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Abstract

The object-oriented paradigm, first introduced in the language Simula, has been the central
design principle of many new programming languages, and has also resulted in object-oriented
extensions to existing conventional languages. This paper is a comparative survey of object-
oriented programming languages (OOPLs). The framework for the comparison is the suitability
of OOPLs for the development of large software systems. We therefore limit our discussion to
their support for (1) encapsulation — the swict enforcement of information-hiding; (2)
reusabiliry — the ability to reuse a system, or parts thereof, in the construction of a new system;
and (3) extensibility — the ease with which a software system may be changed.
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1. Introduction

This paper is a comparative survey of object-oriented programming languages (OOPLs). The
notion of objects was first introduced in the language Simula, designed in the late 60’s.
However, object-oriented programming did not emerge as a new programming paradigm until
Smalltalk came along in the late 70’s. The radical difference between Smalltalk and previous
languages, including Simula, is that in Smalltalk everything is an object, from the primitive
language types like integers and characters, to application-dependent types like windows in a
window management application. Many object-oriented languages are in wide use today. While
a few of these languages have been designed from scratch (for example, Traits [Curry 84, Curry
82], Trellis/Owl [Schaffert 86, Schaffert 85, O'Brien 85], Eiffel [Meyer 85]), most of them are
hybrid languages, that is, conventional languages with object-oriented concepts built on top.
Examples include Objective-C [Cox 84] and C++ [Stroustrup 86a] (extensions to C), Flavors
[Moon 86, Keene 85] and Loops [Stefik 86, Bobrow 86] (extensions to Lisp) and Clascal
[Schmucker 86, Doyle 86] (modified front end to Pascal).

The framework for the comparison is the use of OOPLs for the development of large software
systems. Although it is hard to pin down exactly what constitutes a “large” system, it is usually
made up of a large number of units, thereby involving many people in its development (usually
more than ten). Typically, the problem solved by the system is itself very complex. Within this
framework, we identify three objectives that a programming paradigm should provide support
for: (1) encapsulation, (2) reusability and (3) extensibility. We evaluate several object-oriented
languages to see how well they meet these objectives, and show that the object-oriented
programming paradigm, in general, has better support for these objectives than conventional
programming techniques (like structured programming). In this paper, the emphasis is on the
constructs that are provided for programming-in-the-large [DeRemer 76], such as interfaces of
units and the means for composing the units into a system, rather than on the constructs available

for programming-in-the small, such as the kinds of statements, declarations, and so on.

In an object-oriented programming language, an “‘object” is a self-contained entity which has:
e its own private data, and

e a set of operations to manipulate that data.



The set of operations defined for an object constitutes a uniform external interface to the rest of
the system. Interaction with an object occurs through requests for the object to execute one of
the operations in its interface. A computation is defined as a sequence of interactions among
objects in the system. New objects can be defined as extensions of existing ones by a technique
called inheritance. The specification “B inherits A” in the definition of object B means that B
contains the data and operations defined for object A in addition to those defined for
B. Inheritance may be viewed as an abbreviation mechanism that avoids redefining the attributes
of an object in the definition of another. In this paper, languages which have abstract data types
with uniform external interfaces (for exa.miale, the ADA™ package [Habermann 83] and CLU

cluster [Liskov 81]) but do not have inheritance are not considered object-oriented.

One advantage of using object-oriented programming languages for building large systems is
that they facilitate the creation of software components that closely parallel the application
domain, an important feature for building inexpensive, understandable systems. Procedural
languages, such as Pascal and Ada, often lead to program structures radically different from the
structure of the problem domain. The reason is that in such languages there are two kinds of
entities: data, which is passive and represents the information of the system, and functions,
which can manipulate the data. The designer of a system written in a procedural language can
either map the problem domain into a set of functions, and then define the data structures needed
by the functions, or he can map the problem domain to the data, and then define functions that
transform the input data to the output data. By contrast, object-oriented design treats functions
and data as indivisible aspects of objects in the problem domain. Many applications can be
designed by straightforwardly identifying the objects in the problem domain, and deciding how

to implement the objects’ behavior in the computer.

For example, in a window management system there would be objects corresponding to the
windows on the display. The local data for each window object would contain information about
the size of the window, its location on the display, its contents, and so on. Additionally, the
window object would have operations for its manipulation, such as operations for moving it,
changing its size or contents, deleting it, etc. A user interacts with the system by specifying a

window object and the operation that he wants performed on that window through some




interface, such as a menu.

Three additional advantages of object-oriented programming languages are their support for
encapsulation, reusability and extensibility.  Encapsulation is the strict enforcement of
information-hiding. Reusability is the ability of a system to be reused, in whole or in parts, for
the construction of new systems. Exrensibiliry is the ease with which a software system may be
changed to account for modifications of its requirements. These three are particularly relevant to

the development of large software systems.

The characteristics of large software systems impose several requirements both on the system

development process and on the tools used, namely:

¢ The work must be divided among different people. One person should not have to
know the details of units built or modified by other people, but just how the unit he
is responsible for interacts with the rest of the system. A programming language
that enforces encapsulation alleviates some of the problems of multi-person
development teams.

* The cost of developing a large system is very high. The development cost can be
reduced if some of the units that the system is built from could be taken from
already existing systems. Similarly, it would be beneficial if some parts could be
reused in future projects.

¢ Due to the high development cost, large software systems are usually long-lived.
During its lifetime, the system undergoes considerable modification. This might be
as a result of changes to the specifications over a period of time, perhaps due to
discovery of weaknesses in the system as it is used. Therefore, the system should be
easily modifiable. Encapsulation minimizes the number of units that have to be
changed as a result of changing one unit to fix a bug. On the other hand,
extensibility makes it feasible to enhance a system without changing any units at all,
but instead adding new capabilities via a new unit that extends one or more existing
units,
The rest of the paper is organized as follows: In section 2 we introduce the basic concepts of
object-oriented programming and define terminology used. Encapsulation is the topic of section
3. Reusability and extensibility as provided by object-oriented programming languages are
discussed in section 4. Inheritance, discussed in subsection 4.1, is an important tool for
constructing new systems from old parts, but it can also be used to build extensible systems.
These are systems that can grow “gracefully” over a period of time. Polymorphism is another
mechanism for building extensible systems, and is discussed in subsection 4.2. We conclude by

summarizing the contributions of OOPLs to encapsulation, reusability and extensibility, and



therefore to the development of large software systems, and list some open problems.



2. Basic Concepts and Terminology

This section introduces the object-oriented paradigm and defines the terms used in this paper.
The discussion will use Smalltalk as the prototypical object-oriented language; the terminology
is therefore somewhat specific to this language. At the end of the section, we provide the

equivalent terms used in other languages.

2.1. Objects

Object-oriented languages combine the descriptions of data and procedures within a single entity
called an object. An object is a well-defined data structure coupled with a set of operations that
describe specifically how that data can be manipulated. The behavior of an object is
characterized by the operations defined on it; this means that only these operations can
manipulate the object. There are two distinct views of an object: (1) The external view of the
object, visible to a programmer who wants to use the object, specifies the behavior of the object
but does not say how this behavior is realized. (2) The internal view of the object, visible to the
programmer who is implementing the object, describes how the object’s behavior is actually

achieved.

A programmer of an object-oriented system sends a message to an object, called the receiver, to
invoke one of the object’s operations. The message includes a symbolic name, the selector,
which describes the desired operation. It may also contain arguments to be passed to the
operation. The message, then, describes what the programmer wants to happen, not how it
should happen. The message receiver, in turn, has merhods which describe how the operations
are performed. A method is like a procedure in that it is comprised of a sequence of executable
statements. However, methods are inseparable from the objects they are defined for; a method

can only be invoked when the object receives a message whose selector corresponds to that
method.

As an example, suppose we wanted to build a window management system. Windows are
opaque, rectangular areas on a display device. Windows can be moved, overlapped with other
windows, and deleted. The system would have a set of objects representing windows — one

object for each window on the screen. A window object has private variables that contain the



window’s size and location,which might be the x and y coordinates of the top left comer, and the
width and height of the object. The object also contains methods for moving the window,
displaying it on the screen, deleting the window, returning the window’s size and location, and
so on. Each method corresponds to a selector of a message; for example, the selectors
corresponding to the above methods would be move, display, delete, width, height.
(In this paper, we use an alternate typeface to refer to elements of example systems.) If
my-window denotes a window object (created in a fashion described below), then to display the
window on the screen, we would send it a message with selector display:
my-window display

This is called a message expression; it consists of an object which is the receiver of the message
(my-window), the selector of the message (display), and arguments if specified by the
selector (in this case no arguments are needed). My-window searches its list of methods,

executing the one whose name is display.

2.2, Classes

A system will often contain many similar objects. For example, the window management system
may have several windows which, with the exception of their location and size, exhibit identical
behavior. A description of the common features of these objects is provided in a class
description; individual objects are known as instances of the class. This description includes the
form of the instances’ private memory, called instance variables, and the methods that
manipulate the instances. Only the methods of the class can access the instance variables
directly; other methods must use message sending to gain access to or update the value of the
instance variables. All instances of a class respond to the same messages; they can only differ in

the value of their instance variables.

In the window management example, the programmer would define a class Window containing
instance variables x, y, width and height, and methods corresponding to the selectors move,
init, display, delete, width, height (see figure 2-1). The selector for the move
method is a compound selector; it consists of two symbols, each with a trailing colon. A symbol
with a trailing colon is called a keyword. When a message with such a selector is sent,

arguments are inserted after each colon. To refer to a compound selector, the keywords are




concatenated, as in moveX:Y:. The xPosition and yPosition in the method heading are
dummy arguments; these are replaced by the actual arguments when the method is invoked.

When a message is sent, the receiver’s class determines the appropriate method to execute.

class Window
instance variables x
ridone

"methods for class Window"

moveX: xPosition Y: yPosition
""code to move window so that its top left corner is at the point in
the screen specified by (xPosition, yPosition)"

method
heading

method
body

initX: xPosition Y: yPosition Width: wValue Height: hValue
"code to initialize instance variables wish specified arguments"

display
"code to display window"

delete
"code to delete window™

width
"code to return the width of the window"

height
"code to return the height of the window"

Figure 2-1: The Window Class

Classes are objects themselves, and as such they are themselves instances of a class, called the
metaclass. The metaclass is useful for defining the behavior of the class as a whole; its most
common use is to provide methods to create and initialize instances of the class. For example,
the creation of a window at a specified location and of a given size can be performed by the
method newX:Y:Width:Height in the Window metaclass, shown in figure 2-2. The body of
this method consists of two steps. First, an uninitalized window is created by sending the
message with selector new to self. Self is a pseudo-variable available in every method, which
refers to the receiver of the message that invoked that method. Its value can be accessed but not

changed. The new method is available in all metaclasses, and it creates uninitialized instances.



Secondly, a message with selector initX:Y:Width:Height is sent to the window created in
the first step. The method for this selector, defined in the class Window, initializes the instance
variables with the specified arguments. The ~ preceding the expression in the method in figure
2-2 indicates that the return value of the method is the value of the expression; in this case the

return value is the new, initialized window.

metaclass Window
"instance creation method”

newX: xValue Y: yValue Width: wValue Height: hValue
~ ((self new) initX: xValue Y: yValue Width: wValue Height: hValue)

Figure 2-2: The Window Metaclass

To create a window and give it a name, we send a message with selector
newX:Y:Width:Height to the class Window, and assign the result (that is, the newly

created window with the specified size and position) to a variable, as in the following example:

my-window <- Window newX:50 Y:100 Height:200 Width:300

2.3. Inheritance and Subclasses

Inheritance is a technique that allows new classes to be built on top of older, less specialized
classes rather than written from scratch. The new class is the subclass; the old one is the
superclass. The subclass inherits the instance variables and methods of the superclass. The
subclass can add new instance variables and methods of its own. It can also define a method

with the same selector as one of the superclass’s methods; this is know as overriding a method.

As an example, the window management system might contain windows that have a maximum
height. These would be instances of a subclass of the ordinary class of windows, Window, that
adds an instance variable to represent the maximum height and provides a new method for the
message that changes a window's size which only increases the height of the window up to the

maximum height.

Every class inherits from the class Object. This is a class provided by the language which
describes rudimentary behavior common to all objects in the system. The Object class has

methods for testing for class membership, object comparison, printing of objects, and copying




objects. These messages can be extended and modified in the object’s class to provide more
specific behavior. The subclass/superclass relation structures the classes of the system into an
inheritance tree rooted at Object. Some languages allow classes to inherit from more than one
superclass; this is called multiple inheritance. The inheritance relation in a multiple-inheritance

system is in the form of a directed acyclic graph.

2.4. Synonyms for Terminology in Other Languages

Message sending: Instead of message sending, many OOPLs use a variant of function call to
invoke an operation on an object. These calls are different from conventional function calls in
that the first argument is distinguished from the rest. The first argument corresponds to the
receiver, and the actual function that is invoked depends on the kind of object denoted by the
first argument. The other arguments in the call are ordinary arguments. The function name is
equivalent to the message selector. For example, the function call display (my-window)

would invoke the display operation defined for the object my-window.
Method: Also known as operation, procedure or function.

Class: Some languages use the word type instead of class. Subtype and supertype correspond to
subclass and superclass respectively.

Metaclass: Some languages do not view classes as objects, and so they need an alternate
mechanism for creating initialized instances. Some Lisp-based OOPLs, for example, provide a
special function, make-instance, which can take a variable number of arguments to create

initialized instances of any class.

Self: Also known as this or me.
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3. Encapsulation

Encapsulation is a technique for minimizing interdependencies among separately-written
modules by defining strict external interfaces [Snyder 86a]. An encapsulated module can only
be accessed by clients (that is, other modules that make use of this module) via this interface.
Implementation details are “hidden” within the module. The primary reason for requiring
encapsulation is to make it possible to change (improve) the implementation of a module without
having to change (and/or recompile) the module’s clients. This effective decoupling of modules
is indispensable for the development of large programs, in particular, where modules are
developed by different people. Without decoupling, any change or correction to a module that is
used by many other modules in the system would become virtually impossible. A secondary, but
not less important motivation for encapsulation is that if the internals of a module are protected
from outside access, we can guarantee their correct functioning, and thereby can limit the area to

search for an error in the case of a malfunctioning program.

In object-oriented programming languages, the unit of modularity is the object. However objects
are more than just modules; they are also implementations of abstract data types. An abstract
data type is a description of the behavior of an object without any reference to the actual
representation of the object or how the operations defining its behavior are implemented [Shaw
84]. This is exactly the definition of an object in OOPLs: To its users, it is an abstract data
object — it can only be manipulated via its external interface. Internally, it chooses a particular
data structure to represent its data, and has concrete implementations for the operations specified
in its interface. The encapsulation mechanism provided by abstract data types improves the
localization of modifications. A change to the data structure is likely to require a change to the
concrete implementations of the object’s operations, but the effect of these changes is confined
within the boundaries of the object. Similarly, a change to the program using the object has no
effect on the correctness of the code within the object. An OOPL supports encapsulation if it

allows users of objects to access them only via their external interfaces.

A class has two categories of clients: insrantiating clients, which create instances of the class and
perform operations on them, and inheriring clients, which inherit from the class. The second

category of clients are the descendents of the class in the inheritance graph. There is a spectrum
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of possible interfaces that can be presented by an object to its descendents, as illustrated in figure
3-1. At one extreme end of the spectrum, an object can present the same external interface to
both kinds of clients. This might be too restrictive for descendents: when inheritance is used for
code sharing among objects,! an object might need to refer to the data or some private operation
of an ancestor to be able to take full advantage of the shared code. At the other extreme, a
descendent object can be given full access to the data and operations defined in an ancestor
object. This would remove the benefits of encapsulation to the descendent objects — a change
to an object is visible to all its descendents. Some languages provide separate interfaces to
inheriting and instantiating clients; descendents still can only access the object through their
interface, but they have access to operations not available to instantiating clients. Such

languages provide an interface to inheriting clients that lies somewhere in the middle of the

spectrum.

| — |

) L

Same interface to Full access to internal
descendents as data representation and
instantiating clients all operations

Figure 3-1: Spectrum of Possible Interfaces to Inheriting Clients

When inheritance is used as a way of reusing code, the position of an object in the inheritance
hierarchy should be invisible to users of the object. The structure of this hierarchy is an
implementation decision that should be allowed to change without affecting users of the objects
in the hierarchy (as long as this does not change the external behavior of the object), in much the
same way that compatible changes to the representation of an object should be invisible. For
example, for efficiency reasons we might want to change the implementation of a class S that

inherited from class C to a new implementation without inheritance. If the use of inheritance in

lAn alternative interpretation of inheritance is found in knowledge representation systems {Brachman 85]. In
these systems, the inheritance hierarchy is assumed to be a public declaration that a descendent object is a
specialization of the ancestor. For the purposes of this section, we will only consider inheritance as an
implementation mechanism.
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S was visible to its clients, this modification would necessitate changes to the clients of S. Being
able to safely make changes to the inheritance graph is important for the support of large, long-
lived systems: It is often the case that new classes are implemented as subclasses of existing
classes for quick prototyping of the system, even if this means a less efficient implementation
than starting from scratch. We would like to be able to define the class again more efficiently in

a later version and still be able to reuse (most of) the code from the prototype.

In the rest of this section we will compare how several OOPLs support the three levels of
encapsulation outlined above, namely (1) the interface provided by an object to instantiating
clients, (2) the interface provided to inheriting clients, and (3) the visibility of inheritance. The
languages under consideration are Smalltalk [Goldberg 83], Flavors [Moon 86, Keene
85, Weinreb 80], CommonObjects [Snyder 86b], Simula [Dahl 70], Trellis/Owl [Schaffert
86, Schaffert 85, O’Brien 85], and C++ [Stroustrup 86a]. The first three languages are
dynamically typed whereas the last three are statically typed. Since this subset of OOPLs is not
the only one we could have chosen, we have to justify our choice of languages for comparison.
All OOPLs known to the author were divided into disjoint sets where all the languages in any
one set provided identical support for encapsulation. One representative language was then

taken from each set, with preference given to more popular languages than to lesser known ones.

3.1. Interface to Instantiating Clients

The purpose of this section is to compare how the various languages enforce that access to an
abstract data object is done only through the object’s external interface, and how they allow
minimal external interfaces to be defined. We will do this by means of an example:
implementation of the abstract type Complex. The external interface of this abstract data type
contains the following operations:

e create — allocates a new complex number object

¢ real:imag: — assigns the arguments to the real and imaginary components of a
complex number

¢ real — returns the real part of the complex number
¢ imag — returns the imaginary part of the complex number

e printString — prints a string representing the complex number in the form (x + iy)
where x and y are the real and imaginary parts respectively.
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® + — returns the sum of two complex numbers

e * — returns the product of two complex numbers

We will consider two implementations of Complex:
1. a complex number represented by its Cartesian coordinates, and

- 2. a complex number represented by its Polar coordinates.
The second implementation might be more efficient if the ratio of * to + operations is high; the
first implementation would be preferred if the opposite was true. In both implementations, the
external interface is the same as above. That is, programs that use complex numbers view them
as points in a cartesian coordinate system. Figures 3-2 and 3-3 show how the two

implementations would be written in Smalltalk.

In order to determine how well a language supports encapsulation, we will study what the effects
of changing from either implementation to the other has on programs using complex numbers.
In our example, the interfaces of the two implementations are identical, and therefore in a
maximally encapsulated language, changing from either implementation to the other one would
have no effect on any other code. If the interfaces of the two implementations were not identical,
but one was a superset of the other (that is, a basic and an enhanced implementation), then going
from the basic implementation to the more enhanced version should not affect any existing code
but the reverse does not necessarily have to hold. There are three areas where OOPLs can
potentially violate encapsulation by allowing representation and/or implementation details of an
object to be visible to instantiating clients: (1) creation and initialization of the object, (2)
accessing and updating the object’s internal state, and (3) distinction between the object’s public

and private operations. These are discussed in turn in the following three sections.

3.1.1. Object Creation
All OOPLs provide a way of creating new instances of a class. For example, in Smalltalk, the
method new defined in the class Object can be used to create new instances of any class. A
complex number instance can be created and denoted by the variable ¢ by this statement:

¢ <- Complex new
To initialize the internal state of the created object, another message must be sent to the object

specifying values for the instance variables, for example:



14

classname Complex

superclass Number

instance variables real
imag

“instance methods"

"initialization”
real: realVal imag: imagVal
real <- realVal.
imag <- imagVal

“inquiries”
real
~ real

imag
~ imag

“printing"”
printString
~ (real asString),
({(imag positive)
ifTrue: [’ + i']
if False: [’ - i’]) asString,
(imag abs) asString

"arithmetic”
+ aComplex
~ Complex new
real: real + aComplex real
imag: imag + aComplex imag

* aComplex
* Complex new
real: (real * aComplex real) -~ (imag * aComplex imag)
imag: (real * aComplex imag) + (imag * aComplex real)

Figure 3-2: Implementation | in Smalltalk

c real:3 imag:2

Most languages provide a way for performing these two operations (that is, creating a new
instance and initializing it) in one step. In Smalltalk, a method which combines the create and
initialize operations can be written as follows:
“initialized instance creation method”
newReal: realVal imag: imagVal
“((Complex new) real: realVal imag: imagVal)

thus allowing the previous two statements to be abbreviated to:

¢ <- newReal:3 imag:2

In Smalltalk, this does not create a problem with encapsulation since the initialization method is
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classname Complex
superclass Number
instance variables r
theta
“instance methods"”
"initialization”
real: realVal imag: imagVal
self
r: (rFromReal: realVal imag: imagVal)
theta: (thetaFromReal: realVal imag: imagVal)
“inquiries”
real
~ r * (theta cos)
imag
~ r * (theta sin)
"printing"”
printString
~ ((self real) asstring),
(((self imag) positive)
ifTrue: (© + 1i’)
ifFalse: [/ - i’]) asString,
((self imag) abs) asString
"arithmetic"
+ aComplex
| realsum imagsum |
realsum <- self real + aComplex real.
imagsum <- self imag + aComplex imag.
~ Complex new real: realsum imag: imagsum
* aComplex
~ Complex new
r: r * aComplex r
theta: theta + aComplex theta
"private”
rFromReal: realVal imag: imagVal
A~ ((realval ~ 2) + (imagVal ~ 2) sgrt
thetaFromRea!: realVal imag: imagVal
~ (imagVal / realval) arctan
r: rVal theta: thetaVal
r <- rVal.
theta <- thetaVval

Figure 3-3: Implementation 2 in Smalltalk
not coupled with the class’s instance variables. Indeed, we can change the representation to
polar coordinates, with the class containing instance variables r and theta (as in figure 3-3)

and still have an instance creation method identical to the one above. However, in this case, the
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method real:imag: has different semantics than that of figure 3-2. It first converts the
arguments to polar coordinates and then assigns the result to the instance variables. Similar
ways of creating initialized instances are found in the languages CommonObjects, Trellis/fOwl
and ‘C++. However, in some other OOPLs, for instance, Simula and Flavors, the shortcut
provided by the language for creating initialized instances exposes implementation details to

programs using these instances.

Simula, Flavors
In Simula, a class has formal parameters. Initialized objects can be created by specifying actual
values for each formal parameter. A complex number class using the cartesian representation

looks as follows:

class complex (real, imagqg):; real real, imag:
begin
/* local variable declarations */

/* definition of local procedures for manipulating object */

/* class body — automatically executed by new statement to initialize object */

end complex:;

A complex number object is declared and created by the following statements:

ref (complex) c; /* anobject can only be referenced via a pointer */
Cc :- new complex(3.0,2.0);: /* creation and initialization of object */

Since the class’s formal parameters are used in initializing the object, the number, type and
semantics of formal parameters are a part of the object’s external interface. If in the first
implementation of complex numbers, the class declaration only had the formal parameters real
and imag, and no local variables, then to change the representation to polar coordinates, we
could not simply make r and theta the new class parameters because all existing new

statements like the one above would be meaningless.

In Flavors, the instance variables of a class (called a flavor in this language) can be initialized
when an instance of the class is created if the option :initable-instance-variables is given in the

class definition. If the complex number class is defined thus:
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(defflavor complex
(real imag)
(number) ; inherits from the flavor number
:initable-instance-variables
; other options
v )
then we can create and initialize a complex number object as follows:2

(setq c
{make-instance ’complex
treal 3
:imag 2))

:real and :imag are initialization keywords, formed by a leading colon and the instance
variable name.3 [Initialization keywords are used with make-instance, a Flavors built-in
function that creates a new instance of a class, to initialize the corresponding instance variables.
Since the instance variable name is part of the initialization keyword, redeclaring an initable
flavor to have a different set of instance variables will invalidate all existing make-instance
statements. If we redefine the complex flavor with instance variables r and theta, we cannot
simply define methods :real and :imag to convert from cartesian into polar coordinates (as

was done in Smalltalk) because method names do not use keywords.

A way to remove this problem with encapsulation is to go back to the two-step method of
creating initialized instances. This can be done in Simula by not declaring any formal
parameters in the class heading, but instead declare real and imag as local variables. In
Flavors, this is accomplished by not providing the initable-instance-variables option in the class
declaration. A separate procedure is used to initialize the local variables (or instance variables in
the case of Flavors) after the object is created using the new (or make-instance) statement. The
initialization procedure for the first implementation would simply assign the arguments to local
variables (or instance variables). The second implementation would have r and theta as local
variables (or instance variables), and the initialization procedure would first convert the
arguments to polar coordinates, and then assign the result to the local variables (instance

variables).

ZFlavors is implemented on top of Common Lisp [Steele 84], and follows its syntax closely.

3Keywords are a special category of symbol in Common Lisp written with a leading colon. They are self-
evaluating, and therefore keyword operation names need not be quoted in an operation invocation.
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CommonObjects, Trellis/Owl, C++

In CommonObjects, each instance variable can have the option :initable, with the same
semantics as in Flavors. However in this language (also implemented on top of Common Lisp)
method names also use keywords. Initialized instances can be created using make-instance as
we described for Flavors. Changing from the first implementation to the second one will not
affect client code if the classes are defined in the following way. In the first class, the instance
variables real and imag are declared initable, thus automatically creating the functions : real
and imag: which are used as initialization parameters. In the second implementation, the
instance variables would be r and theta, and these would not be declared initable. Instead, the
implementor of the class would define his own methods :real and :imag corresponding to
the initialization methods for the first implementation, which take cartesian coordinates, translate

them to polar, and then assign the results to the instance variables.

The Trellis/Owl method for creating initialized instances is identical to what we described for
Smalltalk, except for syntax, and so it will be skipped.

A C++ class has consrrucrors for creating initialized objects. A constructor is a function
declared within the class which has the same name as the class. For example:

class complex {
double real, imag:
public:
complex (double, double) : / / constructor specification

}
/ / definition of complex class constructor
complex::complex (double x, double y)
{

real = x;
] imag = y;

The function complex is the constructor for the class. It takes two parameters, the real and
imaginary parts of the complex number and assigns them to the corresponding fields of the class.
The class for the second implementation would have fields r and theta and a constructor
defined as follows:
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class complex {
double r, theta:;
public:
complex (double, double) ;

}

complex: :complex (double x, double y)

{
r = sqrt ( pow(x,2) + pow(y,2) )
theta = atan(y/x)

In C++, Flavors, and CommonObjects, one can specify default values for some or all of the
instance variables. These are used when a new instance is created if the values are not initialized
any other way. Default arguments are very useful in situations which require instance variables
to be added or removed from a class declaration without affecting old code. By specifying a
default value for the added/removed instance variable in the constructor, one can ensure that all
the initialization code written when the class had a smaller number of instance variables remains

correct.

3.1.2. Access to Object’s Representation

In a strongly encapsulated language, an object’s representation, that is, the data structure that
defines the object’s internal state, should not be manipulated directly. The designer of the class
can choose to provide accessor and update operations for respectively accessing or changing the
values of the instance variables. Some languages automatically provide these functions for (all
or some of) the instance variables of a class. If the underlying representation of an object
changes, it may be possible to provide the exact same operations but implemented in a different
way, thus hiding the change from the clients. This section examines our representative set of
OOPLs to see whether direct access to the object’s representation by the object’s instantiating
clients is permitted.

Simula

One can access all attributes of a class, that is the class parameters, local variables, and

procedures enclosed within the class, through the use of the dot notation. For example, if c is the

“complex number object created in the previous section, the conjugate of c4 can be created in the

“Two complex numbers are conjugate if they differ only in the sign of the imaginary parts.



following manner:

real x,y:

X := c.real;

y := -c.imag:

ref (complex) conjugate;

conjugate :- new complex (x, y):
Simula does not support strictly encapsulated data types: a program can directly manipulate a
complex number object through its representation, without using the operations that are defined

to manipulate the abstract data type.

Smalltalk

An object can have two types of instance variables — named instance variables and indexed
instance variables. In our example, the class Complex has only named instance variables. For
named instance variables, the designer of the object decides who has access to the instance
variables — he might (or might not) provide messages to initialize and return their values.> On
the other hand, indexed instance variables are accessed through the messages at: and
at :put: defined in the class Object, and therefore available to all instances, which respectively
retrieve and store the element indicated by the first argument. Changing from an implementation
with indexed instance variables to one with named instance variables requires the existence of a
mapping from indexed to named instance variables and the redefinition of the at: and
at :put: methods to access and update from the corresponding named instance variable. The
reverse, that is going from a named instance variable implementation to one with indexed

instance variables, is accomplished similarly.

Trellis/Owl, Flavors, CommonObjects

Trellis/Owl types can have components. A component can be a field or a computed value. For a
field component, there is an actual “slot” in the physical representation of the object that will
store the value for this component. For example, the first implementation of complex numbers

would have the following components:

5In order to implement system components (language interpreter, debugger, programming environment, etc.),
most OOPLs provide an escape from this strict encapsulation. In Smalltalk, the messages instVarAt: and
instVarAt :put: are provided for directly accessing named instance variables.
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component me.real: Real /* me denotes the controlling object — like self in Smalltalk */
is field:

component me.imag: Real
is field;

Accessor and update operations for a field component are automatically generated to fetch from
and store to the correct slot in the object. The operations generated for the real component
would have the following specification:5

operation get_real (me)
returns (Real) ;

operation put_real (me, value: Real)
returns (Real) ;

The equivalent of field components in Flavors and CommonObjects are the class’s instance
variables. Accessor functions for the instance variables can also be generated automatically in
these two languages. In Flavors, the option :readable-instance-variables specified in the class
declaration generates accessor functions for all the variables in the class. The :gettable option in
CommonObjects achieves the same result, but is specified (or not) for each instance variable,
thus providing the implementor of the class with a finer level of granularity. The accessor
functions generated for the Complex implementation of figure 3-2, containing two instance
variables, real and imag, would be complex-real and complex-imag in Flavors and

:<real> and :<imag> in CommonObjects.

If the option :writable-instance-variables is specified in a Flavors class declaration, a client of

instances of that class can alter the values of the instance variables using setf and the accessor

functions, as in: |
(setf (complex-real c) ’5)

Setf is a Common Lisp macro that examines the specified access form and produces a call to the

corresponding update function. In the case that the accessor function simply retrieves the value

of a memory location (as in the case of the example above), a corresponding update function that

stores the new value in the same memory location is provided automatically.

The use of the me keyword as one of the parameters of an operation indicates that this operation is an instance
operation, that is one that applies to individual instances of a type, as opposed to a class operation, which applies to
the type as a whole. An example of a class operation is the creation operation.
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In CommonObjects, the accessor function of an instance variable cannot be used to change its
value; instance variables can only be assigned to within a user-defined method, or at object

creation time, as described in the previous section.

Trellis/Owl components can also be implemented as computed values. That is, the desired
accessor and update functions can be described in terms of other components or operations. For
example, the complex number class using the polar coordinate representation could be
implemented as follows:
component me.rho: Real
get private /* not available 1o clients of instances */
put private /* of the class. */
is field ;
component me.theta: Real
get private
put private
is field ;
We can then define the components real and imag in terms of the fields rho and theta:
component me.real: Real
get is
begin
return get_rho(me) * (cos(get_theta(me))):
end:
put is
begin
me.rho := sqrt((value**2) + (get_imag(me)**2))
me.theta := arctan(get_imag(me) / value):
end;

component me.imag: Real

The specifications for the real and imaginary components in the second implementation are
exactly the same as in the first implementation, and therefore, clients of the type cannot
distinguish between components that are fields and those that are computed values. Computed
values provide a convenient mechanism for changing an object’s representation without
changing the external view and yet allowing accessor functions to be automatically generated

when possible.

‘Computed values in Flavors and CommonObjects can be implemented in a similar fashion. In
the complex number class with polar representation, computed values for the real and imaginary

parts are achieved as follows. The instance variables r and theta are not declared readable or
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writable, and therefore cannot be accessed or updated by the clients. Instead, accessor methods
complex-real and complex-imag are explicitly defined by the implementor of the class to
compute and return the real and imaginary components from r and theta, as was done in
Trellis/Owl. These methods are exactly what the old class had for accessing its instance

variables, so the client code will still run as before.

In order to “update a computed value”, an update function corresponding to the accessor function
for that computed value (as required by setf) must be defined. For our example, the functions
complex-real-update and complex-imag-update would be defined that take as
argument the new value and compute and store the new values for r and theta. The
correspondence between accessor and update functions is accomplished by the defsetf
declaration available in Common Lisp:

(defsetf complex-real complex-real-update)
(defsetf complex-imag complex-imag-update)

C++

A C++ class contains member declarations, where a member is either a function declaration or a
field of the class containing data (the latter corresponds to instance variables of the class). The
public label separates the class body into two parts, as illustrated in the class template below.
The names in the first, privare part can be used only by member functions,’ whereas anything

declared in the public section of the class is available to the class’s clients.

class class-name (
/* private data and function declarations */

public
/* public data and function declarations * /

Data fields declared in the public part of a class can be accessed directly using dot notation. On
the other hand, data fields declared in the private section of the class may only be accessed or
updated if the programmer has provided accessor and update functions in the public section.

Although C++ does not forbid the programmer from putting data representation information in

7A class declaration can also have friend functions. These are functions declared using the keyword friend. They
are the same as ordinary functions except they can use private members of classes that name them as fngnds. They
are useful when we need the same function to be a member of more than one class, which is not allowed in C++.
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the public part of the class, the designer of the language states that “it is good policy to keep data

private and present the public . . . interfaces as sets of functions” [Stroustrup 86b).

3.1.3. Distinction between Public and Private Operations

A class definition may contain operations that are only for internal use by other class operations;

these should not constitute part of the class’s external interface. An example of such “helper”

operations are the methods for translating between cartesian and polar representation in figure

3-3 of the complex number class. Helper procedures should be private to the class, and therefore

only invoked from within the class. In our running example, the external interface of the class

should only contain the seven operations specified at the beginning of this section; we call this
the specified interface of the complex number class. The implementarion interface provided by
an implementation of the class should contain exactly the same operations as in the specified
interface. This is not possible in a language that has no mechanism for distinguishing between
private operations and operations in the specified interface. Such languages are not strongly
encapsulated because they do not allow implementations with minimal interfaces (that is,
implementation interfaces equal to specified interfaces) to be defined. If clients of a class may
invoke private operations, the implementor of the class is precluded from making changes that
affect the semantics of the private operations if the new implementation is required to be

compatible with existing code, even though the specified interface of the class remains the same.

Simula
In Simula, everything declared within a class can be accessed outside the class through use of thg

dot notation. Thus, there is no mechanism for implementing private procedures.

Smalltalk

In a class definition, methods that perform similar operations are grouped together into
categories to indicate their common functionality. This categorization is intended to make the
class description more readable, but it does not affect the operation of the class. The category
private refers to messages introduced to support the implementation of other messages, and
although programmers might adopt the convention that messages should not be sent to private
methods from outside the class definition, this is not enforced by Smalltalk.
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Flavors, CommonObjects
Methods cannot be marked as private in Flavors or CommonObjects. However, since both
languages are built on top of Common Lisp, its package system can be used to distinguish

between public and private interfaces by exporting the names of public methods.

Trellis/Owl

Private operations can be distinguished from public ones by using the keyword private.

C++
Functions defined in the public part of the class are available to clients of the class whereas those

defined in the private part are only accessible to the members of the class.

3.1.4. Discussion

Table 3-1 summarizes how well the object-oriented programming languages considered in this
section support encapsulation. It is clear that in order to do this a language must have a way of
separating the public user interface from the private implementation details. An object should be
viewed by its clients as a “black box” that can only be manipulated through a specific set of
operations. Details about the object’s representation, as well as operations defined for internal
use by the object, should be hidden from the client. A language that enforces such information
hiding minimizes the effect of changes to a class on its users and consequently maximizes its

implementor’s freedom to make changes.

3.2. Interface to Inheriting Clients

The division of a class into a visible public part and a hidden private part is desirable for
instantiating clients but might be too constraining for inheriting clients. Some object-oriented
languages have retained this binary division for instantiating classes but make everything public
to the subclasses, thus compromising encapsulation. Other languages have recognized that a
third alternative is required — subrype-visibility. An attribute of a class declared to be subtype-
visible is visible to all its descendents in the inheritance hierarchy but invisible to instantiating

clients.

The method by which conflicts of instance variable names due to inheritance are resolved also

has an impact on encapsulation. For example, if it is illegal in a language to inherit the same
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Initialized Object Visibility of Visibility of
Creation Representation Operations
Simula number and type of | can be accessed all visible
instance variables |directly
_ visible
Smalltalk representation can only be accessed can be marked private,
not visible through operations but not enforced
by language
Flavors names of instance |can only be accessed all visible, but can
variables visible through operations use Common Lisp packages
to export public ones
CommonObjecrs | representation can only be accessed same as in
not visible through operations Flavors
TrellisiOwl representation can only be accessed only public visible
not visible through operations
C++ representation data in public part only public visible
not visible can be accessed directly

Table 3-1: Interface to Instantiating Clients
variable name from more than one ancestor, renaming an instance variable in a class can cause
inheriting clients to become illegal, even though the external interface of the class was not

changed.

We now discuss these two issues for a number of OOPLs. In our examples throughout this

section we will use C to refer to a class and S to refer to a subclass of that class.

3.2.1. Visibility of Superclass’s Representation and Operations

Many OOPLs allow instance variables of a superclass to be directly accessed by name in a
subclass. If the instance variables are accessible to the subclasses of a class, they are part of “the
contract between the designer of the class and the designers of descendent classes” [Snyder 86a],
therefore restricting the kind of changes the designer of the superclass can make without
affecting descendent classes. Renaming, removing, or reinterpreting an instance variable can
adversely affect descendent classes that depend on that instance variable. For example,
renaming an instance variable in an ancestor may result in an error if one of the descendent’s
methods directly named that instance variable. Inherited instance variables should be accessed

by operations in descendents just the same as in instantiating clients, since in this way

encapsulation is not violated: the instance variables can be safely removed as long as the external
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operations are implemented by some other means.

The designer of a class might want certain instance variables to be accessible to subclasses but
not to instantiating clients. If operations are used to access instance variables by both kinds of
clients, the designer of a class must have a way to distinguish between operations that are visible
to all clients and those that are only for use in inheriting clients. Subtype-visible operations are

provided in some languages for just this purpose.

Besides adding new methods of its own, a subclass can override methods defined in its ancestors
by defining a method with the same selector name. Therefore, a subclass S of class C has the
same methods available to it as non-descendent clients of class C, with the exception of the
methods overridden in S. When a new definition supersedes a definition inherited from a parent,
it is useful to be able to invoke the parent’s version of the operation. For example, if we have a
bordered-window class that inherits from the class window, the display method for a
bordered window might first invoke the display method in the parent, and then draw a border
around it. In Smalltalk this is accomplished by using the pseudo-variable super, which causes
the method lookup to start in the parent:

class BorderedWindow
superclass Window

“method to display a bordered window"
display
super display. “"Use Window's display"
self display-border “Display the border"
The ability for a descendent class which has redefined an inherited operation to invoke the

ancestor’s version of the operation is important, and is supported in most languages.

Simula

S can be declared a subclass of class C by prefixing the class declaration for S with C. This
operation is called concatenarion. Any formal parameters in C are adjoined with any in S, as are
the declarations and program statements of C and S. If there is a conflict of local names in A and
B, then the compiler will systematically change those conflicting names in B. Instances of S have
all the attributes of class C as well as the attributes of class S. As we saw in the previous section,

all attributes of a class can be directly accessed by instantiating clients of a class. The same is
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true when the client is a subclass. Simula therefore presents the same interface to both inheriting

and instantiating clients, but the interface is not minimal.

Smalltalk

A subclass in Smalltalk must provide a new name for itself, but it inherits both the variable
declarations and methods of its superclass, its superclass’ superclass, and so on. New instance
variables may be added by a subclass, but the names must be different from any that have been
inherited. This is because the subclass has direct access (i.e., it can reference by name) all

instance variables defined in its ancestors.

Flavors

A flavor, flavorl, which inherits from two other flavors, flavor2 and flavor3, is defined
as follows:8

(deMavor flavorl (<instance variables for flavorl> )
( flayoxz flavor3)

Flavorl is composed of three components’— itself, and the two flavors it inherits from. It
inherits all of flavorl’s instance variables and methods as well as flavor2’s instance
variables and methods. A method can access inherited instance variables by name, with the

consequences for encapsulation as described in the beginning of this section.

CommonObjects

The designer of CommonObjects paid particular attention to encapsulation, and “plugged leaks”
that existed in other languages. Instance variables may not be directly accessed by a descendent
class, but may be accessed only by invoking accessor operations defined in the parent (either

automatically generated through the use of the :gettable option or by the programmer).

Trellis/Owl

In Trellis/Owl access to instance variables (called components) is done through the operations

¥Flavors has multiple inheritance.

SUnfortunately, the same terminology is used in Trellis’Owl for describing a different concept (see section 3.1.2).
When we use the term “component” in this paper, we will ensure that the context makes it clear which meaning 1s
intended.
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get and put in both instantiating and inheriting clients. Components and operations can be
marked (1) public, (2) private, or (3) subtype-visible. We discussed the difference between
public and private attributes in the context of instantiating clients in section 3.1.3. Private

operations are not visible to the subtypes, just as they are not visible to instantiating clients.

In Trellis/Owl, the supertype C’s operations are textually copied to the subtype S, and names in
the copied operations are interpreted in the context of S.!0 This means that if an inherited
operation F calls an operation G, it will access the version of G appropriate for S and not C. If an
inherited operation F in the subtype calls a non-visible operation, that operation is copied to the
subtype but with a different name. The new name is chosen so that it will never cause conflicts
with existing or future operations. All uses of the renamed operation are also changed to use the
new name. As a consequence, inherited operations that use non-visible operations will continue
to work without the programmer of the subtype having to be aware that such operations exist.
The renamed operations continue to be copied down the type hierarchy as long as they are
needed.

Subtype-visible operations are not as restrictive as private but not as general as public.
Operations of this kind are not visible outside the defining type and its subtypes. Subtype-visible
operations are inherited and can be redefined in a subtype. A subtype can also reduce the
visibility of an inherited operation, for instance, making an inherited public operation into a

private one, thus hiding it from all clients of that subtype.

C++
In C++, a subclass S of a class C can be defined as follows:

class S : public C {

/1 private stuff for S
public:

// public stuff for §
}

" OImplementing inheritance by textually copying the code of the superclass to the subclass is common in
statically-typed languages. However, the same effect of interpreting the inherited operations in the context of the
original receiver is accomplished in dynamically-typed languages by binding self to the original receiver of the
message. If a class S receives a message with selector F, and a method for F is found in the superclass C, then if the
method for F contains an expression which sends a message with selector G to self, the search for method G starts in
S.
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Class C is said to be the base class for S, and conversely S is said to be derived from C. The
word public in the class header makes C a public base class of S. This means that a public
member of C is also a public member of S. Alternatively, one can declare a private base class by
simply leaving out the word public in the class header. This would mean that public members of

C are private to S, and therefore accessible only to S’s member functions.

In C++, the corresponding construct to the subtype-visible attribute of Trellis/fOwl is the
protected part. For example, consider the following class definition for some kind of tree node:

class node {
// private stuff

protected :
node* left;
node* right;
// more protected stuff
public:
// public stgf )
The members defined in the protected part are inaccessible to the general user but available to
any member function of a derived class. Public and protected members of the base class can be
referred to as if they were members of the derived class. If the public and/or the protected parts
of the class contain data field declarations (which is allowed in C++), the representation of the
superclass C is visible to a subclass S, and S can directly access these fields using the dot

notation.

3.2.2. Conflict Resolution of Inherited Instance Variables

Languages with multiple inheritance have rules to determine what happens if a subclass inherits
instance variables with the same name from more than one parent. As we se¢ below, the way
this conflict is resolved in most OOPLs leads to a violation of encapsulation. Since this problem
only comes up with multiple inheritance we will only discuss the languages Extended Smalltalk
(this is an extension to Smalltalk with multiple inheritance [Boming 82]), Flavors,

CommonObjects and Trellis/Owl in this section.

Extended Smalltalk
In Extended Smalltalk it is an error if a subclass inherits instance variables with the same name.
This compromises encapsulation since a change in a class can cause descendents to become

illegal even if the specified interface between the class and the descendent is not changed. For
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example, if an instance variable in a class C is renamed, it may cause a subclass S of C to
become illegal if S also inherits from another class containing an instance variable with the same

name as the renamed variable in C.

Flavors

The set of instance variables for the new flavor is the union of all the sets of instance variables in
all the component flavors. If £lavorl is defined as in section 3.2.1, and if both flavor2 and
flavor3 have instance variables named x, then flavorl will have an instance variable
named x, and any methods that refer to x will refer to this same instance variable. Thus different
components of a flavor can communicate with one another using such a shared instance variable.
This sharing creates an interdependency among the components that is not specified in the
interfaces of the components. Changing a shared instance variable in a component changes the
behavior of all other components that “see” it. Similar objections apply to merging inherited

instance variables with instance variables defined locally in the class.

CommonObjects

Unlike Flavors, there is no merging of instance variables when a class inherits from multiple
parents. For example, if two parents define an instance variable x, instances of the class will
contain two instance variables x, one for each parent. There is no merging even if a class is
inherited more than once through multiple paths. For example, if two parents of a class both
inherit from a common ancestor A, instances of the class will contain two sets of the instance
variables of A, one from each parent. This prevents exposure of instance variables outside the

class definition.

Trellis/Owl

Inheriting the same component in Trellis/fOwl is legal as long as all the supertypes containing
that component agree on the interfaces of the get and put operations (the number and type of
the arguments, and the type of the return value) defining that component. It is not clear (at least
from the papers and reference manuals available to the author) whether the subtype would have
one slot allocated for field components of the same name inherited from multiple supertypes (as
in in Flavors) or one slot for each time the component is inherited (as in CommonObjects). If the

supertypes do not agree, the programmer of the subtype must resolve the conflict by specifying
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which component he wants to inherit. This leads to similar problems with encapsulation as in

Smalltalk.

3.2.3. Discussion

The analysis presented in this section is summarized in Table 3-2. In order to support
encapsulation to inheriting clients, a language should enforce that data fields in ancestors should
only be accessible through operations defined in the ancestor. Since the ancestor might want to
hide such operations from casual, non-descendent clients, a language should have a way of
making an operation visible only to its descendents. Resolving conflicts of inherited instance

variable names should not be done in such a way that the inherited names are made visible to an

inheriting client.

Accessibility of | Conflicting Instance |  Visibility of
Instance Variables Variable Names Methods

Simula by name allowed not applicable all visible
Smalltalk by name allowed error all visible
Flavors by name allowed merged all visible
CommonObjects | by accessor function | keeps multiple sets | all visible

only of instance variables
Trellis/Owl by accessor function | programmer must | only public and

only resolve subtype-visible
C++ by name allowed not applicable only public and

protected visible

Table 3-2: Interface to Inheriting Clients

Current OOPLs only support the two kinds of interfaces described in this subsection: one for
instantiating clients and one for inheriting clients. It might be useful for a class to be able to
present different external interfaces to various classes of clients, not necessarily based on the
inheritance relation. Such a scheme could be used to implement protection domains, a
mechanism used mainly in operating systems to give different access capabilities to different
kinds of users [Levy 84]. An example, taken from [Jones 78] is that of a system providing
telephone service. The customers would be one class of objects in the system. Other objects

provide various kinds of telephone services to the customer. Examples of telephone services are

the operator, telephone service repair, and the billing department. Each of these view the
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customer from a different perspective, and the operations available to them should reflect that
perspective. The operator can look up telephone numbers, the telephone service office can
perform the lookup operation as well as the change service operation, while the billing

department can perform crediting and debiting operations.

3.3. Visibility of Inheritance

In this subsection we analyze several object-oriented languages to see whether they allow the use
of inheritance in the construction of a class to be exposed to the class’s clients (both instantiating
and inheriting kinds). Snyder [Snyder 86c] identifies four ways in which the use of inheritance
in a class is made visible to its clients: (1) inability of a subclass to exclude some of the
operations defined in its superclass(es) from being inherited, (2) the rules for determining
whether a class is a subtype of another class, (3) allowing a class to invoke operations defined in
ancestors of that class, and (4) resolving conflicts when operations with the same name are

inherited from more than one parent in languages with multiple inheritance.

We now look at these four issues and their effect on encapsulation in the languages Simula,
Smalltalk, Flavors, CommonObjects, Trellis/Owl, and C++. We group the statically-typed
languages, Simula, Trellis/Owl, and C++ together since much of the discussion is similar for the

three of them.

3.3.1. Excluding operations

In most OOPLs, inheritance is additive, that is a subclass can add new attributes but cannot
exclude operations defined in a superclass. To see that excluding operations is a useful property
to have, consider the following scenario. Suppose we need a class implementing the abstract
data type stack, supporting the operations push, pop, and rop. If in our system there exists a class
deque, containing the operations push, pop, top, back-push, back-pop, and back, the easiest way
to build the class srack would be to make it inherit from deque, excluding the latter three
operations. Deque contains operations that should not be part of the external interface of stack,
but if the language has no means for excluding operations, there would be nothing to prevent the
user of a szack from using one of the back operations. If the srack class were reimplemented

such that it no longer inherited from deque (and therefore only had the stack operations), any
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client of srack that used the “excluded ” deque operations would become incorrect.

Simula, Trellis/Owl, C++

Excluded operations are not allowed in Simula. A subclass can “hide” a procedure defined in a
superclass by redefining it, giving an error message saying that the operation is not defined.
Excluding an operation in this way, however, means that an erroneous use of the excluded
operation is only caught at run-time. In a statically-typed language such as Simula, use of an

operation that is not part of an object’s interface should be caught at compile-time.

Trellis/Owl has an exclude statement; the statement “exclude foo” in a subtype means do
not inherit the definition of foo from the supertype. The only operations that can be excluded
are subtype-visible operations; public operations cannot be excluded because of the way
subtyping relies on inheritance (as described below). Private operations are not visible in a

subtype, so naturally they cannot be excluded.

In C++ it is possible to inherit public members of a base class in such a way that they do not
become public members of the derived class, thereby excluding them from the interface of the
derived class. This can be used to provide restricted interfaces to derived classes. For example,
given the class deque:

class deque |
/...

public:
void push(elem*);
elem* pop():
elem* top():
void back-push(elem*);
elem* back-pop():
elem* back-top():

}:

we can define stack as a derived class with only push, pop, and top as follows:

class stack : deque | // note: just ":" not ": public”, which means public
// members of deque are private members of stack

public:
deque: :push: // make "push” a public member of stack
deque: :pop:; // make "pop” a public member of stack
deque::top; // make "pop" a public member of stack

}

Smalitalk

In Smalltalk, operations can be “excluded” in the same way as described for Simula, that is, by
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defining a method that gives an error message when it is invoked. Since Smalltalk is
dynamically typed, this does not have the same disadvantages as in Simula. However, it makes
programs less understandable: it is not obvious by looking at the method headings of a class (as

allowed by the environment browser) that some of them are “not available”.

Flavors

Excluding operations can be done as in Smalltalk and Simula.

CommonObjects

In CommonObjects, a class can specify which operations defined on its parents are or are not
included in its own external interfaces. If a class deque has the methods: :size,
:front-push, :front-pop, :front-top, :back-push, :back-pop, and
:back-top, then aclass stack can be defined as follows:

(define-type stack
(:inherit-from deque
(:methods :size )))

(define-method (stack :push) (element)
(call-method (deque :front-push) element))

(define-method (stack :pop) ()
(call-method (deque :front-pop)))

(define-method (stack :top) ()
(call-method (deque :front-top)))

The :methods option specifies which operations are inherited, thereby preventing the “front” and
“back” operations from being inherited. The front operations are then redefined in stack to give
them the usual names: push, pop, and top. To be able to access deque’s front operations,
which were not inherited, the call-method construct is used. Call-method takes two arguments:
(1) the name of the parent from where the method lookup should start, and (2) the method to be

invoked.

3.3.2. Subtyping

Subtyping is a method used in statically typed object-oriented languages to determine when
objects of one class can be used in contexts expecting another class. If subtyping rules are based
on inheritance, then reimplementing a class such that its position in the inheritance graph is

changed can make clients of that class type-incorrect, even if the external interface of the class
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remains the same. Many languages that perform static type-checking allow a variable of type S
to be assigned to a variable of type T if and only if S is a subclass of T, thus equating inheritance
with subtyping. In the stack and deque example, if stack is implemented as a subclass of deque,
then an assignment of a variable of type stack to a variable of type deque is legal. The same
assignment would be incorrect if stack was reimplemented such that it was not a descendent of

deque.

Simula, Trellis/Owl, C++

Trellis/Owl’s subtyping rules are based only on public operations. The reason is that subtyping
should be based on an object’s behavior (as specified by the public part of a type), not on its
implementation (specified by the private and subtype-visible parts). When a type S is declared
to be a subtype of type T, the programmer is asserting that every object of type S is also of type
T. Thus it is legal to assign a variable of type S to a variable of type T, but not vice versa. For
example, if we have two types, shape and circle, and circle is a subtype of shape, then
in the following code:

var x: shape;
var y: circle;

X = y;
the assignment is legal since a circle is also a shape, and all the operations applicable to a shape
are applicable to a circle. However the assignment

y = x:

would cause a compiler error since shapes are not necessarily circles.

For these subtyping rules to work, Trellis’Ow] requires that for every public operation F defined
on T there must be a corresponding public operation F defined on S; this is the reason that public
operations cannot be excluded in a subtype. Moreover, to allow all the operations applicable to a
type to be also applicable to its subtype, there are constraints on how a function F can be
redefined in the subtype S. If F is an operation defined in a type T with this specification:

~ operation F (me, a: Atype,) returns (Rtype,)
then F can be redefined in S by:

operation F (me, a: Atypeg) returns (Rtypeg)
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where

Atypeg is Atype, oOrasupertype of Atype, , and
Rtypeg is Rtype; orasubtype of Rtype; .

Note that the number of arguments in both definitions of F must be the same, and either both
have a return value or both do not. Since the subtype-of relation defines the inheritance graph in

Trellis/Owl, subtyping is closely tied to inheritance.
The subtyping rules of Simula are similarly tied to the inheritance hierarchy.

In C++, if a class D is derived from a public base class B, then a variable of type D can be
assigned to a variable of type B. The reverse is not possible. The same example assigning a
circle variable to a shape variable and vice versa illustrates why this is so. If B were a
private base class of D, then a variable of type D would not be assignable to one of type B. The
reason is that a public member function of B can operate on a variable of type B, but is not
accessible, and therefore not applicable, to variables of type D. These subtyping rules of C++,
which differentiate between whether a subclass inherits the public operations of its superclass or
not to define the legality of assignments, is the reason why public operations can be excluded in
C++ without causing type-checking problems. However, subtyping still depends on the
inheritance hierarchy — even if the behavior of some class A includes the behavior of class B, A

is not a subtype of B unless A is derived from B, or from a subclass of B.

CommonObjects

In CommonObjects, the designer of a class is able to define the classes of which it is a subtype,
independent of the inheritance relation. This is done by allowing Common Lisp’s typep
predicate (which takes two arguments, an object and a type specification, and returns true if and
only if the object is of the specified type) to be defined by the programmer. If the object given to
typep is an instance of a class and the type specification is a class name, the :typep operation is
performed on the object, with the type specification as the argument, to determine the result of
typep. Thus for the stack and deque example, :typep can be defined by the following predicate:

(define-method (stack :typep) (the-type)
(equal the-type ‘stack))

(define-method (deque :typep) (the-type)
(or (equal the-type ’deque)
(equal the-type ‘stack)))
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If the programmer doesn’t define a :typep predicate, a default one is provided which returns true

only if the object is an instance of the class given as argument.

3.3.3. Reference to ancestors

If a client can directly invoke an operation on an ancestor by naming the ancestor and the
operation that is to be invoked, the use of inheritance in implementing the client is exposed. The
reason is that the requested operation might not have been “passed down” from the named
ancestor to the client — it could have been excluded by an intervening class. The only
operations that should be visible to a client are those of its parents; these operations constitute

the client’s interface to its ancestors in the inheritance graph.

Simula, Trellis/Owl, C++

In all three languages, it is possible to invoke an operation F on a non-immediate ancestor
T. This is done using the construct “F’ T” in Trellis/Owl and the construct “T :: F” in C++.
In Simula “this T” results in a reference to a local object of T, and so “this T.F” invokes
the desired operation. This results in the function F being included in the interface of the client

which contains this call, even if F was excluded in some class between T and the client.

Smalitalk

Invoking an operation on non-immediate ancestors is forbidden in Smalltalk. The pseudo-

variable super can be used to invoke an operation on the parent: “super

message-selector” specifies that the search for the method specified by

message-selector should start in the parent class. In Extended Smalitalk, this mechanism
is not sufficient: the name of the parent must also be specified since multiple parents may

contain the same operation. A compound message selector, which consists of a class name,

followed by a period, followed by the actual message selector (e.g. “classfoo.bar”), can be
used. The compound message selector can only be used to name an operation on a parent; it

cannot be used to invoke an operation on other ancestors.

Flavors
[t is not possible to qualify an operation by the name of the ancestor where the method lookup

should start. However, one can achieve the effect of using super in Smalltalk by method
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combination. This is a powerful mechanism whereby a method is defined as a combination of
other methods. For example, a method can have daemon methods defined for it that are
executed whenever the method is invoked. (This will be explained in detail in section 4.1, which

deals with inheritance.)

CommonObjects
The call-method construct is available for invoking operations of the parent that were not
inherited or overridden in the subclass. It is not possible to specify the name of a non-immediate

ancestor as an argument to call-method.

3.3.4. Muitiple inheritance

Inheriting operations from more than one parent can result in a conflict when operations with the
same name are inherited from multiple parents, or from the same parent but along different
paths. The way this conflict is resolved in some languages produces different results if the

inheritance graph is changed, even though the external interfaces of the objects remain the same.

Trellis/Owl

If an operation F is inherited from more than one supertype, the possibility of ambiguity arises.
If all of the definitions of F in the supertypes are identical, there is no ambiguity. If the
supertypes disagree as to the definition of F, the programmer must specify which definition of F
he wants, or write a new implementation for F overriding the inherited F. This method of
resolving conflicts does not expose the use of inheritance since the decision of when a multiply

inherited operation is erroneous is not tied to the inheritance graph.

Extended Smalitalk

In Extended Smalltalk, it is an error if two or more methods are found corresponding to a
received message in a client. But this is only true if the methods are actually different — if it is
the same method inherited along multiple paths it is not a problem. In the case of conflicting
methods, the programmer is responsible for choosing one of the methods or redefining it in the
client. This exposes the use of inheritance as shown by the following example. Suppose we
have a program with a class S which inherits operation F from superclasses C1 and C2, which in

turn inherit F from A. Since the F inherited through C1 and C2 is the same operation, there is no
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problem. But if C2 is reimplemented such that it no longer inherits from A, but still provides an

operation F with the same specification, the same program is erroneous.

Flavors

When a flavor is defined with one or more components, the Flavors system chooses an ordering
of its components, including both the direct components (the ones listed in the flavor definition)
and all others inherited from the direct components. To compute this ordering of components for
some flavor A, a depth-first traversal of the inheritance graph rooted at A is done, with
duplicates eliminated. The linearization of the graph transforms the partial ordering of
components as defined by the flavors into a total order, with the result that unrelated flavors can
be inserted before a class and its parents. To show how this compromises encapsulation,

consider the following situation. The four flavors, A, B, C, and D are related by the following

° magnis-trom

Suppose flavors B and D both have definitions for method foo. If one of flavor A’s methods

inheritance graph:

invokes foo on parent C, and the ordering chosen by the system is (A, B, C, D), then the method
foo which is executed is the one in B. This is not what was intended. To correctly use parent C,
A also needs to know the internal details of how C uses its parent D, (i.e., that C inherits D’s

£00), a fact that should not be visible to A.

CommonObjects

In CommonObjects, an error is signalled if a class attempts to inherit methods of the same name
from multiple parents; the designer must explicitly select one method or redefine the method.
The same rule applies even if the conflicting methods originate in the same ancestor, unlike

Smalltalk.
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3.3.5. Discussion

We summarize the results of this subsection in Table 3-3. When inheritance is used for reusing
code, it should be possible for a class to reuse only part of another class by excluding those
operations that do not apply to it from being inherited. There are two consequences of allowing
operations to be excluded:

1. The external interface of a class is not necessarily equal to the interface of the
parents together with the operations defined on the class. Therefore, non-
immediate ancestors of a class cannot be accessed directly without violating
encapsulation.

2. Subtyping rules cannot use the inheritance hierarchy to determine whether a class
is a subtype of another class. If a class X inherited only some of the operations of a
class Y, the behavior of X does not include that of Y, and so it is not correct to use
an instance of X in a place where an instance of Y was expected.

CommonObjects has made a first attempt at separating the rype hierarchy from the inheritance
hierarchy. However, having the programmer define the subtyping rules himself means
additional work for the programmer, and may be unreliable due to errors in the predicate
definition. A formal semantic specification of behavior is needed to be able to correctly do

behavioral subtyping; defining such a formal semantics is still an open research problem.

Excluding Subtyping | Reference to Multiple
Operations Ancestors Inheritance
Simula by overriding based on to arbitrary not
inheritance |ancestor applicable
Smalltalk by overriding not done only to parents | error if duplicate
from different source
Flavors by overriding not done only to parents | linearizes
graph
CommonObjects | allowed programmer- | only to parents | always error
defined if duplicate
Trellis/Owl only subtype-visible | based on to arbitrary error if duplicate with
can be excluded inheritance {ancestor different specifications
C++ allowed based on to arbitrary not applicable
inheritance | ancestor

Table 3-3: Visibility of Inheritance
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4. Reusability and Extensibility

The high cost of building large software systems can be attributed to the fact that most software
development efforts are done from scratch. Even though there are general facilities that are
needed in many systems, such as hash tables, set types, sort functions, and so on, programmers
write these over and over again for each application (sometimes more than once in a single
application), maybe with some small detail of difference in each. In an ideal software
development environment, new systems are built by “ordering components from [catalogs of
software modules] and combining them, rather than reinventing the wheel every time” [Meyer
87]. In this section, we show that the object-oriented programming methodology is a step in the

right direction in attaining such an ideal software development environment.

Component reuse is not restricted to the initial construction phase of a software system. It
continues to play an important part in the maintenance of the system, which is by far the most
expensive part of the life cycle of the system. Maintenance is a process of reusing modules
across time, rather than across applications [Bassett 87]. Enhancing the system results in
modifications to the system components in unforeseen ways, just as during system design reused
components need to be tailored to fit the new application. Therefore, reusability and extensibility

are interrelated; this is the reason for presenting them together in this section.

The simplest kind of reusability is to use an existing component as is. This is possible in most
languages through the existence of subroutine libraries — libraries containing primitive routines
specific to some domain, such as libraries containing mathematical functions, I/O libraries, and
so on. This kind of reusability is limited, though, because the functionality provided by a library
subroutine is fixed (with the exceptions of parameters). Therefore it can only be reused in the
construction of a new program if there is a need for exacrly the same behavior as that provided
by the subroutine. Although this is useful in certain situations, such as writing mathematical
software systems, it does not solve the reusability problem in general. The reason is that
subroutine libraries do not allow the routine to be modified in ways unforeseen by its

implementor.

This is exactly what defines a truly reusable component: it can be combined, adapted and

modified to fit in a new application in ways unforeseen by the implementor of the component.
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In addition, it must be clear what the component does in order for a programmer to determine if

it is useful for reuse in his application.!!

As we saw in the previous section, the class construct in object-oriented languages provides a
data abstraction mechanism with a well-defined interface specifying what the the class does.
Thus, the class is the starting point for the creation of reusable components in OOPLs. Classes
can be combined and modified to fit a new application by means of inheritance and
polymorphism respectively. We discuss these two issues in the next two subsections, and close
this section with a comparison of reusability and extensibility in a non-object-oriented language,

ADA.

4.1. Inheritance
When an existing class is not exactly what is required for a new application, the designer can
make use of the existing class by customizing it in some way to fit its new purposes. There are
three ways of performing such customization:

1. modify the original class definition,

2. make a copy of the original class definition and modify the copy, or

3. modify the original by augmentation.

The problem with the first approach is that the original abstraction becomes more and more
complicated as it is tailored for use in various applications. The modifications usually consist of
a case statement which executes different code depending on which application is currently using
the class. This creates programs that are difficult to understand and to extend. Modifying a copy
has the update problem usual with replicated data — changes to the original for correcting errors

or for enhancement are not automatically made to the copy.

The third alternative is achieved in OOPLs by means of inheritance. A new abstraction is
defined by specifying in a new class the difference between the new abstraction and a pre-

existing class, and appending the new class to the old one by making the former a subclass of the

!!The organization of the catalog of reusable components also has a large impact on whether the components will
actually be used in the construction of new programs or not. A programmer will not reuse a piece of code if it takes
him longer to find out (a) that the code exists, and (b) where the code is, than it would take for him to rewrite the
code. This problem is addressed in [Prieto-Diaz 87], but is outside the scope of the paper.
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latter. An important property of defining a new abstraction using inheritance is that it does not
affect existing classes, and no code is replicated. Inheritance is therefore a major tool for reusing

software.

Inheritance also promotes an open software architecture, that is, it facilitates open-ended sets of
extensions to a basic architecture. This is important for long-lived systems because the system’s
functionality changes over time. The following reasons account for the need for changes: (1) no
one has enough insight to build the system right the first time, and (2) the existence of the system
and the insight gained from its usage create a demand for new or altered facilities. As Balzer
points out in [Balzer 86], such enhancement of the system is the central activity in the lifecycle

of a software system.

4.1.1. Single Inheritance

A new class can be built from a more primitive one in different ways, depending on how the new
class differs from the old one. Curry and Ayers identify three general ways of how a subclass
differs from the base class from which it is derived [Curry 84]:

® extension — the subclass adds instance variables and methods of its own, thus
refining the base class abstraction.

¢ variarion — the subclass redefines some of the features inherited from the base
class.

® specialization — this is a combination of extension and variation.

Extension is the simplest kind of inheritance. It is often used in conjunction with a base class
that defines primitives common to many other related classes. For example, a class employee
can be used to hold the data and operations common to all kinds of employees:

class employee |
char* name;
short age;
short department:
int salary:

A manager, who is an employee but has some additional properties, can be defined by:

class manager : public employee |
employee* group; // people he manages
short level:
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The manager class inherits from the class employee; it has the features of an employee
(name, age, etc.) in addition to the features level and group, which only managers have.

This simple kind of inheritance, originated by Simula, is found in all OOPLs.

Sometimes, the base class provides the operations needed by the subclass, but the operations
need to be implemented differently in the subclass. Variation is most often accomplished by
overriding the inherited method, that is, defining the same operation (with the same name) in the
subclass. In statically-typed languages there are constraints on how the inherited operations can
be redefined in the subclass. The rules used in Trellis/Owl to determine how a superclass’s
(called supertype in Trellis/Owl) public operations can be redefined in a subclass (subtype) were
discussed in section 3.3. These rules are required in order to determine the legality of an
operation invocation on an object at compile-time; note, however, that the form of the object at
run-time, which determines the actual operation that is invoked, might not be determinable until

run-time.

C++ and Simula use virmal functions for run-time type resolution. In C++, a function declared
as virtual in a base class can be redefined in each derived class.!? Since a variable of type base
class can denote an object of that class or any of its subclasses, type information is stored with
base classes containing virtual function declarations so that the correct correspondence between
the object and the functions applied to it can be guaranteed. Consider the class employee:
class employee |
employee* next:
char* name:

short department:

pubﬁc;.'
virtual void print():

b

The keyword virtual indicates that the function print can have different versions for different
classes derived from employee. The compiler and loader guarantee that the appropriate
print function is invoked depending on the type of the object it is applied to. The type of the

function is declared in the base class and cannot be redeclared in a derived class. A virtual

12Gimula’s virtual functions are similar, so we omit a discussion of them here.
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function must be defined for the class in which it is first declared. The function to print out the

employee’s name and department looks as follows !3:

void employee::print ()
{

}

The virtual function can therefore be used even if no class is derived from its class, and a derived

cout << name << "\t" << department << "\n";

class that does not need a special version of a virtual function does not have to provide one.
When deriving a class, one simply provides an appropriate function if it is needed. The print
function can be redefined in manager to print the additional information:

x{/oid manager: :print ()

employee: :print () ; // call prins defined in class employee
cout << "\tlevel " << level << "\n":;

If we have a function print-employee-1list, which calls the function print for each
employee in an employee list, then the appropriate function is called depending on whether the
type of the employee is manager or not. Since the list can be constructed dynamically, the
determination of which print should be invoked must be resolved at run-time. This requires
that type information is stored with each object of the class employee. It should be stressed
that the function print-employee-1list could have been written and compiled before the

derived class manager was even thought of.

C++ is more restrictive than Trellis’Owl in how an inherited operation can be redefined in a

subclass:

¢ The programmer has to “tell” the compiler which operations might be invoked on
objects of different type by using the keyword virtual. This is done to minimize the
space overhead; C++ only needs to keep the extra type information for classes that
have virtual functions.

* The redefined functions must have exactly the same type as the virtual function in
the base class; subtyping rules in C++ are therefore much simpler.
Sometimes neither extension nor variation alone is powerful enough to construct a new class

from an old one. The manager class above is an example; it needed to both redefine the print

13The operator << writes its second argument into its first, in this case cout, which is the standard output stream.
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operation and add the other fields, level and group, and any operations to manipulate those

fields. This is an example of specialization.

A subclass can itself be a base class. For example, we can have:

class employee { ... }:

class secretary : employee { ... }:

class manager : employee { ... }:

class director : manager { ... }:

class vice-president : manager ( ... };

class president : vice-president { ... }:
Such a set of related classes is traditionally called a class hierarchy. In some languages (C++,
Simula, and Smalltalk-80, for example), a class can inherit from a single base class only, so the
hierarchy is a tree. As can be seen from the following example, sometimes a more general graph
structure is required:

class temporary { ... }:

class employee { ... }:

class secretary : employee { ... }:

class temporary-secretary : temporary : secretary { ... }:
class consultant : temporary : employee { ... };

Languages with single inheritance can simulate this as shown below, but only at the expense of
replicated code and data, the problem that inheritance was supposed to address in the first place:

class temporary secretary: secretary |
// data fields and operations for temporary class

}
class consultant: employee |
// daua fields and operations for temporary class

Another disadvantage with this solution is that for statically-typed languages, the fact that a
consultant is a temporary is buried in the class definition, and therefore not known to the
compiler. This prevents a variable of type consultant from being used where one of type

temporary was needed, even though logically this is correct.

Many object-oriented languages have acknowledged this problem and allow the inheritance
relation to form a directed acyclic graph where a class can inherit from more than one superclass.

This is called multiple inheritance.
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4.1.2. Multiple Inheritance
The main difference among OOPLs with multiple inheritance is what they do when an operation
is inherited from more than one ancestor. The approaches to this problem fall into three

categories:

1. Flavors, Loops [Stefik 86]: The approach taken by these languages is to compute a class
precedence list by a depth-first traversal of the inheritance subgraph rooted at the class:;nd
choose the method from the class with the highest precedence. The algorithm ensures that (1) a
class always precedes its superclasses in the precedence list, and (2) the local ordering of any
class’s local precedence list is preserved. The local precedence of a class is determined by the

specified order of the class’s immediate superclasses as listed in the class definition.

The traversal algorithm is depth-first up to joins. For the inheritance graph of Figure 4-1, which
illustrates the inheritance graph of the temporary-secretary class given previously, the
precedence list would start with the class temporary-secretary, then proceed in a depth-
first order up to, but not including the join, Object. The precedence order would therefore first
have all the classes on the left branch (temporary), then the right branch (secretary,
employee), then the join (Object), and so on. The reason for the up-to-joins rule is so that
Object is put at the end of the precedence list, since the method from a descendent of Object

should be preferred to the more general one found in Object.

<
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Figure 4-1: Inheritance Graph for temporary-secretary Class
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2. CommonLoops [Bobrow 86]: The approach taken in this language is that the precedence list

should not be built into the language, but should be under the control of the programmer. The
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metaclass of a class determines the algorithm for computing the class precedence list from the
local precedence of the class being defined. If no algorithm is given in a class’s metaclass, then

the algorithm of the metaclass of Class!4 is used, which is the same algorithm used in Loops.

3. Trellis/Owl, Extended Smalltalk, CommonObjects: These languages take the position that
no simple precedence relationship for multiple inheritance will work for all the cases, so none
should be assumed at all. Whenever a method is provided by more than one superclass. the

programmer of the subclass must explicitly indicate which one should be used.!3

Although the previous algorithms are needed to determine which method to use when it is
provided by more than one class, sometimes a method needs to be defined as a combination of
other methods. The simplest form of method combination is through the use of super, or similar
constructs. Sending a message to super indicates that the search for the method should start in
the superclass of the class containing the method in which super was used. The print
operation for manager is an example: it is made up of the parent’s print function, and the

additional code to print out the additional information about managers.

Loops extends this notion to allow more than two methods to be combined. The fringe methods
of a class are the inherited methods that have not been redefined in the class. Using the keyword
SuperFringe and a message selector, all the fringe methods for that selector are invoked in

sequence.

Selective combination of methods can be done in Loops by a construct called DoMethod.
DoMethod allows the invocation of any method from any class on any object. We have seen
similar constructs for starting the lookup for an operation in a specified class in the languages
Trellis/Owl and C++ (see section 3.3). Programs using this kind of method combination make
strong assumptions about the names of other classes and the current configuration of the

inheritance lattice. Changes to the inheritance lattice are likely to make such programs stop

14C1ass is the superclass of all the metaclasses. It describes the general nature of classes.

15As mentioned in subsection 3.3, Extended Smalltalk allows an operation to be inherited along multiple paths if
it originated from the same ancestor, while in Trellis/Owl an operation can be inherited from multiple ancestors if
the ancestors agree on the specification of the operation without programmer interventon.
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This problem is avoided in the mechanism provided by Flavors for method combination, a
powerful feature of this language. A method-combination rype can be associated with each
function name. When a message with some particular selector is sent, the method-combination
type sorts the available methods according to the component ordering, thus identifying more
specific and less specific methods. The default component ordering is the one computed by the
depth-first traversal algorithm described above. The method-combination type can also specify
the reverse ordering of components, that is, the most basic flavor comes first. The type then
chooses a subset of the methods (possibly all of them). The type specification is transformed
into Lisp code that calls the selected methods, and determines what to do with the values

returned by the methods. If the programmer does not specify a type for some function, then a
default type is used.

Some frequently used built-in types of method combination are listed here:

¢ Divide the methods into three categories: primary methods, before-daemons, and
after-daemons. Call all the before-daemons, then call the most specific primary
method, then call all the after-daemons. This is the daemon method-combination
type, and is the default type provided by the Flavors system.

e Call all the methods, most-specific first or in the reverse order. The combined
method returns any values returned by the last of the methods.

¢ Call all the methods and return a list of their returned values.

e Call all the methods in turn until one returns a non-nil value. That value is returned,
and none of the rest of the methods are called.

The function define-method-combination allows the programmer to define his own customized
type of method combination. It consists of three parts: (1) the type name, (2) method parterns
which select some subset of the available methods, and (3) the body, which is a declarative
specification of how the selected methods are to be combined. The body is evaluated to produce
detailed code to combine the methods. Define-simple-method-combination defines a simpler
kind of method combination that simply calls all the methods, passing the values they return to a
given function. For example, a type of method combination called : sum that uses the function +
to add together the values returned by each of the methods, can be defined as follows:

(define-simple-method-combination :sum +)
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It is important to note that defining the individual methods and defining a method-combination
type are two different levels of abstraction in designing a system; the former is an example of
programming in the small while the latter deals with the interaction of the pieces of the system,
50 it is an example of programming in the large. Flavors allows the two parts to be specified
independently, thus preserving the modularity of the system. When defining a method, the
programmer only thinks about what that method must do itself, and not about the details of its
interaction with other methods that are not part of a defined interface. When specifying a
method-combination type, the programmer only thinks about how the methods will interact, and
not about the internal details of each method.

Some languages provide a category of classes that define a particular feature of an object.
Examples of such classes include the mixins of the Flavors system and the traits of the Traits
language (Curry 82]. In the following discussion, the word mixin is used to refer to this general
category of classes, not specifically to the Flavors feature. A mixin cannot be instantiated
because it is not a complete description. To use mixins, a new class is constructed from the
mixins for the desired characteristics and an appropriate base class, and then instances of that

class can be created.

4.1.3. Dynamic Combination of Behavior

One problem with inheritance and method-combination as described previously is that the
behavior of an instance is fixed at instance creation time. This is undesirable in long-running
systems, where run-time events can cause the behavior of the objects in the system to change
over time. As an example, consider an object-oriented system modelling a corporation. An
engineer in the company is represented as an instance of the engineer class which inherits -
from the employee class and the engineer-mixin. If the engineer is promoted to the
managerial level, he should be in the the manager-engineer class, which inherits from the
base class employee, and the two features manager-mixin and engineer-mixin. This
is not possible with mixins because this would involve changing the membership of an instance

from one class to another, which is not possible in existing systems.

A possible solution is to coerce an instance from one class to another. Thus the run-time event

“promote Joe” would send a <coerce ’‘manager-engineer> message to Joe with
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values for the instance variables needed for the new class. This would change the membership of
instance Joe from the class engineer to the class manager-engineer. However, the
semantics of promotion depends on what the initial class is: a secretary is promoted to an
administrative assistant, a manager to a vice-president, and so on. Writing the promotion
function, which sends a coercion message to change the promoted employee’s class to the new
class, would amount to a bunch of conditionals to distinguish between all the cases of what the

initial class is.

In [Hendler 86a), Hendler observes that the root of the problem is due to the fact that mixins are
combined with classes to produce other subclasses, thereby forcing an instance to change class
membership when it gains new abilities. He proposes that mixins should be used to provide
additional functionality to instances, not to classes. Hendler calls this use of mixins
enhancement. Thus we can create an employee, or any subclass thereof, and enhance him with
the capabilities of an engineer. The promotion function no longer needs to be an enormous case
statement; to promote Joe, the instance representing Joe is enhanced with the functionality

appropriate for managers.

Hendler’s concept of enhancement extends the way instances of a class can vary from each other.
Usually, instances of a class can differ only in the values of their instance variables; they have
the same number and type of instance variables, and they understand the same set of messages.
This is no longer true if we can selectively add functionality to instances; instances of a class can
have a different number of instance variables, and can respond to different messages. This
approach is similar to that advocated by prorotype languages, the most prominent of which are

the actor languages [Agha 86, Lieberman 81, Lieberman 86].

There is no distinction between classes and instances in actor languages. All objects in the
system are called actors. Each actor can respond to a CREATE message to make a new actor
similar to itself. The parameters to CREATE specify any new information that differentiates the
new actor from the creator. The creator actor is called the proxy for the created one. When an
object receives a request to perform an operation, it first checks its personal behavior to see if it
can satisfy the request. If not, it delegates the request to its proxy to invoke more general

knowledge. Delegation provides the capability for sharing common knowledge among objects in
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actor languages, similar to inheritance in other OOPLs.

Each actor knows the names of other actors that it can communicate with. These are called the
acquaintances of the actor. When a new object is created, it gets an initial set of acquaintance
names from the creator. However, acquaintance names can be freely communicated in
messages, SO an actor can acquire new ones during its lifetime. This capability allows actor
systems to have a very dynamic communication pattern. The system can reorganize itself as new
events happen by changing the set of acquaintances of various actors. Using the same example
as before, the promote actor can send a message to Joe, the engineer, giving it the names of
the acquaintances that represent the functionality (data and methods) of a manager. From then

on, Joe can communicate with these actors to obtain the behavior of a manager.

4.2. Polymorphism

Polymorphism is an important feature of all object-oriented languages that allows the definition
of flexible software elements amenable to extension and reuse. A polymorphic operation is one
that has multiple meanings depending on the type of its arguments [Cardelli 85]. In a language
like Smalltalk, a variable or expression representing the receiver of a message may dynamically
vary in type. It is up to the receiver to decide how to respond to the message. The method that is
executed, as specified by the message selector, is directly associared with the type of the
receiver. Therefore, different results will be produced depending on the type of the object
receiving the message. This is called simple polymorphism: the operation invoked is dependent
on the type of only one argument, the receiver of the object. Multiple polymorphism, on the
other hand, is the ability to execute different functions based on the types of more than one of the

function’s arguments.

4.2.1. Simple Polymorphism

We illustrate polymorphism with an example — a graphics editor. The editor can manipulate
different kind of objects: geometric objects such as squares, circles, lines, and so on, or text
objects, which are strings of characters. These different classes of objects are arranged in the

hierarchy shown in figure 4-2.

An instance of class Graphics ObJject contains instance variables x-coordinate and



Graphics Object

—_—

JARENIS-trem

Figure 4-2: Inheritance Graph for Displayable Objects
y-coordinate which indicate the position of the object on the screen. It responds to the
message location by returning these coordinates. An instance of Text Object provides a
font index and an emphasis (italic, bold, underline). Geometric object instances contain
color and pen (dashed, solid) which determine how the outline of the shape is displayed. Text
Object and each subclass of Geometric Object also provide the following methods:

e draw — displays the object on the screen.
¢ reduce — reduces the object by a percentage given as an argument.
e enlarge — enlarges the object as specified by the argument.

e move — moves the object to the position specified by the argument.

These methods are implemented quite differently in the different classes. For example, the
draw method for a square determines the current position of its top left corner (by sending a
location message to itself), then uses the color and pen information to draw four lines,
assuming it has instance variables containing the length of its sides and its orientation. The draw
method for an instance of Text Object is quite different. The current position is found the
same way by sending the locat ion message to itself, but this position indicates the bottom left
corner of the first character of the text. It uses the font and emphasis information to display the
text on the screen. Similar differences exist in the implementations of the other methods for the

various objects.

The editor class would have a method, mainLoop, which looks as follows in Smalltalk:
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mainLoop

| graphicObject command |
self Initialize.
self DrawMenu.
[true])
whileTrue:

{graphicObject <- pickFromCursorPosition.
command <- pickFromMenu.
graphicObject command]

Each time through this loop, the variable graphicObject can represent a different object,
depending on where the user has placed the cursor. If the cursor is placed on a text object then
graphicObject refers to a text object. If the command reduce is selected and given an
argument of 0. 25, the font variable is reduced by one fourth and the text is drawn on the screen
again in the smaller font. If, however, the cursor is placed on a square and the same command is

selected, the side-length variable is reduced by a fourth and the smaller square is redisplayed.

Extending the graphics editor to handle a different kind of object, for example, an ellipse, is
easily done in a language supporting polymorphism. All that one needs to do is to define a new
class ellipse which inherits from Geometric Object with instance variables holding
information about the ellipse (the center and two radii), and implementations of the methods
mentioned above for manipulating the ellipse. The graphics editor can now be used on ellipses

without any changes to the rest of the code.

In essence, a polymorphic function has an implicit or explicit type parameter which determines
which function is to be invoked. In Smalltalk, the language we used to present the graphics
editor example, the type parameter is implicitly specified by the class of the receiver of the
message; the class of the receiver determines the actual method that is executed. In other OOPLs
that use conventional function call instead of message sending, the class (or type) of the first

argument serves the same purpose.

4.2.2. Multiple Polymorphism

The simple polymorphism cxhibitcd in the graphical editor example above is not sufficiently
powerful to handle all the extensions that may be needed in the evolution of a software system.
For instance, extending the functionality of the graphics editor to allow graphical objects to be
displayed on various devices, such as an ascii display, a bit-mapped display, or a printer, leads to

problems if only simple polymorphism is available. The reason is that we now have two
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polymorphic variables ( that is, variables that may have more than one type), the one holding the
graphical object and the one holding the display device. This gives rise to the doubly

polymorphic interaction illustrated in figure 4-3.

Graphical Objects is ices

Figure 4-3: Interaction between Two Polymorphic Variables

In languages such as Smalltalk, which only support polymorphism of message receivers, not of
arguments, this can be dealt with by putting in code for each graphical object method that knows
how to deal with all display devices, as illustrated for square below:
"draw method for square"
draw: aPort
aPort isMemberOf: AsciiDisplay
ifTrue: (["code for drawing square on ascii display™) .
aPort isMemberOf: BitmapDisplay
ifTrue: ["code for drawing square on bit-mapped display™] .
aPort isMemberOf: Printer
ifTrue: ["code for drawing square on printer"™) .
This solution results in a system that is not easily extensible: adding another kind of display
device entails changing all the draw methods of all graphical objects. Languages with only
simple polymorphism, thus, facilitate extension in only one dimension. As we will see in section
4.3, the kind of polymorphism that is found in object-oriented languages can be simulated in

conventional languages like Ada in a similar fashion, with the same unacceptable results.

CommonLoops ([Bobrow 86], unlike most other object-oriented programming languages, handles
multiple polymorphism. A method can be specified in terms of the types of any number of
arguments. For example, the method draw for a square object and a printer display device looks

as follows:




(defmeth draw ((graphicalObject square) (aPort printer))
; code for drawing a square on a printer)

This method has two type specifiers: the first is a square and the second a printer. The code for
this method is invoked for arguments of type square and printer, or any of their subtypes.
Similar methods can be defined for the other combination of graphical objects and display
devices. A draw operation is called as follows:

(draw obj port)
This is interpreted as:

(funcall

(method-specified-by ’‘draw
(type~of obj)

(type-of port))
obj port)

For any set of arguments in the function call, there may be several methods whose type
specification match because of subclassing. The most specific applicable method is called.
Method specificity is determined by the specificity of the leftmost type specifiers which differ.

Ingalls proposed a general solution to deal with multiple polymorphism in object-oriented
programming languages [Ingalls 86]. He notes that each message transmission reduces a
polymorphic variable to a monomorphic one (that is, a variable with exactly one type) by the
type dispatch inherent in method lookup. Therefore, for the case of two polymorphic variables as
in the graphical objects and display device example, we need to send two messages to reduce the
double polymorphism. A relay method is defined for each graphical object that effects a further
dispatch on the display device type as follows:
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classname Square
"draw method for square"
draw: aPort
aPort drawSquare: self
classname Circle
"draw method for circle”
draw: aPort
aPort drawCircle: self
classname Text
"draw method for text™
draw: aPort
aPort drawText: self

. similarly for other graphical objects .

We then define methods for each display device class to draw the different graphical objects:
classname AsciiDisplay

drawSquare: aSquare
"code to draw a square on ascii display"

classname AsciiDisplay

drawText: aText
"code to draw text on ascii display”"

. . similar for other graphical objects . .
classname  Printer

drawSquare: aSquare
"code to draw a square on printer”

classname Printer

drawText: aText
"code to draw text on printer"

. similar for other graphical objects . . .

This solution preserves the modularity of object-oriented programming style. If a new graphical
object needs to be added to the system, one only needs to define the relay message in the new
class for the object, and the appropriate implementation method in each of the display device
classes. Adding a new display device is similar. The same technique can be used to reduce
higher degrees of polymorphism as well.
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4.3. Comparison to Reusability and Extensibility in ADA

In this section we will compare the facilities found in Ada for reusability and extensibility with
those of OOPLs described in the previous two sections. The reason for selecting Ada for this
comparison is that among languages that are not object-oriented, it is one of the most advanced

in its support for reusability and extensibility.

Ada has two constructs for structuring a program: the subprogram and the package. The former,
equivalent to the procedure or function in Pascal, provides control abstraction, that is, the ability
to treat a sequence of actions as a single one. The package provides data abstraction: type
definitions for a user-defined data type can be grouped together with the subprograms that

operate on that data type in one package, and the entire structure can then be treated as a built-in

type.

Both subprograms and packages can be reused as is; for example, if a new application needs to
use a data type that was defined as an abstract data type in a previous program, then the old
abstraction can be reused if it is exactly what is needed in the new application. However, as we
mentioned in the beginning of this section, this accounts for only a small percentage of the times
existing program fragments could be reused, because of the requirement that the old piece and

the new use match exactly.

Ada has generic subprograms and packages, which relax the “as is” condition on reusability
somewhat. Generic units (either subprograms or packages) allow types to be parameterized, thus
factoring out the dependency of the units on types. For example, a generic procedure to swap
two items can be written as follows in Ada:

generic type item is private;16
procedure swap(x,y: inout item) is
temp: item;
begin
temp := y:
y = x:
X = temp;
end

'“Item is declared private; this means that the only operations allowed oa items in the unit are assignments and tests for equality and inequavlily.
If other operations were needed, addilional generic parameters would aeed 10 be supplied so that an actual operatar for the tlype used for ilem
would be given whea the procedure is instantiated.



60

Generic units are templates; the swap procedure given above cannot be invoked as it is. It first
must be instantiated and a particular type specified for item. For example, to swap two integers,
we could instantiate the generic swap procedure by the following declaration:

procedure swapinteger isnew swap (integer):
This results in a distinct procedure being generated at compile-time with the type item replaced
with the type integer. Thus, the generic facility in Ada is similar to a macro expansion

feature.

The reusability and extensibility provided by generic units in Ada is not as general as provided
by classes and inheritance in OOPLs for two reasons: (1) There are only two levels of reusable
units, the generic module which must be instantiated before it is used, and the fully instantiated
module which cannot be further refined. (2) Since the generic unit is instantiated at compile-
time, it is not possible to specify an operation on a generic object that will execute a different
operation depending on the type of the object at run-time. We now expound on the second
statement, and describe why the polymorphism found in Ada is not as powerful as that in OOPLs
for reusability and extensibility [Hendler 86b, Meyer 86]..

Ada supports two kinds of polymorphism: overloading of subprogram names and generic units.
Using overloading, we can define a number of draw procedures that take different types of
objects as parameters, for example:

procedure draw(graphicObject: in SQUARE) ;
procedure draw(graphicObject: in CIRCLE):

Since the subprograms are distinguished by the type of at least one operand, no ambiguity arises.
However, this solution falls short of providing true polymorphic entities as in object-oriented
programming languages. The reason is that overloading resolution occurs at compile time. There
is no way to implement the mainLoop of the graphics editor example in Ada using overloaded
procedures since the type of graphicObject is not known at compile time. Note that this is
not an inherent restriction of statically-typed languages. In fact, in C++, a statically-typed object-
oriented language, this is not a problem because a variable declared of type graphicObject
can denote any object of this type or of any of its subclass, thus achieving the same kind of

polymorphism discussed for Smalltalk.
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Ada’s generic procedures do not work for the same reason. Generic instantiation is performed at

compile ime with actual type values that must be determinable at compile time.

The only feature of Ada which could be used to emulate the polymorphism of the graphics editor
example has nothing to do with overloading or genericity; it is the record with variant type.

type GRAPHICAL_OBJECT (ocbject: GRAPHICAL_ OBJECT TYPE) is
record -
. - . flelds common to all graphical object rypes . . .
case object is

when square => ... flelds for square objects . ..;
when circle => ... jflelds for circle objects ...;
. other cases ...;
end case

end record

GRAPHICAL_OBJECT_TYPE is an enumeration type with elements square, circle, line,
text, and so on. There would be a single version of each procedure on graphical objects
(draw, move, reduce, etc.), each containing a case discrimination of the form:

case object is

when square => ... action for square objects . ..:
when circle => ... actionfor circle objects ...;
. othercases ...;
end case

This solution creates “closed” software systems, that is, systems that are hard to extend.
Addition of another kind of graphics object to the editor is difficult because it would involve

changing the variant type and all discriminations that are scattered throughout the program.

This solution has another weakness, namely that it depends on the programmer manipulating
types in a way that cannot be checked by the compiler, a disadvantage for statically-typed
languages such as Ada. This can lead to two kinds of errors in large programs. The first is a '
failure to check what the type of the object is before calling the routines to operate on the object.
The second is the failure to account for all the possible types of objects in the case statement.
More of these kinds of errors are introduced in large than in small programs, and more in
programs being modified by someone besides the original implementor (an inevitable situation
in large systems). These kinds of errors are obviated in a language such as C++, where the
burden of ensuring the correct correspondence between the operation and the object is left to the
compiler (see section 4.1.1 for a discussion of how this is achieved by virtual functions), which

is much more proficient at checking these details than the human programmer.
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5. Conclusion

In this paper we discussed how encapsulation, reusability, and extensibility are supported n
object-oriented programming languages. Encapsulation is the strict enforcement of information-
hiding principles to minimize interdependencies among separate parts of a system. At first
glance, this does not seem to be an issue for object-oriented systems, which are systems
structured around objects that can only be manipulated by operations specified in the object’s
interfaces. In fact, as we saw in section 3.1, most OOPLs enforce that an object’s internal
representation is not visible to other objects in the system. A strongly encapsulated object is
important for minimizing the effect of changes in one object on other objects in the system.
Moreover, the definition of objects as almost independent units that communicate only through
well-defined interfaces creates more understandable systems: the objects can be understood
separately, and the whole can be understood only through the interface definitions.
Unfortunately, in many languages, inheritance negatively affects encapsulation by leaking

implementation information outside the entity being defined.

One cause of this problem is that most languages allow inheriting clients to more freely access
internal representation and internal operations of an object in order to take full advantage of
inherited data and code. This can be solved if the language provides a mechanism for defining a
second kind of interface in an object, and enforces that interaction between an object and its
descendents occurs only via this interface. This notion can be extended by allowing an object to
define different interfaces to different categories of users, thus providing different levels of

protection of the data it encapsulates.

The second problem of inheritance with respect to encapsulation arises from the two uses of
inheritance in an object-oriented system. A user of an object-oriented system only needs to
know the logical structure of the system, that is, how objects in the system relate to one another
according to the behavior specified in their interfaces. On the other hand, an implementor of an
object-oriented system needs to know the physical structure of the system, that is, how the
objects in the system are implemented, in particular, how they relate to one another according to
how they are implemented. In this latter view, the use of inheritance in defining a new class that

inherits data and code from existing ones is an implementation decision that should be hidden




63

from the user. Most languages confuse these two views, and have only one inheritance hierarchy
that is a combination of the two. If the logical hierarchy and the physical hierarchy are forced to
be the same, one usually wins out, with the result that either encapsulation is violated and the
user sees implementation details, or the implementation is inefficient because it follows the
logical hierarchy. The decoupling of the two hierarchies is one of the objectives of Exemplar
Based Smalltalk [Lal.onde 86]; this work is still at an early stage, and it is not possible to

evaluate the results published so far.

Reusability and extensibility are both facilitated by inheritance. Reusing an existing class that is
exactly what is needed is not any different from ordinary languages where one can use an
existing procedure or module whose specifications meet the requirements. The novel feature of
inheritance for reusability in OOPLs is that a programmer can reuse a class for purposes
(slightly) different than what it was originally created for by modifying it through subclassing.
This allows a class in an object-oriented system to be reused and extended in ways that the
original designer of the class need not have anticipated. This is different from reusable units in
languages that do not have inheritance, for example generic procedures, where the designer of
the generic procedure must specify in advance the kind of types the procedure can be instantiated

with.

Besides being able to extend the functionality of a system by subclassing, extensibility of a
system is facilitated by the “message-sending” semantics, where the object that receives the
message determines the method that is executed. Thus, the same message-sending operation can
result in different executions based on the kind of object the receiver is. The extension of a
system to handle a new kind of object is easily done by adding a class defining the behavior of
the new object, including methods for handling the system’s messages, without having to modify
the existing code in any way. In statically-typed languages, the message receiver is declared to
be of a particular class; at run-time, it can be an instance of that class, or of any of that class’s
descendents. An interesting issue to be explored in future work is whether this restricts
extensibility, and if so what constructs are needed in order to retain the benefits of static type-

checking while allowing the development of extensible systems.

The lesson learned from this study is that as a whole, object-oriented programming languages
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offer good support for encapsulation, reusability and extensibility, which makes them good
candidates for use in the development of large software systems. This is substantiated by
reported experience with implementing several large software systems in an object-oriented
language. These include the Smalltalk language and environment, implemented in Smalltalk
itself [Goldberg 84]; Intermedia, an object-oriented hypermedia system and applications
framework written in Inheritance C, an object-oriented extension to C (75000 lines of code)
[Meyrowitz 86]; and the Application Accelerator Illustration System, an integrated CAD
environment that supports the development of application-specific integrated circuits,
implemented in Smalltalk-80 (17,000 lines of code) [Miller 86]. The implementors of these
systems report positive experiences with using OOPLs as the implementation languages. The
systems were more consistent, understandable and modular. An increase in productivity was
also observed. This was attributed to the ability to work independently because of class

modularity, and to reuse of major portions of the code with minor changes made possible by

inheritance.
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