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Abstract 
This paper proposes an exploration method for robots 
equipped with a set of sonar sensors that does not 
allow for complete coverage of the robot’s close 
surroundings. In such cases, there is a high risk of 
collision with possible undetected obstacles. The 
proposed method, adapted for use in urban outdoors 
environments, minimizes such risks while guiding the 
robot towards a predefined target location. During the 
process, a compact and accurate representation of the 
environment can be obtained. 
 
1. Introduction 
The problem of autonomous obstacle avoidance in  
unknown, or partially known environments using 
only sonar sensors for perception has been 
extensively studied by using robots well adapted to 
sonar sensing, often equipped with a complete ring of 
sonars, covering as many as 16 sensing directions 
around the robot. These approaches may be 
unsuitable for large robots equipped with relatively 
few sonars.  
  
The most important shortcomings of the sonar sensor 
are well known: inaccuracy in establishing the 
azimuth location of a detected obstacle and non-
detection of obstacles intersected by the sonar beam 
at an angle far enough from perpendicular. The usage 
of a small number of sensors on a large robot greatly 
emphasizes the latter: at any given time, only few 
sensing directions are covered, increasing the 
possibility for undetected obstacles. In this document, 
we will discuss the case of a large robot equipped 
with a sparse sonar array, covering only 6 sensing 
directions. We propose an exploration method that 
minimizes the risk of collision by taking advantage of 
the characteristics of a man made outdoor 
environment. 
 
2. Previous work 
Due to its low cost, the sonar is a popular sensor for 
autonomous robot navigation and the study of its use 
has lead to numerous results ranging from modeling 
the response of a single sensor or combining multiple 
readings for improved azimuth accuracy to using 
probabilistic techniques for mapping and localization 
in complex environments. 
 

A large fraction of the work on modeling sonar range 
returns concentrates on improving the azimuth 
accuracy of the readings [2][4][8]. There are multiple 
reasons for this focus. First, the testing environment 
is usually indoors, of small size and cluttered with 
small obstacles, in which case very precise mapping 
of features such as edges and corners is required. 
Second, non-readings due to angled reflections are 
not a factor due to a complete sensing array around 
the robot. 
 
The issue of using a sparse array of sonars in a large 
environment is substantially different. The 
importance of azimuth accuracy is strongly 
diminished, since it is used for correcting errors that 
are one order of magnitude smaller than the size of 
the robot and up to two orders of magnitude smaller 
than the total size of the obstacle. As mentioned 
before, while the importance of azimuth accuracy is 
diminished, the importance of non-detection due to 
wide angles is strongly increased. 
 
Another way of interpreting range data, closely 
related to the method presented in this paper is the 
extraction of lines from sets of 2-D points. 
McKerrow proposes in [1] a technique that uses any 
two sonar readings along the same direction whose 
arcs accept a common tangent. For our exploration 
method, we do not rely on the fact that two displaced 
readings of the same obstacle will be available at any 
given time, and displacing the robot for obtaining 
another reading cannot be safely done until the 
orientation of the obstacle has been detected. 
Furthermore, using just two sonar readings, this 
method is susceptible to strong influence by noise. 
Other proposed methods of line extraction from range 
data are more robust, using more available readings 
[5][6]. It is important to note that most of these 
results are subsequently used to solve the localization 
problem in indoors environment. The goal is 
therefore to extract very accurate lines using range 
data, and the sensor of choice is almost always a laser 
range finder, providing higher accuracy and 
dependability than the sonar. Our method uses line 
fitting to range data for the more immediate goal of 
creating a collision-free path around an obstacle. 
 
As simultaneous mapping and localization is a highly 
active research area, a number of successful and 



robust methods have been found; many of them are 
probabilistic in nature and do not rely on explicit 
feature extraction from range data. For a survey and 
classification of these methods, we refer the reader to 
[7]. Most often, experimental robots make use of a 
full ring of sonars. Furthermore, the mapping and 
localization problem is often separated from 
exploration, which is the situation in which the robot 
needs to make its own decision on choosing 
movement directions. The uncertainty introduced by 
the lack of reliable data on the immediate 
surroundings prevents using these techniques and 
necessitates focus on the lower level problem of 
minimizing the risk of collision. 
 
3. Detecting and matching obstacle orientation 
As mentioned before, the first priority of this method 
is deciding on a movement direction that minimizes 
chances of collision. What causes this problem is the 
fact that few sensors are available to monitor the area 
directly in front of the robot, therefore this area is 
sensed under a very limited number of different 
orientations. Further complicating the problem is the 
fact that planar surfaces, such as walls, are abundant 
in a man-made environment, and cannot be detected 
if the angle of the beam is not close to perpendicular 
on the orientation of the wall. 
 
The situation described in figure 1.a. assumes a sonar 
array oriented under 5 different angles, three of them 
pointing in front of the robot and one to each side. 
Possible obstacle orientations are shown, 

differentiated by sonar detection: green obstacles can 
be detected by the front sonars, blue ones are only 
seen by a side sonar while red ones are completely 
undetected. We infer two results: the number of 
totally undetected obstacles is relatively small, but 
not insignificant, while information gained from the 
side sonar needs to be used to make assumptions 
about possible obstacles located in front of the robot. 
 
Another problematic situation is depicted in fig 1.b. 
The robot detects an obstacle directly in front and 
tries to take an avoiding direction. The most obvious 
method involves turning until front sensors show a 
clear path and advancing, which will almost certainly 
result in a collision. 
 
The solution is detecting the exact orientation of the 
wall and planning a course that is parallel to it. In the 
case of obstacles detected only by a side sonar, 
determining its exact orientation and matching it will 
eliminate the risk of frontal collision (figure 1.c). 
Furthermore, it will permit maintaining a strong 
contact with the wall through the side sonar whose 
beam is now perpendicular on it. In the case of a 
frontal obstacle, an avoiding path that is parallel to it 
will again be the safest one (figure 1.d.). The use of a 
side sonar that is perpendicular on the wall will give 
a good reading on when it is safe to “turn the corner”. 
 
The case of possible undetected obstacles (depicted 
in red in figure 1.a.) requires further details. While 
this method cannot completely eliminate this risk, it 

Figure 1. (a) Possible obstacle orientations in relation to the sonar sensor; the green wall is detected by the front
sonars, the blue wall is detected only by the side sonar, the red wall is not detected. (b) Naïve avoidance method
results in collision as robot turns until no sensor can detect the wall. (c) Side sonar is used to correct a path that
would lead to collision with a wall not detected by a front sonar. (d) Correct avoidance method: when an
obstacle is detected the robot plans a path that is parallel to the obstacle 



substantially lowers it taking advantage of the 
environment characteristics. Most man-made 
structures are practically entirely composed of 
perpendicular or parallel outer walls. If the direction 
of movement is parallel to a wall, it is very likely that 
a next possible obstacle will be perpendicular on it, 
increasing chances of detection. The general rule that 
guides this method is that whenever an obstacle is 
detected, a path that is parallel to the orientation of 
the obstacle must be chosen. This will not only 
minimize the chance of frontal collision but also 
allow for a strong contact with the obstacle using side 
sonars. 
 
The method used for determining the orientation of 
an obstacle consists of using the Hough transform for 
fitting a line to sonar returns obtained while the robot 
is turning to achieve a parallel orientation. As the 
robot turns, more readings are obtained and the 
orientation of the obstacle is continuously refined. 
The precision of the final result is in most cases 
within 5 degrees. It is important to note that a larger 
error, sometimes possible due to the nature of the 
wall or imprecise sonar returns will not likely lead to 
a collision, as it will be in most cases detected and 
corrected by a side sonar, whose beam is now in 
contact with the wall. 
 
4. Mapping and Path Planning 
Using the method discussed above, we now focus on 
the greater goal, of planning a path to a final 
destination. With this purpose, a map of all 
previously detected obstacles must be maintained and  
path planning function must make use of all the 
information. 
 
4.1 Obstacle representation 
In our representation, numerous line segments are 
used to approximate any obstacle. More precisely, 
whenever the robot will sense an obstacle, it will 
accurately detect its orientation as well as distance 
from the robot. It will then place on the map a 
segment characterized by that particular position and 
orientation. The length of a segment is arbitrary, 
since the robot has no way of knowing the span of the 
obstacle, at that time. A compromise value must be 
used, since longer segments will imply worse 
approximations of actual obstacles as well as over 
conservative paths around them, while shorter 
segments will necessitate stopping for measurements 
more often. 
 
Representing all obstacles by line segments has 
obvious limitations, since irregular or round shapes 
will not be closely approximated. In a man-made 
outdoors environment however, planar and almost 
planar surfaces are predominant. Small irregularly 

shaped obstacles will also be approximated as planar 
surfaces, but the only drawback is that a more 
conservative path around will be planned, a minor 
drawback compared to the greater task of avoiding 
walls and buildings. 
 
As opposed to the popular occupancy grid model, a 
segment-based map is extremely compact and well 
suited for use in large environments. An occupancy 
grid approach involves a tradeoff: large cells imply 
loss of resolution, already limited by usage of sonars, 
while smaller cells are computationally expensive to 
handle in the case of large maps. The segment 
representation allows the usage of maximum 
resolution of the sonar sensor, while being compact 
enough for representing very large regions.  
 
4.2 Path planning 
The goal of the path planning function is to re-
compute a safe path to a goal whenever the obstacle 
map is updated. Our exploration method prevents the 
use of efficient grid-based re-planning algorithms, 
such as D* ([3]). The reason is the robot needs to be 
allowed to plan a path that is parallel to an obstacle, 
while grid-based algorithms limit possible movement 
direction to neighboring cells. Using framed 
quadtrees, described in [9], instead of a conventional 
uniform grid allows for many angles of direction in 
unoccupied areas, while in the vicinity of obstacles 
movement is still restricted. 
 

 
 
Figure 2. (a) Initial path to goal. (b) Side sonar 
detects an obstacle; a new path is generated in order 
to avoid frontal collision. (c) Side obstacle is still 
detected, a new segment is added to its 
representation. (d) A frontal obstacle is now detected, 
waypoints are added in order to avoid it 
 
Since a path that is parallel to an obstacle is often 
required, we model the chosen path in a similar way 
to obstacles, through line segments. The path is 
defined by a number of waypoints and any new 
obstacle (or extension of a previously known 



Figure 3. 

obstacle) is handled by adding new waypoints that 
take the robot around it. Whenever a new obstacle 
segment is placed on the map, the path planner will 
decide whether it is to be avoided by turning left or 
right and adds waypoints accordingly. The result is 
depicted in figure 2. while further implementation 
details can be found in B. 
 
5. Experimental results 
Experimental test runs have been conducted in an 
outdoors environment dominated by man-made 
structures such as buildings, pillars and fences. The 
obtained results are depicted in figures 3 and 4. For 
each run, figure a. shows a 2-dimensional map of the 
test area, as well as the start and goal points chosen 
for the robot. Figure b. shows the obstacles detected 
by the robot during exploration as well as the traveled 
path. 
 
In both cases the goal point was set in a way that 
would require extensive exploration of the building 
facades. The robot correctly re-planned the path to 
the goal while moving along walls, without colliding 
with any obstacle. Smaller obstacles such as 
mailboxes and air conditioning units (shown in the 2-
D map of the area) were also correctly avoided. The 
tests showed that our method is indeed reliable for 
exploration in such environments and is able to 
handle large obstacles such as buildings with a very 
low risk of collision.  
 
 
6. Further possibilities – localization through 
mapping 
The general advantages of line-based map 
representation are summarized in [6]. Replacing point 

maps by line segments is a highly effective form of 
compression. Further compression is possible by 
merging similar segments, using a method like the 
one shown in [6]. For structured environments, 
segments form a more accurate representation of the 
actual obstacles and noisy and inaccurate readings are 
also filtered out by this method..  
 
All of these characteristics can be found in obstacles 
maps generated through our exploration method. This 
is a direct result of the features of the outdoors 
environment, as large buildings dominate the 
landscape. In the case of an incorrect line fit leading 
to a robot orientation that is not parallel to the wall, 
the estimation is corrected as soon as side sonars 
discover the error, and the presence of a small 
number of incorrectly oriented segments does not 
heavily effect the representation of the whole 
building. In the case of a correct estimate, the pose is 
maintained along the entire length of the wall, since a 
correct parallel path is planned, leading to a correct 
representation. 
 
The result, in the absence of accumulating odometry 
errors, is the one seen in figure 4b. It represents a 
compact, yet accurate representation of the region. A 
mapping heavily influenced by odometry errors can 
be seen in figure 3b. As we have mentioned, parallel 
and perpendicular lines are predominant in the 
chosen environment type, making the accumulation 
of odometry error detectable through the presence of 
angles close but not equal to 0 or 90 degrees. Future 
work will include using such results for pose 
correction or global localization. 
 
 

Figure 4. 



7. Conclusion 
We have presented an exploration method for large 
robots sparsely equipped with sonar sensors 
operating in a man shaped outdoors environment, 
dominated by planar surfaces such as walls or fences. 
By continuously approximating the orientation of 
encountered obstacles and planning a path that is 
parallel to them, our method minimizes the risk of 
collision with undetected obstacles. During the 
process a compact mapping of the encountered 
obstacles is obtained and can be applied to correcting 
pose errors or solving the global localization 
problem. 
 
A. Using the Hough transform to detect obstacle 
orientation 
The proposed algorithm for detecting an obstacle’s 
orientation assumes approximating multiple sonar 
returns with a line. The final result is the position 
(distance from the robot) and orientation of the 
obstacle. The method used for approximation is the 
Hough transform. 
 
While the method described in this paper focuses on 
situations where little data is available on the 
immediate surroundings, the line-fitting algorithm 
requires multiple readings on the same obstacle. This 
data is obtained while the robot is turning in order to 
avoid the obstacle, motion that is necessary 
regardless of the used algorithm. As the robot turns, 
new data is continuously added, refining the estimate 
of the obstacle orientation. One of the main 
advantages of the Hough transform is that improving 
an estimate by adding new data is not 
computationally expensive as it does not involve a 
recomputation “starting from scratch”: the new data 
is simply added to the Hough space and a new 
maximum is found. 
 
The usage of the Hough transform also has 
shortcomings. This method will find the line that best 
fits as many points as possible and all other points 
will have no effect on the final result; this behavior 
can lead to imperfect results for our exploration 
method. We have chosen to use it mainly because of 
the computational advantage described above and for 
its simplicity – due the nature of our exploration 
method better precision is in most cases not required 
as incorrect fits are corrected while the robot follows 
the path around the obstacle. The usage of other line 
extraction methods, such as the ones shown in [5] 
and [6], can also be explored. 
 
B. Recursive path-planner for obstacles 
approximated by segments 
The simple path planner previously described might 
fail in cases where a path around the newly 

discovered obstacle can not be found because of 
previously discovered walls. In such a case the path 
planner will look for a way around by going around 
many segments in a recursive fashion: 
 

1. If path intersects segment 
1. Increase path length 
2. Check if segment can be avoided on left side 
3. If new path intersects another segment 

1. Call path planner for path on the left side 
2. Value returned is length of path to the left 

4. Check if segment can be avoided on right side 
5. If new path intersects another segment 

1. Call path planner for path on the right side 
2. Value returned is length of path to the right 

6. Return shortest path (left or right) 
2. Else return 

 
This recursive path planner will eventually search the 
entire tree of possible paths and return the path that 
goes around the smallest number of obstacles (not 
necessarily the shortest in Euclidian distances). While 
the path planner is very stable and will return a 
correct path in most encountered cases, the depth of 
the search has been artificially limited, in order to 
avoid infinite searches. For this reason the path 
planner might fail when trying to find the way out of 
a bottleneck in a very cluttered map. Improving 
search speed and allowing for deeper searches will 
alleviate the problem but not eliminate it. Further 
refinements of this method should therefore also 
focus on improving the path planning function.  
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