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Abstract

The minimum-cost flow problem is the following: given a network with n vertices and
m edges, find a maximum flow of minimum cost. Many network problems are easily
reducible to this problem. A polynomial-time algorithm for the problem has been known
for some time, but only recently a strongly polynomial algorithm was discovered.

In this paper we design an O(n?(m + nlogn)logn) algorithm. The previous best
algorithm had an O(m?(m+nlog n) logn) time bound. Thus, we obtain an improvement
of two orders of magnitude for dense graphs.

Our algorithm is based on Fujishige’s algorithm (which is based on Tardos’ algorithm.
Fujishige’s algorithm consists of up to m iterations, each consisting of O(m logn) steps.
Each step solves a single source shortest path problem with nonnegative edge lengths.
We modify this algorithm in order to make an improved analysis possible. The new
algorithm may still consist of up to m iterations, and an iteration may still consist of
up to O(m log n) steps, but we can still show that the total number of steps is bounded
by O(n?logn). The improvement is due to a new technique that relates the time spent

to the progress achieved.
1. Introduction

The minimum-cost flow problem is the following: given a network with n vertices and
m edges, find a maximum flow of minimum cost. We reformulate the problem, stating
it in terms of circulations instead of in terms of flow.

Let R be the set of real numbers. We are given a directed graph G = (V, E), upper
and lower capacities g € (RU +o0)E, f € (RU —0)F (satisfying f < g) and costs

d € RE. A vector r € RE is called a circulation if for every (fixed) node v € V we have

Z(x(e):ezuv€E)—Z(1:(e):e=vu€E):0.
A circulation z is feasible if it satisfies the 2|E| inequalities f < z < g. We call an
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inequality with finite f(e) or g(e) a constraint. If a constraint is satisfied as an equality,

we say that it is tight at z. The cost of a circulation z is

dz =) (d(e)z(e): e € E).
The minimum-cost circulation problem is to find a feasible circulation with minimum
cost.

We denote an instance of the problem by P(f,g,d). We say that P(f, g,d) is feasible
if there is a feasible circulation z. We call a feasible circulation optimal if it has a
minimum cost.

Many network optimization problems are special cases of our problem or can be
easily reduced to it (see [L]): (1) The min cost flow problem (essentially equivalent
to our problem); (2) the max-flow problem; (3) the shortest path problem; (4) the
max (weighted or cardinality) matching in bipartite graphs; and (5) the transportation
problem.

An algorithm that solves a problem whose input consists of n real numbers is strongly
polynomial if (a) it performs only elementary arithmetic operations (additions, subtrac-
tions, comparisons, multiplications and divisions); (b) the number of steps is polyno-
mially bounded in n; and (c) when applied to rational data, the size of the numbers (=
the number of bits in their representation) that the algorithm generates is polynomially
bounded in n and the size of the input numbers. There are several known strongly
polynomial algorithms for problems (2), (3) and (4) above. In comparison, an algo-
rithm that solves a problem whose input is a binary string of length L is polynomial
(in the usual sense) if its time is bounded by a polynomial in L. The strongly poly-
nomial algorithms mentioned in this paper do not perform multiplications or divisions
and consequently they satisfy (c) automatically.

There are polynomial algorithms for the general LP (linear programming) problem
(IKh], [Ka]). Neither algorithm is strongly polynomial. A fundamental open problem

is whether the general LP problem can be solved by a strongly polynomial algorithm.
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We assume that G has n vertices and m edges. We denote S(m,n), the time needed
to solve a single source shortest path problem on G with nonnegative edge lengths. The
best algorithm known yields S(m,n) = O(m + nlogn) [FT)].

A polynomial-time algorithm for our problem has been known for some time [EK].
The algorithm of Edmonds and Karp, the Out of Kilter algorithm with scaling (what we
will call the EK-algorithm), takes time O(mS(m, n)log M) where M is the maximum
among the finite values of |f(e)| and |g(e)| for e € E. The first strongly polynomial

algorithm was found only recently [Ts].

The strongly polynomial algorithm was based on the following observation: Let P be
our problem and assume it is feasible (since it is easy to test feasibility). Assume we
scale the capacities to a small interval (“small” means polynomial in m and n) and then
round each capacity to a nearby integer. The rounding is done in such a way that the
new problem, P*, is still feasible. (Namely, upper capacities are rounded up and lower
capacities down.) Using the EK-algorithm, we solve P* in time O(mS(m, n)logn). Now
we scale the solution back and assume we obtain z*. Let z be an optimal solution of
P closest to z*. One then shows that for any constraint in P* that is “far” from being
tight at z*, the corresponding constraint in P cannot be tight at z. Thus, by deleting
this constraint (by setting f(e) to —oco or g(e) to +o0), one obtains a problem P’ for
which z is still optimal. If each iteration deletes at least one constraint, then after at
most 2m such iterations we derive a problem P such that every feasible solution of P
1s optimal.

It remains to guarantee that indeed we can relax at least one constraint; i.e. that at
least one constraint is far enough. Here, one observes that the problem is not changed
if we change the origin. So we can subtract from f and g a circulation zo.

During each iteration, Tardos used projection (or solving a system of linear equations)
to find an origin which guarantees the deletion of at least one constraint. As a result,

the task of finding the origin became more expensive than the execution of the EK-
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algorithm in each iteration.

Fujishige chooses a different origin. He constructs a spanning tree T that contains a
maximum number of edges with both upper and lower capacities infinite. He chooses
a circulation z¢ so that many of the finite capacities become zero: for e ¢ T z¢(e) is
chosen to be zero if both capacities are infinite, and zq(e) is chosen to be either f(e) or
g(e) otherwise; then zq is completed in T to make it a circulation. One can easily show
that this zy is good enough for our purpose of deleting at least one constraint. Since
ro is found in time O(m), the dominating part of an iteration is now the execution of
the EK-algorithm (on P*).

One way of improving the time bound of an algorithm is to prove that it makes more
progress in every iteration. Sometimes one needs to modify the algorithm before such a
proof is possible. Dinic’s network flow algorithm reduced the number of iterations from
m to n by finding many augmenting paths simultaneously [D]. Hopcroft and Karp's
bipartite matching algorithm improved the number of iterations from n to O(y/n) in
a similar way [HK]. Karmarkar’s algorithm for LP [Ka] seems to perform in practice
many fewer iterations than can be proved. It is a challenge to prove a better bound,
possibly by modifying the algorithm.

In our case, we could not prove that the algorithm performs fewer iterations, because
we are not able to guarantee that more than one constraint will be deleted per iteration.
Instead. we modified the algorithm in several places so that we could prove that the
total cost of all the iterations is decreased, by relating the progress achieved to the time
spent.

The EK-algorithm consists of steps. Each step solves a single source shortest path
problem with nonnegative edge lengths. (See the Appendix for the EK-algorithm.)
The number of steps in the general EK-algorithm is O(mlog M) (= O(mlogn) in our
case). Thus, the number of steps in Fujishige's algorithm is O(m? logn). We define a
function F(f,g,d) with values bounded by O(n?). We redesign the algorithm in such
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a way that if an iteration performs N logn steps, then the value of F' decreases by N.

Consequently, the total number of steps is at most O(n? logn).

In Section 2 we sketch some facts needed later, in Section 3 we present the algorithm,

in Section 4 we prove its validity, and in Section 5 we prove its run time.




2. Preliminaries

In this section we consider P(f,g,d). For a positive integer k let Ei(f,g) be the
set of edges e such that at least one of its capacities is finite and its absolute value
is at least M/k, where M is as defined above. Note that E; C E; C --- We define
Ewl(f,9) = {e € E with g(e) = — f(€) = o).

For a function h let E(h) = {e € E with finite h(e)}. We call any functionp: V — R
a potential and denote by d,, : E — R the function defined by d,(uv) = d(uv) + p(u) —

p(v). The following lemma states the complementary slackness principle of LP for our

problem [FF)].

Lemma 2.1. There exists a potential p such that a feasible circulation z is minimum

cost if and only if z satisfies

(*) dp(e) > 0 = x(e) = f(e) and dp(e) < 0 = z(e) = g(e).
We call a potential p satisfying (*) optimal.

Lemma 2.2. For any potential p, a feasible circulation is minimum cost subject to the

cost function d if and only if it is minimum cost subject to d,.

The basic ingredient of our algorithm is the following slight generalization of a lemma

by Fujishige. It states when a constraint can be relaxed.

Lemma 2.3. Let € > 0 and let f* and ¢* be new lower and upper capacities. Suppose
that E(f*) = E(f) and E(g*) = E(g) and |f(e) — f*(e)| < € for e € E(f) and
lg(e) — g*(e)| < € for e € E(g). Further suppose that P(f,g,d) is feasible and that z~
is an optimal solution of P(f*,¢*,d). Then there is an optimal solution z of P(f,g,d).
such that for every e € E

[z7(e) — f7(e)l = €|E| = z(e) > f(e) and |z7(e) — g"(e)] = €| E| = z(e) < g(e).
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Proof: The lemma is a special case of Theorem 5 in [CGST). 1

Relaxing constraints that are not tight at an optimal solution does not change the

set of optimal potentials:

Lemma 2.4. Let r be a minimum-cost circulation in P(f,g,d). Let E; and E; be
subsets of E such that r(e) > f(e) for e € E; and z(e) < g(e) for e € E,. Define
f*(e) = —co for e € E; and f(e) otherwise, and g*(e) = 4co for e € E; and g(e)
otherwise. Then the problems P(f, g,d) and P(f*, g%, d) have the same sets of optimal

potentials.

Proof: Let p be a potential and z’ be a feasible circulation for P(f,g,d). If p and z’
satisfy condition (x) of Lemma 2.1 then, by complementary slackness, z' is a minimum-
cost circulation and p is an optimal potential.

Now let p be an optimal potential for P(f, g,d). By definition p and the minimum-
cost circulation z satisfy (*). Furthermore, by the conditions of the lemma, p and z

also satisfy (*) with f replaced by f* and g replaced by ¢g*. Thus z is a minimum-cost

circulation and p an optimal potential for P(f*, ¢*, d).

To see the reverse inclusion let p be an optimal potential for P(f*, ¢*,d). We just
showed that z is a minimum-cost circulation for P(f*,¢*,d), and so p and = have to
satisfy (*) with f* and ¢g*. Then p and z satisfy (x) also with f and ¢ , and so pis an
optimal potential for P(f,g,d). 1

Our algorithm will round to integers differently than was done in previous algorithms:
positive numbers will be rounded down and negative numbers will be rounded up. Such
a rounding guarantees that capacities with small absolute values will be rounded to
zero and not to 1 or -1, which will have an important effect on the time analysis. To
maintain feasibility, we solve the new problem on a new graph, G' = (V', E') that is an
extension of G : V' = VU {s}, E' = EU {sv,vs for v € V} and the new edges will have

zero lower capacities, infinite upper capacities, and effectively infinite costs.
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3. The algorithm

Step O (initialization):
—Check whether there exists a feasible flow. (This can be done by solving a max-flow
problem [FF].) If not STOP.

—Put f' = f, ¢' = g. Find a potential p with
dy(e) <0 for e € E with f'(e) = —o0 and dp(e) > 0 for e € E with g¢'(e) = +o0.

(See Lemma 4.1.) If there is no such p, STOP. (The minimum cost is —o0.)
Step 1: (Steps 1-3 constitute an iteration.)

—Define the following weights on the edges

(e) { g'(e) — f'(e), if both f'(e) and g'(e) are finite and
wlie) =
0 otherwise.

—Find a maximum weight spanning tree T of G among trees with maximum number of

edges in E(f',¢'). (This task is easily reduced to that of finding a maximum spanning

tree without the restriction.)

— Find a circulation z' (not necessarily feasible) such that z'(e) = 0 for all e €
Eo(f'¢')\T and z'(e) = f'(e) or ¢'(e) (one of the two which is finite) for all
e € E\(TUEL(f',¢')). (See Lemma 4.3)

—Put f"’(e) = f'(e) — z'(e) and ¢"(e) = g'(e) — z'(e) for all e € E.

— Put M= max ( 0. max|g"(e)| for e € E(¢")), max (|f"(e)| for e € E(f"))).

— If M = 0 go to Step 4, otherwise proceed to Step 2.

Step 2 (defining the rounded problem):

— Let r be the smallest integer power of 2 greater or equal 2(m + 2n)? and let k be the
smallest integer power of r such that |E..(f", ") < 2|Ec(f",9")|. (See Lemma 4.2)
(The choice of k determines the unit (= M/(rk)) in the rounded problem. It is chosen

so that in the rounded problem the number of edges with at least one nonzero finite

capacity is O(|Ex(f", ¢")|).)




— For all e € E round f"(e)rk/M and ¢"(e)rk/M to the nearest integer below or
above, rounding positive numbers up and negative numbers down. Let f(e) and g(e)
be the resulting integers respectively.

— Extend f and g to G' by f(sv) = f(vs) = 0 and g(sv) = g(vs) = +oo. Further,
put d(e) = dp(e) for e € E and d(e) = 3_(ld,(e)| : e € E) for e in E'\E. (Note that
P(f,§.d) is feasible, since any vector z € RE such that f < z < g can be extended to
z' € RE which is a feasible circulation of P(f.3,d).)

Step 3 (solving the rounded problem and relaxing constraints):

— Using the EK-algorithm, find a minimum-cost circulation  and an optimal potential
pfor P(f,g.d). Use the modified rounding, that is, rounding positive numbers down and
negative numbers up, inside the EK-algorithm too. See the Appendix for this version
of the EK-algorithm.

— Foralle € E if g(e) — Z(e) > m + 2n put ¢'(e) = +o0, and if Z(e) — f(e) > m + 2n
put f'(e) = —o0.

— Put p = p and go to Step 1.

Step 4 (finding the optimal circulation, the potential p is optimal already):

— Set
f(e) ifdy(e)>0; and

g(e) otherwise

feor={

and
' _ g(e) if dp(e) < 0; and
(e) = { f(e) otherwise

—Find a feasible circulation z in P(f’, ¢',d), and output z as a minimum-cost circula-

tion.
4. Validity

Lemma 4.1. The potential required in Step 0 can be found via a shortest path com-

putation.




Proof: Define the following length function:

—d(e) if e=uvand f'(e) = —o0

Huv) = { d(e) if e =vu and g'(e) = +o0.

Now consider the graph (V, E;), where E; = {uv such that either uv € E and f'(uv) =
—oo or vu € E and ¢'(vu) = +oo}. If (V,E)) contains a negative length cycle, then
there is no minimum cost circulation (since any feasible circulation can be improved
along the cycle). Otherwise, the distances from a fixed vertex s give the required

potential. |
Lemma 4.2. The value k chosen in Step 2 satisfies log k = O(log” n).

Proof: Let r = 2(m+2n)? and k = ' as in the algorithm. By definition |E;(f",¢")| >

1. By the minimal choice of k if I' < [ then

IErl'+l(f”a g")l > 2IEr"(f”s g”)l'
Thus |Ex(f", ¢")| > 2!, and so | < logm and logk < O(logm logr). 1

Lemma 4.3. The circulation z' specified in Step 1 of the algorithm can be found in

O(m) time.

Proof: Set z' to be equal to the specified value on the edges outside the chosen tree
T. We can extend z' to the edges of the tree by iteratively balancing the flow at a leaf

of the tree and deleting that node from the tree. |

Lemma 4.4. Setting the capacities to infinity in Step 3 does not change the set of

optimal potentials.

Proof: From Step 0 we may assume that P(f, g,d) is feasible. Extend f and g to G’ by

f(sv) = f(vs) = 0 and g(vs) = g(sv) = +o0. Let d be the cost function defined in Step
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2 in the first iteration. Due to the large cost of the edges in E'\ E, any minimum-cost
circulation z for P(f,g,d) on G' will have zero values on all edges in E'\E. Further.
by Lemma 2.2, z restricted to E is a minimum-cost circulation for P(f,g,d) on G.
Now consider the first iteration. We have f' = f and ¢’ = g. The polyhedron
P(f",¢",d) is a translation of P(f,g,d), and thus they have the same set of optimal
potentials. Now apply Lemma 2.3 to the problems P(f",g",d) and P(f*,¢*,d) where
f* = M(kr)™'f and ¢* = M(kr)~'§ (where f and § are defined in Step 2 in the
first iteration). Let ¢ = M(kr)~!. The circulation z* = M(kr)~!Z is a minimum-cost
circulation for P(f*, g*,d) where Z is the circulation found in Step 3. Let z be the
minimum-cost circulation given by the lemma. As discussed above, z + z' (where z' is
the vector defined in Step 1) restricted to E is a minimum-cost circulation for P(f, g, d)
on G. So Lemma 2.4 proves that the set of optimal potentials is the same after the first

iteration.

Now the conclusion of the lemma follows by induction on the number of iterations.

As a corollary of the above lemma we get

Theorem 4.5. When the algorithm performs Step 4, the potential p is optimal, and

so the circulation r is a minimum-cost solution to P(f.g,d).

Proof: We first prove that just before the algorithm performs Step 4. the current
potential p is optimal for the current P(f',g'.d). Since M = 0, all finite constraints of
P(f',¢',d) are tight for the circulation z = 0, so it suffices to show that dy(e) > 0 for
all edges e with ¢'(e) = +o0 and dp(e) < O for all edges e with f'(e) = —oc.

Let us prove the latter statement by induction on the number of iterations performed.
Initialization insures that the statement is true at the beginning of the first iteration.
If f'(e) = —oo after any iteration, then in this iteration Z(e) > f(e), and so, by

complementary slackness (condition (*) of Lemma 2.1), dj(e) < 0. Similarly if g'(e) =
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+o0 after an iteration then dz(e) > 0 in the previous execution of Step 3.

Now, by Lemma 4.4 p is optimal for P(f,g,d) (the original problem). By Lemma 2.1
a feasible solution of P(f,g,d) is optimal if and only if it satisfies (), that is if and only
it is a feasible solution of P(f,¢',d) with f' and ¢’ defined in Step 4. Thus P(f',¢'.d)

is feasible and the circulation found in Step 4 is an optimal solution for P(f,g,d). 1




5. Running time

Given P(f,g,d), let

F(f,9,d) = |[E(f)| + |E(g)| + [comp( Eco( f, 9))]?

where comp(E;), for a subset of edges E), is the number of connected components in
the underlying undirected graph (V, E;). The following lemma helps relating the time

spent on an iteration to the progress achieved. Note that F(f, g,d) < 2m+n? = O(n?).

Lemma 5.1. The value of F(f', ¢', d) decreases by at least |Er(f".g")| at each execu-

tion of Step 3, where k is the value chosen in Step 2.

Proof: Without loss of generality we may assume that E(g') C E(f'), z'(e) = f'(e)
for e € E(¢')\T, and |¢'(e) — z'(e)| < |f'(e) — £'(e)| for e € E(¢g')NT. (We can reverse
all edges not satisfying the above assumptions.) The following properties, that are easy
consequences of the choice of T and the above assumptions, are repeatedly used below.
—Ifanedgee isin T\E.(f', ¢') then all other edges in the cut defined by T and e also
have at least one finite capacity.
— Ifee Ei(f",g"), e ¢ T then |g"(e)] = M/l
— Ifee TNE(f" g") then |f'(e)| > M/l
— If an edge e is neither in T nor in E(f', ¢') then f'(e) = f(e) = 0.
Consider an edge ey in Ex(f”,g") (where k is the value chosen in Step 2). We would
like to conclude that at least one of f'(eo) and g'(eg) will be replaced by infinity.
Casel: eg ¢ T
We have f"(eo) = 0, and so g"(eq) > M/k. Thus |g(es) — Z(eo)| + [f(e0) — Z(eo)l 2 7 2
2(m + 2n)? and therefore at least one of f'(eg) or g'(eo) will be replaced by infinity in
Step 3.

Case2: ¢ €T
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Now |f"(eo)] > M/k. The tree T and e; define a cut. The edges e # e¢ crossing
the cut must satisfy f(e) = 0. Thus the sum of the capacities f(e) over the cut has
absolute value at least r > 2(m + 2n)2. The sum of the circulation over any cut is zero.
The cut contains at most m + 2n edges (of G'). Thus there exist an edge e, in the cut
with Z(e;) — f(e1) = 2(m + 2n). Now there are three cases

Case 2a: ey = ¢y

The value f'(eg) is replaced by —o0.

Case 2b: e; # ep and e; € E(g').

Let us estimate w(eg). First, because of the choice of the tree w(eg) > w(e;).

Furthermore

w(er) = ¢'(er) - f(ex) = g"(er) > M(rk) ™ (g(e1) — 1) >
> M(rk) ™ (z(ex) = 1) = M(rk) ™\ (z(er) — fler) = 1)

> M(rk)~'(2(m + 2n) — 1).

Thus we have

(9(eo) — Z(eo)) + (Z(eo) — f(eo)) = g(ea) — fleo) >
kM~ (g"(e0) — f"(€0)) — 1 = rkM w(eg) — 1 >

2(m+ 2n) - 2.

Both g(eo) — z(eo) and Z(eq) — f(eo) are integers, so at least one of f'(eo) and g'(eo)
will be replaced by infinity.

Case 2c: € # eg and ¢'(e;) = o0.

By the observations above, e; connects two distinct connected components of
Ew(f'.¢'). In this iteration we set f'(e;) to —oo and so e; is added to E(f’, ¢').

As a result comp(E(f', ¢')) will decrease by at least one.
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Now we are ready to prove the lemma. If Case 2c does not occur during an iteration,
F(f',4',d) clearly decreases by at least |Ex(f", g")|. Suppose Case 2c does occur. Let

c= comp(Ex(f',¢")). Now F(f',¢',d) decreases by at least
[Ee(f", ¢ N\T| +¢® — (e = 1)* = |Ex(f", ") = |Ex(f",¢")NT| +2c—1 >
IEx(f" 6" = |E(f)NT| +2c = 1= |Ee(f", ") = (e = 1) + 2c — 1 2 |Bx(f", g")|. W

The following corollary will be useful in bounding the number of arithmetic operations

performed in Steps 1 and 2.
Corollary 5.2. The number of iterations is at most 2m.

Proof: At least one capacity is replaced by infinity in each iteration. J
Consider an execution of the EK-algorithm during our algorithm. Because of the

choice of k and the different rounding we have

Lemma 5.3. The EK-algorithm in Step 3 consists of O(|Ex(f", ¢")|logn) executions

of a single source shortest path subroutine.

Proof: The number of executions of the single source shortest path subroutine during
the EK-algorithm is the the number of ones in the binary representation of the finite
capacities. (See the Appendix for an analysis of the EK-algorithm.) In our case the
number of edges with at least i bits in the present iteration is at most |Esi(f",g")|.

Recall that k = r!. Now the sum of the kilter numbers can be estimated as

log rk [+1

S IEu(f",g") <logr Y 1E(f", ") < logr(2lEx(f",¢") + | Exr(f". gD])
Jj=0 j=0
< 4|E(f",¢")|logr = O(|Ek(f",¢")| logn)-

no ] mo_n P | N S
The first inequality is due to the fact that IEi(f", ¢ € |Bina(f", ")) i=0

The last two inequalities are due to the choice of k. 1
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Theorem 5.4. The algorithm uses O(n?(m + nlogn)logn) arithmetic operations.

Proof: Step 0 and Step 4 consist of solving two maximum flow and one shortest path
problem in time O(mn logn) [Tn]. By Corollary 5.2 we know that Step 1 is executed at
most 2m times, each time computing maximum weight spanning tree in time O(m log n)
[Tn] for a total of O(m?logn). The only non-trivial part in Step 2 is finding fand g
since rounding is not on our list of elementary arithmetic operations. We first check for
each edge e if either f(e) or g(e) is finite and nonzero (if e € E x(f", ¢")) and if it is we
compute f(e) and g(e) by using binary search. So Step 2 takes O(m+|Ei(f", g")|logrk)
by the choice of k and since the finite absolute values of f and § are bounded by rk.
By Corollary 5.2 the first term sums up to O(m?) and by Lemma 5.1 and Lemma 4.2
the second term sums up to O(n? log? n).

By Lemma 5.1, the total number of executions of the single source shortest path
subroutine is at most O(n?logn). Therefore, the total cost of Step 3 is O(n%*(m +

nlogn)logn). This is the cost of the algorithm since the other parts of the algorithm

contribute less to the total time. |
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6. Appendix

We summarize a version of the EK-algorithm. We present an analysis slightly more
refined than that of Edmonds and Karp [EK]. The algorithm is given in a form similar
to that found in Lawler’s book [L]. The algorithm given in Lawler’s book is incomplete
and seems to implicitly assume a linear time single-source shortest path subroutine.

Our version of the EK-algorithm is based on the following version of the Out-of-Kilter
method [FF)|. Let Ps(f,g,d) denote the minimum cost circulation problem on a graph
G with integral (or infinite) capacities f and g. Let z be an integral circulation on G
(not necessarily feasible), and p an arbitrary potential. We define the kilter number of

an edge e subject to z and p as

|f(e) — z(e)| if dp(e) >0 or dp(e) =0 and z(e) < f(e)
k(e) = ¢ |g(e) —z(e)] if dp(e) <0 or dy(e) =0 and z(e) > g(e)
0 if dy(e) =0 and f(e) < z(e) < g(e).

The kilter number of z and p is k(z.p) = }_,cgk(e). Observe that z and p are
optimal if and only if k(z,p) = 0.

Define the residual graph G, on the vertex set of G with edges
E. = {uv:either e = uv € E and z(e) < g(e) or e = vu € E and z(e) > f(e)}.

Furthermore, define a cost function d on E; as

dp(e) ife=uwe€ekE

dluv) = { —dy(e) ife=vu€E.

The following procedure due to Edmonds and Karp [EK] reduces the kilter number,
and can be implemented using one call to a single-source shortest path subroutine (with

non-negative edge lengths).
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Kilter Number Reduction
1. Define the length function £(uv) = max(0, d(uv)) for edges e € E,.
2. Choose u*v* such that

(1) dp(u*v*) < 0 and z(u*v*) < g(u®v*) or

(i1) dp(v*u*) > 0 and z(v*u*) > f(v*u*) or

(i) z(u*v*) < f(u™v*) or

(iv) z(v*u*) > g(v*u*),
that is, the corresponding edge has a positive kilter number.
3. Let N* = {v]v = v* or G; has a directed path from v* to v}. For v € N* let
6(v) equal the minimum length (€) of a directed path from v* to v. For v ¢ N* let
6(v) = max{6(u) — d(wu): wu € E;, ue€ N*,w ¢ N*}.
4. Let p =p+6.
— If there is an edge uw € E such that either v € N* and w ¢ N* and z(uw) > g(uw)
orw € N*and u ¢ N* and z(uw) < f(uw), then STOP, there is no feasible circulation.
— If u* € N*, choose a minimum length path P from v* to u* in G;. If P = v*u" let
z' = z. Otherwise, augment the circulation by one along the cycle consisting of P and
u*v* and let z' be the resulting circulation.
— Otherwise (u* ¢ N* and u*v* was chosen according to options (i) or (ii) in Step 2)

I =1Tr.

Lemma 6.1. The procedure Kilter Number Reduction either stops announcing cor-

rectly that there is no feasible circulartion or reduces the kilter number k(z, p).

Proof Sketch: The correctness of announcing infeasibility is left to the reader. We
assume that the procedure does not stop and show that the kilter number of an edge
never increases and the kilter number of the edge corresponding to the vertex pair u*v*
decreases. First consider the cut defined by the vertex set N*. Due to the definition

of the residual graph G, and not stopping in the first test of Step 4, we have that for
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uw € B, ue€ N*,w ¢ N*, z(uw) = g(uw) and for uw € E, w e N*,u ¢ N*, z(uw) =
f(uw). By the choice of and p' (i.e., by the large constant added to the potential of
all v ¢ N*), the kilter number of all the edges with one endpoint in N* is 0. (This
constant guarantees that dp of such an edge is of the right sign.) Furthermore, observe
that the kilter number of the edges with both vertices outside N* is unchanged. Finally,
consider edges with both vertices in N*. If the circulation is unchanged on the edge,
then the kilter number cannot increase, due to the definition of p'. Now suppose that
the circulation value is changed on the edge. In this case the edge is on some shortest
path from v*. Consequently, the new changed cost dp(e) will be zero if the edge is
used in a direction in which d = ¢. Otherwise, the difference between the circulation
value and the appropriate capacity decreases. In other words, the kilter number cannot
increase. By considering the same cases more carefully, we see that the kilter number

of the edge corresponding to the vertex pair u*v* decreases. §

Next we describe the EK-algorithm. It solves a series of approximated problems. We
use the modified rounding which does not maintain feasibility. To preserve feasibility,
we use the extended graph G’ as we did in Step 2 of the main algorithm: G' = (V', E'),
where V! = VU {s}, E' = EU {vs,svforv € V}. We extend the capacities and
the costs to E' by defining, for each v € V, f(sv) = f(vs) = 0, g(sv) = g(vs) =
+00, d(sv) = d(vs) = > (|d(e)| for e € E). Observe that this extended problem is
feasible and it has a feasible dual solution if and only if the original one has. In fact,
when using the EK-algorithm in Step 3 of the main algorithm the extension of the graph

is not necessary, since we are already working on an extended graph. Now we are ready
to describe the algorithm.

First check whether or not the original problem is feasible (using a maximum flow

computation). Let p denote the maximum binary length of the capacities. We define

the approximated problems on the extended graph G’ by Pg'(fi, gi,d) with capacities

-t +1-i i ositive numbers down
f; and g; obtained from f/2#+1=" and g/2% by rounding p
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and negative numbers up. Observe that, due to the definition of G', each of the approx-
imated problems is feasible, and an optimal solution to Pi(fu+1, gu+1,d) restricted to
the edges in E gives an optimal solution to the original problem. We solve Pg:( fi, gi,d)
inorderz=0,1,... ,u4+ 1.

First consider : = 0. Each capacity is either zero or infinity. Let po denote a feasible
dual solution to Pg'(fu+1,gu+1,d). Clearly zo = 0 and po are optimal primal and dual
solutions of Pg/{ fo, go,d).

Now suppose z; and p; are optimal primal and dual solutions for Pg:( f;, gi,d), ¢ > 0.
Consider the kilter numbers of the pair p; and 2z; for the problem Pg/(fi+1,gi+1,d).
The kilter number of each edge is at most one. Apply the above Kilter Number Reduc-

tion procedure to get an optimal solution to the (z + 1)-th problem.

Theorem 6.2[EK]: The minimum cost circulation problem can be solved using O(|E|x)

calls to a subroutine for finding single source shortest path with non-negative edge

lengths.

For the time analysis we need a slightly stronger version of Theorem 6.2. The edge e
can have a non-zero kilter number subject to 2z;_) and p;—; in the i-th approximated
problem only if fi(e) # 2fi—1(e) or g;(e) # 2gi—1(e). That is, the i-th bit of either f(e)

or g(e) is one. This yields the following strengthening of Theorem 6.2.

Theorem 6.3: The minimum cost circulation problem can be solved using one shortest
path computation for a graph without negative cycles, and as many computations of

single source shortest path with non-negative edge lengths as the number of ones in the

binary representations of the capacities.
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Conclusion

In this paper we designed an O( n*(m+nlogn)log n) algorithm for the min-cost flow
problem. The algorithm is a modification of Fujishige’s algorithm. The modifications
made it possible to relate the progress achieved to the time spent. The bound improves
the previous best bound whenever m = w(n). The improvement is the largest (by a

factor of O(n?)) for dense graphs (O(n*logn) compared to O(n® logn)).
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