model fit measures were
all between 0.6 and 0.7 for Othello square-classes, the chess material functions
landed in the neighborhood of 0.35. This indicates that the predictive value of
the material model on expected-outcome is poor. Once again, then, the statis-
tically determined relationship between a feature set and the expected-outcome
value corresponds closely to the empirically observed relationship between that
feature set and its quality of play [Sha50] [Lev76] [Bot84].

Before a chess sampler could be implemented, one issue that was essentially
glossed over in the Othello studies had to be addressed: the proper interpretation
of DRAWs. Whereas random DRAWSs are quite rare in Othello, the distribution
of DRAW leaves in the chess tree is rather dense. According to the definition
of the expected-outcome model, DRAWs should probably count as half-wins.
Meanwhile, gaming intuition suggests that neither player finds DRAWs attractive

while they can still win?®. Since this essentially describes everything but the end-

20The relative density of DRAWSs in the two games suggests another potential problem. It
should be possible to construct games in which virtually every path leads to a DRAW. When
reasonable players compete, however, only a very small subset of the moves are considered, and
thus many actual games will terminate as either WINs or LOSSes. In this type of game, the
number of samples needed to differentiate between moves, may be prohibitive. As theoretical
constructs, such games simply indicate that sampling is an heuristic technique that can be foiled
by adversary arguments. Whether any real games fall into this class, however, is a question that

90

game, and expected-outcome values of end-game positions are suspect anyway,
DRAWSs may, in fact, be nothing more than noise. To determine what effect, if
any, the different interpretations would have on the results, the regression was
run twice. The resultant functions are not shown on any consistent scale; since
the coefficients in a set are only significant as they relate to each other, (and not
as they relate to coefficients in another set), the functions are all scaled to best

demonstrate the relationships learned.

e _ (WINS+.5DRAWS)
o Chessl: EO = (WINS+LOSSE5+DRAWS)’

P=4.0, R=4.8, N=2.5, B=3.3, Q=9.6.

. — __(WINS)
¢ Chess2: EO = (WINS+LOSSES)

P=4.0, R=4.9, N=3.0, B=3.7, Q=10.4.

Several aspects of these functions are interesting. First, regardless of the
treatment of DRAWSs, the piece values learned were about the same. Since
DRAWSs tend to look equally (un)appealing to both players, it is encouraging
to find that they have minimal impact on expected-outcome values. Second,
and more significant, are the coefficient sets themselves. As presented above,

the numbers were scaled to illustrate their success at learning valid relationships

can only be resolved empirically. To date, all that can be stated conclusively is that this is not
a problem in tic-tac-toe, Othello, or chess.

.91

among the four major pieces; other than the quadrupled pawn values, both sets
are remarkably close to the one proposed by Botvinnik, and certainly well within
the acknowledged ranges.

The interpretation of these coefficient sets is not clear. The proximity of four
of the learned coeflicients to the predicted ones indicates that there must be some
relationship between expected-outcome and the criteria applied by experts. The
inflated pawn values, on the other hand, are problematic. Whereas the experts
have agreed that pawns are the least valuable pieces on the board, the expern-
mental results indicate that they are worth more than knights and bishops. This
implies that expected-outcome is unable to capture some of the game’s subtleties.
One potential explanation for pawn inflation, however, has been provided by the
very experts who relied on unit pawn values — the history of material functions
implies that the difficulty may lie not in the learned coefficients, but rather with
the original idea of appraising pieces according to their relative mobility. The
primary purposes of a major piece are to move, control parts of the board, and
attack opposing pieces; their relative strengths should depend heavily on their
relative mobility. Pawns, on the other hand, serve different purposes — set-
ting up defensive blockades and getting promoted to queens. (Although pawn
promotion may occur only rarely during actual play, the threat is ubiquitous,

and strategic play must be prepared to defend against unchallenged pawns in

92

open columns). Game designers have long recognized that position independent,
(specifically row-independent), pawn values are universally less meaningful than
equally consistent values for the other pieces, and have generally compensated
by including a special pawn formation component in their evaluators [Lev76]
[Sha50] [Bot84). In addition, a previous attempt to automatically generate ma-
terial evaluators fell prey to the same difficulty of overvalued pawns, albeit to a
somewhat lesser extent [CK86].

The general (expert) consensus about pawn values, then, is that they are
not really equal to one; assigning them a unit value is only reasonable if they
are upgraded as their importance (mostly positioning) grows. There are in-
stances, for example, when pawns are the most valuable pieces on the board —
an unchallenged pawn in rank six is worth more than an idle rook (say, one not
immediately threatening a checkmate). Precisely what a reasonable “average”
pawn value would be (if such a thing is definable), has not been widely discussed,
and is not a matter of consensus. Nevertheless, it is intuitively unappealing to
think that pawns may be more valuable (on the average) than either knights or
bishops, as the learned coefficient sets suggest. One potential explanation of this
anomaly is that since the sampler was implemented with the assumption that
all promoted pawns would become queens, the determined coefficient of 4.0 is

actually for a pawn/queen, not just for a pawn. To test this hypothesis, an ad-

93

ditional set of experiments, in which pawns that reached the opposite side were
removed from the board, was run. The coefficient sets learned for the resulting

game of chess-without-promotion were:
. WINS+.5DRAWS
e Chess3: No pawn promotion, EO = ﬁﬁm’
P=1.0 R=4.4 N=1.5 B=2.4 Q=6.8.

. (WINS)
= [WINS+LOSSES)®

o Chess4: No pawn promotion, EO

P=1.0 R=5.6 N=2.0 B=3.0 Q=1.5.

This approach successfully deflated the relative importance of pawns, but it also
perturbed the relationship among the other pieces. Although the R, N, B, and
Q coefficients learned without pawn promotion are not drastically outside the
mainstream, they would probably be considered a weaker set than those learned
when pawns were promoted. This is, of course, understandable. The accepted
values were designed for games with pawn promotion; losing pawns when they
cross the board could significantly alter game-playing strategies. Ultimately,
there is no real solution to the problem of inflated pawn values, other than to
include additional factors in the regression matrix. For example, if rather than
including a separate component for pawn formation, expert functions included
seven values for pawns (one for each row), the learning procedure might be as

successful at determining these accepted values as it was at learning the major

94
piece weights.

Since the coefficients assigned to pawns are acknowledged to be less meaning-
ful than those assigned to the major pieces, and the learned major-piege weights
all approximated Botvinnik’s expert set, it should be reasonable to assume that
the evaluators will play comparable chess. The recognized weakness of material
functions, however, renders conclusions based on the performance of programs
that rely on them dubious, regardless of coefficient set. Nevertheless, it is impor-
tant to compare the learned coefficients with a more accepted set, and (due in
part to the absence of a valid criterion for comparison), the only way to do this
is to pit them against each other in a series of games. A tournament was run
involving eight evaluators drawn from three sources (see table 6). The expert-
designed ChessO was borrowed from PIONEER [Bot84], while Chessl through
Chess4 were learned to approximate expected-outcome, using the various for-
mulations described above. Chess5, 6, and 7 were introduced to investigate the
feature set’s inherent strength: Chess5 made consistent moves using random cri-
teria by assigning each piece a random value between one and 500, Chess6 ignored
material and moved randomly, and Chess7 valued all pieces equally, and simply
counted the number of them on the board. Every pair of functions clashed 500
times, with each evaluator getting white 250 of them. In addition to allowing

their material evaluators to play random openings and end-games, the programs

L Chess Material Functions

Function | P R N B Q w L D | Points Source

Chess4 |[1.0 536 20 3.0 7.5 ||1150 686 1664 1982 Learned

Chess0 1 S 3 3 9 1152 710 1638 1971 | PIONEER

Chess3 |1.0 44 15 24 6.8 ||1116 696 1688 1960 Learned

Chess2 |40 49 3.0 3.7 10.4| 1111 705 1684 1953 Learned

Chess1 |40 48 235 3.3 96 [|1049 710 1741 [19195 Learned

ChessT 1 1 1 1 1 1047 749 1704 1899 Random

-~
(%
1
ot

Chess5 |98 79 4 45 947 877 1676 1785 Random

Chess6 0 0 0 0 0 79 2518 903 530.5 Random

Table 6: This table describes a chess tournament among eight material evaluators. Five
of them were designed intelligently — ChessO by an expert (Botvinnik), and Chessl
through Chess4 to approximate expected-outcome values under a variety of marginally
different assumptions. The other three were introduced as controls: Chess5 makes con-

sistent decisions using random criteria, Chess6é makes random moves, and Chess7 counts
all pieces equally.
were removed even further from reality?! by foregoing lookahead and attempting

no quiescence detection.

Despite the unrealistic setting for the tournament, 3500 games should have
been enough for distinctions among the evaluators to appear. None did. If the
standings were set strictly in terms of number of victories, the expert-designed
Chess0 would win — although only by two games. Counting draws as half points
(ala professional hockey), on the other hand, would place the trophy in the hands

of Chess4, the function learned by removing pawns and ignoring draws. Taken

21Used loosely, to refer to the world of truly competitive chess programs

96

as a whole, the spread separating the five intelligently designed evaluators, (103
wins or 62.5 points), is completely insignificant. Their overall performance was
essentially equivalent. Perhaps an even greater surprise, however, is how well
two of the random functions fared. Although neither Chess5 nor Chess7 played
quite on par with the first five functions, their performance was consistently
almost as good. (In fact, the difference between the uniform values of Chess7
and the weakest learned function, Chessl, was only 2 wins or 20 points). Against
all competition, however, the completely random Chess6 was soundly trounced.
Thus, it seems that in chess, at least under the simplistic implementation used
in this tournament, the most significant aspect of the material evaluator family
is its feature set — even random coefficients were substantially better than none
at all. In what may be a characteristic of weak feature sets, these results seem
to indicate that although absurd coefficients sacrifice a slight edge, any set that
is even remotely reasonable will play at about the same level. In all likelihood,
however, as the inappropriate standalone use of these evaluators is corrected and
they become incorporated into highly sophisticated programs, differences in play
should begin to appear.

The challenge posed for expected-outcome by chess was rather humble be-
cause material evaluators are not expected to lead to strong play. With the

realization that nearly any coefficient set would have competed reasonably with

97

the accepted one??, the proximity of the relationship learned among the major
pieces to the consensus set is noteworthy; the standard values were derived as
measures of relative mobility, while the learned coefficients were developed as
estimates of the probability of winning a random game. The inflation of pawn
values, on the other hand, remains troubling. Although mobility was identified
by experts as a significant factor in playing winning chess, adopted as the mea-
sure of the relative importance of the major pieces, and generally regarded as
an inaccurate assessment of the role of the pawns, the experimentally derived
coefficients would have been more convincing if they had approximated the con-
snesus set on all five pieces. Taken as a whole, then, a comparison of the learned
coefficients with the accepted set makes a rather interesting point: the relative
 mobility of the four major pieces is related to the proportion of winning games in
which they appear, while the mobility of the pawn is not. Compounded with the
correspondence between the feature set’s predictive ability on expected-outcome
values and the known caliber of evaluators that use it, the model’s performance in
the chess domain appears to corroborate the claim that it is not strictly domain-
dependent. The full extent of its applicability to chess, however, remains to be

seen.

2270 the best of my knowledge, the tournament described above is the first evidence of the
essential futility of trying to fine-tune material values. Since competition among material eval-
uators has frequently been used as a means for comparing their accuracy, this result calls some
previous conclusions about material functions into question.

98

Part I1I

Conclusions

6 Contributions: What’s Been Accomplished?

This thesis focused on the classic artificial intelligence model of decision-making
in adversarial settings: two-player games. The stated purpose of the research was
to remove a fundamental obstacle from our understanding of decision-making
in games, namely the absence of a precise, meaningful, useful, and domain-
independent model of static evaluation functions. To fill this void came the
expected-outcome model, which defines a node’s value as the expected value of
the game’s oﬁtcome, given random play from that point on. Asa statistical inter-
pretation of game-trees, rather than games, the model immediately provided the
necessary precision and generality. Its accuracy was then demonstrated through

a series of proofs and experiments:

e Section 5.1 demonstrated that given any set of trees chosen from a par-
ticular simple class, an ideal expected-outcome function would select the
best one. This correspondence between the random-play and perfect-play

assumptions motivated the model’s study in progressively more realistic

99

settings.

In section 5.2.1 the model was implemented on some small versions of tic-
tac-toe and Othello, where its decision quality was shown to be better
than that of some popular functions that have been studied in the past.
Expected-outcome was shown to be better than 95% accurate on tic-tac-toe
trees of average branching factor four, and about 85% accurate on Othello
trees of average branching factor seven. Neither of the standard functions

studied came close to this level of decision quality.

An estimated expected-outcome function was implemented via a random
sampler in section 5.2.2, where it was shown that given enough time, the
sampler could defeat a standard Othello evaluator. Although the most
powerful sampler tested required several orders of magnitude more time to
move than its standard static opponent, its superiority made a significant
point — it is possible to achieve reasonable play through expected-outcome

estimates made by randomly sampling leaves.

Efficiency considerations were brought back into play in section 5.2.3, where
expected-outcome was combined with a bit of domain knowledge and a
parameter-learning technique to develop static evaluators in Othello and

chess. Once again, the learned functions were able to compete with a more

100

standard set.

Taken as a whole, these results offer strong support for both the validity of
the expected-outcome model and the rationality of its underlying assumptions.
The idea of regarding non-terminal nodes in a search space as random variables is
new. In the past, it has always been assumed that these nodes have exact, albeit
unknown values. Maximizing expected utilities via expected-outocome is only
the first application of these ideas. Several other techniques are discussed in the
next section. In the long run, it may well turn out that the major contributions
of this research were the redefinition of search trees as probabilistic entities and
the resultant formalization of heuristic search theory that this new model makes
possible.

The extent to which expected-outcome will affect our understanding of game-
tree search procedures remains to be seen. At the present time, its significance
lies in its clarification of the static evaluator: for at least a large class of games,
expected-outcome evaluators were shown to be strong when exact, reasonable
when estimated, and efficiently calculable. It is, of course, unreasonable to ex-
pect the initial implementation of any new model, regardless of inherent merit,
to match the achievements of thirty-five years of progressive research. The func-
tions derived for Othello and chess would not fare well in actual competition

against more standard programs, although the scoring functions developed for

101

common feature sets in both games hint that previous ad hoc evaluators may
have been unknowingly estimating expected-outcome values. Many of the pop-
ular programming techniques, however, are in no way contradictory to the new
model, and could easily be used in conjunction with expected-outcome functions.
The major immediate contribution of expected-outcome to the programming of
specific games, then, is that it provides a degree of precision to some of its more
ambiguous components, most notably the design of mid-game evaluation func-

tions.

7 Implications: Where Might the Model Lead?

The expected-outcome model of game-trees, unlike all previously studied models,
is essentially probabilisiic in nature. In addition to providing a precise definition
for the static evaluator, the interpretation of internal nodes as random vari-
ables rather than deterministic values (e.g., as specified by minimax), suggests
rethinking virtually every component of game programming. This section lists
some interesting questions that should be reconsidered in light of the new model.
Although the model’s extension into these areas is still primarily speculative, a
brief discussion of the issues that they bring up should reveal some potentially

radical new approaches that become possible in a probabilistic setting.

102

Full-depth Search One of the model’s most distinctive features is its use of
full-depth, rather than full-width, searches. The random sampling experiments
(section 5.2.2), for example, searched entire paths and evaluated only nodes
whose exact values were calculable (i.e., leaves). This involved searching only
a relatively small, randomly chosen subset of the paths beneath each node. A
standard Shannon Type-A program, on the other hand, explores all paths, but
only a relatively small portion of each one, via a full-width search to a fixed depth
and an estimation of frontier node values [Sha30]. In this strategy, uncertainty
comes from the estimates of the positions at the search horizon, whereas in the
new model uncertainty is due to sampling error. The strong performance of full-
depth search programs suggests an interesting line of future inquiry: what is the
most effective use of computational resources? The standard answer to this ques-
tion has long been that if additional computation time becomes available, the
search frontier should be extended. Full-depth search algorithms, on the other
hand, suggest traversing additional paths. In the absence of evaluation func-
tions, full-width searches are meaningless while full-depth samplers are strong.
The presence of powerful static evaluators, on the other hand, has an as-of-yet
undetermined effect on full depth strategies, but allows full-width strategies to
make good decisions. Thus, both answers are correct at times. Future analyses

may be able to determine the relationship between the two procedures, character-

103

ize their relative propriety as functions of evaluator strength (now well-defined),

and recommend optimal resource allocation to system designers.

Learning When people learn to play games, their performance is dependent on
their ability to recognize both significant game features and reasonable moves.
Despite the recent success of fast brute force programs [Ber81] [BEéG], it has
long been acknowledged that true mastery of a game requires an understand-
ing of both factors; Shannon’s discussion of computer chess incorporated domain
features into static evaluators and unreasonable move pruning into type-B strate-
gies [Sha50]. The main contribution of expected-outcome to the field of machine
learning is that it suggests a potential reinterpretation of “reasonable” play. In
a deterministic game-tree, moves are either right or wrong. Any definition given
for reasonagle play, then, is necessarily ad hoc, and dependent on vague no-
tions such as degree of optimality, or player strength [RB83]. Any node in a
probabilistic game-tree, on the other hand, should be selected occasionally, with
probability corresponding to its relative evaluated standing among its siblings.
In other words, a minimax analysis of a game position is that the best node is
assigned probability one of being selected, while all others will be chosen with
probability zero. When node values are viewed as distribution means, on the
other hand, it is clear that their “quality” overlaps, and thus it becomes reason-

able to occasionally choose nodes other than the one with the best evaluation.

104

Although this is still somewhat vague, it suggest a question that may lead to
some interesting results: given a well defined notion of evaluator strength and
a probabilistic interpretation of node values, is it possible to disambiguate the
notion of reasonable play, as well?

Furthermore, although not strictly dependent on expected-outcome, some of
the experimental procedures discussed in section 5.2 suggest potentially powerful
algorithms for learning stronger evaluators. Implicit in the technique of learning
by regression analysis, (originally proposed in [CK86]), are related procedures
that may be able to recognize significant game features and gradually improve
scoring polynomials. First, although an initial set of features must be identified
by an expert, it is possible to automatically convert a large set of potential fea-
tures into a smaller set of relevant ones by a technique known as factor analysis.
Factor analysis, which has been widely studied in econometrics and the behav-
ioral and social sciences, is a statistical procedure that discovers relations among
a set of variables [Sch77]. Regression analysis, by way of contrast, explains a
relationship that is already assumed to exist. Second, iterating the Monte Carlo
studies described in section 5.2.3 may lead to stronger evaluators. Consider the
following selective sampling procedure: on the first run, initial configurations
are generated, values of the dependent variables are calculated, and random

paths are traversed to develop a 0‘*-order evaluator. On the second run, this

105

0th_order function is used to evaluate and scale a move's successors. Paths are
then traversed with appropriate probabilities to yield a 1**-order evaluator. This
procedure leads to a selective sampling of the leaves, can be iterated as often
as desired, and might produce successively stronger evaluators. The expected-
outcome model provides these techniques with a well-defined value to use as the

dependent variable, and may be central to their implementations.

Quiescence Analysis The full-depth search suggested by the expected-outcome
model effectively resolves the problem of quiescence. Since search frontiers are
not set and only leaves are evaluated, the issue is rendered moot. With the
introduction of efficiently calculable static estimators, however, the problem of
quiescence resurfaces. Will statically estimated expected-outcome functions be
as susceptible to the horizon effect as other evaluators? Since the learning pro-
cedure that was used to design the efficient estimators included searches all the
way to the leaves, future extensions and analyses of the procedure may be able

to resolve this question in a positive light.

Backup Strategies In competitive game implementations, moves are almost
never based directly on static information — a backup strategy is generally used
to combine tip node values and (hopefully) improve decision quality. Partial

minimax is both the most popular and the most successful of these strategies;

106

pruning algorithms, clever record keeping techniques, and special purpose archi-
tectures have helped elevate partial minimax based machines to master level in
chess [CT82] [BES6]. Despite its widespread use, the procedure of minimaxing
estimated values on partial trees has no theoretical basis. In fact, the attempt to
equate minimaxing estimates with estimating minimax violates one of the car-
dinal sins of statistics: a function of estimates is not the same as an estimate
of a function. Error-propagation analyses have shown that rather than filtering
out errors, minimax tends to compound them [Pea83], and studies performed
on (d,b, f)-trees have diagnosed partial minimax as a potentially pathological
algorithm [Nau83a]. In addition, a variety of proposed backup strategies have
been shown to recommend stronger decisions under certain circumstances (see
[Abr86a) for a survey of these strategies). The prevalent justification for par-
tial minimax, then, has been that it seems to work well in most game settings.
Whether this is true or not, it is rather unsatisfying.

A probabilistic interpretation of reasonable play should suggest an interesting
backup strategy: calculate the probability with which each move will be chosen,
and pass up the corresponding weighted sum of their values. The intuitive appeal
of this strategy is that it may account for reasonable play, as opposed to the
simpler, but obviously incorrect, assumptions of perfect or random play. Even if

this algorithm is provably more accurate than partial minimax, however, it may

107
still be less desirable; if all nodes above the frontier represent potential moves,
pruning is impossible. Since one of the most salient features of partial minimax is
that its companion algorithm, a-f-pruning, greatly deepens search and effectively
increases the amount of useful information available to the decision maker, this
is a significant loss. For the sake of efficiency, then, it may be desirable to weaken
the reasonable-play assumption somewhat. Rather than considering all moves as
viable options, perhaps only moves within a certain threshold of the best warrant
consideration. Looked at in this way, then, partial minimax belongs at one end
of a spectrum of backup algorithms; its threshold is zero, and it always assigns
a node’s best child probability one of being chosen. A similar idea has recently
been discussed in [Riv86]. Future analyses may discover some other interesting

strategies along the spectrum, and develop a notion of accuracy vs. efficiency

tradeoffs.

8 Reprise: Why Study Games?

The opening section of this thesis discussed some early motivation underlying the
mathematical study of games. The original idea was that since games are sim-
ple models of decision-making, understanding games should help us understand
decisions. From that point on the general problem was essentially ignored, and

only game playing was discussed. Nevertheless, the results in this thesis were all

108

done with an eye towards eventual extensibility; additional domain knowledge
was brought into play only as a means of implementing the model efficiently. The
expected-outcome model focused on the least satisfactory aspect of the current
theory of two-player games, namely the static evaluator. The resultant model im-
mediately lifted the design of static evaluators from a domain-dependent, game-
by-game task, to one which is well defined for a large class of game—t.rees. The
ease with which the implications drawn on (d, b, f)-trees (section 5.1) transferred
to actual game-trees in tic-tac-toe, Othello, and chess (section 5.2), makes it
reasonable to expect them to be applicable to more complex domains as well.
The redefinition of game-trees as probabilistic data structures suggests re-
thinking many of the basic assumptions that have governed the fields of game
programming and heuristic search theory. In game-trees, a distinction was no-
ticed between leaves, which had definite set values, and internal nodes, whose
values were characterized by random variables instantiated at one of the leaf val-
ues beneath them. Looked at in a more general context, the leaves can be viewed
as members of a small class of “stable” states with easily assessable values. All
other states are “unstable,” and will take on actual values only when a stable
state is reached. Given a rigid set of rules describing the passage through the
state-space from that point on, (e.g. perfect play), unstable states can be as-

signed exact values as well. In a probabilistic setting, however, there is no reason

109

to do so. Weaker assumptions governing the behavior of agents in the domain
make the values of these internal nodes indeterminate, yet predictable. In this
way, the concepts developed on game-trees should extend to more complex search
spaces.

In the long run, then, these techniques may be applicable to a broad class
of real world problems: those that can be represented usefully in a state-space
formalism, contain a small class of states whose values are easily recognizable
and can be accurately assessed, and have a (relatively small) finite set of “rea-
sonable” operators (although most real-world problems have infinite, or at least
very large, branching factors, many potential operators can frequently be ruled
out). Hopefully, future analyses will build on the results presented here, and help
expand our understanding of decisions (and our ability to mechanize them) from

strictly simple domains into more complex ones.

References

[Abr86a)] Bruce Abramson. Control Strategies for Two-Player Games. Technical
Report, Columbia University, May 1986.

[Abr86b] Bruce Abramson. An explanation of and cure for minimax pathology.
In Laveen Kanal and John Lemmer, editors, Uncertainty in Artificial
Intelligence, North Holland, 1986.

[BB86] Subir Bhattacharya and Amitava Bagchi. Making best use of avail-
able memory when searching game-trees. In Proceedings of the fifth
National Conference on Artificial Intelligence, 1986.

[BCG82]
[BES36]
[Bea80]

[Ber73)

[Ber79]

[Ber81]

[Bot84]
[Bra80]

[CK86]

[CMs3]

[CNs6]

[CN87]

[CTs2]

110

Elwyn Berlekamp, John H. Conway, and Richard K. Guy. Winning
Ways. Academic Press, 1982. In two volumes.

Hans Berliner and Carl Ebeling. The suprem architecture: a new
intelligent paradigm. Artificial Intelligence, 28:3-8, 1986.

D.F. Beal. An analysis of minimax. In M.R.B. Clarke, editor, Advances
in Computer Chess 2, Edinburgh University Press, 1980.

Hans J. Berliner. Some necessary conditions for a master chess pro-
gram. In Proceedings of the 3rd International Joint Conference on
Artificial Intelligence, pages 77-85, 1973.

Hans Berliner. The b* tree search algorithm: a best-first proof proce-
dure. Artificial Intelligence, 21:23-40, 1979.

Hans J. Berliner. An examination of brute force intelligence. In Pro-
ceedings of the 7th International Joint Conference on Artificial Intel-
ligence, pages 581-587, 1981.

M.M. Botvinnik. Computers in Chess: Solving Inezact Search Prob-
lems. Springer-Verlag, 1984. trans. A. Brown.

M.A. Bramer. Correct and optimal strategies in game playing pro-
grams. The Computer Journal, 23:347-352, 1980.

Jens Christensen and Richard Korf. A unified theory of heuristic eval-
uation functions and its application to learning. In Proceedings of the
fifth National Conference on Artificial Intelligence, 1986.

M.S. Campbell and T.A. Marsland. A comparison of minimax tree
search algorithms. Artificial Intelligence, 20:347-367, 1983.

Ping-Chung Chi and Dana S. Nau. Predicting the performance of
minimax and product in game-tree searching. In Proceedings of the
2nd Workshop of Uncertainty in Artificial Intelligence, pages 49-55,
1986.

Ping-Chung Chi and Dana S. Nau. Comparing minimax and product
in a variety of games. In Proceedings of the sizth National Conference
on Artificial Intelligence, 1987.

J.H. Condon and K. Thompson. Belle chess hardware. In M.R.B.
Clarke, editor, Advances in Computer Chess 3, Edinburgh University
Press, 1982.

(EH63]

[Fel57)

[FGGT3]

[Fre80]

[Gri74]

[KM75)

[Lev76]

[MagT79]

[MC82]

[Nau82a]

[Nau82b]

[Nau83a]

[Nau83b]

[NewT5]

[Nil80]

111

D. Edwards and T. Hart. The Alpha-Beta Heuristic. Technical Re-
port 30, MIT AI Memo, October 1963. Originally published as the
Tree Prune Algorithm, Dec. 1961.

William Feller. An Introduction to Probability Theory and Its Appli-
cattons. John Wiley and Sons, 1957.

S. Fuller, J. Gaschnig, and J. Gillogly. Analysis of the Alpha-Beta
Pruning Algorithm. Technical Report, Carnegie-Mellon University,
1973.

Peter W. Frey. Machine othello. Personal Computing, 89-90, 1980.

A.K. Griffith. A comparison and evaluation of three machine learning
procedures as applied to the game of checkers. Artificial Intelligence,
5:137-148, 1974.

Donald E. Knuth and Ronald W. Moore. An analysis of alpha-beta
pruning. Artificial Intelligence, 6:293-326, 1975.

David Levy. Chess and Computers. Computer Science Press, Inc.,
1976.

Peter B. Maggs. Programming strategies in the game of reversi.
BYTE, 4:66-79, 1979.

T.A. Marsland and M. Campbell. Parallel search of strongly ordered
game trees. Computing Surveys, 14:533-551, 1982.

Dana S. Nau. An investigation of the causes of pathology in games.
Artificial Intelligence, 19:257-278, 1982.

Dana S. Nau. The last player theorem. Artificial Intelligence, 18:53—
65, 1982.

Dana S. Nau. Decision quality as a function of search depth on game
trees. JACM, 30:687-708, 1983.

Dana S. Nau. Pathology on game trees revisited, and an alternative
to minimax. Artificial Intelligence, 21:221-244, 1983.

Monroe Newborn. Computer Chess. Academic Press, 1975.

Nils J. Nilsson. Principles of Artificial Intelligence. Tioga Publishing
Company, 1980.

[NM44]

[NPTS3]

[Pea80]

(Pea8l]

[Pea82)
[Pea83]
[Pea84]

[Rab76)

[RB83]

[Ric81]

[Ric83]
[Riv86]

[Ros82)

[RP83)

112

John Von Neumann and Oskar Morgenstern. Theory of Games and
Economic Behavior. Princeton University Press, 1944.

Dana S. Nau, Paul Purdom, and Chun-Hung Tzeng. Ezperiments on
Alternatives to Minimaz. Technical Report, University of Maryland,
October 1983.

Judea Pearl. Asymptotic properties of minimax trees and game-
searching procedures. Artificial Intelligence, 14:113-138, 1980.

Judea Pearl. Heuristic search theory: a survey of recent results. In
Proceedings of the 7th International Joint Conference on Artificial In-
telligence, pages 24-28, 1981.

Judea Pearl. The solution for the branching factor of the alpha-beta
pruning algorithm and its optimality. CACM, 25:559-564, 1982.

Judea Pearl. On the nature of pathology in game searching. Artificial
Intelligence, 20:427-453, 1983.

Judea Pearl. Heuristics: Intelligent Search Sirategies for Computer
Problem Solving. Addison Wesley, 1984.

M. O. Rabin. Probabilistic algorithms. In J.F. Traub, editor, Algo-
rithms and Complezity: New Directions and Recent Results, pages 21—
39, Academic Press, 1976.

Andrew L. Reibman and Bruce W. Ballard. Non-minimax search
strategies for use against fallible opponents. In Proceedings of the 8th

International Joint Conference on Artificial Intelligence, pages 338—
342, 1983.

R. Richards. The revised usoa rating system. Othello Quarterly,
3(1):18-23, 1981.

Elaine Rich. Artificial Intelligence. McGraw Hill, 1983.

Ronald L. Rivest. Game Tree Searching by Min/Maz Approzimation.
Technical Report, MIT Laboratory for Computer Science, July 1986.

Paul S. Rosenbloom. A world-championship-level othello program. Ar-
tificial Intelligence, 19:279-320, 1982.

Igor Roizen and Judea Pearl. A minimax algorithm better than alpha-
beta? yes and no. Artificial Intelligence, 21:199-220, 1983.

[Sam63]

[Sam67]

[Sch77]

[SD69]

[SD70]

[Shas0]

[Ste83]

[Sto79]

[Win77

113

A.L. Samuel. Some studies in machine learning using the game of
checkers. In E. Feigenbaum and J. Feldman, editors, Computers and
Thought, McGraw-Hill, 1963.

A.L. Samuel. Some studies in machine learning using the game of
checkers ii — recent progress. IBM J. Res. Dev., 11:601-617, 1967.

J.H.F. Schilderinck. Regression and Factor Analysis in Econometrics.
Martinus Nijhoff Social Disease division, 1977.

James R. Slagle and John K. Dixon. Experiments with some programs
that search trees. JACM, 16:189-207, 1969.

James R. Slagle and John K. Dixon. Experiments with the m & n
tree-searching procedure. CACM, 13:147-154, 1970.

Claude E. Shannon. Programming a computer for playing chess. Philo-
sophical Magazine, 41:256-275, 1950.

Stephen L. Stepoway. Reversi: an experiment in game-playing pro-
grams. In M.A. Bramer, editor, Computer Game Playing: Theory and
Practice, Ellis Horwood Limited, 1983.

G.C. Stockman. A minimax algorithm better than alpha-beta? Arti-
ficial Intelligence, 12:179-196, 1979.

P.H. Winston. Artificial Intelligence. Addison Wesley, 1977.

114

A Standard Evaluation Functions

The evaluation function used for tic-tac-toe is rather simple. Each line (row,
column, and diagonal) on the board represents a potential win. A line is open to
a player if his opponent has no marks in it. The open-lines-advantage evaluation

function for position T, OLA(T), is given by:

oo if T is a win for X
OLA(T)=(—o© if T is a win for O
OPEN7T(X)—- OPENT(O) otherwise

where OPEN71(Player) = the number of lines open to Player in T.

This function was used in [Nil80] to demonstrate issues related to minimax search
and static evaluation. It has an intuitive appeal, and works rather well when
combined with lookahead. On 3-by-3 tic-tac-toe, a one ply lookahead is ‘sufﬁcient
to force a DRAW, which is, in fact, the outcome of the game when both players
are perfect. Examples of this function on 3-by-3 and 4-by-4 boards can be found
in figure 8.

The function used for Othello is a bit more complex. The basis of a weighted-
squares strategy is the realization that not all squares on the board are of equal
value; edge squares are less likely to be flipped than squares in the center, and
corner squares will never be flipped at all. Squares immediately adjacent to the

corner, on the other hand, are frequently detrimental to the player moving there

0
0 X
X x| o
X
OPENr(X)=5 OPEN7(X)=35
OPEN7(0) =2 OPEN7(0) =5
OLA(T)=(5—-2)=3 OLA(T)=(5-3)=0
(a) (b)

Figure 8: This was the standard expert-designed evaluator used in the tic-tac-toe tests.

An example is shown on both 3-by-3 (a) and 4-by-4 (b) boards.

116

first, because they allow the other player to take the corner. Once the corner has
been taken, however, they lose that special status. Weighted-squares strategies
have been discussed in the literature and implemented in many programs [Mag79]
[Ste83]. The function used for 8-by-8 Othello is a weighted-squares strategy,
based on the one presented in [Mag79], and modified to account for my personal
experience with the game. Although it is not immediately clear how the 8-by-
8 function should be applied to smaller boards, the convention chosen was to
consider squares based on their locations with respect to the corners. The values
for each square are shown in figures 9 and 10. Note that the large numbers were
retained because they were not derived scientifically in the first place. Thus,
although the 64 in the corners came from the number of squares on an 8-by-8
board, there is no reason to believe that it is not equally reasonable for corners
on a smaller board as well. Leaves were recognized when neither player was able
to move, (this occurs trivially when the board is full), and classified as WINs,

LOSSes, or DRAWSs as dictated by the final score.

64 | 5-30] 10| 5 5 10 | 5,-30| 64
5-30| -2,-40 -3 -3 3| -3 | -2,-40 5,-30
10 | -3 2 1 1 2 -3 10
5 -3 1 1 1 1 -3 5

5 -3 1 1 1 1 -3 5

10| -3 2 1 1 2 -3 10
5-30] -2,-40 -3 -3 3| -3] -2,-4q 5,-30
64 | 5-30| 10| 5 5 10 | 5,-30] 64

Figure 9: The expert-designed weighted squares function for 8-by-8 Othello.

117

118

64 | 5,30 10 | 10 | 5,30 64 64 | 5,-30| 5,-30| 64
5-30| -2,-40 -3 3 | -2,-40 5,-30 5-30| -2,-40 -2,-4d 5,-30
10| -3 2 2 3| 10 5-30| -2,-40 -2,-40 5,-30
0] 3| 2 2 3| 10 64 | 5,-30| 5,-30| 64
5-30 240 -3 | -3 | -2,-40 5,-30 (b)

64 | 5-30| 10 | 10 | 5,-30| 64

(a)

Figure 10: The expert-designed weighted squares function given in figure 9, reduced to

(a) 6-by-6, and (b) 4by-4 Othello.

119

B The Random Sampler

The experiments described in sections 5.2.2 and 5.2.3 used a random sampler
to estimate expected-outcome values. This section outlines the sampler’s imple-

mentation in C-like pseudocode.

/* This function generates random paths, determines leaf
values, and estimates the expected-outcome value of
an input board */

int Estimate(Board)

/* First, initialize variables. Set the WIN, LOSS, DRAW,
and LEAF tallies to 0, indicate that no estimate has
been converged to, and start with an initial guess
of -1. Set the initial sample size, and search the
appropriate number of paths. */

WINS = LOSSES = DRAWS = LEAVES = O;
estimate = -1; convergent = *N’;
samplesize = 16; /* Essentially arbitrary. I used 16. */
wvhile (the estimate has not converged) {

wvhile (samplesize has not been reached) { /* Keep going */

while (not at a leaf) {
/* Find all legal moves, and randomly choose one. */
options = the number of legal moves;

if (options != 0) randomly choose a move;
} /* End of the path */
LEAVES++; if (Black won) WINS++;

if (White won) LOSSES++; if (Draw) DRAWS++;
} while (LEAVES < samplesize);

/* Either project the expected-outcome value over a fixed
number of games (to avoid floating-point math), or
Tepresent it as a real number. Any of the formulations
mentioned in section 5.2.3’s discussion of chess

120

can be used. */

_previous = estimate;
estimate projected expected-outcome value over 1024 games;

/* If the difference between the previous and current
estimates is within the tolerable error bounds, an
estimate has been converged to. Otherwise, double the
sample size, and continue. */

if (lestimate-previous| <= Tolerable) convergent = ’Y’;
else {pass *= 2; tries++;}
} /* End of pass. Start over */
return(estimate) ;
} /% End Function Estimate */

