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ABSTRACT. The genus distribution of a graph G is defined to be
the sequence {gm} such that 9, is the number of different imbeddings
of G in the closed orientable surface of genus m. A counting formula
of D.M. Jackson concerning the cycle structure of permutations is used
to derive the genus distribution for any bouquet of circles Bn. It is
proved that all these genus distributions for bouquets are strongly
unimodal.
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1.  Introduction

[t is a reasonably straightforward matter to relate the number of
imbeddings of a bouquet in the 2-sphere to Catalan numbers, but attempts
at similarly direct approaches to counting the imbeddings of bouquets in
the higher genus surfaces have not met with quick success. However,
enumerative results by D. M. Jackson [11] concerning the cycle structure
of permutations, and obtained by methods involving the representation
theory of symmetric groups, permit us to make such counts. The principal
task of this paper is to give a mathematical justification of a transla-
tion of our enumeration problem into Jackson's context, so that we may

apply his formula.

By a bouquet of circles, or more briefly, a bouquet, we mean a

graph with one vertex and some self-loops. In particular, the bouquet
with n self-loops is denoted Bn. One sense in which bouquets are
fundamental building blocks of topological graph theory is that any
connected graph can be reduced to a bouquet by contracting a spanning
tree to a point. Another is that Cayley graphs and many other regular
graphs are covering spaces of bouquets, as has been demonstrated with

voltage graphs by Gross and Tucker [7] and by Gross [4].

Every surface in this paper is closed and orientable. An oriented
surface is one with a given fixed orientation. The closed orientable
surface of genus m is denoted Sm; for instance, S0 denotes the
sphere and S1 the torus.



As is customary in topological graph theory, a graph is permitted
to have self-loops and/or multiple adjacencies. A1l imbeddings of graphs
in surfaces are 2-cell imbeddings, that is, every complementary region
or face of the imbedding is homeomorphic to an open disc. For general
background in topological graph theory, see Gross and Tucker [8] or

White [221].

By the genus distribution of a graph G, we mean the sequence

99> 9y +- o where I is the number of different imbeddings of the
graph G in the oriented surface Sm' I[f there is more than one graph
at hand, we write gm(G) and gm(H) to distinguish their distributions.
In particular, gm(Bn) denotes the number of imbeddings of the bouquet

Bn in the surface Sm.

The outline of this paper is as follows. Section 2 discusses our
notion of equivalence of imbeddings and its connection with rotation
systems and permutations of the directed edge set of a graph. Section
3 relates the numbers gm(Bn) to the numbers computed by Jackson [11].

Section 4 shows that for every n, the sequence gm(Bn) is strongly

unimodal. Section 5 poses various questions.




2. Equivalence of imbeddings and rotation systems

In order even to talk about the number of imbeddings of a given
graph, we need to be more explicit about what we mean by graph, imbedding,
and eduiva]ence of imbeddings. A graph here is a topological space given
in the following manner as a finite l-dimensional CW-complex. The
vertex set V of a graph G is a finite set of points. The edge set
E 1is a finite number of copies of the unit interval [0,1]. For each
edge e there is a function fe:{O,l}»V telling where to attach the
end-points of edge e. The graph G 1is then the identification space
formed from the disjoint union of V and E by identifying end-points
of edges with vertices via the functions fe. Observe that this
description in effect assigns a "direction" for every edge e with
initial vertex fe(O) and terminal vertex fe(l), even if edge e s

a self-loop.

If a graph has no multiple edges or loops, it can be given in a
coded form simply be listing the symbols for the vertices, say integers
1, ..., n, together with ordered pairs of vertices giving the initial
and terminal vertices of each edge. A graph with multiple edges or
loops can be coded in the following way. Symbols for edges are listed
and to each edge e are associated two symbols, e’ and e . The set

D(E) of all such symbols is called the directed edge set of the graph.

Each vertex v 1is then specified by a subset of directed edge symbols:
et is in the subset if and only if vertex v 1is the initial vertex of

edge e, and e is in the subset if and only if vertex v is the
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terminal vertex of edge e. Thus a graph can be given simply by a

partition of its directed edge set.

An imbedding of a graph G in a surface S 1is a continuous
one-to-one function f:G-+S. Two imbeddings f:G-S and g:G+S of a
graph G in the oriented surface S are equivalent if there is an
orientation-preserving homeomorphism h:S+S such that hf=g. This
means that the surface homeomorphism h must respect the labeling and
directing of edges: for each edge e, h must take f(e) to g¢g(e) and
the plus direction of f(e) to the plus direction of g(e). Throughout
this paper, "number of imbeddings" really means number of equivalence

classes of imbeddings.

There are some weaker notions of "equivalence" of imbeddings. The
most common is to say that imbeddings f:G+S and g:G-»S are "equiva-
lent" if there is a (not necessarily orientation-preserving) homeomor-
phism h:S5+S such that h takes the image f(G) onto the image g(G)
(equivalently, there is a graph automorphism j:G-+G such that hf=gj.).
As suggested in [8], we will call this weaker form of equivalence
congruence. I[f the homeomorphism h preserves orientation, we call this

oriented congruence. It is congruence that is found, for example, in

Negami [ 16], Mull, Rieper, and White [ 15], and Bender and Canfield [1].

To illustrate the concept of equivalence, we consider the four

imbeddings of the bouquet B, in the sphere S0 given in Figure 1.

2
The Toops are labeled and directed because in order to know which
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imbedding f:82-+50 is being illustrated, we must know one loop from
another and, for each loop, which end is which. Clearly, all four
imbeddings are congruent, since congruence ignores labels and directions.
However, as the reader should be able to verify, these four imbeddings

are mutually inequivalent.

G

A e ; e A e QQ
(@ ) (¢ £)

(= )

Figure 2.1 Four 1nequ3valent imbeddings of the bouquet 82 in

the sphere.

Are there any other inequivalent imbeddings of the bouquet 82 in
the sphere? In Figure 2.2, there are illustrated some plausible
candidates. We claim that all three are equivalent to imbedding (a) in
Figure 2.1. For the "wild"-looking imbedding on the left, we appeal
to the Schoenfliess Theorem to straighten out the closed curve represent-
ing loop e. For the middle imbedding, we remind the reader that the
imbedding surface is the sphere, not the plane, and that if one chooses
to put the point at infinity in the region between d and e, one has
again imbedding (a) from Figure 2.1. Finally, for the imbedding on the

right of Figure 2.2, a rotation by 180° about the vertex brings us back



to imbedding (a). This imbedding could also be turned into imbedding
(d) by a reflection in a vertical axis, but we require our homeomorphism
h to be orientation-preserving; thus imbeddings (a) and (d) are not
equivalent under our definition. At this point, we hope the reader
believes that the four imbeddings in Figure 2.1 give all the equivalence
classes of imbeddings of the bouquet 82 in the sphere, even though we

have not given a formal proof.

% () OO0«

Figure 2.2 Three imbeddings of the bouquet 82 in the 2-sphere.

The role of edge-directions and loops in equivalence of imbeddings
deserves some mention. One must remember that the edge-directions of a
given graph are fixed at the outset. Thus, if edge e 1in graph G is
not a loop, we cannot obtain a "different" imbedding for G simply by
reversing an arrow on edge e in some drawing of an imbedding of G;
reversing the plus-direction of edge e changes the underlying
representation of the graph G, which has already been agreed upon. On
the other hand, if edge e 1is a loop, then reversing an arrow on edge

e in a drawing of an imbedding of G 1is possible, since such a
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reversal can be obtained by maintaining the same agreed-upon direction

for the loop e, but changing the imbedding by flipping the loop e

over.

Equivalence of imbeddings ignores small differences in the
appearance of imbedding, and focuses instead on the underlying combina-
torial structure of a labeled graph imbedding. One should expect,
therefore, that a given equivalence class can be encoded in some finite

way using only the symbols for the edges.

There is one obvious way to encode imbeddings. Simply list in
cyclic order the directed edges encounted in a closed walk around the
boundary of each face in the imbedding, oriented by the given orienta-
tion of the surface. Since any surface homeomorphism providing an
equivalence between two imbeddings must preserve labels and directions
of edges and must take each oriented face to a like-oriented face,
equivalent imbeddings clearly generate the same cyclic lists of boundary
walks. Conversely, given such cyclic lists of boundary walks, one can
recover the imbedding surface, up to equivalence, simply by identifying,
for each cyclic 1list, the boundary of a polygonal disk to the closed

walk in the graph given by that 1ist.

However, there is a difficulty with this method of encoding an
imbedding. Not every partition of the edges of a graph into cyclic lists
gives an imbedding: the cyclic lists must correspond to closed circuits

in the graph and, even then, one may obtain a pseudo-surface rather than
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as follows. Choose any directed edge e as the start of the face
boundary walk. Then the next edge in that walk is the directed edge
that immediately follows the opposite of e in the rotation at the
vertex at which the opposite of e terminates. Continue generating
successive directed edges until the walk closes. Then choose any unused
directed edge as the start of the next closed walk. When all directed

edges have been used, stop.

This one-to-one correspondence between rotation systems and
equivalence classes of imbeddings was given by Edmonds [2] for the case
of simplicial graphs. A less convenient dual form was previously known
to Heffter [10]. The general form given here for graphs with possible

loops and multiple edges is due to Gross and Alpert [5].

The cyclic lists given by a rotation system suggest that we con-
sider each rotation system simply as a single permutation of the directed
edge set of the graph given in cycle form. It turns out that this view-
point has a substantial payoff: it allows an immediate algebraic method
of determining the faces of the imbedding. Given a graph G and a
rotation system viewed as a permutation p on the directed edge-set
D(E) of G, then the faces of the associated imbedding are given by
the cycles of the permutation po g8, where B is the permutation of
D(E) that interchanges e” and e, for each edge e. To see this,
simply think about how faces are recovered from a rotation system. A

directed edge, say e€ where e =1, 1is selected as the first edge in



a face boundary. The next edge is obtained by first going to the vertex
v where e€ terminates. In the cyclic list given by the rotation at
that vertex v, one finds e € 1listed. The next edge in the face
boundary is the one following e € in the rotation at vertex v. Thus
we first apply B to e€ and then apply p to the result. For
example, in imbedding (a) of Figure 1 we have:

+ -

e”) 8 = (d"d7)(e e

p = (d+ d” e e’ )

po 8= (d" e)(d)(e)
Observe that the faces are oriented by the opposite, clockwise orienta-
tion of the sphere (the edge directions d+ and e+ for the "outside"
face of the imbedding really do run against the counterclockwise orien-

tation given by the little circular arrow at the upper left of Figure

2.1.)

This viewpoint of rotation systems as permutations of the directed
edge set has been exploited by a number of authors, especially Stahl
[20]. As Stahl [21] has observed, it makes some graph imbedding ques-
tions accessible to techniques from the representation theory of

symmetric groups. We summarize this discussion in the following theorem,

THEOREM 2.1 Every equivalence class of imbeddings of a graph G
in an oriented surface corresponds uniquely to a permutation p of the
directed edge set of G such that each cycle of p gives the list of
edges encountered in an oriented trip on the surface around a vertex of

G. Moreover, the faces of the imbedding (oppositely oriented) are given
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by the cycles of peg , wheree B is the involution on the directed

edge set of G that takes each directed edge to its reverse.

The following obvious corollary to Theorem 2.1 indicates why it is
infeasible to calculate the genus distribution of a graph simply by
writing down each possible rotation system p and counting the number

of cycles in po B : there are of course too many rotation systems.

THEOREM 2.2 Let G be an n-vertex graph who vertices have valences

dl’ cees dn. Then the number of equivalence classes of imbeddings of
G is the product
n
n (di- 1)!
i=1

The problem of calculating genus distributions in a less costly
manner than case-by-case has been raised by Gross and Furst [6]. Since
knowing the genus distribution implies knowing the minimum genus, one
might expect that quite powerful enumerative methods would be required
to calculate the genus distributions for many standard classes of graphs.
For instance, a calculation of the genus distribution of the complete
graphs would yield a new proof of the Ringel-Youngs Theorem [18] that

solved the Heawood map-color problem.
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3. Applications of Jackson's Formula

Jackson [11] observes in his paper, indeed, in the title itself,
that his results on counting certain kinds of permutations with a given
number of cycles has application to topological problems. To apply
Jackson's results to the genus distribution of the bouguet Bn’ we

first consider what amounts to a special case of Theorem 2.1.

THEOREM 3.1 The number gm(Bn) of imbeddings of the bouguet Bn

in the oriented surface of genus m is equal to the number of permuta-

tions p on the 2n symbols {e;, ei, e;, eé, cees e:, e;} such that
p has a single cycle of length 2n and ;o Bg has n-2m+1 cycles,
where 8o is the involution (é{ ei)(e; eé)...(e; eé).

Proof. Since the bouquet Bn has only one vertex, it follows that
each rotation system , for Bn consists of a single 2n-long cycle of
directed edges. The number k of cycles of 5 o BO equals the number of
faces of the associated imbedding. Hence by Euler's equation for the
surface of genus m:

2-2m=V -E+F=1-n+k.

Thus, the composition permutation p o BO has k=n-2m+ 1 cycles.

on the full symmetric

group on 2n symbols. Call p ¢ ZZn a long cycle if it consists of a

We can interpret g (B ) in terms of I
m n

single cycle of length 2n, and call B e ZZn a full involution

if it consists of n cycles of length 2. Fix a full involution

89€ Zop- Then gm(Bn) is a number of elements in the set:
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{m ez m has n - 2m+ 1 cycles and

2n|

mT=p o 80 for some long cycle op}.

By contrast, fix a long-cycle Then Jackson counts, among other

Py
things, the number of elements in the set:

{rel ™ has k cycles and m= Pg ° g for some full involution g}.

(2)

Jackson denotes this number ey (n) which we abbreviate here to ek(n).

2nl

It is not difficult to find the numerical relationship between
gm(Bn) and ek(n), but it is also instructive to see what Jackson's
ek(n) counts in terms of graph imbeddings. We begin with a picture of
what an imbedding of the bouquet Bn Tooks 1ike near its only vertex v:
there we see 2n '"spokes" radiating out from vertex v as illustrated
on the left of Figure 3 for n=3. If Jackson's fixed 2n-cycle °g is
denoted (12 3 ... 2n), choose one spoke of the imbedding to label 1
and then label the other spokes around the vertex v by 2,...,2n using
the cyclic order determined by the given orientation of the imbedding
surface. Then Jackson's varying involution g encodes which pairs of
spokes are connected in order to complete the loops of the bouguet Bn’
as illustrated in the middle of Figure 3.1 for B8 =(13)(26)(45). The
faces of the imbedding correspond to the cycles of Po® 8 , but unlike
a usual rotation system, the edges are unlabeled and undirected. In
fact, after agreeing to let spoke 1 be the initial end of the directed
edge of e+, there are 2! -22 different ways to label and direct the

remaining two loops of the imbedding. On the right of Figure 3.1 is shown
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one of the possible ways, which yields the rotation (e

Figure 3.1 The imbedding of B, corresponding to the involution

3
g = (13)(26)(45).

Jackson's number ek(n) can be interpreted in terms of congruence
classes of imbeddings in the following way. Attach to the bouquet Bn
a single edge ("stem") leading to a new vertex of valence one. This stem
can then be used to mark which spoke is to be labeled 1 as the first

spoke encountered after the stem using the given orientation of the

imbedding surface. Let B; denote such a stemmed bouquet. Figure 3.2

shows the five oriented congruence classes of imbeddings in the sphere
for the stemmed bouquet Bé together with the corresponding involution

B € 26. The reader should check that for every one of the ten other
full involutions in 26 , the product of such an involution with
Py * (1 23456) has two cycles and hence represents an imbedding in

the surface of genus one.
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= S

U () (SH) (1) (36)(4S7) (14)(23)($6)

(16)(X3)(H57) (16)(25)(34)

Figure 3.2 The five imbeddings in the sphere for the stemmed

t B!
bouque 3"

Let us abbreviate gm(Bn) by gm(n). Then this discussion can be

summarized in the following theorem.

THEQREM 3.2 The number of oriented congruence classes of the stemmed

bouquet 86 in the oriented surface of genus m 1is e (n), where

k
k=n-2m+1. Moreover, gm(n) =(n-1) 2" 1, ek(n).

Proof. The equation k = n - 2m + 1 has already been explained

in Theorem 3.1. The one - to - (n = 1)! « 2"~ 1

correspondence between
Jackson's involution g and our rotation , is given as follows. If
8(1)=j, then positions 1 and j 1in the 2n-cycle p are occupied

by el and e respectively. For each other 2-cycle (ij) in the

1 1’
. . +
involution B, choose an edge label e from €5y «en & and put e
or e in position i of p and e or e+, respectively, in

position j. Conversely, given a rotation p for Bn’ write p in
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cyclic form with eI listed first. Then each transposition in the
corresponding involution B8 corresponds to two positions in  occupied

by the same edge label. [

Jackson describes the numbers ek(n) in terms of closed formulas,
generating functions, and recurrence relations. All of these descrip-
tions can therefore be applied to gm(n). We give here the recurrence

relation for gm(n).

THEOREM 3.3 The numbers gm(n) satisfy the recurrence for n > 2:

(n+1)g,(n) = &(2n - 1)(2n - 3)(n- D¥(n-2)g_(n-2)+4(2n-1)(n-1)g (n-1)

m

with the boundary conditions

g (n) =0 if m< 0 or n<O,
gO(O) = go(l) =1 and gm(O) = gm(l) =0 for m >0,
90(2) = 4, 91(2) = 2, gm(2) =0 for m> 1.

Proof. By Lemma 6.1 of Jackson [11],
(n-+1)ek(n)= (2n-1)(2n-3)(n - l)ek(n- 2)+2(2n -l)ek_l(n- 1),

where n and k have opposite parity and n > 0. The desired
recurrence for gm(n), n> 2, 1is then obtained by substituting

n-2m+ 1 for k, multiplying both sides by (n-1)!2" -1 and using
Theorem 3.2. The recurrence for gm(n) begins only at n =3, because

multiplying by (n-1)! causes a spurious factor of 0O in front of the
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g (n-2) termwhen n s 2. The boundary conditions for

m-1
easily verified.

Table 1 Some values of gm(n)

n/m 0 1 2

0 1

1 1

2 4 2

3 40 80

4 672 3360 1008

5 16128 161280 185472

-17-
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4. Unimodality
A nonnegative sequence {am} is said to be unimodal if there exists
at least one integer M such that
a s a for all m < M, and
m=-1 m :
1 .
a 2 am+1 for all m 2> M
Although this includes nondecreasing sequences that eventually level off
and nonincreasing sequences that start out level, a typical unimodal

sequence first rises and then falls.

A sequence {am} is called strongly unimodal if its convolution
with any unimodal sequence {bm} is unimodal. Keilson and Gerber [12]

have proved that {am} is strongly unimodal if and only if

2
am 2 am+1 am_1 for all m

or, equivalently, if and only if {am} is unimodal and

a a

+
m+1 < gm
m m-1

a

wherever these ratios are defined. This property is also called log concavity.

THEOREM 4.1 The genus distribution of the bouquet Bm is strongly

unimodal.

Proof. The proof is by induction on n. The genus distributions
for BO, Bl’ and BZ’ are strongly unimodal, thus providing a basis for
an induction on n > 2 wusing Theorem 3.3. The recurrence for gm(n)
given by Theorem 3.3 can be written in the form:

gm(n) = A(n)gm(n - 1) + B(n)gm_l(n - 2) (4.1.1)
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where A(n) and B(n) are positive functions of n. In this form, the
recurrence holds not only for n > 2, but also for n >0, if we set

A(2) = 4, B(2) = 2, A(1) = 1, B(1) = O.
We wish to prove that

9,(n) 29 (Mg (n). (4.1.2)

m m-1

We may assume that n-2m+1 > 0, since gm(n)= g .(n)=0 by Theorem

m+1
3.1 whenever n-2m+1 s 0. By using recurrence (4.1.4), we expand the

left side of inequality (4.1.2) to

Az(n)gﬁ(n- 1) + Bz(n)g,f,_l(n - 2)
+ 2A(n)B(n)gm(n- l)gm_l(n- 2)
and the right side to
a¥(n)g_, (n-1)g,_(n-1) + 8¥(n)g_(n-2)g_,(n-2)

+ A(n)B(n)Lg , (n-1)g  ,(n-2)+g ,(n-1)g (n-2)].

The induction hypothesis implies that the first and second terms of the
expanded left side dominate the first and second terms, respectively, of
the expanded right side. Accordingly, the theorem is proved if we can

establish that

g (n-1)g ,(n-2) 2g (n-1)g .(n-2), (4.1.32)

(n- l)gm(n- 2) . (4.1.3b)

m+1

gm(n- 1)g . (n-2) 2 g

m-1 m-1

Applying recurrence (4.1.1) to the (n-1) terms, we expand the

left side of inequality (4.1.3a) to the formula
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[A(n-1)g (n-2) + B(n-1)g_ ,(n-2)]g . (n-2)

-2

and the right side to the formula

[A(n-1) (n-2) + B(n- l)gm(n- 3)]gm_2(n- 2).

gm+1
It is easy to show that a strongly unimodal sequence {am} satisfies

a.a 243 ,,a .
mm-1 m+l m-2

gp(n-2)g ((n-2) 2 g ,(n-2)g ,(n-2).

Thus by the induction hypothesis, we have
m-1
Therefore, in order to establish (4.1.3a), it suffices to prove that

(n-2)g

If we once again apply the recurrence to the (n-2) terms in (4.1.4a)

g (n-2) 2 gm(n-3)gm_2(n- 2). (4.1.4a)

m-2 m-1

and use the strong unimodality of gm(n- 3), we find that it suffices

to prove that

Ipo1(n-3)g _o(n-4) = g (n-3)g {n-2),

m-1
which is just (4.1.3a) with m reduced by 1 and n by 2. Recalling
that the recurrence (4.1.1) holds for n > 0 and that n-2m+1 > 0,
we can safely iterate this argument until we reach the inequality

gl(" -2m+ l)go(n -2m) 2 gz(n -2m+ l)g_l(n - 2m).

Since g_l(n- 2m) =0, this last inequality is true and inequality

(4.1.3a) is proved.

A similar argument confirms inequality (4.1.3b) by reducing it to
the form

gl(n-Zm-+1)go(n- 2m) 2 go(n-2m-+1)g n-2m).

¢
A final application of recurrence (4.1.4) to the (n-2m+1) terms

yields for the left side,
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[A(n-—Zm-Pl)gl(n- 2m) + B(n-2m + l)go(n- 2m - l)JgO(n-Zm),
which clearly dominates the right side.
A(n-2m+ 1)go(n - 2m)gl(n - 2m).
Thus, both inequalities (4.1.3a) and (4.1.3b) have been established,

thereby completing the proof. 0

Clearly, Theorem 4.1 applies to any triangular array satisfying a
recurrence of the form (4.1.1) with appropriate jnitial conditions. The
only restriction on the coefficients A(n) and B(n) is that they are
nonnegative. Sagan [19] has obtained a similar result for a slightly
different recurrence, but there appears to be no direct connection between

Sagan's result and Theorem 4.1.

-21-



5. Problems for further study

The determination of the genus distribution gm(Bn) raises a
variety of questions. Some of the problems listed here may well be
amenable to an attack like Jackson's using the representation theory for

the symmetric group.
(5.1) Compute the genus distribution for some other interesting graphs.

Furst, Gross, and Statman [ 3] have computed genus distributions for
"ladders" and "cobblestone paths". McGeogh [14] has done circular
ladders and Mobius ladders, and Klein [13] has done Ringel ladders. A
reasonable candidate for study is the dipole Dn’ which consists of 2
vertices joined by n edges. A rotation system for the dipole Dn is

a permutation p of the form (e;...)(ei...), where both cycles have

+

length n and the first cycle uses only the symbols e;,...,en and
the second cycle uses only the symbols ei - e;. To compute gm(D )

one must count the number of such permutations p such that p 080

has n - 2m cycles; as with bouquets 50=(e1 ei)(e; eé)...(e: e;). One
could also enumerate oriented congruence classes analogous to Jackson's
ek(n) by counting the number of full involutions B ¢ in such that

g (1)=2, 8(i) and i have opposite parity for all i, and
Bo(1367...)(2468...) has k cycles. Rieper [17] has computed,
both for the dipole Dn and the bouquet Bn’ the number of equivalence
classes of imbeddings having a specified structure of region sizes, that

is, rotations  such that po 30 has a given cycle structure. Rieper
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uses these computations for asymptotic enumeration. He does not,
however, derive a closed formula for gm(Dn) or recurrence relations

for gm(Bn) or gm(Dn)‘

Another candidate is the wheel graph wn, which consists of a n
‘vertices on an n-cycle together with an extra vertex or "hub" joined to
the n vertices by n edges or "spokes". For each imbedding of wn,
there is an associated imbedding for the bouquet Bn obtained by
contracting the spokes to the hub. To compute gm(wn) it then suffices

to count the number of full involutions B8 e & such that B8 o(12)(34)..

2n
(2n-1 2n) has two n-cycles and B o (1 2 3...2n) has k cycles.

(5.2) Find a way to exploit the fact that every graph contracts along

a spanning tree to a bouquet of circles.

For example, computing the genus distribution for the wheel Nn
reduces to a bouquet imbedding problem with an extra restriction.
Perhaps the contracted spanning tree marks the bouquet in some manner

analogous to the stem introduced in Section 3.

(5.3) Prove the recurrence equation of Theorem 3.3 using direct

topological methods.

A topological derivation of the recurrence might generalize to
other graphs while methods using the representation theory of the
symmetric group might not. Bender and Canfield [1] enumerate asymptoti-

cally all "rooted" n-edge imbeddings of genus m. Can their methods be
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be applied to a restricted family of graphs like the bouquets Bn?
(5.4) Prove that gm(G) is strongly unimodal for any graph G.

A1l available evidence supports the conjecture, but very few genus
distributions are known. It is conceivable that any graph G can be

resolved into a sequence of graphs G = G,, G G where G_ is

N ON-1200 0 n
obtained by deleting an edge from Gn+1 and G0 is a spanning tree for
G, and that in this context there is a recurrence of the form (4.1.1)

for the graphs Gn'
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