ClCs-283-87

Parallel Computers, Number Theory Problems,
and Experimental Results!

Mark Lemer

Computer Science Department
olumbia University

Abstract

This paper discusses the number theoretic problems of primality
lesting and factorization. It presents algorithms for these problems,
and reports on six implementations. Original work is presented for
three machines (DADO (Stolfo 83, the Intel Hypercube {Hypercube
86) and the Sequent Balance [Balance 86]). DADO runs primality
testing and trial-divisors factorization. The Balance and Hypercube
execute factorization by elliptic curves {Lenstra 86]. Work by other
researchers is due to(Bacher 80, Pomerance 86, Silverman
86a. Wunderlich 86]; these implementations use a network of
workstations, a special-purpose parallel sieve machine, and the
Massively Parallel Processor (MPP). The 16K/processor memory of
the current DADO2 machine was too small W execuw the elliptic
curve program, though it was ample for trial-divisors factorization.

1. Introduction

Section 2 presents algorithms for factorization and primality
detection. Section 3 gives a description of machines that run these
algorithms, and section 4 describes the algorithm impiementations.
Section 5 provides experimental resuits.

One observation from these implementations is the importance of
marching the program’s communication requirements with the
architecture’s topology and bandwidth For exampie, the Ethemet-
based ‘‘batching network’® of {Silverman 86a] uses a differem
variadon of the quadratic sieve than the pipelined hardware of
(Pomerance 86]; the. MPP (Wunderlich 86] utilizes a differem
algorithm (continued fraction. CFRAC).

Factorization programs, due (o their long running time, have
special reliability requirements; these can be provided by algorithm-
based fault tolerance (HusngAbraham 84], as well as
hardware [Carter 84) or software (Prachan 86]) methods. Reliability
is thus an imporant aspect of factorization algorithms, though it is
not the topic of the current paper.

2. Algorithms for Factorization and Primality

Two major problems in number theory which have practical
applications are the recogniion of prime numbers, and the
factonzation of composite numbers. The methods developed for
these problems include (Dixon 84, Knuth 81, Pomerance 86, Rabin
80. Riesel 85, Silverman 86a, Wundertich 86). Primality tests include

Supportad in pert by the Defass Advanced Ressarch Projects Agency under
contract NOO039-34-C-0165 md the New York Stme Science end Technology
Foundation NYSSTRCAT(34)-15, as well = granss by AT&T, HP, snd [BML

Research (axcilites for the sl Hypsrcubs and Balancs Sequent wars provided by

the University of Colorado ar Boulder and the Naconal Scencs Foundation under .

grar NSF-1537669. Fucilities & Columbia Univernity Compuse Science
Department houss the DADO computer, designed and construced st Columbia

the Fermat test and the Solovay-Strassen test Methods for
factorization include the continued fraction method (CFRAC), the
quadratic sieve method (QS), and the elliptic curve method. An
introduction to the material can be found in [Schroeder 86).

Factorization is considerably harder than primality testing. The
best known algorithms for factorization use nearly exponential time:
O0Vlog(n) loglog(n)) On the other hand, primality recognition is easy;
Lhebwtduermnumcg:mzh ity testing routines are almost
polynomial: (log n)0Uogioglog(m),
2.1. Primality Testing

The easier of the two problems is recognition of prime numbers.
Under the extended Riemann’s hypothesis this is computed in
polynomial time (Miller 76}.

A particularly helpful theorem on prime numbers is Fermat's Little
Theorem: for prime p and integer b not divisible by p, the following
congruence holds: 5= 1(mod p),p| b.

To test if a number w is prime, check if 5™ !m i(modw) for
randomly selected values of 5. Many such tests can be performed in
parallel [f a & can be found for which the congruence does not hold,
then the number w has been demonstrated to be composite (i.e., not
prime). By execution of many independent trials of the same
algorithm a decision (prime/not-prime) can be made with
exponentially increasing cerminty, aithough cermin rare integers
(called the Carmichael numbers) also pass the test. Nevertheless the
Fermat test is studied empirically because it is easy 1o compute;
indeed, "'In testing primality of very large numbers chosen at
random, the chance of stumbiing upon a value that fools the Fermat
lest is less than the chance that cosmic radistion will cause the
computer (0 make an error in carrying out a ‘correct’
algorithm'’ [Abelson 85].

The various provably correct primality tests include the
deterministic algorithm of Adelman-Pomerance-Rumley {Adelman
83). The probebilistic methods of Solovay-Strassen and
Rabin (Rabin 80] are practical and have negligible errors. The APR
algorithm is deterministic, and for ail large n it will terminate within
(log nyPtiogiogiog®)) A probabilistic expected polynomial time
algorithm is given by [Goldwasser 86].

2.1.1. Finding the First N Primes; Poesibie Speedup Beyond Sieve
of Eratosthenes

In various applications the first N primes are needed. The Sieve of

Enstosthenes finds all prime numbers between 2 and N (Schroeder

86]). The Sieve works by initializing an array, called the sieve, to all

the possibly-prime numbers less than N. [t repeatedly finds the

smallest number (which is necessarily prime) and removes all

To aopear in the Third International Conference on Superconputing,

May 15-20, 1¢88.

multiples of this number from the sieve. The lower bound for the
running tme of this algorithm [Pritchard 81} is
O(N log log N) additions with storage as low as O(YN) bits.

As compared with the Sieve of Eratosthenes, the sublinear additive
sieve [Pritchard 81] has lower complexity, O(N/log log N) addition
operations. For large N it may provide better practical performance
as well.

I describe here a simple new algorithm that does better when
massively paralle]l hardware is available. The system would be
constructed from many thousands of simple components. Each
executes a primality test with a small amount of control circuitry.
This massively parallel algorithm, shown in figure 2-1, can also be
used to find prime numbers in an interval (MN], M> > 1, or when ¥
is extremely large and not every prime in the interval must be
identified.

1. Store possible primes into unique processors,
2. Execute a fast primality test in each processor,
3. Read out the results.

Figure 2-1: Parallel Primality Detection

The data can be generated within the processors (thus no
communication cost) by a simple function of the iteration number and
the processor ID; for example, the value tested during iteration { in
processor N is 2x(i+N)+1; more powerful functions can be used to
exclude products of the small primes.

The largest value of N for which the process is expected to obtain a
prime number in execution of step 2 can be calculated from the
density of prime numbers (P(N)= lim N/log(N)) under the

] =4

assumptions of {a) 10 processors, and (b) the procedure is useful
only when interprime distance is less than the number of processors,
1o assure a new prime is discovered on each iteration. The maximum
size occurs at (X+108Ylog(X+105) = X/log(X)+ 1; thus X = 1%,

2.2. Factorization

Factorization, naively or by sophisticated methods, has received
considerabie attention because its difficulty is the besis of many data
encryption techniques. A naive technique, called the method of trial
divisors, is to simply divide a number by the first N primes. Powerful
methods use quadratic congruences or elliptic curves.

The congruence methods (CFRAC, QS) solve the congruence
X2aY2 mod N 0 obtain factors gcd(X +Y, N) or gcd(X-Y,N). The
elliptic curve method is a recent technique developed by [Lenstra 86).

22.1, Trial Divisors

The technique of trial divisors is a simple method, and more
powerful methods (CFRAC, for example) depend on it It factors N
by many divisions of small prims mumbers. There is 2 good chance
that some of the primes will divids N. If the numbers fail to factor N,
the primes may be used as sceds to gencrate additional possible
factors, as described in (Riesel 85). The computation k®p+/ (p
prime) for small values of & will generate possibie factors that can be
tested as trial divisors with no additional dats. This method has been
demonstrated on the DADO machine, see section 4.4.

2.2.2. Quadratic Sieve (QS)

Fast factorization by [Silverman 86a, Pomerance 36] solves the
above congruence by solution of quadratic equations 0 genene
possible solutions. The basic algorithm as described in (Silverman
86b) works by:

1. Selection of a factor base, FB

2. Solution of a quadratic equation for all primes p, ¢ FB

3. Initialization of a sieve array over [-M.M)

4. Sieving, in which ¥V p;e FB, log(p) is added o the
sieve array according to the roots found in step (2)

S. Scanning of the sieve array for the roots of the quadratic

equation of step (2)
6. Collection of factorizations, and testing in the

congruence.

Several algebraic methods have been described to make this
process cfficient. These include the selection of quadratic
polynomials and bounding the size of the factor base. Other methods,
such as the “‘large prime variance'' further accelerate the process
{Pomerance 86).

2.2.3. Continued Fraction (CFRAC)

The continued fraction method, like QS, tries a slightly different
way [0 COnstruct pairs (X, ¥) that solve X2 w Y2 mod N. The CFRAC
method uses trial divisions at a key step. Thus it is well suited for a
machine that performs parallel trial divisors. The MPP (Wunderich
86] is one such machine.

CFRAC finds (X, Y) by generating sequences (Z;] and (Q;] such
that Z2 = Q, mod N, and then determines the set Q = (Q, Q- Q)

mmma]‘[;_,g,-,=ﬁ. The Q; are trial divided and the subsequent
processing uses only the values that completely factor. For
x=[‘[;_,z,.}mod~ the method may obtain a solution W the

congruence X2 = Y2 mod N.

The difficulties with the CFRAC are to determine (Z;], (Q;), and
10 determine Q. The first problem solved by computation of the
continued fraction expansion, §=(P+VDYD, (P, D, Q € I, D>0).

The second problem is solved by establishing a prime base
P = (py, p; ... py). where p, are distinct primes and each Q,; is
completely divisible by primes in the base, that s
o=[L Ov, ajje Z. If enough Q; arc known then linear
'acanbefotnadammgme%vduu. These
dependencies are used 1o construct Y2,

22.4. Elliptic Curve
A method for factorization which is not based on the quadratic
congruence is the elliptic curve. This method has 2 running time that
depends on the size of the prime factors of a. According to its
invertor W. H. Lenstra Jr., the method works by
select(ion] {of] a random pair (E. P), where E is an elliptic
curve over Z/aZ and P is a point on E(Z/aZ). Next one
calculmes P, = lem(1, 2, ...k} *Pfork = 1, 2, ... and one
looks whether P, reduces to the zero element of E(Z/aZ)
for some noa-trivial divisor d of n. (Lenstra 85)

Panallelization of the elliptic curve can be accomplished in two
ways. The first is use of multiple curves, and the second is to
accelerse the operstions on each curve. Speedup linear in the
number of processors can be accomplished by use of many
processors. Each of the processors can be accelerated further by

By factoring with several curves one can expioit the probabilistic
version of the elliptic curve method. This is mentioned in (Lenstn|:
“Draw three clements a.x, ye Z/aZ (and factor each with one
curve).’" This process can be repeated until a non-trivial divisor of n
is found

2.3. Randomized Algorithms

Random numbers are needed by the probabilistic tests and the
elliptic curve method. Statstical independence {Knuth 81] is needed
between each sequence. In the parallel environment this
independence may be challenged by variations in computational load
or system reconfiguration. This section describes literature and
methods to address this problem.

The first method of generating random numbers uses a single
source, for example, a central host processor o supply each
processing node with random numbers, This requires a
communication channel 1o distribute the values. It is resilient against
changes in load because the random numbers are distributed as
needed. However, it may be impossible to repeat the sequence, as
required for debugging in particular.

The second method places the random generator program into each
processor, and initializes each copy with a different seed. Because
the seeds arc different, the sequences will be different; the
acceptability of this arrangement is application dependent. A
difficulty occurs if several processors produce the same sequences,
except out of phase with each other. Unwanted correlations between
the sequences might thereby result.

A variant of the above approach guarantzes that sequences do not
overlap. A preprocessing step runs the generator for sufficiently
many cycles. A number N of intermediate seed values are saved,
where N is the number of parallel processors 10 use. The seeds are
saved at an interval larger than the number of primes that will be
needed by any processor. One of these saved seed values is
subsequently assigned 10 each processor to initalize the random
number generator. In this variant, the system recoafiguration may
change the distribution of random values. Repeatability, however, is
available within each processor.

Parallel generation of random numbers is discussed in (Kalos 86].
Methods include Tausworthe generators, composite generators, and
Lehmer trees.

3. Machine Descriptions

As stated in the introduction, the six machines (DADO,
Hypercube, Balance, workststion networks, parallel pipeline, and
MPP) factor numbers in different ways. The DADO machine
executes 2 primality test and wial divisors factorizaton. The
Hypercube and Balance machines run the new elliptic curve method.
A nerwork of 10 SUN workstations [Silverman 86b] has factored the
87 digit number 2!™+1 in a week (Silverman 86a} by use of the QS
algorithm. Even faster results are obtained with special-purpose
sieving hardware [Pomerance 86]; this carefully tuned pipeline
machine can factor a 100 digit number in 2 month and is both fast and
cost-effective. The Massively Parallel Processor (MPP) supports an
implementation of CFRAC. [Wunderdich 86].

3.1. Batching Network

Silverman uses & network of 8 - 10 SUN-3/75 workstations with
Ethemnet interconnect. The stations can execute independently, and
can also be amranged into a logical sar configunbon Indirect
synchronization is achieved between the host and each satellite. The
host blocks, awaiting output by a satellite or a tmer
interrupt (Silverman 86a).

Provided the central "hub” remains functonal the machine will not
fail, though its performance may be degraded. Lf the "hub” fails the
system must be restarted, and checkpoint information retained on
stable storage allows a restant from the previous iteration

3.2. Parallel Pipeline Sieve

Pomerance, Smith and Tuler (Pomerance 86] have proposed
special-purpose sieving hardware for QS factorization The use of
such hardware should solve the problem in a cost effective manner
(recalling it is almost exponentally hard). Their design is carefully
customized for the problem.

The special purpose hardware includes a pipe component. This
hardware is constructed of block processors, each with about 216
bytes of memory. These are connected with a smart /O buffer. The
pipe can flow information both forward and backward. This unit
performs sequences of well-defined arithmetic operations, and two

"progressions can be in progress simultaneously.

The intercomnection network is both a pipeline and a bus. The
pipeline is used to pass sieve clements. The bus is for giobal
initialization of instructions, and for control. The capacities of both
pipe and bus are designed for the expected demands of sieving,
generation of polynomials, and communication of partial results,

3.3. Massively Parallel Processor

The MPP consists of 16384 PEs, cach with a 1K bit memory,
operating in lock-step. It was intended for image processing. The
hardware consists of an 1O control unit AOCU), 2 PE control unit
(PECU), and a main control unit (MCU). The PECU is microcoded.
The MCU can invoke PECU parallel routines. A VAX serves as a
frontend. See [Batcher 80, Schneck 87) for more information on this
machine.

3.4. Tree Machine — DADO

DADO [Swifo 83) is a binary tree-structured multiprocessor
architecture incorporating thousands of moderately powerful
processing elements (PEs). Operational is a DADO2 computer
configured with 1023 PEs and 16 megabytes of RAM; this machine is
approximately the same hardware compiexity as a VAX-11/750.
Each PE consists of a programmable microcomputer with a modest
amounit of local memory (in the range of 16K bytes) and a specialized
1/0 chip designed to accelerate inter-PE communication. A full-scale
production version of the machine may comprise many thousands of
processors implemented in VLSI technology.

The execution modes of a DADO PE are unique. Each PE may
operate in SIMD (Single /nstruction, Multiple Data stream) mode
(Flynn72) whereby instructions are executed as brosdcast by some
ancestor PE in the tree. Alternatively, 2 PE may operate in MIMD
(Multiple /nstruction, Multiple Data stream) mode by executing
instructions from its local RAM. Such a PE may, however, broadcast
instructions for execution by descendant PEs in SIMD mode.

3.5. Shared Memory — Sequent Balance

The Sequent Balance 8000 [Balance 86] is a shared-memory
multicomputer. Several processor boards (¢ight on this machine) and
a number of memory boards are connected by a high-speed bus. Each
board runs an autonomous UNIX system. Process synchronization is
through signals or semaphores as provided by Unix. The architecture
is optimized 0 diminish bus contention by use of cache memory.
Cache consistency is maintained by having one primary copy for each
cached memory location; multiple readers are updated when the
primary is writen In this manner, semaphores do not put
unnecessary load on the bus.

3.6. Message-Passing — Intel Hypercube

The Intel Hypercube [Hypercube 86] is a message-passing
architecture with a hypercube interconnection network. The machine
used for this experiment has 32 processors. Each processor can
communicate with the 4 adjacent comers of the five dimensional
hypercube. Each processor supports multiple processes and
communication channels. Message-passing routines allow
communicaiion between other processors and the host processor.

4. Implementations

4.1. Batching Network (QS)

The Mitre corporation has implemented the quadratic sieve in
[Silverman 86D, Silverman 86a]. These implementations of the
quadratic sieve make use of a network of workstations. By use of
mulriple polynomials, the parallel implementations achieve speedup
almost linear in the number of processors. Each processor is of
conventional design.

Two methods of parallelization are reported. Both use only
standard Ethernet hardware and UNTX communication.

The first method has a standalone version of QS on many machines
with different starting values. Each machine does its own Q(x)
factorization and maintains its own restart files on independent disks.
Each machine runs independently and a N-fold speedup with N
machines resuits.

The second method uses a star topology of a central host logically
connected to satellite processors. The host provides special functions,
and the satellites sieve for possible factors. This helps to assure
reliability in the face of processor failures. The host responsibilities
are:

e The host computes the sieve polynomials, and keeps a
stack of values (o keep the satellites busy
* The host stores factorizations as reported by the satellite

processors

e The host monitors the satellite processors. When a
satellite becomes available, it is loaded with software, a
partial factorization, and a sieve interval. It then begins
factorizatrion independently from the other workstations.

The host prepares fresh polynomials while the satellites sieve. The
polynomial selection can also be parallelized. It needs o be done
quickly and efficiently, since ‘*with an efficienmt algorithm for doing
this [computation of (1/2A) mod p] such as the extended Euclidean
algorithm, one must Cypically do (it} thousands of times when
changing polynomials'* (Silverman 86b).

The efficiency of this approach is improved by several methods.
These include (/) estimation of logs to allow use of a sieve amay built
of single-byte cells, (2) use of & sufficiently large wordsize to store
the factor base without use of multipie precision arithmetic, and (3)
acceleration of the sieve by smail-prime and large-prime variation. [n
particular, the aigorithm is highly dependert on fat multiplication
and division. For exampie, there is an order of magnitude speedup
when Lhe processor is changed from a 16x16 bit multiply 10 a 32x32
bit multiply.

The PEs note if they should report a result They report, if
appropriate, any factors which are sent (o the host processor when
time is available.

4.2, Parallel Pipeline Sieve (QS)

Pomerance's implementation of the quadratic sieve uses 5 stages,

each constructed from off-the-shelf hardware.

Stage | preprocesses the daa (0 solve a congruence and manipulawe
the factor base. Stage 2 initializes the sieve 10 prepare a polynomial

and data. This is done in a sequertial piece of hardware. In stages 3
and 4 it breaks the polynomial interval into several pieces. It then
uses several purpose parallel pipe units to sieve in parallel. Stage §
computes linear dependencies. This algebra can require large
amounts of storage. Allematively it can be solved by ‘‘sparse
encoding of vectors and quick elimination of large primes by
Gaussian elimination,”’ {Pomerance 86] or other techniques.
Pomerance uses a CDC Cyber computer 10 solve this by an
elimination process.

Unlike {Silverman 86a), fault tolerance is not described in the
current design. If the machine consists of 15,000 components, each
with a failure rate of 10-7/hour, then at least one fault is expected to
occur during the month required to factor a 100 digit number. This
assumes that no errors occur during communication between the
phases of computation, and is optimistic because of the fairly fast
70ns components. Factorization of a 150 digit number requires a full
year, and many faults would probably occur during this time. Error-
correcting components, particularly memory, can improve the
reliability considerably.

4.3. MPP (CFRACQ)

The work of Wunderdich and Williams (Wunderlich 86}
implements the continued fraction method (CFRAC) on the MPP
machine. The MPP was built for image processing. It exploits 16K
small processors.

The implementation is 0 generate pairs (Q, A) and perform trial
factorization over P of the Q's. The formulas

Pr=0Qs—Pp
Qi1 ’(D'Pko-lz),Qt‘
hl‘[(Pbl+ﬂQl0l] ("0.1.2»..)

are cxpanded in parailel on the MPP by computing tuples
S,-a((—l)"aQ,‘. P,‘. A, 10 Ay ‘_2) where (i=1, 2, 3,...,16384).

These values are loaded into the ARU of the MPP t0 factor the Q
values. The factorization is done by trial divisors in parallel Each PE
stores a unique Q value. Each PE also stores the same sequence of 1§
prime numbers These primes are divided into the Q values
simultaneously. Pipelining further increases performance. (See
section 5.4 for a description of the trial divisors task on the DADO
computer.)

4.4. Tree Machine (DADO) with Trial Divisors

Obeerve that all divisions can be performed independentdy in
parallel Alld.lvmomm(mﬂy)equﬂlyhkdylodmden. The
parallelization is:

1. Store unique primes p into each PE

2. Store & into all PEs

3. Each PE divides values of p and k*p+/ into n

4. Print the values which divide a with zero remainder.

This trial-division technique can accelerate many algorithms. For
cxample, it can be used as s subroutine for the quadratic sieve. A
similar technique has been used by {Wundedich 86]) in an
impiementation of the continued fraction method (see above).

4.4.1, Primality Testing

To execute probabilistic primality tests and experimentally address
the resource uglization question, 2 load balancing scheme was
developed. Each processing clement (PE) stores software for a
randomized algorithm, and & unique processor identification number
(PE_ID). The software consifts of a random number generator, any
randomized routine (in this case a probabilistic primality-tester), and
the communication/control routines necessary to coordinate activity
with the host. A decimal arithmetic package (modulo 255 arithmestic)

permits storage and arithmetic on large numbers.

*g-» am8y u 51 9p0S 1504 A1 JO 40O} UTEW AN
puR ‘7-p M8y N pAST A $9P0O AL TUIWANALS jdD-Adnmm
v w1 Suissed-a8essow Jo Ainxadwoo Ap O NP ‘IUMPYW Buissed
Mm!_;osumm:xlmdlﬂmdwnmpmmpm
-sossaoaid TUAIT AN UIIMIQ ITTLINN URI[O ¢ apracud pue *I[y y
® gSnanD PN ale ¥AYL "$IPOD UOTEDIUNWOD JO I35 PRI
-[lom ® YBnaNQ §1 $9P0U AN PUT 50y AN TRMINQ BOTEIRMTWO)

: $98590ud IHPO AP [TE STITY TAR SOY AL WO AP 01 swodas 1
UOTTEZUOLYE) ¥ SPUY 10FE300ud ¥ TR{W WOY AN e Qsnovosyuiso
FIIUNWWOD &1 R '00 Yoed 01 weans erep ® Sumpuss Aq
uossaomdanmummmau -mresSaid apou v pue weaBod
150y ¢ :sursBaid om1 sasn aqnaradAH *kp vo vonmwRdan g

(aan) onpdy) qnasadiy — BussRg-33esdpN 9y

aImoNS [OIU0) AJOWIN PAUTYS 1 o.ndu
{01 poopwm w
{A0Yl=®uOp
‘(pyor w)
oesuo vo fi $oyf suop S (xonuv);:r
1013 IpQOY 8 N $9) 2(MEXPN WmOUTUTI e T
0P 208533044 o J2 Y9 furnaez (eUop) ;T |}
_{:)303
Kypmbrvn 40853204d Kfrrivp] (i w8 weew

*)
q ‘33weNU ‘T ‘U, 3JUT
(q‘2awunu’Tw ‘v) adwe 33"

{

2(g 3awwnu’ Tw U ' adwe13v) 3o w

(g ‘pees) DTPrApsTerq

1 (ZsTw ' TW) Zdmpoos

()um)z

*A[snouanjoukse s10sseoad ason sreuTIUN

o1 sKssod aq OsTe St 1] AqeueA ST Tiod AXD uxgam Bumsoosd

JreUTULIST ([sIOSSS00ud JRRO WMD 1 JUOp INEUBA PAreys

AN 195 01 11 MOTE AN 'SUNNGI JIO7WN W PUE Y207 W AN JO M
AQ ¥o12325 [DIB1LO ¢ IR 1! GONEZUOIOR] € SPUY JOssoaid © uaym

SO (oyreaod LS
- 201004 515Dq Mo)
‘anod s vIoRQ

‘pounopad suONRIN JO JAQWNU I
N JODUCO 01 OSTe pue ‘10ss300xd YIRS 1 JOTRISUSS JaqNU WOPUES
[JzRnnA Ol PN 51 nfea A weiBaud ST Uf "SUODPNOMED
repunpas Juaaald o Aem Jpduns e soplacsd ST “IAUNCO PIOAUCD
A{reqor8 ® sepiacud sumnal v w ayl ‘Jossoasd yoes u (sdusuw)
JUNNQI UOUEZUOR) AR Jo AdoO 0 SABAUD AMNnA 340 W N

pIzLITEI ATE
SWIWWO? {[-p AMBY W PAST] $1 AMONDS [0V A] *I5Bq JOWE]
AN ST YONS SAMONIS PATEYS JO] UOHUIIUOD ST IFTAIP 01 AYIRD
J1qezIs ® sopnIoun AIomaw pareys §,7uanbog AL ‘[red y40f w Ap Aq
PIIBAId U1 ale JUMNQ! BOEZUCIOE] AP JO §91doo Auey -9seq J01dE]
2 jo uoneindwos @ BuTpnioU ‘UOEZITENIUL [TE $20P JOss3oaud U0
Y5€1 UONTZUOLOR] A JO4 "PURHITOD y40f w ® 51 ursTiaqresed Jo 3amos
Arewrud a1 “19indmos Atowmam pareys e s1 souered wanbeg a1
wojrejuAuapdut] UG JUNLIS I°5E
GnN3
(v°Zn) sepuTwaey
(v’ Tn) Ieputwwey
{(w’n)eszeau]
(=7 a) poRoedsdxy
NID3§ uvd
1-32 ©3 1=:T 3037
*9p02 semonred sny 1 19919
IPIS OU I WA ST ‘SMOTO] §B pzrarresed aq URD 2A0Qe A

(v’Zn) IepuTvUeY Op 1-,7 O3 =:T 203
(v’1n)Jepurtvwey op (-,Z ©3 =:T 203
(u’n)eeI®AUl Op 1-,2 ©3 1=:T 203

(w’T ‘a) posioedsdx3 op 1-4Z ©3 1=:T 307

:sdoop a1 seandaxe poewm A andme
s jo uonmuswaidun o woy wowdss spod e ‘sjdwexs 104

"APATB30Y? SNY1 Jren[eAS
ues Jossadcaxd oA o auradid v ToTRRd ur powuopad aq ued
to Y]

wr 1l

:Jo uowenEAl Xp adweys Jog ‘mesBaud
ud-umpom an onpue panopdys 3 pmod R4 pATURwRdun
ou sem ‘usTREd umiS-any ‘dnpoads jo xunos puoods v

. ‘wstarered
s oydxe sERauadxs Sneono) XL WsTRTUNd uresS-umipew
5 sy PrUed o goee An pue ‘Afmopues s2amd ondre Auvew
3 01 51 (UBU] £Q PIUONUIM $¥) EETRITRIYd JO 3amos 18Iy Y]

osso0ud Jo saqunu & W1 dnpoads reauT] B pamoys U]
ap pur wonbos Ap pod Sqnadiy P pue *oureg PNnbg
'0SL XYA D30 % U0 pArYs Uaq sey meBoud swy) -sZenBue)
D & n pausmadun ueq STy vonTZUOIY) SRdNP Joj wrBad v

(3Adm)) ndiiA) PouwTey 1uINbag — LW PIIBYS ‘S

*p dow wog wadas pur sonsTINs oWpd) °§
WUOSTe pITTUOpUE
o sSuU OV MNA ‘sawrd AT UOWw SIMERRS oy W L
B[RO v IXNOUE UTU ‘UAOUX 194 N 3
20 ‘(sarud 51 FQUMU AP IPN[30) BHAWOD STELD W 'q
30 ‘amsodwos 51 RQUMU A\ Joold T
TIMSA A INO PEIY 9
*3d G Ul SUONRIA! ¥ UNY ¢
*(2N1d 2 30 4 You9 oau1 paoend 51
OQUWNU SWes 3{) ZAIN]O YO 01 QUMY 137 Inbrun v WS p
*005 > 1 AQ FMAD srarn 3pn1oxs ‘pdune
4 -ounxd 9q 01 A[99N] AR YOMA KIQWNU 3R IMEUID ‘€
“SomRINSYuod SR 01 ARIYWW O VQ Ap IATRO] 7
*(¥) DOTTOTUNUNDOD TSI [RARNUT) PO (1)
93undaI0v 10 SUOTREN] JO ¢ A ‘XEn]d> 1d 534 JO # M PEIY °|
51 moy) wesBosd ayg

JUNPew OQVJ AP O] WK A URE e sowud
amqissod g1 “waqunu Asodwed Ajams an pressp AQYomMb o1 (153
onsqeqosd ¥ J0 SIOSIAID [eLn JayILd) 1591 2uo suru 1wy weiaid 1oy
YL ‘OQva an w auop Butsssocud resed e 190y regUINbas AN
uo 3uop Burssaoasd-axd ap Buixuereq £q (adXimosd Bunesrummmod
Asnouarquds ST uo) peacsdun ST womEZIUN AINOSIY

‘suuopad auTyoRw AN Kem 159q
Ap puy o TYTALLWAIOD JO SonfeA STOURA YOO 01 ISUANUT JO St
11 AUCJUWAL] "PIZI[ONUIPUN 3q AW s10ss003d Auew IFNEIAq MYANsem
OSTe S1 ‘2S1maNT] ‘Bunsa Juonbaygu] “$9SNED 11 UONEINMIIDOS AN JO
asnesaq ysem aq Aew BUTYOoYD 2AISSI0XT BTEP [EUORIPPe dpi1acsd
PUE SIMSA 10 PR 01 331 OA VA AR SPOA A[reorpouad 1soy YL

“UONEBIO[TE JUN0SA A 03 J191awered
® 100 ‘1571 Arewud o jo Auadaid e st TVRILODV JO onfea
a1 owud st Jaqumu paxdaooe ue Ty AlUTEUSO JatRAUS Aoy
‘SUOTRII alom sNEd TYNEIDOV jo sanpea Je&req | swud
Aiqeqaud,, se Jaqmnu) ynIdd 01 parmbai 1571 ansmiqeqosd g Jo
s755pd Jo J9quMU A ST 14y AL (STYILLADNCD) . UOHRIIUNmwod
URMIX] SUOLRIFN JO J3qUMU,, A PUR (STYRLLODY) ., 3ouexdade
10} SUOWEJAN JO Joqumu,, KR Ve svwered Ooml IMNO AL

Tryrsea 51534 01 JO 95T AN UAD
*firewnud Jo Jooudstp ® PUY 01 TUDYINS e SUOTRIN ¢ Ji *oidurexd
jod -ouwm Jondwod pasem W JMsa A[UESSI0A (v I8re| oot
S1 181 JAIST[I € PUBY IO 1 UQ “Iaisnp Jodrel © W A[pides aow
:na}dmoo q U3 J2qWNU € JO 3UNsS3) M SNY] WD JO JUNOWE IS
A ul suomresdnt wow Andwoo wes uAsnp so8rel outs Juenodun
q o1 paxadxo sem pue ‘Jatewered awm-uonnIIX? UR §1 9ZIS ML
‘371S SUNRS AP ST IANSN[D Yoeg "UASND 01Ul paziuedio are s34 ML

The hypercube implementation is shown in figure 4-4. The
italicized routines provide for communicaton and control by
invokaton of system functions in a structured manner.

The host initiates the program by loading the node program into the
hypercube. The host then sends parameters 0 the cube
(store_parms), sends a start message to the cube (start_cmd), and
then enters the loop shown above to read answers from the cube
{read_cube). The host echoes the data sent from the cube.

Independent node executions in each processor read parameters
from the host, wait to receive a start message, and repeatedly run the
factorization routine arremp:. When a factor is found the ANS_OK

message is transmitted to the host.

tdefine MSG_M1 101 /* Sending Ml value (factor base) */
tdefine MSG B 102 /* Sending 3 value (expansicn base) ¢/
tdefine MSG_ATT 103 /* Sending number of attempts per pe */
tdefine MSG N 104 /* Sending N, the number to factor v/

tdefine MSG_DO_CMD 001 /* Execute routine (buff can id rtn) ¢/

tdefine MSG RES CLK 106 /* Reset clock */

tdefine MSG_STA_CLXK 107 /¢ start clock .
tdefine MSG_STO_CLX 108 /* stop clock ./
tdefine MSG_STA_RTN 109 /* Start routine ./
fdefine MSG_SENDC_CLX 110 /* Send clock o host ./
ddefine MSG_SEND_ANS 111 /* Send answer to host */
tdefine ANS_FAIL S0l /* Routine failed ./
tdefine ANS_SUCC 302 /* Routine succeeded ./
tdefine ANS_NOTE 503 /* Commant i{nformation received. */
fdefine ANS_ABORT S04 /* Program aborted abnormally. v/

Figure 4-2: Hypercube communication codes

read_cube ()
{ got_answer=PALSE;
do
{ while('probemsg(ALL_NODES)): /* Mait for a message °*/
recvmsq (chan, tr3g_type, meg_buf, MSGSIZ,
éresg_cnt,ifr-node,sfr_pid);
switch(msg_type} (
case AMS_FAIL: nodes_runaning--:
break;
case ANS_SUCC: nodes_running--:
princf(*%s from node ¥d ptd 8d.\n",
m3g_buf,fr_node, fr_pid}:
got _answer=TRUE;
break;
case ANS NOTEZ: printf(°%03d
}
while (nodes_running &4 'got_answer);

t
Figure 4-3: Mesuge_-Pmmg Generic Host Code

Vs\n®, fr_node,msqg_buf);

Howt code: stors_parms () ; Siore paronsters.
stare_ced(); Siart command running.
read_cube(); Read result from cube.

UALL NALL P); Done. 50 kil ..
hoasalf AL NALL P); -+ and wait.

Node cods: g8t _parma(); Receive parameters.
rev_sare); West L0 gart.
attempet (n,al, numate); Anawgs 10 facsor.
attespt (n,ml, numatt,b)

long ml,numatt,b;
char °*n;
i ...
for(i=l;i<snumatt;i++) Repost for trials
{ oes Do compuianion
1£ (answeg)
[ToHom(meg_buf ANS_OK);
break; } } }

Figure 44: Message-Passing Control Structure
5. Experimental Results
§.1. Batching Network of Workstations
The overall performance of the barching network program is very

efficient from a workstation utilization perspective. Silverman finds
that:

utilization of satellite processors is virmally 100 percent
efficient ... one can hook up enough satellites to overwhelm
the host, but in that case one can implement multiple stars
... & hook the various hosts together. [Silverman 86a).

The program factored a “typical 60 digit number” in less than an
hour using 8 processors, in contrast 10 6 hours for only one processor.
The statistics are reproduced in figure 5-1, which was extracted from
more detailed information in {Silverman 86a].

Caron and Silverman have not measured the resource utilization,
such as the actual communication, paging, and CPU cycles. There is
therefore some uncertainty about precise resource utilization. This
stands in stark contrast to the detailed resource analyses presented for
the special-purpose hardware approach in (Pomerance 86).
Nevertheless, the speedup is significant.

DIGITS CPU Time (minytes) DIGITS CPU Time (minutes)
69 75 76 480
70 88 7 590
71 138 7 560
72 195 78 650
72 210 78 663
74 348 79 1720
76 425 81 1260
Figure S-1: Quadratic Sieve Parallel Factorizarions
5.2. Parallel Pipeline Sieve

The machine should be able to factor any 100 digit number in 28 .
days (Pomerance 86]. The basis of the above estimate is that the
machine needs 5 seconds to generate a new polynomial, and during
this time sieves at the rate of 27,600,000 values/second. This is based
upon a 70 nanosecond cycle time, a memory size of 2! in each pipe
unit, and 24 pipes.

The estimated performance for 100 digit numbers is based upon
assumptions of overiap and good hardware utilizanion. It is expected
that the custom-tailored design will result in the efficient utilization
required. The hardware has been kept somewhat flexible o
accommodate modifications.

$.3. Massive Parallel Processor — MPP

The program factored a 62 digit number in 14 hours (plus time on
the CDC for final processing). Use of several variations w CFRAC,
such as the large prime variation strategy [Pomerance 86), are
expected (0 improve performance. In conjunction with a CDC 7600
(for the final elimination phase) **we could expect to factor a 60 digit
number in a total of less than 35 minutes’’ {(Wunderlich 86].

$.4. Tree Machine (DADO) — Trial Divisors

The following shows the use of trial divisors without generation of
possible-primes from prime seeds. In this example it is executed on
10 and 14 digit numbers, using the 1023 node DADO?2 computer.

$.4.1. Frmat Test

The Fermat test on DADO machine works both as a benchmark,
and also to generate large prime numbers. Several 50 digit pseudo-
primes were generated on the DADO machine in about 1 minute
each. By use of 219 processors 2 1000-fold speedup is obtained,
assuming each processor always performs useful work. This can be
assured by giving each PE a queue of numbers to test, or by
generation of unique numbers in each processing element.

Significantly, by testing a different possible-prime in each
processor, the random sequences do not even have (o be differens in
each processor to find large pseudo-primes, and thus a linear speedup
can be obtained in this process. This is done by storing a different
possibie-prime number in each processor. By use of N processors,
the machine can st ¥ numbers in the time it would have taken a
Uniprocessor W test just one number.

" 5.4.2. Resource Use in the Fermat Test

The effective use of paralielism requires that, for any given
possible prime, each Fermat test is independent. A simple model
provides the basis for static load balancing, in which the inital
allocation of work avoids hot-spots. The host computer provides
numbers that are likely w be prime, by virtue of having passed one
iteration of a probabilistic (or other) test. The parallel machine then
performs additional tests on these pre-filtered numbers.

Due o the synchronous nature of communication on DADO2 it is
useful to balance the work allocated to each processor. There is
enough informaton o statically load-balance between the host and
the parallel machine; in particular, the prime density function gives
the density of prime numbers in a given interval. The convergence
behavior of the algorithm is known, as are the rates at which the host
and the DADO can conduct a test (see figure 5-3).

The statistics here show various cluster sizes, ranging from 1 to 8
processors per cluster. The results have not been scaled to indicate
technology advances, and specialized hardware performs significantly
faster. For exampie, the main computational step of the Fermat test is
the expmod function. Gallium-Arsenide (GaAs) chips have been
marketed for this function, and are significantly faster than the 8-bit
simulated arithmetic used here. Likewise a faster ‘‘big number"
arithmetic package could be implemented with significant
performance improvements.

The major bottleneck in performance is the 8-bit processors. Each
processor is considerably siower than 2 VAX 750 (both machines run
the same multiple-precision software package). By use of the 10°
processors in DADO there is nevertheless a factor of 10? speedup
over the VAX, as shown in figure §-3.

che$ dadoload factor DADO2

Program up!

¢ pes? #3512primes Fila of prime numbers
primes?

Root 3, Mach=3512. 3512 primas loaded
Number? 5112663011 Factar a 10 digit mumber
« 17

* 17333

*+ 17351

Ticks=11l, time= 0.713

Number? 8884274%5142147
.17

« 17333

* 17351

* 17377

Ticks=19, time= 1.23%

Factor a 14 digit member

Number? All dona

che$ exit

che$ is the sysiem prompl
v{rterm communiceses betwesn the host mad the DADO.

Figure $-2: Execution of Trial Divisors on Tree Machine

Timnas © verify PRIMES of verying imgh

YAX vs. DADO on 1023 trisle.
¢ digits VAX DADO Speedup
in prime sec sec on DADO
2 10 .8 12
3 204 2.0 102
4 306 2.4 127
10 2352 16 147
19 12582 112 112
33 56060 s3s 104
as 73349 463 1587

Figure $-3: Comparison of DADO with VAX for Fermat test

Figure 54 shows the utlizatdon as a function of the number of
iterations between communication (inter-communication time), for
various cluster sizes and preprocessing. An inter-communicaton
time of 1 indicates that each processor communicates with the host
after every execution of the Fermat test Larger values indicate more
iterations between communications, thereby reducing the
communication overhead but perhaps leaving some processors
underutilized. The details in figures 5-5 and 5-6 show the effect of
changing inter-communication time.

Figures -5 and $-6 show the detailed running time and utilization
for various values of inter-communication time. The numbers being
factored are not listed; instead the index in a common dara file is
provided. This simply saves space and communication time during
program execution.

The graph (figure 5-4) distinguishes between *‘filtered’’ and *‘non-
filtered'® data. Unfiltered data is randomiy chosen odd numbers,
whereas filtered data excludes those numbers divisible by small
primes. As might be expected, the utilization is better for fillered
data than for unfiltered dama. Performance is most sensitive 10 the
inter-communication interval. The filiered data shows bener
utilization than the non-filtered data, as expected.

A cluster size of 1 indicates that each possible-prime is stored in
only one PE, and thus only one Fermat-iest is performed on that
number at any time. A larger cluster size indicares the same possibie-
prime is stored into each of several processors. Each processor will
execute independent Fermat tests on that processor. This can
accelerate the testing of a number, since more tests can be performed
simultaneously.

0
n,,’!q
s Fermat Test on Dado
e, 992 processors in use
-0.5 <
log e
utddi»)
as0a i1, ar—tillered 8 pe/
Unfitered 8 pe/clusi——— s £ Fiered c‘g’;’
Unﬁha'edlpclclm/
N

T o G | T
0 log execution time 0.5 1
Figure 5-4: Performance of Fermat Test on DADO

The results in figure 5-5 alow only 1 iteration between
communications, and show excellent performance. Note, however,
that there are 8 processors in each cluster and thus the efficiency may
be as low as 1/8 the utilization listed (because it is possible that all
processors found the number w be composite, and therefore many of
the processors performed redundant work). An improved experiment
would record the answers obuined in each processor and determine
how many processors found a disproof. The efficiency figure could
then be calculated.

Data elements of particular interest have been underlined. Note
that the composite numbers in figure $-6 are processed more quickly
than the prime numbers, yet are nevertheless resident in the machine
for as long.

The performance is most sensitive to the number of iterations
between communication. An inter-communicaton time of 1 gives
the best utilization, about 90% (see figure 5-5). In contrast, when the
inter~communication time is 16 (figure 5-6) the quick detection of a
composite number results in poor utilization of the processor.

The presence of a prime number in any processor determines the
maximum processing rate with the current algorithm, since all
programmed trials are executed by all processors in these cases. The
result sets therefore show significant variation in utilizaton. On the
other hand, the demonstration of pseudo-primality operates at peak
efficiency, unhampered by communication.

In conclusion. both analytic and experimental results show that for
this particular randomized algorithm the best cluster size is 1. This
occurs because the Fermat test is faily accurate (except for the
Carmichael numbers). This picture might change with a different
probabilistic test

** 992 processors in DADO
** 8 processors per cluster
** 1 iterations between communication
** 32 iterations befors acceptance
** Number, Prime, Trials, Iters, Cluster,
MinPeTime, MaxPeTime, HostTime Otilization

20 8 1 1 103.42 103.42 116.58 ass
30 8 1 2 113.43 113.43 116.55 97N
40 8 1 3 100.17 100.17 116.55 854
994 0 8 1 53 110.18 110.18 117.3S 94%
995 0 8 1 55 101.86 101.86 117.38 s
996 0 8 1 56 106.28 106.28 117.33 918
11 23¢ 32 0 3469.44 3469.44 3713. 92 93%
71 2356 32 6 3529.76 3529.7¢ 3713.91 95%

850 1 256 32 110 3240.64 3240.64 3693.47 88
889 1 256 32 38 3617.12 3617.12 3690.88 58%
993 1 256 32 52 3340.48 1340.48 3678.98 918

Figure §-5: Fermat Test Output, | iteration per communication

** 992 processors in DADO
** B processors per cluster
*¢ 16 iterations betwveen communication
** 32 iterations before acceptancs
** Number, Prime, Trials, Iters, Cluster,
MinfPeTime, MaxPeTime, HoastTime Ctilization

20 128 16 1 103.42 103.42 1743.20 (1)
30 128 16 2 113.43 113.43 1743.20 "
4 0 128 l¢ 3 100.17 100.17 1743.20 kL]
128 0 128 16 4 104.78 104.78 1743.20 (1]
129 0 128 16 $ 107.58 107.58 1743.20 (1]
7 o prime
130 0 128 16 7 105.11 108.11 1743.20 (1}
131 0 128 16 8 102.2%5 102.29% 1743.20 (4]
972 0 128 16 8 99.97 99.97 1013.959 [1}
8 33 & prims
973 0 120 16 10 103.38 103. 1013.39 [{}

916 1 256 32 78 3398.21 3395.21 3627.18 4%
$93 1 236 32 30 3370.77 3370.77 3513.63 968

Figure 5-6: Fermat Test Ousput, 1 iteration per communication

5.5. Elliptic Curve Factorization with Shared Memory —
Sequent Balance

The result of running the elliptic curve algocithm on this machine
was a linear speedup for seven processors. The graphs (figure 5-7,
5-8) show the average resource utilization for factorization of
284378461123357 and 377525665707083 using various numbers of
processors. Larger and harder numbers were not factored becsuse
they take too much tme (i.e., hundreds of iserations).

This linear speedup is as expected because each execution is
independent. The only interacton is in subscript generation, and this
is 3 very small portion of the execution time.

Arithmetic was performed with an extended decimal arithmetic
package coded in C. This package uses C int variables, and packs
either 2 or 4 decimal digits into each variable, depending on word
size. On the Sequent Balance the int variable is 32 bits. This

allows 4 decimal digits per variable.

The extended arithmetic is reasonably efficient, but could be made
better by use of either a modulo 232 representation (instead of modulo
10000), or use of assembly code. A more refined extenued integer
package would make a substantial improvement in practice.
However, the purpose of these experiments was 1o investigate
algorithm parallelizaton.

Programming of the Balance machine was extremely simple. The
sequential VAX implementation was completely transportabie to the
Balance machine (using only one processor). The panallelization of
the outer loop took less than an aftemoon. No problems developed
cither with the system software or with debugging of the system. The
quality of the system software — as well as the simplicity of the
memory paradigm — are the likely reasons for this.

500 o ' .
2.6
400
Ti og] *
m%n_ og
(sec. time
L] : o
200 224 °
[]
-]
L]
L] -]
100 — ® o2 .-
I I 1) 1 I i) 1
2 4 [0 02 04 06 08
Number processars logpmcsm'

- . Figure 5-7: Sequent: processors vs time

12
. 1.
1
10 - .
- log 0.8
[erations} ilerations
par per °
processorn . processoe
0.6 = °
5— L]
s 9
* 0.4 =
L] L]
° L]
T T T T 1 1 T T
2 4 6 0 02 04 06 08
Number processors log processors

Figure $-8: Sequent: processors vs iterations

5.6. Eliptic Curve Factorization with Message-Passing —
Hypercube
The implementation showed a lincar speedup when a sufficient
number of processors were used. The graph shows the average
resource utilization for factorization using the same numbers as the
Sequent. As shown in figure 5-9 the speedup is linear in the number
of processors.

The absolute performance can be improved in several ways, though
the curve shape is not expected to be affected by such program
modifications. First, the default precision of the Intel int variables
is 16 bits, thus only 2 digits were packed into each variable. This
certainly can be improved — for example by use of long variables,
or perhaps the floating-point coprocessor. Secondly the improved
random function (instead of the older rand) can be used when it is
available. Indeed, newer hardware and software have already been
installed at many sites.

o -]
3
1000 —
Elapsed o
Time i
(sec.) °
2.5+ °
S00— o
-
Q
°
° °
T I | T 1 T T T
0 10 20 30 o 058 1 1.5
Number Processors log processors

Figure 5.9: Hypercube: processors vs time

The software simulator for the hypercube was very helpful in
program development, primanily due to its message logging ability.
However there were a few problems with the simulator. In particular,
1t did not exhibit the same behavior for cerain casting and allocation
problems. Perhaps this is because the simulawe did not capture the
exact behavior of the Hypercube. Altemnatively, it may be due o
running it on a Vax, which is architecurally different from the Intel
processors.

6. Conclusion

Modem algorithms and powerful machines, working together, can
solve difficult problems quite successfully. The algorithms described
include simple division, randomized use of the expmod function, and
sophisticated sieving methods. Empirical evidence shows speedups
on a tree machine (DADO), the Intel Hypercube and the Sequent
Balm,asweunmammofSUNumq:m
computer, and a special-purpose sieve machine. Sevenal principies
emerge.

ﬁmwmmndmmmwbgw
method, due to improved hardware utilization. This pru:ncal rwu}l is
demonstraled by the quadntic sieve on the pipelined nc::
unit {Pomerance 86). All hardware is expecwd 0 do. useful wo
thus little energy is wasted, and the cOmputAnon tme is dummMA '
This is a special case of the efficiency principles described in
{Lipovski 87].

Second, the algonithm should be selected to fit the available
parallelism and communication structure. The MPP machine. (0
utilize its capacity for parallel division, runs the CFRAC method.
Moreover, the implementation of an algorithm should be tailored for
the particular configuraion. This is demonstrated by [Silverman
86b] with two forms of the QS, according to the network
configuration. The first runs several copies of the same algorithm
with different starting values. The second implementation combines
centralized computation of sieve polynomials with saellite
computation of factorizations.

Parallel processing is of tremendous importance because it
provides orders of magnitude speedup. A wide variety of parallelism
can be brought 1o bear on the problem. Special purpose machines
(parallel pipeline sieve, MPP) can be configured 1o provide both the
computational and communication resources in the form used by a
particular algorithm. Substantal speedup is also achieved by the
general purpose approach, though hardware utilization is not as good.
General purpose machines (workstations, Hypercube, Balance) can
supply parallelism at both the coarse-grain and fine-grain levels.
Massive parallelism (DADQO) accelerates key parnts of these numeric
algonthms.

7. Acknowledgments

I am grateful to Professor Zvi Galil, Professor Gerald Q. Maguire,
Jr.. and my advisor Professor Salvatore Stolfo for their help and
encouragement.

Columbia colleagues, in particular Stuart Haber and Mordechi
Yung, helped me to understand the number theory described in the
first pant of the paper, and guided me toward several references.

Much of the implementation and experimental work was

performed by Dave DeMarco and Yoseff Francus, who were graduate
students at Columbia University.

The Sequent and Hypercube machines at the University of
Colorado (Boulder) were essential for the implementations on those
machines. [thank Chairman of Computer Science at the University
of Colorado, Lloyd Fosdick, as well as Betty Eskow and Carolyn
Schauble.

References
{Abelson 85) Abelson, H., G. J. Sussman, J. Sussman.
Struceure and Interpretation of Computer
Programs.
MIT Press, McGraw-Hill Books, Cambridge,
Mass, New York, 198S.
The MIT Hectrical Engineering and Computer
Adelman, L. M., C. Pomerance, R. Rumley.
On distinguishing prime numbers from composite
numbers.
Annals of Mathemarics 117:173-206, 1983.

Osierhaug, A.
Guide to Parallel Programming on Sequens
Computer Systems.
Computer Systems, Inc., Bearverton,
Oregon, 1985, 1986.

Batcher, K. E. a l]
Design of a Massively Paraliel Processor.
lEEEv;‘ram. Compusers C-29:336-840, June 1980.

(Adelman 83]

(Balance 86)

[Batcher 80]

[Carter 84]

[Dixon 84}

[Goldwassér 86]

Carter, W. C.

A Short Survey of Some Aspects of Hardware
Design Techniques for Fauls Tolerance.

Technical Report, [BM Research Division,
October 84.

IBM RC 10811 #48410.

Dixon, J. D,

Factorization and Primality Tests.

American Mathematical Monthly 91(6):333-351,
June-July 1984,

Goldwasser, S., J. Kilian.

Almost All Primes Can be Quickly Certified.

In Proceedings of the Nineteenth Annual ACM
Symposium on the Theory of Computing, pages
316-329. ACM, 1986.

[HuangAbraham 84)

{Hypercube 86)

(Kalos 86)

{Knuth 81]

[Lenstra 85]

[Lenstra 86]

(Lipovski 87)

[Miller 76)

{Pomerance 86)

(Pradhan 86)

[Pritchard 81)

Huang, K. H., Abraham, J. A.

Algorithm-Based Fault Tolerance for Matrix
Operations.

IEEE Trans. Computers C-33:518-528, June 1984.

Intel Corporation.

iPSC Technical Description.
Intel Corporation, U.S.A, 1986.
Order Number 175278-003.

Kalos, M. H., P. A. Whitlock.
Monte Carlo Methods.
Wiley, New York, 1986.

Knuth, D. E.
The Art of Compuser Programming (Volume 2).
Addison-Wesley, Reading, Mass, 1981.

Lenstra, H. W. Ir.

Elliptic Curve Factorization.
February 14, 1985.
Unpublished.

Lenstra, H. W. Jr.

Factoring Integers with Elliptic Curves.

Technical Report, Technical Report, Mathematisch
Insttuut, Universiteit van Amsterdam, May 12,
1986.

Lipovski, G. J., M. Malek.

Parallel Computing. Theory and Comparisons.
John Wiley and Sons, U.S.A., 1987,

ISBN 0-471-82262-0.

Miller, G. L.

Reimann's Hypothesis and Tests for Primality.

J. Compwut. System Sci. 13:300-317, 1976.

Pomerance, C., J. W. Smith, R. Tuler.

A Pipe-Line Architecture for Factoring Large
Integers with the Quadratic Sieve Algorithm.

In Crypwo86. 1986.

Departments of Mathematics and Computer
Science, The University of Georgia, Athens
Georgis.

mm. D.K

Tolerant Computing: Theory and

Tgchuqm. Volume 2.

Prentice-Hall, Engiewood Cliffs, N.J., 1986,

:ns!dmd. P.
ublinear Additive Sieve for Finding Prime

c Numbers,

OMVRURICations of the Association for C 1

Machinery 24, No. 1:18-23, J. S \ ‘1’9"8?]““"‘

{Rabin 80]

[Riesel 85]

[Schneck 87]

[Schroeder 86

(Silverman 86a)

(Silverman 86b}

(Stolfo 83]

(Wunderich 86}

Rabin, M. O.

Probabilistic Algorithm for Testing Primality.

Journal of Number Theory 12:128-138, 1980.

Coates, J., S. Helgason (editor).

Prime Numbers and Computer Methods for
Factorization.

Birkhauser, Boston, Basel, Stuttgart, 1985.

Progress in Mathematics, Vol. 57.

Schneck, P. B.

Supercomputer Architecture.
Kluwer Academic Publishers, Norwell Mass.,
1987.

Schroeder, M. R.
Number Theory in Science and Communication.
Springer Verlag, New York, 1986.

Caron, T. R, R. D, Silverman.
Parallel Implementation of the Quadranic Sieve.
In Crypto86. 1986.

Silverman, R. D.

The Multiple Polynomial Quadratic Sieve.
1986.

Mitre Corporation.

Stolfo, S. J.

The DADO Parallel Computer.

Technical Repon, Department of Computer
Science, Columbia University, August, 1983,

Wundedich, M. C., H. C. Williams.

A Panallel Version of the Continued Fraction
Integer Factoring Algorithm.

In Crypto86. 1986.

University of Northem [linois, and University of
Manitobs.

