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imbeddings in the sphere.
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1 Introduction

Gross and Furst [1985] have introduced a hierarchy of genus-respecting partitions of the
set of imbeddings of a graph into a closed, oriented surface. This paper contains an
illustration of a direct calculation of the genus distribution for every member of an infinite
class of graphs called “closed-end ladders”. It also contains an illustration of the use of
a slightly finer partition in order to obtain the genus distribution for every member of
another infinite class of graphs, which are called “cobblestone paths”.

The choice of terminology here reflects the usual sensitivities of topological graph the-
ory. For instance, a graph may have multiple adjacencies or self-adjacencies. It is taken to
be connected, unless one can readily infer otherwise from the immediate context.

We require that the interior of every face of an smbedding is simply connected, and
we are concerned exclusively with imbeddings into closed, orientable surfaces. The closed
orientable surface of genus 1 is denoted S;.

Two imbeddings f : G — S and g : G — T are called equivalent if there exists a
homeomorphism of pairs

h: (S, f(G)) — (T,9(G))

such that hf = g. When we say we are “counting the number of imbeddings,” we are
actually counting the number of equivalence classes of imbeddings.

The size of a face of an imbedding means the number of edge-traversals needed to
complete a tour of the face boundary. If both orientations of the same edge appear on the
boundary of the same face, then that edge is counted twice in a boundary tour.

It is assumed that the reader is familiar with the elements of topology and graph theory,
at the level of White [1984]. However, we shall briefly review the relationship between
rotation systems and graph imbeddings, which is described in Section 6.6 of White [1984]
in slightly different terminology and somewhat reduced generality.

A rotation at a vertex is a cyclic permutation of the edges incident on it, in which the
two ends of a self-adjacency are considered separately. Thus, if a vertex has valence d,
there are (d — 1)! possible rotations there. '

A rotation system for a graph is an assignment of a rotation to each vertex. If a graph
has vertices Vj,...,V, of respective valences d,,...,d,, then the total number of rotation

systems is
n

[1(d: - 1)t
i=1
A research abstract of Edmonds [1960| called explicit attention to a bijective corre-
spondence between the set of imbeddings of a graph G and the set of rotation systems.
(The correspondence seems to be implicit in the pioneering work of Heffter [1891].) It
follows that the total number of imbeddings of a graph is the same as its number of ro-
tation systems. Details for the simplicial case (i.e. without self-adjacencies or multiple
adjacencies) were first given by Youngs [1963]. A generalization to the non-simplicial case
was developed by Gross and Alpert [1974].




The bijective correspondence is realized if one considers a secondary permutation action
of the rotation system. Let e be an oriented edge from vertex u to vertex v. Of course,
the primary action takes e onto whatever oriented edge, say d, follows e at vertex v. The
secondary action takes e to the reverse of d. The orbits of oriented edges in this secondary
action are taken to be the face boundaries of an imbedding.



2 Closed-end ladders

Imagine that rounded pieces of material are used to close both ends of an n-rung ladder.
A mathematical model of this object may be obtained by taking the graphical cartesian
product of the n-vertex path P, with the complete graph K; and then doubling both
its end edges. We call the resulting graph an n-rung closed-end ladder and denote it L,
herein. Figure 2.1 depicts a closed-end ladder.

LD

Figure 2.1 The 3-rung closed-end ladder Ls.

The horizontal edges are said to form “sides” of the ladder. The two curved edges are
called “ends” or “end-rungs”. All vertical edges, including the ones that share vertices
with end-rungs, are called “mid-rungs.”

Ladder-like graphs played an extensive role in the solution by Ringel and Youngs [1968]
to the Heawood Map-Coloring Problem (see Ringel [1974]). In fact, we shall use the picture
method of Gustin [1963], so important to that solution, to specify every rotation system
— and accordingly, every imbedding — of a ladder graph. We note that a trivalent vertex
has only two rotations.

If the vertex is drawn solid, the rotation is counterclockwise. It the vertex is drawn
hollow, then the rotation is clockwise. Figure 2.2 shows a rotation system for a 4-rung
ladder and its two edge-orbits, one dotted, the other dashed.

The graph L has 8 vertices and 12 edges. The imbedding depicted has two faces (one
for each edge-orbit). Substitutions on the right side of the Euler polyhedral equation

2-2y=V-E+F

yields the equation
2—-2y=8-12+2=-2
from which we infer that the imbedding surface associated with Figure 2.2 has genus 4 = 2.
If both endpoints of a mid-rung are solid, or if both are hollow, then we call it a matched
mid-rung. A rung that is either and end-rung or a matched mid-rung is called an m/e
rung. In particular, an end-rung whose endpoints are unmatched is still called an m/e
rung. A rung that is not an m/e rung is called and unmatched mid-rung. Thus, Figure
2.2 has three m/e rungs and three unmatched mid-rungs.
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Figure 2.2 A rotation system for the 4-rung ladder L, and its two associated edge-orbits.

The m/e rungs are considered to be in a sequence that proceeds from left to right. The
left end-rung is first and the right end-rung is last. If the endpoints of an end-rung are
matched, then the mid-rung that shares those end-points occurs next to that end-rung in
the m/e sequence. Another way to say this is that two m/e rungs are consecutive m/e
rungs if no matched mid-rungs lie between them.

Two consecutive m/e rungs are said to be evenly separated if the number of interposing
unmatched rungs is even (including zero). Thus, the left end-rung of Figure 2.2 is evenly
separated from the doubly hollow matched rung, but the doubly hollow matched rung is
oddly separated from the right end-rung. Thus, the number of edge-orbits (two) is one
more than the number of evenly separated pairs (one) of consecutive matched rungs. We
generalize this observation about Figure 2.2.

Lemma 2.1 The number of edge-orbits induced by a rotation system for a closed-end
ladder L, equals one plus the number of evenly separated pairs of consecutive m/e rungs.

Proof: Suppose that the total number of matched mid-rungs is m. Let us begin by
considering any rotation system of the ladder L., such that every rung is matched, so that
there are m + 1 evenly separated pairs of m/e rungs. It is not difficult to verify that such
a rotation system has m + 2 edge-orbits , and that three different edge-orbits are incident
on each vertex. (The aid of a few drawings is highly recommended.)

The rest of this proof is concerned with the effect of inserting a string of unmatched
mid-rungs between two m/e rungs.

Tracing the orbit lines in Figure 2.3 is sufficient to demonstrate that whenever a 2-
string of similar unmatched mid-rungs is inserted between two arbitrary rungs, there is no
effect on the number of edge-orbits.




Figure 2.3 The two possible 2-strings of similar unmatched mid-rungs and their local
edge-orbit structure.

It follows that when we insert strings of unmatched mid-rungs into the ladder L., we
may as well assume that consecutive unmatched mid-rungs are dissimilar. Let’s call this
an dalternating string of unmatched mid-rungs.

Tracing the edge-orbits in Figure 2.4 indicates that inserting an alternating 3-string
of unmatched mid-rungs between any two kinds of rungs has the same effect as inserting
only the middle rung of the string.

By combining the observation about alternating 3-strings with the observation about 2-
strings of similar m/e rungs, we may infer that the effect of inserting any odd-length string
of unmatched mid-rungs is the same as inserting one unmatched mid-rung. Similarly, we
may infer that the effect of inserting any even-length string of unmatched mid-rungs is the
same as inserting either a 2-string of dissimilar unmatched mid-rungs or no rungs at all.

In order to insert a single unmatched mid-rung between two m/e rungs, we proceed in
two stages. First, we insert a m/e rung, which increases the number of edge-orbits by one.
We observe that each endpoint of the new rung is incident on three distinct edge-orbits.
Thus, when the rotation at one end of the new rung is reversed (i.e. this is stage two), its
three edge-orbits become one orbit, for a reduction by two. The net effect of inserting the
unmatched mid-rung is a decrease of one edge-orbit.

Another edge-tracing argument confirms that inserting an alternating pair of un-
matched mid-rungs between two consecutive m/e rungs causes no net change in the number
of edge orbits.

QED

Lemma 2.1 enables us to complete the derivation of the genus distribution of ladders
by straightforward enumerative techniques.




Figure 2.4 The equivalence between inserting an alternating 3-string of unmatched
mid-rungs and inserting only the middle rung of the string.

We employ two auxiliary expressions in what follows. One is s(n,m, k), which stands
for the number of rotation systems for the ladder L, that have m m/e mid-rungs, of which
k pairs are evenly separated. The other is b(p, ¢,r), which stands for the number of ways
to put p identical balls into ¢ distinct boxes, so that exactly r boxes have an even number
of balls.

To obtain a combinatorial expression for b(p,q,r), we imagine that one ball is placed
into each of the ¢ — r odd boxes and that the remaining p — ¢ + r balls are then distributed
in pairs into the ¢ boxes. Thus,

0 if p—q+risodd,
b(p,q,7) ={

(qq_r) ((P-ﬁ;)_/,”q-‘) otherwise

or, equivalently,

0 fp—q+ris odd, (1)
b(p,q,r) = ( )((’_”;)_/:ﬂ—l) otherwise

In order to analyze s(n,m,k) we imagine that the n — m unmatched non-end rungs
are to be inserted into the m + 1 distinct boxes formed along the ladder L, by the m
unmatched rungs. Clearly we have

s(n,m,k) = 2,b(n — m,m + 1,k) (2)

If n = k mod 2, then (n —m) — (m+1) +k is odd, from which it follows that s(m,n, k) =
0. However, if n Z k mod 2, then we combine equations 1 and 2 to obtain

s(mom k) = z~("‘;’ 1) (‘" tk- ”/2) (3)

m




We now define f(n,k) to be the number of imbeddi

ngs of the ladder graph L, that
have k faces. According to Lemma 2.1 we have

n

fln,k) =3 s(s,m, k —1) (4)
m=0
Using equation 3, we transform equation 4 into
_ons= M+ 1\ [(n+k—-2)/2 B}
e = 2 (20 (M) @
or, equivalently
_ons~ (m+1\((n+k)/2~-1
e = 3 (I (M @

Using the combinatorial identity

m+1 m m
(F20) (70 (7 @
we convert equation 6 into

e E[) ()

which separates, in turn, into the form

fnk) = 2° Y m = On(krjl) ((n+kn)1/2 - 1) o gn Z": (kmz) ((n+k’l/2— 1) (9)

m=0 -

()0 -

enables us to determine from equation 9 that

f(n k) = 2° [((n +k)/2 - 1) Sn-B/2 ((n +k)/2 - 1) 2(,,_,,),,+1] (10)

The combinatorial identity

k-1 k-2

Therefore, we may infer

- -1
f(n k) = 20073 [((" P 1) + z((" A )] (11)
We now reuse the combinatorial identity 7 to obtaine
k)/2-1
f(n,k) — p(3n-k)/2 [((nk-l- ki/Z) 4 ((n +k 1/2 )] (12)
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((n +k)/2 - 1) _ ((n + k)/z) 2(k - 1)

implies that

k-2 k—1 (n + k)
This allows us to simplify equation 12 to conclude
- k)/2 2k -2
k) = 2(3n—8)/2 (n+
f(n,k) =2 k-1 1+n+k (13)

whenever n = k mod 2. Otherwise, f(n,k) = 0.
In order to convert the face-count formula in equation 13 into a genus distribution

formula, we use the Euler polyhedral equation in the form
2-2t=#V(La) - #E(Ly) + #F(Ln — S;) =2n —3n+k

Thus, when the genus of the imbedding surface is equal to the number i, the number of
faces is
k=n+2-2¢
Let gi(Ln) denote the number of imbeddings of the ladder L, in the surfaces S;. It follows
that '
gi(Ln) = f(n,n +2 - 2) (14)

When we apply equation 13 to the right-side of equation 14, we obtain the equation

[n+(n+2—2i)]/2) (1+2(n+2—2i)—2)

(n+2-21) -1 n+(n+2-2i)

g.'(Ln) — 2[3n—(n+2-2|')]/2 (

This simplifies routinely to

9(Ln) =2 (n+1—2i) n+l-—1

and, since (d:‘) = (:), we have

() i (o .
gi(Ln) = { 0 otherwise (12)

The following table shows the genus distribution for small values of n and 1.
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9

gs g4
0 o
0 o0
0 o0
0O o
128 0



3 Cobblestone paths

Suppose that every edge of the n-vertex path P, is doubled, and that a self-adjacency is
then added at each end. Figure 3.1 shows how the resulting graph might be drawn. It
seems appropriate to dub this graph a cobblestone path We denote it J, herein.

Figure 3.1 The cobblestone path J,.

For any connected graph G, and for 1+ =0, 1,..., let g;(G) be the number of imbeddings
of G into the closed orientable surface S;. We may regard the genus distribution for G as
a vector

(90(G), 91(G), 92(G),...)

Obviously, only finitely many entries are non-zero.

Our objective is to calculate all the numbers g;(J,), fori =0,1,...,andforn =1,2....
Sometimes we abbreviate g;(J,) by g;» herein.

The recursion construction assures that we have a cobblestone path J,., positioned
horizontally, as in Figure 3.1. The subsequent cobblestone path J, is obtained by first
imposing a new vertex at the middle of the right end loop and then attaching a new right
end loop at the new vertex.

To establish a recursion formula, it is necessary to distinguish between two kinds of
imbeddings of the cobblestone path J,_,, depending on whether the two occurrences of
the right end edge lie on two distinct faces or on the same face. For+ = 0,1,... and for
n =1,2,... we define d;(J,), sometimes abbreviated d; ,, to be the number of imbeddings
of J, in S; such that the two occurrences of the right-end edge lie on distinct faces, and
we define s;(J,), sometimes abbreviated s, , , to be the number of imbeddings of J, in S;
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such that the two occurrences of the right-end edge both lie on the same face. Obviously,
we have the equation
9i(Jn) = di(Jn) + 8i(Jn) (16)
" For each cobblestone path Jn, we may form vectors

(do(Jn)y d1(Jn), ...) and (so(Jn), 81(Jn), -..).

The basis step for the recursion is the following observation
(dO,h d1|1, d?.l---) == (4,0,0,...) (17)
(80|1) 81.1, 82,1,...) = (0,2,0,...) (18)

In constructing the cobblestone path J, from its predecessor J,_;, we are adding a new
vertex of valence 4. Since (4 —1)! = 6, it follows that J, has six times as many imbeddings
as J,_,. In fact, the cobblestone path J, has 6™ imbeddings, for n = 1,2,....

Our viewpoint is that each individual imbedding of J,_; gives rise to six imbeddings
of J, which occurs by way of the intermediate graph J}_,. By J!_, we mean the resuit
of inserting a new vertex at the midpoint of this right-end loop of the cobblestone path

Jn-1. The six dashed arcs in Figure 3.2 illustrate the six ways the new right-end loop for
Jn can be attached at the new vertex of J,_;.

“\\‘ \\/}
~—-_ -
_—/7 \\

' - \
- {«/\\l

Figure 3.2 The six ways of attaching a new right-end loop.

Now consider any imbedding into the surface S; of the cobblestone path Ja-,. If bot'h
occurrences of the right-end loop of J,-, are on the same face, then every one of the six
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ways of attaching a new right-end loop can be realized in the surface S;, that is, without
attaching an extra handle to S;. Obviously, the two occurrences of the new right-end loop
appear on different faces of the resuiting imbedding of J,. However, if the two occurrences
of the right-end loop of J,_, are on different faces of its imbedding in S;, then only the
four monogon-generating insertions of the new loop are in S;. The two insertions in which
the new right-end loops runs from one face to another require the addition of a handle
from one face to the other. In this case, both occurrences of the new right-end loop lie on
the same face of the new imbedding. Thus, we have established the simultaneous recursion
formulae

di(Jn) = 4di(Jn-r) + 68;(Jn-1) (19)
3i(Jn) = 2di_1(Jn-1) (20)

The solution of the recurrence begins with a substitution of
2d;_1(Jn-2) for s;(Ja-1) into equation 20 which yields the simplified recurrence relation

di(Jn) = 4di(Jn—l) + lzdi—l(Jn—z) (21)
By reversing the recursion, we may calculate values
do(Jo) =1 and dl(.]o) = dg(Jo) =...=0 (22)

This artifice enables us to define

Di(z) = 3 di(Jn) "
=0

in preparation for an infinite summation on equation 21, as follows.

o o0 [ -]
Z dinz" = 4 Z din1z" + 12 Z di_1n-2Z"
n=2 n=2

n=2

) )
=4z Z d.-,,‘_;z"'l + 1232 Z d"_ll,‘_zln_z
n=2

n=12

Therefore,
D.'(Z) - d."xz - d,'.o = 42(D.’(I) - d."o) + 12£2D.'_1(.‘B)

and, consequently
Di(z)(1 — 4z) = 122° Di_y(z) = diy = + dig (23)

From equations 17 and 22, we know that d;; = 0 and dio = 0, for all 1+ > 1. Thus we
may simplify equation 23 to the linear recursion

3
Di(z) = (—l—lszI)D;_l(z), for 121 (24)
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We will now proceed to establish the value of the polynomial Dy(z). From the Jordan
curve theorem, we know that sg, = 0, for n > 1. Accordingly, we may conclude from

equation 19 that
do(Jn) = 4do(Jn-1)

Since dgo = 1, we infer that
1

Do(z) = 7—= (25)
We easily combine equations 24 and 25, to obtain the result
(12z3)*
Di(z) = —————

The coefficient of z" in the power series expansion of (1 — az)™* is

(r+s—1)a,
r

(For instance, see Tucker [1980, p. 84] or Liu (1968, p. 31].) It follows that the coefficient
of "% in the power series expansion of (1 — 4z)~(*+!) is

((n— 2) + (§ + 1) - 1)4"_,,. _ (n— 5)4,‘_2,.

n—2t n—2t

Thus, the coefficient of z” in the power series expansion of D;(z) is
) . n—1 . X n-—s .. fn—1
12'. 4n—2| . 1= 3 .40, | = 34ns . ]
(n - 2:) (n - 2:) ( 1 )

That is, .
di(Ja) =3 -4 (n:‘),forizo and n>0 (27)

We now recall equation 20
8i(Jn) = 2dic1(Jn-1), for 121 and n2>1
and infer that )
si(Ja) =231 47 ('.‘ ') (28)
1—1
Therefore, from equation 16, we conclude
n—1

g.-(Jn)=3‘-4""-(":') +2-3"“-4"“-<i_1) for {>0 and n>1 (29)

The following table contains some of the small values.
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9% ¢ g3 Total
4 2 0 6
16 20 0 38
64 128 24 216

256 704 336 1296
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4 Statistical Patterns

A non-negative sequence {k,} is said to be unimodal if there exists at least one integer M
such that
Pn-1 < pn for all n < M, and
Pn 2 P4y foralln > M

Although this includes non-decreasing sequences that eventually level off and non-increasing
sequences that start out level, a typical unimodal sequence first rises and then falls.

A sequence {k,} is called strongly unimodal if its convolution with any unimodal se-
quence is unimodal. Keilson and Gerber [1971] have proved that {k,} is strongly unimodal
if and only if

k2 > knirka — 1, for all n
or equivalently, if and only if {k.} is unimodal and

kn+l < kn
kn - kn—l

whenever these ratios are defined.
Theorem 4.1 The genus distribution for closed-end ladders is strongly unimodal.

Proof: For 1 <1< [2], we have proved in Section 2 that

n+1—i)2n+2—3i

t n+1l-—1

gi(Ln) = 2n—€+l(
It follows that the ratio g;(Ln)/gi(Ln-1) has the value

n+3—-2t n+2-2t 2n+2-3s
1 n+l—1 2n+5-33

2

Each of the three quotients is a non-increasing function of the variable :. Thus, the next
ratio gi+1(Ln)/g9i(La) cannot be greater.

QED
Theorem 4.3 The genus distribution for a cobblestone path is strongly unimodal.

Proof: First, transform the equation
o . (n—1
gi(Ja) = 34" 4 2.3 14 (i ~ 1)
so that the right-hand side has only one term.

n—i)3n—4i+3

. = 1i-1,4n=1¢
9i(Jn) =374 ( n—21+1

!
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Therefore, the ratio g;(Ja)/gi-1(Jn) equals

§ n—214+2 n—21+3 3n—4:1+3
4 n—t1+1 1 3n—41+7

For 1 <1 < |3], the three variable quotients are non-increasing. Thus, the next ratio
gi+1(Jn)/gi-1(Jn) cannot be greater.

10.
11.

12.

QED
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