Two Lower Bounds In
Asynchronous Distributed Computation

Pavol Duris, Zvi Galil

Technical Report
CUCS-304-87

Two Lower Bounds in Asynchronous Distributed Computation

Pavol Duris

Slovak Academy of Sciences

and

Zvi Galil*
Columbia University

and Tel-Aviv University

* The work of the first author was supported in part by NSF Grants DCR-85-11713 and

CCR-86-05353.

Abstract

We introduce new techniques for deriving lower bounds on message complexity in
asynchronous distributed computation. These techniques combine the choice of specific
patterns of communication delays and crossing-sequence arguments with consideration
of the speed of propagation of messages, together with careful counting of messages in
different parts of the network. They enable us to prove the following results, settling two

open problems:

— An Q(nlog™ n) lower bound for the number of messages sent by an asynchronous al-
gorithm for computing any non-constant function on a bidirectional ring of n anonymous

processors.

— An Q(nlog n) lower bound for the average number of messages sent by any maximum-

finding algorithm on a ring of n processors, in case n is known.

0. Introduction

Consider the following model. We have a bidrectional asynchronous anonymous ring
of n processors ([1],[5]). There is no leader among the processors. All processors run the
same program, which may depend on the size of the ring. All processors compute the
same function f: X" — {0,1}, where T is an arbitrary finite alphabet. The input of each
processor is a letter of X, and the processors compute f(z), where z is the concatenation
of the n inputs beginning with any processor on the ring. We assume that for every
input z € E" and for any possible pattern of communication delays (or scheduling of the
messages sent) all the processors eventually stop. Upon termination all processors are in
one of two states: either they all accept (which corresponds to f(z) = 1) or they all reject

(which corresponds to f(z) = 0).

In [1] Attiya, Snir and Warmuth considered the following function: f(z) =1ifzisa
cyclic shift of a string in 0(01)* and is 0 otherwise. They showed that if n, the size of the
ring, is assumed to be odd, then the function can be computed in O(n) messages. Similar
non-constant functions computable in O(n) messages can be defined if the size of the ring
is assumed to have any fixed constant non-divisor. They left as an open problem whether
a similar result can be obtained without restrictions on the size of the ring. In [5] Moran
and Warmuth defined a non-constant function and proved that its message complexity is
at most O(n log® n). Our main result answers the open problem in [1] in the negative and

shows that the upper bound in [5] is best possible:

Theorem 1. Letn=m!, m > 1. If f: £" — {0,1} is a non-constant function, then any
asynchronous algorithm for computing f on a bidirectional ring of n anonymous processors

requires at least (nlog” n) messages in the worst case.

In [5], Moran and Warmuth showed that any non-constant function requires Q(n log n)
bits on an anonymous ring of size n, while it is easy to construct non-constant functions
with O(nlogn) bit complexity on such a ring. They refer to this phenomenon as a gap in
complexity between constant and non-constant functions. (When the function is constant
the bit complexity is 0.) They also left open the question whether a gap exists when we
consider the message complexity. Their lower bound techniques were not sufficient for
establishing the gap which Theorem 1 exhibits. Theorem 1 deals with the more general
setting that allows general messages. Moreover the result in [5] did not exclude the possi-
bility of O(n) message complexity of non-constant functions. For example, the algorithm
of [1] mentioned above has O(n) message complexity but ©(nlogn) bit complexity.

In Section 1 we prove Theorem 1. Our arguments consider the speed of propagation
of certain messages as well as crossing sequences (i.e. cut and paste) and specific choices

of communication delays to fool the algorithm and derive a contradiction.
Our second main result concerns the problem of maximum-finding on a ring of proces-

2

sors, which is one of the basic problems in distributed computation. Its solutions are used
as building blocks in other more complicated algorithms. It has been studied quite exten-
sively. We consider a ring of n processors pi, p2,...,Pn, and let L = {s1,82,...,5m} be a
set of labels (distinct integers). Assume that for i = 1,...,n, p; is labeled by r; € L and
every two processors are labeled by distinct labels. We consider asynchronous message-
driven algorithms in which all processors start simultaneously, the communication channels
are first-in first-out, and all processors eventually stop after computing the maximum label
(see [6])-

There are two different versions of the problem, depending on whether or not n is
known to the processors. Also, one can consider the worst-case message complexity or the
average message complexity. In the latter case we average the message complexity over
all possible distinct label assignments to the n processors. For each such assignment we
consider the worst pattern of communication delays. Consequently, we have four cases to
consider. There is yet another distinction between unidirectional and bidirectional rings,
but similar results were obtained for both subcases: usually lower bounds are proved in
the bidirectional case and upper bounds for the unidirectional case. This distinction is

only important for determining the best constants in the bounds.

O(nlogn) upper bounds for all four cases have been known for some time (see for
example [4],[7]). Burns [3] and Pachl, Korach and Rotem [6] proved f2(nlogn) lower
bounds in all cases but one. Their techniques did not suffice for determining the average
message complexity in case n is known, and no nontrivial (nonlinear) lower bound was
known. Bodlaender [2] proved an Q(nlogn) lower bound for unidirectional algorithms

which use only comparisons between labels. Our second result completes the picture:

Theorem 2. If the label set L is sufficiently large, then any maximum-finding algorithm
for a bidirectional ring of size n labeled by L in which the processors know n has average

message complexity at least {2(nlogn).

In Section 2 we prove Theorem 2. We choose two types of specific communication
delays: the first lead to contradiction by forcing the algorithm to terminate without the
correct answer, and the second force the algorithm to send many messages needed for the
desired lower bound. The proofs also use arguments that consider the speed of propagation
of certain messages, as well as a special way of counting the messages in different parts of

the ring.

1. The Proof of Theorem 1

For convenience we denote the anonymous processors by py, p2,...,pn. (Processor p;
does not know i.) Without loss of generality we assume that the ring R of size n = m! is
oriented, i.e. all processors in it agree on the same “right” and “left” directions. Consider
an algorithm A which computes a non-constant function f on the ring R (where both
are arbitrary but fixed). For input w = wyw;...w, we choose a particular pattern of
communication delays: All processors start at time zero, internal computations take no
time and links are “synchronized”; i.e., it takes one unit of time to traverse the link.
Therefore we can speak of time 0,1,2,... in the computation of A on w. Recall that
n = m! and assume first that m > 192.

In the proof we use the notion of a “segment” of the ring R and the notion of a
“crossing sequence” at a link of R. For 1 < ¢ < j < n, the segment [i,j] consists of
the processors pj, pit+1,...,p; and all the links associated with them including the first
(leftmost) and last (rightmost) links. A segment is a segment [i, j] for some 1 < i < j < n.
The length of a segment s = [i,j] is |s| = j — i + 1 and the input to s is the string
WiWit ... Wj.

Let M be the set of all possible messages and let ¢ ¢ M denote the empty message
(not counted in the message count). The crossing sequence at a link b until time 7 > 0 is a

pair (r,1), 7,1 € (M U {e})T*!, where for 0 < ¢t < T, r, (/) is the message sent right (left)

4

on b at time t. If r, = [, = € we say that the link b is passive at time ¢ in the computation
of A on w. Otherwise we say that b is active. Note that in every time unit until every
processor halts at least one link is active.

The configuration of a processor p at time t > 0 in the computation of A on w is
the triple (¢, mp, mr) where g is the state of the processor p (running A) immediately
after performing its internal computation, and my (mpg) is the message (if there is any)
sent by p to the left (to the right) at time ¢ in the computation of A on w; if there is
no such message then my (mpg) is e. The configuration of a segment [z, j] at time ¢ > 0
in the computation of A on w is the (j — 7 + 1)-tuple (a;, ai+1,...,a;), where a; is the
configuration of p; at time ¢ in the computation of A on w for I =:,2+1,...,7.

The proof of Theorem 1 requires some lemmas. Lemma 1 follows by considering the

propagation speed of messages.

Lemma 1.

(a) Let 1, T,T' be positive integers such that 0 <i—T, i+ T <nand T < T'. If the link
connecting p; and p;4, is passive at every time ¢t = T, T+1,...,T" in the computation
of A on w, then the crossing sequence at this link until time 7" is uniquely determined
only by the string wi—T4+1wi—T+2 ... wi+T and by the algorithm A.

(b) Let 1<i< j<nandi+ 1< j— 1. If all processors of the segment [, j] are passive
at time t in the computation of A on w, then all processors of the segment [i + 1, j — 1]

are passive at time ¢ + 1.

Proof. (a) The proof is obvious for T = 1. Assume T > 2. First, observe that the
configuration of the segment [i — T+t +2,i+ T —t—1] at time t+ 1 in the computation of
A on w is uniquely determined by the configuration of the segment [i — T +t+1,i+ T — ¢]
at time ¢ and by A for every ¢t = 0,1,2,...,T — 2. Clearly, all these configurations are
determined by the configuration of [i — T + 1.7 + T] at time ¢t = 0, i.e. by the string
Wi—T41...WipT and by algorithm A. On the other hand, they uniquely determine the

-

o}

crossing sequence mentioned above until time T — 1. To complete the proof, note that the
link is passive after time T — 1 and until time T".

(b) The proof follows from the fact that if three consecutive links are passive at some
time in the computation of A of w, then the middle link is passive at the next time in the

computation of 4 on w.]

Corollary 1. Let 1 < 7 < n. If the link connecting p; and p;4; is active at time ¢,
then at least one link of the segment [i — I,7 + [+ 1] is active at time ¢ — | for every

/=0,1,2,...,min{t,i—1,n—1 — 1}.

Proof. Suppose that Corollary 1 is false and apply part (b) of Lemma 1 to derive a

contradiction. []

Corollary 2. Let 1 < j; < it < j; < n. If the link connecting p; and p;4; is active
at time ¢, then at least one link of the segment [j;,j2] is active at time ¢ — | for every

1=0,1,2,...,min{t,i — j1,j2 — i — 1}.

Proof. Observe that all links of the segment [— [,7 4+ ! + 1] are some links of the segment

(71, j2] for every 1 =0,1,2,...,min{t,i — j;, j — i — 1} and apply Corollary 1. []

Lemma 2. There is an input z € {0,1}" such that no processor of the ring accepts or

rejects before time n/4 in the computation of 4 on z.

Proof. We use the method of [1] or [5]. Consider the computation of 4 on input
0". The input is completely symmetric. All processors run the same algorithm and thus
are in the same state of the algorithm at any given time. At least one message is sent by
each processor at each time until some time T at which no message is sent. From now
on the processor cannot change any more due to new messages. Thus all the processors
terminate at time I after sending at least nT messages altogether. If T > n/4, then
the message complexity is at least n?/4, which is much more than we need. So assume

T < n/4—1. Since the function f is non-constant, there is an input z in {0,1}" such that

6

f(z) # f(0"). We will show that 2 has the desired property. Assume for contradiction
that there is a processor p; which terminates at time 7" < n/4 — 1 in the computation of
4 on z. Since the ring is invariant under circular shifts we may assume that j = T' + 1.
Now consider the computation of 4 on input z;02T*!, where z; is the prefix of z of length
n—2T—1>n/2 > 2T'+1. In this computation the processor p; terminates with the result

f(z) but the processor p,_T terminates with the result f(0"), which is a contradiction.

a
The next lemma requires the following definitions:
dy =4, dipq = 3d;2%, fori>1 (1)

T. = d;/4, fori> 1 (2)

Let k be the integer such that

dk S m < dk+1 (3)

Recall that n = m! and m > 192. Hence dy = 192 < m and k > 2. Theorem 1 will follow

from the following lemma.

Lemma 3. Let 1 i < k —1, let S be an arbitrary segment of length d;4+,, and let z be
the string of Lemma 2. Then there are at least |S|/12 messages sent in internal links of S

during the time period that starts at t = T; and ends at ¢ = T;4; — 1.

Proof. By (1) the segment S consists of b = 3 - 2% consecutive segments of length d;
which we denote by s,,32,...,55. We say that a segment s; is rich if there is a time
t, 2T; <t < Ti41, such that the middle link of s; was active at time ¢, and we say that
s; is poor otherwise. Let g = 2%~! + 1 and h = g+ 2%*! — 1 and consider the segments
SgsSg+1+--+,8n (the middle 2 - 24 of the 3 - 2% segments) and distinguish between two
cases: Case 1: at least 2% of them are rich. and Case 2: more than 2% of them are poor.
Case 1: There are at least 2% rich segments among the segments Sy, 8g41,.-.,54. Let 3,

be an arbitrary rich segment. By (2), |s;| = d; = 4T;. Thus, by Corollary 2, there is at

T

least one message in the segment s; at time ¢t — [in the computation of A on z for every
1=0,1,2,...,T; — 1. Note that T;;, — 1 >t — [> T;, by the definition of rich segment.
Summing up these messages over all rich segments among the segments s,, 3741, ..., $,
we obtain the desired number of messages.

Case 2: There are at least 24 + 1 poor segments among the segments sy, 8441,...,35.
Since there are 2% strings over {0,1} of length d;, we have that there are two indices
P,9 (9 < p<g<h)and there is a string u over {0,1} of length d; such that the segments
sp and sq are poor, and u is the input to both segments s, and s, in the computation of

A on z. In order to prove Case 2 we will prove the following claim.

Claim 1. At least one link among all links of the segments s4,5,41,...,35 is active at

time T;4+; — 1 in the computation of A on z.

Proof. Assume for contradiction that all these links are passive at time Tj4; — 1 in the
computation of A on z. By v we denote the string over {0,1} of length (¢ — p—1)2% which
is the input to the segment formed by the segments s,41,3p42,..., 84— in the computation
of A on z. Note that z = zuvuy for some r and y. Let u; be the left half and u, the right
half of u. Let s}, be the right half of the segment s, and let s; be the left half of the segment
sq- Let 5 be the segment of length (g — p)2% formed by the segments SprSptiy---:Sg—1, 3
~ Note that the string upvu, is the input to the segment 3 in the computation of A on z.
For 0 < ¢t < T;4; — 1 we denote by ¢, the configuration of the segment 3 at time ¢ in the
computation of A on z.

We will use below two simple observations. The first one is that the crossing sequences
at the middle link of s, and at the middle link of s, until time T4, — 1 in the computation
of A on z are the same. To prove it use the facts that s, and s, are poor (their middle
links are passive at ¢, 2T; < t < Tj4; — 1), the string u is the input to s, and to s, in the
computation of A on 2, and apply (a) of Lemma 1 twice with T = 2T;, T' = T;;, — 1 and

the two middle links. The second observation is obvious: The configuration of an arbitrary

8

segment at time ¢ 4+ 1 is uniquely determined by the configuration of this segment at time
t, by the message received (from the left) by the leftmost processor of this segment at time
t, by the message received (from the right) by the rightmost processor of this segment at

time t and by the algorithm A.

Now consider the computation of A on the input 2z’ = (upwvu,)"/1*2¥*“1l, Note that
lugvu,| divides n = m!, since |uqvuy| = |5| < |S| = diy1 < dr < m, by (3). Divide

the whole ring into n/|uzvu,| consecutive segments of length |u;vu,|, such that the string
upvuy is the input to every one of them in the computation of A on 2. One can show.
by induction on t and by the two observations above, that every such segment is in the
same configuration ¢, (introduced above) at time t in the computation of A on z’ for
every t = 0,1,2,...,T;4, — 1. In particular, all these segments are in the configuration
CTiy,—1 at time T4 — 1 in the computation of A on z’. Recall that the segment 3 is in the
configuration cr,, - at time T;4, — 1 in the computation of A on 2. Since Tj4, —1 < Ty =
di/4 < m/4 < n/4, there is neither an accepting nor a rejecting state in the configuration
€Tiy,-1, by Lemma 2. By the assumption at the beginning of the proof of the claim and
by the definition of 3, all the links of 3 are passive at time T;;; — 1 in the computation of
4 on z, i.e. there is no message in cr,,,—1. Consequently, all links of the whole ring are
passive at time T;4+; — 1 in the computation of A on z’. Thus, the computation of A on z’
has stopped before time T;,,. Moreover, since the configuration cr,,,_; contains neither
an accepting nor a rejecting state, this computation has stopped without any output — a

contradiction, which completes the proof of the claim. [J

In order to complete the proof of Case 2 (and the proof of Lemma 3), observe, using
the definitions of the segment S and the numbers ¢, h, that the active link mentioned in
the claim connects two processors p; and pj4+; such that all links (and all processors) of
the segment [j — diy1/6 + 1,7 + di4+1/6] are some links (some processors) of the segment
S. Consequently, by Corollary 2, there is at least one message in the segment S at time

Tiyy—1—Iforeveryl=0,1,2,...,d;4+,/6—1. Notethat T;y —1>T;4; —1-1>T; by

9

(1) and (2). This completes the proof of Lemma 3. []

Theorem 1. Letn=m! m>1. If f: " — {0,1} is a non-constant function, then any
asynchronous algorithm for computing f on a bidirectional ring of n anonymous processors

requires at least ﬁn(log' n — 6) messages in the worst case.

Proof. If m < 192, the lower bound is immediate since the number of messages is at
least n/4 by Lemma 2. So assume m > 192. By Lemma 3, the total number of all
messages in the computation of A on z is at least (kK — 1)n/12. We now estimate k. Let
e1 = 4, eip1 =227 for each i > 1. Thus, by (1), d; < e; for each i > 1. Now, log” e; = 2i
for each i > 1. These facts with (3) yield:

logn =log"(m!) <log"m+2<log"diy1 +2< log" ex41 +2=2k+4

Theorem 1 follows from this estimate.]

2. The Proof of Theorem 2

In this section we also allow segments [i,j] with i = j as well as those with 1 > j
which “go around the ring”. A segment is waiting if all messages in all its interior links
have arrived and no processor in it is able to send any message before receiving a message
in the first or last link.

We fix a constant a, 0 < a < 1/2. We consider 4, an arbitrary maximum-finding
algorithm on a ring of size n, where n > 8 is power of two, and with a label set L that
contains m distinct labels. We choose m large enough so that the following inequality

holds for I = 2,4,8,...n/4:

= nfl
n — 1)(n+D m— 1 gy {m(m=1) - (m ~ 21+ 1))
"y ;("‘_1><(1) (m(m = 1)+ (m — 1+ 1))"/"*)

10

For a string r = ryry...7, r; € L for 1 <1 < ¢, we denote by set(r) the set of all the
different r;’sin r. For [= 1,2,4,...,n we define
Si={r|r=ryrg...ry, 7; € Lfor1 <1 £, and r; # rj for i # j}. Note that |S|| =
|LI(]L] = 1)...(|L] = I + 1).

Forl=1,2,4,...,n and for each r € S; we denote by ¢(r) the following computaion of
4 in the segment labeled by . If r € S|, then ¢(r) is “do nothing”. If r =355’ € 5y, 3,8’ €
Si/2, then ¢(r) is defined by keeping the first (leftmost), last (rightmost), and middle links
of the segment labeled by r very slow, executing ¢(s) and ¢(s’'). Then we increase the speed
of the middle link and continue the execution of A in an arbitrary (but fixed) way till the
segment labeled by r is waiting. Let |¢(r)| be the number of messages sent during ¢(r). In
the proof below we use the following sets for [= 2,4,8,...,n/4:
Ca = {ss'| 8,8 € S1, ss' € Sar, |c(ss")] — |e(s)] — |e(s")| > /2} and
Hy = {ss'| 5,8 € S|, ss' € Sy, ss' ¢ Cyy and s's ¢ Cyy}.

Lemma 4. For ! € {2,4,8,...n/4} and any fixed integer A > 2, (a) and (b) hold for the
sets

V ={s152...s1]| si € Sy for 1 <i<h, si8ip1 € Hyyfor1 <1< h—1} and

W = {s182...920-1]| 8$i € Sy for 1 <1 <2h—1, sisiy1 € Hyyfor1 <:<2h -1}

(a) [VI*/ISi] £ |W]; and

(b) there is a string r € S; such that W contains at least |V|?/|Si|® strings of the form

8182...8p_1, where 8; = s94_1 = T.

Proof. (a) Let S; = {r,r2,...,rq}, le. ¢ =[Si|. By b; (ci) we denote the number
of strings in V with prefix (suffix) r; for i = 1.2,...,q. Hence |[V| = Y} !_, b;. It is easy
to see that s;s2...85 € V if and only if spsp_;...s; € V, and that if s182...5, € V
and spSp41...52n—1 € V then s1s7...504—y € W. Therefore b; = ¢; for each ¢ and
W > 3% b = 37,62, By Holder's (or Cauchy-Bunakovski's) inequality we have

= 0 2 (L 00 /g = IVIP/IS.

11

(b) By a;j we denote the number of strings in V with prefix r; and with suffix r;
for 1,7 = 1,2,...,q. Let by be the maximum number among by, b,,...,b,. Obviously V
contains at least |V|/q strings with prefix ry. Therefore Z§=1 axj = by > |V|/q. Since
5182...8, € V iff sp8h—1...51 € V, ai; = aj; for each ¢ and j. Again, by Holder’s
(or Cauchy-Bunakovski’s) inequality we have that the number of the strings of the form
5182...821—1 such that s182...54 €V, spspg1...920—1 €V, 81 =824y =71 and sp =1;
(for j =1.2,...,q) is at least 3 I_, axja; = 25, af; > (292, ax;)? /¢ 2 |VI*/|Sif* and

all of them belong to W.

Corollary 3. Forany given! € {2,4,8,...n/4} (2) and (b) below hold for D;, j =0,1,...,
where Dy = Hy; and for j = 1,2,...

Dj={s152...82i41| si€Sifor1 <i < 27 41, $;8i41 € Hyy for 1 <i <27}

(2) IDj_1*/ISH < D;l; and

(b) for each j = 1,2,3,... there is a string t; € S; such that D; contains at least

IDJ~_1|2/|S'1|3 strings of the form s;s2...52041, where s) = sop4; = t;.
Lemma 5. If for some [€ {2,4,8....n/4}, |Ca| < a|S2|, then (1 — 2a)|Sa| < |Hal.

Proof. Let
Ey = {ss' € Syls,s' € 51, ss' € Cyy and s's € Cy1};
Fy = {ss' € Sy|s,s' € Si, ss’' € Cy; and s's ¢ Cy}; and
G2 = {ss' € Sa|s,s' € Si, ss' ¢ Co; and s's € Cyy}.

Clearly Sy; = Eqy U Foy U G U Hyy, the sets Eyy, Fyy, Gqi, Hy are pairwise disjoint,
Ey U Fy = Cqp and |Fyy| = |Gqy|. Consequently, if [Cy| < a|Sy| them |Eqy| + |Gay| =
|E21] +|Fa1| = |Cai| < a|S2i| and hence |Hyy| = |S2i| — |E2t| = | Fair| —|Gai] > |S21| — 2a|Sa| +
|Ear] 2 (1 —2a)|S2]. 0

Lemma 6. If for some | € {2.4,8,...n/4}, |Cu| < «|S2|, then there is a string
$182...52p41 in Dy, where p = log(n/l) and D, is as in Corollary 3, such that each

s; € Sy and for i # j set(s;) N set(s;) = 0.

Proof. By D) we denote the subset of D, which contains at least |D,_1|*/|Sif* strings
of the form described in (b) of Corollary 3. We are looking for our string among those
in Dy. To the contrary, assume that there is no such string in Dy, i.e. assume that
for each string v = $152...82r41 1D D;, with sy = s2r41 = t, there is a pair of indices
i,7, 1 < 4,7 < 2P, i # j such that set(s;) N set(s;) # 0. This means that [set(v)| <
12P — 1 for each v in D},. But the number of such v’s (i.e. the cardinality of D}) can
be bounded by I = (122 — 1)@ +D T (L) = (o — 1) 5000} (1), The
factor Z?:fl (Ii’l__ll) denotes the number of different sets set(v) — set(t,) and the factor
(127 — 1)!?*+1 denotes the number of different functions f mapping {1,2,...,1(27 + 1)}
into {1,2,...,127 — 1}, where f(i) = j means that the i-th member of v is exactly the
j-th largest element of set(v). On the other hand |D)| > |D,_1|*/|Si|* and by repeated
applications of part (a) of Corollary 3 followed by a single application of Lemma 5 we
have that |D}| > [Dpoi /ISP 2 [Hul® /ISIFF! > (1 = 2a)|S2l)? /ISP = (1 -
2a)"Y(|LI(|L] — 1)...(JL] = 2L + 1) (LI(|L] = 1)...(|L| = I + 1))/ = J. But our

upper and lower bounds on |D,| (I and J) contradict (4) since |L| 2 mo. [

Theorem 2. Let a be a real number, 0 < a < 1/2, and let n be a power of 2. Then
there is a positive integer my such that (a) and (b) hold.
(a) If L is a finite set of labels with my < |L| and A is a maximum-finding algorithm for a
bidirectional ring of size n labeled by L, then the average number of messages sent by A
is at least (a/4)nlogn.
(b) If L is a finite set of labels with mg < |L| and A is a maximum-finding algorithm for
a unidirectional ring of size n labeled by L. then the average number of messages sent by
A is at least (a/2)nlogn.

Proof. (a) Assume n > 8. (The proof is obvious for n < 4.) Let the C’s and S’s
be defined for any particular L, n and A with [L| > mg, where my satisfies (4). First we

will show that |Cy| > a|Sy| for each | € {2,4,8,...,n/4}. To the contrary, assume that

13

there is | € {2,4,8,...,n/4} with |Cy| < a|Sy|. Choose p and s;s;...s2r41 according to

Lemma 6. Let a ring of size n be labeled by 5§ = 5,53 ...39s, with s; = u}u?... u! for each
1 =1,2,...,27, and u;i € L for each 7z and j. By Lemma 6, S is a valid input since all its

labels are different. Consider the following computation of A in such ring. First execute
c(s;) in the segment labeled by s; for each i. Keep the transmission speed of the channels
connecting the segments labeled by s, and s9,...,s2,_; and s2r, and s2» and s; very slow
during the execution of the ¢(s;)’s.

The concatenation of each pair of consecutive s;’s on the ring is in Hy;, which implies
that for : = 1,2,...2P |e(s;si+1)] — le(si)| — |e(si+1)] £ 1/2 -1 and the number of messages
in ¢(s;si4+1) after the completion of ¢(s;) and ¢(s;41) is smaller than [/2 (recall that s, =
S2r41). Hence there is a continuation of the computation that mimiecs ¢(s;8;4;1) for all i,
1 <1 < 2P, even though they overlap, as no message in the continuation can reach the
processors in the middle of the segments labeled by s; or s;4; and no two consecutive
continuations can interfere. At the end of the computations ¢(s;s;41) for all 7 the whole
ring is waiting, which means that the computation has terminated. But if the maximum
label is in the segment labeled by s;, this information cannot reach the middle processor
of the segment labeled by s;4; (the processor labeled by uﬁizl, say) before the algorithm

stops — contradiction. Hence |Cy;| > «|Sy| for | = 2.4.8,...,n/4.

We now consider the following computation in the ring labeled by r;ry...r,. Start
with the computations in ¢(ryr2), ¢(r3ry), c(rsrs), c(r77s), . .., then mimic the continuation
of ¢(ryrarary),c(rsrerers). .., then mimic the continuation of ¢(ryry ... 738),..., etc. Wecall
the segments involved special segments. Note that unlike the case above, special segments
of the same size do not overlap. We charge a special segment labeled with ss' the messages
sent in c(ss') after the completion of ¢(s) and c¢(s’). Hence each message sent is only

charged once.

We now estimate the total number of messages received during the computations corre-

sponding to all possible assignments of labels to the processors. Let ! € {2,4,8,...n/4} and

14

consider a special segment z of length 2/. There are |Cy| > «|S21| = a|L|(|L|-1)...(|L]| -
21 + 1) different ways how to label z by strings in Cy; and there are (|L]| — 20)(|L| — 2! —
1)...(|L| = n + 1) different ways how to label the rest of the ring. If ss' € Cy, where
s,s' € Sy, then there are at least [/2 messages received (in z) after finishing ¢(s) and ¢(s')
and until finishing ¢(ss’). It means that that the special segments of length 2[are charged
at least (n/20)(1/2)|Cul(IL|-20)(IL|-21-1)...(IL]=n+1) 2 (a/4)n|L|(|L]-1)...(|L]=n)
for eachl=2,4,8,...,n/4. Forl = n/2 there are |L|(|L]-1)...(]L| —n+1) different ways
how to label a special segment z of length n by strings in S,,. If ss' € S,,, where s, s’ € S/,
then there are at least n/2 messages received (in z) after finishing ¢(s) and ¢(s') until fin-
ishing the computation, because each processor must know the maximum label. Summing
up (over all I's), we have that there are at least (a/4)nlogn|L|(|L| —1)...(|[L|-n+1)
messages. But the factor |[L|(|L| — 1)...(|L] — n + 1) denotes the number of all possible
assignments of labels to the processors. This completes the proof of (a).

(b) The proof for a unidirectional ring is the same as for a bidirectional ring except
that Cor = {ss' € Sauls, s’ € Si, |e(s8")|—]e(s)| —|e(s')| > 1} and to derive the contradiction
in the first part of the proof (assuming |Cyi| < @|Sy;|) we show that the last processor of

the segment labeled by s;4; (the one labeled by u! +1) cannot know the maximum. (]

Theorem 2 requires a very large label set. (|L| is exponential in n.) Very recently
Bodlaender (private communication) proved an Q(n log n) lower bound for the average case
when n is known with a label set L satisfying |L| > cn. His elegant proof uses extremal

graph theory.

15

References

[1] C. Attiya, M. Snir and M.K. Warmuth, Computing on an anonymous ring, to appear in
J. ACM; a preliminary version appeared in Proc. 4-th Annual ACM Symp. on Principles
of Distributed Comutation, Minaki, Ontario, pp. 196-203, August 1985.

[2] H.L. Bodlaender, Distributed algorithms, structure and complexity, Ph.D. Thesis, Uni-
versity of Utrecht, 1986.

(3] J.E.Burns, A formal model for message passing systems, Technical Report # 91, Com-
puter Science Department, Indiana University, Bloomington Indiana, 1980.

[4] D. Dolev, M. Klawe, M. Rodeh, An O(nlogn) unidirectional algorithm for extrema
finding in a circle, J. of Algorithms 3, pp. 245-260, 1982.

[5] S. Moran and M.K. Warmuth, Gap theorems for distributed computation, Proc. 5-
th Annual ACM Symp. on Principles of Distributed Comutation, Calgary, Canada, pp.
141-150, August 1985.

(6] J. Pachl, E. Korach and D. Rotem, Lower bounds for distributed maximum-finding
algorithms, JACM 81, 905-918, 1984.

[7] G.L. Peterson, An O(nlogn) unidirectional algorithm for the circular extrema problem,

Trans. on Programming Languages and Systems 4, pp. 758-T762, 1982,

16

