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Abstract

Programmers generally want to be sure that the systems they are building are
consistent, both with respect to source code versions used, and with respect to type
safety. Most modern high-level language systems enforce this consistency upon the
system instances they build. However, in a large system this can lead to very large
recompilation costs after small changes. Therefore, programmers often circumvent
enforcement mechanisms in order to get their jobs done. The CONMAN configuration
management project explores the premise that some degree of inconsistency is inevitable
in software object bases, and that programming tools should be designed to analyze and
accomodate it, rather than to abhor it. The CONMAN programming environment will
help the programmer contend with inconsistency by automatically identifying and
tracking six distinct kinds of inconsistencies, without requiring that they be removed; by
reducing the cost of restoring type safety after a change, through a technique called
smarter recompilation; and by supplying the debugger and testing tools with
inconsistency information, so that they can protect the programmer from flaws in the
code.



1. Introduction

Every programmer remembers wasting large amounts of time looking for a bug caused
by changing and recompiling one source file and failing to recompile a related file. This
kind of problem has made the Unix™ make tool (3] very popular; when invoked after a

change to a source file, make rebuilds every file derived (directly or indirectly) from the

chﬁnged file.

Programmers generally want to ensure that the systems they are building are
congistent. For example, they want to know that the object code they are running was
built from the exact source code they are looking at, rather than from some previous
version of the source code. They also want to ensure that the executable program is
type safe; that is, that it satisfies the type rules of the programming language. Most
modern high-level language systems enforce this consistency upon the system instances
they build. In a large system, however, this can lead to very large recompilation costs

even after small changes. Therefore, programmers often circumvent enforcement
mechanisms in order to get their jobs done.

This practice is not only commoanplace; it is commendable! The programmer can do it
successfully by using design knowledge to decide which inconsistencies are harmless and
which are dangerous. Allowing inconsistency can speed up the edit-compile-debug cycle,

and can also reduce the coordination needed between programmers. Both benefits

improve productivity dramatically.

The CONMAN configuration management project is exploring the premise that some

degree of inconsistency is inevitable in software databases, and that programming tools
should be designed

to analyze and accomodate it, rather than to abhor it. The CONMAN programming

environment helps the programmer contend with inconsistency by:

o Automatically identifying and tracking inconsistencies: CONMAN classifies
each inconsistency into one of six categories, and tracks it for the
programmer, unthout requiring her to remove it right away.
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e Reducing the cost of type safety: CONMAN's type safety is based on a
constraint called [link consistency, which is less stringent than in
conventional systems. This permits use of a technique called smarter
recompslation to reduce the cost of restoring type safety after a change [15].

e Supporting debugging and testing: The debugger automatically stops
execution upon reaching inconsistent code, thus helping to prevent crashes.
The test coverage analyzer tells the programmer which tests can be executed
in <the presence of an inconsistency.

This paper begins by presenting several scenarios in which allowing inconsistency is
more cost-effective than removing it. Then it describes the six kinds of consistency that
CONMAN recognizes automatically. Next, it explains how smarter recompilation uses
link consistency to decide which modules really must be recompiled after a source code
change. Finally, it describes how the CONMAN programming environment uses

consistency analysis to help the programmer build, debug and test inconsistent systems.

2. Beneficial Inconsistency

Inconsistency is commonplace in software project libraries. A project library typically
contains many system configurations, where each configuration might contain
requirements, specifications, code, test data and documentation. Informally, a project
library is inconsistent if it contains direct contradictions. For example, if a global data
type is somehow defined differently in different parts of a configuration, this constitutes
a contradiction (because most languages permit only one definition of each global
identifier). On the other hand, two distinct system configurations may define the type

differently, and that would not be a contradiction.

Inconsistency is likely to occur when permitting it is more cost effective than
forbidding it. For example:

o Debugging and testing under deadline pressure. On fixing a bug, the
programmer should recompile the minimum amount of code necessary to
continue testing. She can wait to recompile the rest of the system until she
goes home for the night.

e Debugging an incomplete implementation. In a language such as AdalR),




with specifications separated from package bodies, an early version of a
package body might not contain all of the procedures. The programmer
should not be distracted from her creative task by the tedium of writing
stubs. (Wolf studies this form of incompleteness [18].)

e Changing requirements after implementation is under way. When
requirements change, it may be easier to start by combining the new
requirements with the old implementation — even though they contradict
each other - rather than keeping them in separate system configurations
until they agree.

e Handling "software rot". Sometimes a bug fix introduces new bugs. Until
the new bugs are resolved, debugging may be easier if some parts of the
system use the old version of the code, while others use the new version.

o Large teams debugging related changes. During large system maintenance, a
single change request often involves several modules and the interfaces
between them. Each team member would debug her changes independently,
before integrating them with the work of others. To do so she should build
an executable system instance with whatever versions of others’ modules she
deems appropriate, even if some of them still use obsolete, incompatible -
interface specifications.

This last example, when elaborated, provides many clues as to how a programming
environment should support programming with inconsistency. Consider a typical

operating system maintenance project, having [5]

¢ 1,000,000 lines of source code,
e 300 programmers,
e a new release about once per year,

e 300,000 lines of new or changed code per release,

Suppose there were one bug for every 30 lines of changed code, the syntax is correct but

before any debugging or testing. That would add up to about 10,000 bugs per release.

Many module changes include modified interfaces. Suppose that each programmer has
been assigned to modify a different module. Because tasks progress at different rates,

and because some tasks must be redone, several new versions of each module will be




produced. Each programmer is responsible for debugging and testing her own code as
well as sh@ can before releasing it to others. To do so, she selects the versions of other
modules that she thinks will work best with her module. However, the ones she wants
to use may not be ready yet. She might choose not to simulate them with a test
harness, because test harnesses are often too expensive for early debugging and unit
tesiing. They must be updated whenever the interface changes, which requires both
manpower and calendar time. Therefore, programmers often build inconsistent
configurations of the real system to use for debugging. In fact, large projects often
assign their best analysts to figure out workable, albeit inconsistent, configurations for

debugging and testing.

To build, debug and test inconsistent systems, programmers need tools that
o Identify and evaluate the severity of inconsistencies.
e Display the inconsistency information in a useful way, such as by

incorporating it in a browser or by using it to compare several alternative
module versions, none of which is completely compatible with the rest of the

system.

e Protect the programmer from system crashes due to known inconsistencies,
by placing firewalls around dangerous code.

3. Kinds of Consistency
CONMAN formalizes the concept of inconsistency by defining six distinct kinds of

consistency, to use for classifying inconsistencies it discovers in programs.

We use the term system instance to mean an executable representation of a program,
typically created by compiling numerous separate program units and linking them
together. We sssume that the programming language specifies some form of static type
checking, and that the programming environment provides a way of uniquely
identifying versions of both source code files and derived files (such as object code files).

The six kinds of consistency are:

e Full consistency: A system instance satisfies the rules that the programming
language specifies for legal programs, insofar as they can be checked prior to
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execution. [t also must be version consistent, as defined below.

e Type consistency. The system instance satisfies the static type checking
rules of the programming language.

e Version consistency. The system instance is built using exactly one version
of each logical source code file.

o Derivation consistency. The system instance is operationally equivalent to
some version consistent system instance (which need not have actually been
built).

e Link consistency. Each compilation unit is free of static type errors, and
each symbolic reference between compilation units is type safe according to
the rules of the programming language.

o Reachable consistency. All code and data that could be accessed or executed
by invoking the system through one of its entry points are type safe.

The definitions above have the following partial ordering:

/ version ——yderivation
full \ link — > reachable
\ t‘ype /

3.1. Full Consistency

The strongest form of consistency is full consistency. The definition tries to capture
the ideal world. For example, a system written in Ada is consistent when it is built
with exactly one version of each compilation unit, and the units have all been compiled
without error in an order compatible with the inter-package dependencies, and then
linked.

3.2. Type Consistency

Type consistency depends only on those language rules that deal with the types of
identifiers. Operationally, a system instance is type consistent if the compiler reports no
type errors {or any separately compiled component, and if each identifier whose scope

spans more than one compilation unit has the same type in every such unit. (For the C




language, the rules checked by the Unix lint tool [6] define type consistency across

boundaries of separately-compiled modules.)

3.3. Version Consistency

Version consistency is the system property enforced by Unix make. For example, if a
system written in C contains a source file named "symtab.h", then make ensures that

all files that 1nclude it (incorporate its text) are compiled with the latest version.

Version consistency is also important because it provides a practical means of ensuring
(or circumventing!) type consistency. Many language systems implement type checking
across separately compiled modules by using a file of definitions, called an "include
file", to define the types of the identifiers exported from a compilation unit. If the
same version of the include file is used to compile the exporting module and every
importing module, then the exported identifiers will have the same type throughout
their scopes. Conversely, one can trick a compiler into generating code for a module
that is not type consistent with other modules, by using different versions of the include

file when compiling different modules.

The definition of version consistency includes the word "logical” to cover a special
class of systems in which two or more versions of a module are included by design. For
example, a test configuration might be created to compare the behavior of two versions
of a module. [ts system construction model (¢f. DSEE (9], Cedar [8]) would treat the
two versions as separate logical entities during compilation and linking. A version
consistent instance of this system could still use two different versions of the module,

because the versions would implement two different logical modules.

3.4. Derivatioa Consistency

Derivation consistency includes the class of systems that one can build by foregoing
unnecessary recompilations, and then use as if they were version consistent. For
example, when a type is changed in an include file, only the modules that use the
changed type need to be recompiled. Other modules that include the changed file, but

do not use the type that was changed, need not be recompiled. Linking the object




modules together produces a system that is equivalent to one where all modules were

recompiled to use the new version of the changed include file.

3.5. Link Consistency

Link consistency is weaker than type consistency, because it enforces type safety
pairwise between compilation units, rather than requiring types to be defined and used
consistently system-wide. Nonetheless, this definition is sufficient to support debugging,
because the actual executable code is all type safe according to the rules of the
language. If each object module is internally type safe, and every data path between
modules is type safe, then there is no place in the system where machine code that

expects data of one type can operate on data of some other type.

Link consistency can be achieved without type consistency by using different versions
of include files with different compilation units. Two units need to use equivalent
versions of an included definition only if the link-time interface between them is

affected (directly or indirectly) by that definition.

Link consistency describes some situations where a widely-used definition has been
changed, but only some of the places where it is used have been rewritten to
accomodate the change. Consider a system in which one module defines the type
linked list, and two other subsystems each use linked lists internally, but do not pass
linked lists between subsystems. This example is depicted in figure 3-1.

Suppose it is decided to change the implementation from singly-linked lists to doubly-
linked lists, to enable sequencing in both directions. The programmer would like to try
out the doubly-linked implementation in a limited context, before rewriting all of the
places it is used. If she rewrites and recompiles the linked list module and just one of
the subsystems that uses it, the system instance will be link consistent (because every
module and every link is type safe), but not type consistent (because some modules were
compiled with the singly-linked implementation, and some with the doubly-linked
implementation). Assuming that the list represeatation is directly manipulated by the

subsystems that use it (to increase efficiency), the programmer cannot compile the
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Figure 3-1: Clusters That Use a Type Independently

second subsystem with the doubly-linked implementation until she rewrites it.
Recompiling without rewriting would give lots of error messages, and probably no

object code.

Such independent uses of a global type are consistent with sound design principles. A
large system is frequently layered into levels, where each level uses services provided by

the levels below it, and provides services to the levels above it. [n a system that




provides a broad range of end-user services, it is not unusual for the middle layers of
the system .to contain several subsystems that do not call each other at all. In that
situation a service type defined by a lower level could be used independently by the

subsystems at the next level.

Besides global types, several other language constructs permit multiple coexisting
definitions without sacrificing link consistency. For example, Ada's inline procedures
and generics both cause a definition to be instantiated separately at each place where it
is used. Usually, separate instances of a generic package are treated as unrelated at run
time, even though they were derived from a common definition. (Of course, Ada's rules

currently forbid version inconsistency.)

3.8. Reachable Consistency
Reachable consistency is useful during development when service routines are written
before the external interfaces that use them are ready. Any type errors in unused

routines can not interfere with debugging the code that is reachable.

3.7. Automatic Checking

CONMAN checks all six kinds of consistency automatically. Version consistency is
checked by straightforward configuration management methods. Type consistency and
derivation consistency are checked by the methods used in smart recompilation {17].
(Full consistency simply means version consistency and no compilation errors.) Link
consistency is checked by a simple method described in the next section. Reachability is
checked by incremental, interprocedural data flow analysis, recently made efficient by

Ryder and Carroll [14].

4. Reducing the Cost of Consistency
The Unix make tool restores version consistency by rederiving any output files that
are older than the current versions of the input files from which they are supposed to be

built. This can cause many recompilations after only a small change.

Toolpack [12] and smart recompilation reduce the cost of restoring consistency by
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restoring only derivation consistency. Both systems maintain a single. consistent
version list of the "latest versions" of each file. They reduce recompilation costs by not
rederiving a file when the existing derived file is operationally equivalent to what would

be created by rederiving it with the new source file versions.

Toolpack defines "operationally equivalent™ to mean "identical contents”; it permits
certain attributes such as timestamps to be different. Toolpack uses the same "older
than" rule as make to trigger recompilation, but avoids some processing steps by
noticing when a certain step produces an output file with contents identical to the one
it is replacing. This means that using the new output file in a subsequent translation
step would be equivalent to using the old version, so the next step is avoided unless

other inputs have changed.

Smart recompilation determines equivalence by extracting, from the inputs to a
compilation, the set of declarations that actually affect the output files; two output files
are equivalent if they are derived from equivalent extracted inputs. (The output files
are also allowed to include unused code that differs.) Smart recompilation preprocesses
each changed file to identify the declarations that have changed in it. The method then

recompiles only the files that actually contain or use the changed declarations.

Smart recompilation succeeds because it performs only local semantic analysis, which
it can do cheaply. Local semantic analysis examines each source file in isolation. Any
identifiers occurring free in that file are assumed to be declared in some compatible
way; they are typically bound by include statements to other files. The analysis
produces a dependency file listing the identifiers exported by that file, and the free
identifiers on which they depend. The details of smart recompilation are thoroughly

explained in (17].
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4.1. Checking Link Consistency

To simplify the following sections, we limit our discussion to a simple Pascal
programming system, such as provided by the Berkeley Pascal compiler running on
Berkeley Unix 4.2. This environment provides a version of Pascal that has been
augmented with a separate compilation facility. Procedure headers can be separated
from procedure bodies. Typically, the interface to a module is placed in a separate
"include” file, which is included in the module that provides the interface and in every
module that uses the interface. In the remainder of this paper, we use the term
"module” to refer to a normal compilation unit, and "file" to refer to a module or an
include file. Our discussion does not cover overloading nor identifiers that are moved
between modules during a change. These extensions can be handled analogously to the

way smart recompilation handles them.

Link consistency is defined on links between object modules. A link is a
(definition, use) pair consisting of an identifier declared global in the object module that
defines it, and external in the object module that uses it. A link is consistent if the
definition and the use were compiled using equivalent declarations of the identifier’'s
type. For example, if a procedure P with one parameter of type T is exported by one
module and imported by another, then the two modules must agree that P has only one

parameter, that its type is T, and that T's type is equivalent in both modules.

To check link consistency, we first identify the source code constructs that produce
global and external references. Then, we use preprocessing methods derived from smart

recompilation to analyze dependencies involving these constructs.

The only two kinds of object module links in Pascal are variables and procedures.
Where Pascal programs define enumerations, records, constants, etc., the compiler
transiates them directly into object code, without leaving any links to external
identifiers. We know, therefore, that a link exists only where a procedure or variable is

exported from one module and imported by another.

To check link consistency, we augment the smart recompilation preprocessor in two
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ways:

e We divide dependencies into interface dependencies and :mplementation
dependencies. For example,
extern
procedure P(a:T);
var b:V;

This procedure has an interface dependency on type T, and an
implementation dependency on type V.

e For each exported procedure and variable, we record its type signature, in
which bound type names are replaced by their definitions, but free type
names are treated as primitive. For example,

(import type R)
type Q 18 1integer;
type T 18 record

a: Q;

b: R

end

extern var v: T:

In this case, v's type signature would be record(integer,R). (This kind of
type signature defines type safety by structural equivalence. It can be easily
modified to use name equivalence instead.)

To test whether a link is consistent, we compare the versions of the identifiers that
affect the definition site and the use site. We do so in the following steps:
1. Determine which source file versions to associate with the definition site, and

which to associate with the use site. These can either be the files that were
actually used, or files that are proposed to be used.

2. For both the definition and use sites, locate the source file version that
defines the identifier's type.

3. Compare the two definitions for equivalence, as follows:

a. If the version numbers are different, compare the type signatures. If
they are different, the definitions are not equivalent.

b. For each free identifier in the type signature, compare its two
definitions (in the "definition site® versions and the "use site”
versions) for equivalence, using this same algorithm recursively.
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c. If all the free identifiers in the type signature are equivalent. the
definitions are equivalent.

4. (The results of every comparison should be saved for re-use should the type
appear again elsewhere in the signature, or in the signature of another link
between the same pair of modules.)

4.2. Smarter Recompilation
Smarter recompilation works by finding clusters of modules that must agree on certain
identifier definitions in order to be link consistent. Specifically, clusters are defined
with respect to a specific set of global identifiers. Two modules are in the same cluster
if and only if they are connected by a link that depends on any of those identifiers.
(Modules whose interfaces don’t depend on the identifiers at all are not placed in any
cluster.) Smarter recompilation saves processing time and programming time whenever
a system contains two or more clusters with respect to a set of changed identifiers. The
method reduces to smart recompilation when this definition causes all modules to be in
the same cluster. It starts with the files that have changed, and at least one module
that must be recompiled to test the changes. It then "grows” a cluster of modules that
are transitively connected to the starting module via links affected by the changes.
These are the other modules that must be recompiled. The algorithm proceeds as
follows:
1. Begin with a previous system instance, all relevant source file versions, and
the results of preprocessing each of the source f{iles. These results are
collected in a data structure that indexes all links, so that it is easy to find

which links to check when deciding to recompile a module. The data
structure is updated incrementally each time the system instance is modified.

2. Ask the programmer to select a set of file versions she wishes to debug or
test. There can be at most one version of each logical module in the system,

but the programmer need not choose versions of modules she does not care
about.

3. Use smart recompilation to select a set of build candidates. Smart
recompilation requires there to be a set of "new" file versions and a set of
"old* file versions. For this purpose, the versions chosen by the
programmer are the new ones, and any conflicting versions are the old ones,.
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4. Ask the programmer to select an initial build set from the candidates. These
modules define the context in which she wants to debug or test her change.

5. For each new member of the build set,

a. Determine which versions of the source files will be included when it is
recompiled. Use heuristics to select versions that the user left
unspecified, such as "latest", "whatever was used before", or
"whatever has already been used in the build set".

b. If the module's source code has changed, update the link index to
reflect any changes.

c. Using the proposed version bindings, check the consistency of each link
between the new member and other modules.

d. Augment the build set with any candidates that have become link-
inconsistent with it.

The total time to check consistency is proportional to B * I * T, where B is the size
of the build set, [ is the average number of identifiers imported and exported from a
module, and T is the average number of identifiers that must be tested for equivalence

in the course of validating a link.

Smarter recompilation can be generalized to more complicated transiation tools, and
additional kinds of derived files. For example, consider a system written in Ada. The
Ada compiler would generate interface files (.int files, containing compiled
specifications) and object code files (.ob] files, containing package bodies); the compiler
would read in interface files when compiling modules that depended on them. Suppose
main subprogram X depends on package specifications Y and Z, and package
specification Y depends on Z. Compiling X requires a consistency check between Y
and Z, to ensure that Y was compiled with a compatible version of Z. This processing

model is diagrammed in figure 4-1.

In this situation, the concept of "link" generalizes to “name binding”. Each
compilation step resolves free names in some of its inputs by binding them to definitions

exported by other inputs. Since any exported definition could be involved in a binding,
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Figure 4-1: Compiling a Small Ada Program With Transitive Dependencies

the preprocessor would keep type signatures for all exported identifiers. Because the
inputs to a compilation step are sometimes produced by other compilation steps, there
can be version conflicts between inputs to compiles as well as to the link step. The
consistency checking algorithm must be augmented to account for such complications in

the version selection lists.

Smarter recompilation can be generalized furt.hér, to a broad class of translators and
derived files, including program generators (such as Unix utilities lez and yacc), and
distributed execution environments. "Compilation" generalizes to any translation step
that produces an identifier definition or use based on input definitions and uses. For
each "source code” language in the system, one would look for the kinds of identifier
declarations that transiate into unresolved references in derived files. For each such
kind of identifier, a preprocessor would perform local semantic analysis to determine the
equivalent of a type signature. Then, each tool that performs name binding can be
preceded by an analysis step that uses version lists and type signatures to identify link

inconsistencies.

In summary, smarter recompilation reduces the cost of restoring consistency by
enforcing only link consistency, rather than derivation consistency. [t interacts with the
programmer to choose versions relevant to the current task, then performs the least
number of compilations necessary to construct a system instance that is link-consistent

with those choices.
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5. An Environment for Programming with Inconsistency

CONMAN is a programming environment that helps the programmer interactively
construct and debug inconsistent systems. The systems may contain different kinds of
inconsistency in different places. The environment consists of an object base and a set
of tools, consisting of a browser, a compiler, consistency analyzers, an incremental
linker, a flow analyzer, a debugger, a test coverage analyzer, and an automated
maintainer’s assistant. Each is based on available technology, modified to handle

inconsistent systems.

The object base is an integrated database of software artifacts (11, 1]. Each file is
stored as an object, together with attributes and relations that represent its
relationships to other parts of the system. The objects belong to a class hierarchy, with
multiple inheritance. Tools in the system can be classified as either foreign tools or
native tools. Foreign tools have no knowledge of the environment; they exchange data
with the environment through an envelope that sets up an execution environment, calls
the tool, and collects its resuits. Native tools can use the object base directly, such as

to store dependencies between source files or to analyze inconsistencies in a desired

system instance.

The compiler and linker are augmented with preprocessors to collect type signatures,

which the analyzers then use to detect inconsistencies.

The browser helps the programmer construct a description to build. (We call this
description a BCT for compatibility with the Domain Software Engineering
Environment's (DSEE's) Bound Configuration Thread [9].) A structure editor is a
promising type of browser for this application. Through it, the programmer can not
only construct the BCT itself, but can also examine its connections with the rest of the

object base.

The programmer starts by examining the BCT for some previous system build. The
editor presents her with all the new module versions that have been created since the

last system build, and asks her which ones she would like to use. The programmer
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assigns new version bindings to the derived objects she wants rebuilt. As the
programmer makes the version choices, the editor highlights version inconsistencies and
schedules background tasks to classify them further. Zooming shows details of an

inconsistency, including its severity and the specific identifiers involved.  The

programmer can respond to an inconsistency by:

o Selecting modules to recompile.

e Choosing different source versions.

e Substituting previously compiled object files from the derived object pool
(cf. DSEE).

e Approving the inconsistency.

As each part of the BCT is approved, its derivation begins. Any warning or error

messages that result are presented to the programmer, who can further modify the BCT
if she wishes. A

The linker and debugger cooperate to protect the programmer from link
inconsistencies. The linker inserts a debugger hook at each inconsistent link, so that
execution will stop before the code that uses the link is executed. The debugger then

permits the programmer to either move the program counter to a safer place, or

continue execution at her own risk.

The BCT description language allows the programmer to permit two versions of an
object module to coexist. The linker supports this by accepting multiple definitions of
global identifiers, and linking each use to the definition with the correct type.

The test coverage analyzer produces a database for each test indicating the code it
covers. On request, it compares this data to the link inconsistencies in a system

instance, and tells the programmer which tests are safe and which are not.

The maintainer’s assistant is facility for automating mundane programming tasks in a

controlled way, called opportunistic processing. Whenever a programmer makes a
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manual change to a source file, it schedules appropriate analysis and compilation tools
to run in background, as resources permit. [t monitors the costs of compilation and
linking, and uses them to estimate the costs of rebuilding after a change. This
information is fed back to the user through the browser. The analyzer performs the
consistency analysis in background, so that the information is ready when the
programmer is ready to edit her BCT. It also maintains an agenda of modules needing

rewriting due to changed interfaces.

This combination of tools helps the programmer keep track of inconsistencies, analyze
their severity, estimate the cost of recompiling to remove them, and helps select test
cases that avoid them. It also protects the programmer from inadvertently executing

inconsistent code, while still allowing her to do so if she insists.

6. Implementation

Smarter recompilation has been implemented for the C language, as a Master’s thesis
at Columbia University (10]. It was constructed by making source code modifications to
the portable C compiler and make. The prototype successfully handles such details as
macros, structs, unions, and even bit field sizes and anonymous struct fields. Although
it has not been tested on large systems, it demonstrates that the cost of adding the

functionality to existing tools is reasonable.

The CONMAN programming environment is being assembled from a collection of other
systems being developed and/or used at Siemens RTL. The object base and controlled
automation system are being designed in conjunction with the Marvel project {7]. The
browser is being implemented with the DOSE structure editor prototyping system (2].
The system modeling language draws ideas from both DSEE and Cedar, but adds
facilities for conveniently naming and manipulating derived objects, and for mapping
source-language dependencies into build step input-output dependencies. For example,
a system model could declare that one source file called procedures in another source
file; the system builder would automatically link the second file into system instances

that used the first. The debugger will be the Sun Unix dbztool (18], which will be
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primed with a set of breakpoint commands generated by the linker. Test coverage :cols
and methods will be drawn from the Asset project [13, 4]. Reachability analysis will be

based on Ryder’s methods, in a future version of the system.

7. Conclusions
Inconsistency is commonplace in real software projects. It is permitted to remain

because it is often more cost-effective than consistency.

Automatically recognizing several gradations of consistency permits the programmer
to choose the level appropriate to her task. Better tools can reduce the cost of restoring
consistency, but not the cost of rewriting all the code affected by a change. Smarter
recompilation permits derivation inconsistency without sacrificing run-time type safety,
and thereby permits some rewriting to be deferred, reducing the length of the edit-
compile-debug cycle and reducing the amount of synchronization needed between

programmers.

The CONMAN configuration management project is developing a programming
environment that helps a programmer to select different degrees of consistency in
different parts of her system. The tools will recognize and keep track of inconsistencies
for her, and place firewalls around them during debugging, but will not force her to
remove them. By this approach, CONMAN will help the programmer live with

inconsistency.
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Abstract

Very large software systems tend to be long-lived and continuously evolving. Purely managerial means
for handling change are often adequate for small systems, but must be augmented by technological
mechanisms for very large systems simply because no one person can understand all the interactions
among modules. Many software development environments solve part of the problem, but most consider
change only as an external process that produces new versions. In contrast, INFUSE concentrates on the
actual change process and provides facilities for propagating changes that affect other modules. INFUSE
structures the set of modules involved in a change into a hierarchy of experimental databases, where each
experimental database isolates a collection of modules from the changes made to other modules and the
hierarchy controls the integration of changes made to0 separate subsystems. The focus of this paper is on
the clustering algorithm that automatically generates and maintains this hierarchy according to the
strengths of interdependencies among modules as they are added and modified during development and
maintenance.,

To appear in Seventh Annual Internationsl Phoenix Conference on Computers and
Communications, Scottsdale, AZ, March 1988.




1. Introduction

A Very Large Software System (VLSS) is composed of a large number of interdependent modules that
typically undergo numerous changes during their lifetime. By module, we mean a separately compilable
syntactic unit, such as an Ada™ package, a Modula-2 module or a C source file. As such modules
change, they often diverge from their specifications and the number of interface errors grows [12].
Change management tools are needed to coordinate programmers as they modify their modules,
propagate interface changes to dependent modules, and to enforce cooperation among programmers
towards their goal of preventing interface errors. We describe a new algorithm that provides the basis for
the INFUSE change management facility.

The change process in VLSS is considerably more complex than for small systems. For instance, deter-
mining the exzent of a change (what is affected by the change) and its implicarions (what is necessary for
restoring consistency after the change) is complicated by the sheer number of the interdependencies
among pieces of the system. Moreover, an apparently simple change can easily cascade in unpredictable
ways, requiring several rounds of changes for restoring consistency. Other problems such as the handling
of temporary inconsistencies or the support of the iterative process of propagating changes become much
more complex as the size of the system increases. INFUSE handles all these problems for syntactic
consistency, that is, those inconsistencies that can be detected by a standard compiler; we are inves-
tigating extending INFUSE to semantic inconsistencies [14].

Several other tools have addressed simple cases of these problems. Make [3] automates recompilation of
all dependent modules after source changes; it determines the extent of changes, and restores consistency
by recompiling everything which might be affected, thus the first and fifth problems are solved in a rough
way. Cedar’'s System Modeller [9] and Apollo’'s Domain Software Engineering Environment [10]
(DSEE™) give programmers more control over dependencies among distinct versions of modules, but
provide little more help than Make with respect (o coordination and cooperation. None of these tools
direcdy monitor the change process; DSEE permits each programmer to set up his own monitors to carry
out specified actions whenever certain events occur, such as adding a new version to the baseline system.
In contrast, INFUSE does not wait for deposit into the baseline system to perform its actions.

The NuMIL prototype (11] and Smile (6] are both much closer to INFUSE. The NuMIL prototype deter-
mines the impact of alterations based upon upward compatibility but provides analysis rather than control
of the change process. Smile introduced the notion of an experimental database, which is a (virtual) copy
of the baseline system that permits changes only to the subset of the system reserved by the user, isolating
these changes from other programmers. INFUSE extends the notion of experimental database to a
multiple-level hierarchy, and, unlike Smile, gathers automatically the modules into databases.

Previous papers on INFUSE have outlined its basic philosophy and discussed its automatic application of
consistency-checking tools [15,7). In this paper, we briefly explain the INFUSE methodology and
describe its use of a hierarchy of experimental databases for controlling and coordinating changes. We
then present the algorithm INFUSE uses to automatically build and maintain this hierarchy.

2. The Hierarchy of Experimental Databases

INFUSE places all the modules involved in the change process in a distinguished experimental database:
the top level database. This change set is normally chosen manually by a system analyst to attempt to
satisfy the particular group of modification requests (MRs) appropriate for the next patch or release.
Since the more numerous the modules in the change set, the more difficult the determination of the
implications and the extent of changes, the top level experimental database is divided into several subsets
that are themselves experimental databases. The implications and extent of changes in these smaller




databases are easier to determine than in the top level one. By iteratively dividing the experimental
databases into smaller and smaller databases, INFUSE limits the interactions that the programmers must
cope with at one time. The hierarchy of experimental databases is the result of this division. The root of
the hierarchy is the top level database. and each hierarchy level, from coarse to fine, is a partition of the
original experimental database; a leaf contains a single module (see figure 1).

top-level database

singleton catabases

1. A hierarchy of experimental databases

The actual changes are made by editing the modules within their singleton databases. Once a singleton
database is self-consistent it can be deposited into its parent database. An analysis tool is applied o °
determine this self-consistency: everything both defined and used within the module is used correctly
with respect to its definition and everything used but not defined within the module is always used in a
compatible manner. Once a singleton database is deposited, INFUSE coordinates and manages the itera-
tion of changes by applying the following process recursively on every experimental database from the
singletons to the top level (not included):

o When all child databases have been deposited into their parent, INFUSE invokes an analysis tool for
performing change propagations within this parent database and checking the consistency among its
subset of the changed modules. An analysis tool such as Lint (5] can be applied to the modules
after all changes are made, or efrors can be detected incrementally as by Mercury (8].

o [f the database is self-consistent, then it can be deposited into its own parent database.

o [f not, the local inconsistencies are detected and reported to the responsible programmers, who then
negotiate and agree on new modifications for resolving the conflicts. The database, or only the part
of it requiring further changes, is repartitioned into a subtree, and the singleton databases of that
subtree are modified. The process above is reapplied (0 these experimental databases until the
problematic database becomes seif-consistent and can be deposited into its parent database.

Finally, when all descendants have been deposiled into the top level and it is both self-consistent and
consistent with the modules of the baseline system that do not appear in the top level, the wp level is itself
merged back into the beseline.

The goal of this process is 10 suppoet a widely accepted rule-of-thumb of software engineering: errors
discovered early are much less costly to repair than those discovered late. The purpose of the hierarchy is
to cluster together at the low levels those collections of modules where changes are most likely 10 lead
interface errors. ensuring earty detection, and those collections of modules where the changes are unlikely
to affect each other are not brougiit together until the high levels of the hierarchy.

Thus we need a measure for gathering collections of modules where changes are more or less likely o
lead 10 interface errors. Our measure is the interconnecton sirength among pairs of modules, an ap-
proximation to the oracle that would tell us exactly how the future changes will effect other modules. Our
approximation is based on the intuition that the probability of an interface error between modules M and




N is proportional 0 k, where module M uses i facilities imported from N, N uses j facilities from M, and
k is the sum of i and j.

Consider three modules, A, B and C, importng and exporting items between each other, where an item is
an importable syntactic unit of the programming language such as a procedure, a data type, etc. Since B
and C are more strongly connected to each other than to A (see figure 2), they should be gathered in the
same experimental database, A being added to them only at an upper level of the hierarchy.

X _n. Y (Y irperts n terms from X)
2. Clustering according to the interconnection strength

3. Building a Hierarchy of Experimental Databases

There are two ways (0 build a hierarchy: top-down or bottom-up. The first way corresponds to
pararioning methods and the second (0 clustering. In the partitioning approach we recursively divide the
top level experimental database until reaching the singleton databases. When dividing a database, we
need 1o know a priori the number of subsets we want to obtain; this approach is model-driven. Since the
modules are available before beginning the construction of the hierarchy, we prefer the data-driven ap-
proach of clustering methods.

There is a strong analogy between the construction of a hierarchy of experimental databases and the
hierarchical clustering of a set of objects. Clusters are groups of objects whose members are "more
similar” o each other than to members of another group. The similarity between two clusters is measured
by a dissimilarity index: the more similar any two clusters, the lower their dissimilarity index. There exist
numerous hierarchical clustering algorithms (17] that differ only by the choice of the measure of
similarity between clusters. Experimental databases correspond o clusters of modules, where the
measure of similarity between clusters is the interconnection strengths between modules.

Hierarchical clustering is usually divided into two tasks: The first consists of applying the following
general method (1) on the objects to be clustered.
¢ [dentify the two clusters (initially a single object) that are the most similar according to the
dissimilarity index.
e Merge them together into a single cluster.
¢ Repeat Lhis process iteratively until there is only one cluster.

Every iteraton in the clustering process forms a new level clustering by adding a new cluster and remov-
ing the merged clusters. The final output of the clustering process is often pictured as a hierarchy whose
levels are these successive level clusterings: the hierarchy arises because each new cluster merges its two
children in the immediately preceding level. The second task consists of selecting from this hierarchy the

g2 "



‘meaningful’ level clusterings according to the needs of the application. This is usually done by an
analyst since it requires knowledge of the application domain.

INFUSE expects a hierarchy where the arity of each experimental database is specific to the actual inter-
connection strengths of the modules in the change set. Our proposed algorithm combines the two tasks
described above, without recourse to a human analyst; in particular, only the ‘meaningful’ level cluster-
ings are actually generated, thus forming directly the hierarchy of experimental databases supported by
INFUSE.

4. The Arity Controlled Clustering Algorithm
Unlike classical hierarchical clustering algorithms, our algorithm treats the level clusterings as temporary
as long as they are not ‘meaningful’. The temporary level clusterings are said o be prospecrive, whereas
each level clustering that is selected is said to be frozen. The sequence of frozen level clusterings gives
the hierarchy of experimental databases. To freeze level clusterings, the algorithm evaluates the
similarity between the prospective level clusterings and an exemplar. We define the arity of an ex-
perimental database as its number of immediate descendants in the next level of the hierarchy. The
similarity is computed by measuring the statistical dispersion of arities through a variance function
defined as follows:
Let LC be a prospective level clustering and (x,.x,,. .. X} the sequence of the arities of its k experimen-
tal databases; x; represents the number of descendants that the i database of LC has in the previous
frozen level clustering. The exempiar is defined by a single coefficient a. We define the measure v, for
evaluating the similarity between the LC and the exemplar by:

k

vam g 305 @

The initial frozen level clustering is composed of the singleton databases. Given this initial level cluster-
ing and an example arity for all the databases of the next level, the algorithm computes all the successive
prospectve level clusterings and freezes the one that minimizes our variance measure in order to deter-
mine the next level of the hierarchy. However, it is 0o costly to compute all the forthcoming level
clusterings and to backtrack to the absolute optimum. In practice, the algorithm instead finds a local
optimum, where the degree of locality is defined by a lookahead coefficient — that is, how many
prospective level clusterings to generase.

The example arity is generated by the algorithm itself. It remembers past hierarchies involving the same
software system, and uses previously successful values whenever possible. When not possible, such as in
the ecarly stages of the system's development when few changes have been made, the exemplar is chosen
randomly or provided by an analyst.

Controlling the arity of experimental databases is reminiscens of the model-driven partitioning approach
we rejected, where each partition splits an experimental database in a number of sets decided a priori.
The similanity is misleading. When our algorithm controls the clustering arity of every level clustering, it
treats this level arity as an exemplar that it is not necessary to meet. [t chooses among several prospective
level clusterings the one closest to the exemplar but does not force the construction of a level clustering
identical to the exemplar.

We present a simplified version of our algorithm, with a lookahead equal to one, in figure 3. The overall
time complexity of our algorithm is O(a*log(n)), the same as the classical clustering algorithms [16),




even though we introduce supplementary computation by controlling the variance of the arites.

Input: The interconnection strength values between pairs of modules.
The coefficients a,b,c.d for computing the interconnection strengths.
The exemplar arity for every level clustering.

Output: A hierarchy of experimental databases.

Start from the initial level clustering,

L={{m}.(m)}..... (m,}},

whose elements are the

singleton experimental databases reduced to a single module. Get
the value of a for the next level. The current prospective level
clustering is set to the previous frozen level clustering. The arity
of each of its experimental databases is setto 1.

While there are more than two experimental databases in the

current level clustering do:

1. Construct the next prospective level clustering, NLC, by merging together the two experimental
databases of the current level clustering that maximize § (if there is more than one pair of clusters
which realize this maximum, one of them is chosen arbitrarily. This new experimental database is
their ancestor in the hierarchy. :

2. Update the interconnection strength values.

3.1f the v, of NLC is greater than that of the current level clustering, freeze the current level cluster-
ing. The arities of the experimental databases of the current level clustering are set to one. Get
the value of a for the next frozen level.

4. Else the NLC becomes the current level clustering.

End While

Merge together the last two clusters of the current level clustering,
in order to form the last frozen level of the hierarchy.

3. The arity controlled clustering algorithm

The sequence of all the frozen level clusterings gives us the hierarchy of experimental databases.

5. Maintaining the consistency of the hierarchy

Changes made to modules may invalidate the hierarchy, in the sense that it no longer correctly reflects the
interconnection strengths among modified modules. Two main classes of modifications can lead to in-
validation:

1. Modifying the interface of a module, since the structure of the hierarchy is based on intercon-
nection strength,

2. Adding a module to the hierarchy; a planned modification may involve creating a new module or
conflict resolution may require modifying modules in the baseline but not in the original change
set.

It is possible to treat a module whose interface has been modified in the same way as a new module. The
older version is removed from the hierarchy, and the new one added. Therefore, we focus on adding a



module to the hierarchy. The roughest way of updating the hierarchy is to recluster the entire change set,
including the new module. This is too costly: Many experimental databases not affected by the modifica-
tion would also be reprocessed, and deposits to these databases would have to be repeated. However, if
we reject full reclustering and instead make only local changes, we cannot guarantee the resulting hierar-
chy is as ‘good’ as the one produced by our clustering algorithm. Fortunately, most practical cases
(where relatively few imerfaces are changed) affect only a small portion of the hierarchy and only this
portion may not be the same as had full reclustering been applied.

In most cases, our incremental reclustering algorithm works as follows. The new module, M, is added to

the top-level experimental database. Then it is merged into the next level experimental database with

which it has the highest interconnection strength. This process is applied recursively until a singleton

database is reached. The singleton is changed to contain two modules (the original and M) and has two

new singleton children.

This naive algorithm works very nicely except for special cases where M is only weakly connected to

each of the children of an experimental database, which occurs most frequently with a brand new module
that is empty. Such a module is called an outlier. To determine that the module M is an outlier among
several databases, E,.E,, . . . .E,, our incremental algorithm computes the interconnection strength values
between every pair of databases in the set: {E|E,,... .E,(M]}]}. If the maximum is realized by a pair
that does not include (M}, it means that M is less connected to any E; than the E; are interconnected
among themselves. In this case, M is added as a new child of the parent experimental database.

6. Some empirical results

We selected Smile — a multiple-user programming environment for C developed as part of the Gandalf
project (4] — as our test case for this paper since it is a medium sized system where the change processes
involve few enough modules to be illustrated nicely in figures. We have also applied our clustering
algorithm to the 60 modules of ALOE [2], also from the Gandalf project, as well as to several much
smailer systems. Our example assumes that two Smile modules, CMDS and CMDDATA, are 0 be
modified extensively. Therefore, the analyst also places the set of eleven modules related to them in the
top-level experimental database, since these may also need to be modified. The interconnection strength
values between these modules are automatically extracted from the program text and given in the follow-
ing matrix (figure 4). Utility modules imported everywhere are not considered, since they are handled
specially [15).
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5. Hierarchy of experimental databases for Smile



Given this data, our algorithm produces a hierarchy (see figure 5) similar to the one manually identified
by a Smile ‘expert’. When applied to the larger ALOE, the hierarchies obtained are still very similar but

not identical to the ones computed by hand.

7. Conclusion
We have described INFUSE, a software development environment that supports change management in

addition to recompilation and version control after changes. Unlike other tools, INFUSE assists program-
mers during rather than after the change process. Conflicts are detected early when they are relatively
inexpensive to repair, rather than later after the entire change process has completed and recompilation
and testing has begun. The major contribution of this paper is the presentation of a new clustering
algorithm which makes such conflict detection and resolution possible. From the change set, INFUSE
automatically builds a hierarchy of experimental databases where the most strongly connected modules
are collected together into the ‘natural’ clusters specific to the VLSS and negotiation of module interface
errors are enforced. INFUSE thus provides practical support for managing and coordinating changes in
very large software systems. We are currently extending INFUSE with mechanisms to combine stubs and
test drivers hand-constructed for unit testing to operate as test hamesses for the integration among

strongly connected clusters of modules.
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Abstract

We present 2 general model of software development environments that consists of
three components: policies, mechanisms and stuctures. The advantage of this
formalization is that it distinguishes precisely those aspects of an environment that are
useful in comparing and contrasting software development environments. We
introduce four classes of models by means of a sociological metaphor that emphasizes
scale: the individual, the family, the city and the stats models. The utility of this
taxonomy is that ¢ delineates the umportant classes of interaction among software
developers and exposes the ways in which current software development environments
inadequately suppoct the dsvelopment of lasge systems.

Environments reflecting ths individual and family models are the current state of the
art. Unfortunamly, thess rwo models are ul-suited for the development of large
systems that require more than, say, 20 programmers. We argue that there is a
Qualitative difference between the interactions among a small, "family” project and a
large, “city” project and thas this qualitative difference requires a fundamentally
different mode! of software development environmerus. We illustrate the city model
with Infuse and ISTAR, the only two environments we know of that instantiate this
model, and show that there is a pressing need for further research on this kind of
environment.  Finally, we postulats a state model, which is in need of further
clanfication, understanding and, ultimately, implementagon.



1. Introduction

A model is useful primarily for the insight it provides about particular instances and
collections of instances. By abstracting away non-essential details that often differ in
trivial ways from instance to instance and by generalizing the essential details into the
components of the model, we derive a tool for evaluating and classifying these
instances — in ways that we had not thought of before we constructed our model. It
is with this purpose in mind — classification and evaluation — that we introduce a
general model of software development environments (SDEs). Our model consists of
three components: policies, mechanisms and structures.

Once we have defined this general model of software development environments, there
are various points of view from which we might classify environments. We might, for
example, classify the SDEs according to their coverage of the software life cycle; or
classify them according to the kinds of tools that they provide, contrasting those that
provide a kemel set with those that provide an extended set; etc. Each of these
classifications yields useful comparisons and insights.

Another important point of view, which we have not seen in the literature, is a
classification of SDEs relative to the problems of scale — what is required of software
development environments for projects of different sizes taking into account the
numbers of programmers and the length of the project as well as the size and
complexity of the system. Note that the distinction between programming-in-the-small
and programming-in-the-large (7] has soms intimations of the problems of scale.
However, this distinction is basically ons of single-unit versus multiple-unit systems
and caprures only a small past of this problem. We build software systems that range
from small to very largs, and will be able to build even larger systems as hardware
gets cheapsr and moces powerful. What has not been sufficiently considered is the
effect of the scale of syssems on the tools needed to build them®.

Thus, the main focus of this paper — and, indeed, of our research — is the problem of
scale. We introducs a classification of SDEs in terms of a sociological metaphor that
emphasizes this problem of scale and provides insight into the environmental
requirements for projects of different sizes. This metaphor suggests four classes of
models: individual, family, city and stas. The individual and family classes are the

*  For example, Howdsa (18) considers SD¥s for mediun and large symems oaly from the standpoint
of capstalization and nchness of the wolset.
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current state of the art but are inadequate for building very large systems. We argue
that the city model is adequate but that very little artention has been given to this
class. Further, we argue that furure research and development should address the city

model and the proposed state model.

[n section 2, we present our model of software development environments, discuss the
individual components and their interrelationships, and illustrate various distinctions
that we make with environments from the literature. In section 3, we classify SDEs
into the four classes suggested by our metaphor, characterize these classes, present a
basic model for each class, and categorize a wide variety of existing environments into
the individual, family and city classes (we know of no examples of the state class).
Finally, in section 4 we summarize the contributions of our model and classification

scheme.

We confine our discussion in the sections below primarily to those environments
concemed with the problems of implementing, testing, and maintaining software
systems — that is, those environments that are concemed about the technical phases of
the software development process. We believe that environments that concentrate on
the full life-cycle and project management issues also could be described with this
model and categorized according to our classification scheme presented in section 3.

2. A (ieneral Model of Software Development Environments (SDEs)

Our general model of software development environments consists of three interrelated
components: policies, mechanisms and structures.

General SDE Mode!l = ( { Policies }. { Mechanisms }, { Structures } )
+ Policies are the rules, guidelines and strategies imposed on the programmer by the
environment;
« mechanisms are the visible and underlying tools and tool fragments;

- structures are the underlying objects and object aggregates on which mechanisms
operate.

I[n general, these three components are strongly interrelated: choosing one component
may have serious implications for the other two components and place severe
lumitations on them.

We discuss each of these components of the model, illustrate them with examples
from the SDE literarure, and discuss their interdependencies.



2.1 Policies

Policies are the requirements imposed on the user of the environment during the
software development process. These rules and strategies are often hard-coded into the
environment by the mechanisms and structures. For example, static linker/oaders
generally require all externally referenced names to be defined in the set of object
modules that are to be linked together. This requirement, together with the
requirement that only linked/loaded objects may be executed, induces a policy of
always compiling the modules before linking them. A different strategy is possible for
execution preparation tools that provide dynamic linking and, hence, a different policy:
for example, Multics’ segmentation scheme [33] allows externally referenced names to
be resolved at run-time. In most cases, the design of the tools and the supporting
structures define or impose the policies.

But policies need not be hard-wired. A few architectures allow the explicit
specification of policies. For example, Osterweil’s process programming (34,49]
provides the ability to program the desired policies with respect to the various
mechanisms and structures available; Darwin’s law-governed systems (30] consist of
declaratively defined rules restricting the interactions of programmers and tools. The
important distinction berween hard-wired policies and process programs or rule
systems is that the larter are architectures for building environments and provide a way
of explicitly imposing policies on the developers independently of the mechanisms and
structures.

Another distinction is between supporting and enforcing policies. If a policy is

supporred, then the mechanisms and structures provide a means of satisfying that

policy. For example, suppose that top-down development is a supported policy. We

would expect to find tools and structures that enable the developer to build the system

in a top-down fashion; by implication, we would also expect to find tools and
structures t0 build systems in other ways as well. If a policy is enforced, then not
only is it supported, but it is not possible to do it any other way within the
environment. We call this direcr enforcement when the environment explicitly forces
the developer to follow the policy. A slightly different kind of enforcement is that of
indirect enforcemenr. policy decisions are mads outsids the environment either by
management or by convention but once made they are supported but not enforced by
the environment. For example, management decides that all systems are to be
generated only from modules resident within the Source Code Control System (SCCS)
(42). The environment supports configuration management with SCCS; however, it is
the management decision that forces the developers to control their modules within
SCGCs.




There is a further distinction to be made between those policies that apply to
mechanisms and structures and those that apply to other policies. We refer to the
second as higher-order policies. For example, ‘all projects will be done in Ada’ is a
higher-order policy.

2.2 Mechanisms

Mechanisms are the languages, tools and tool fragments that operate on the structures
provided by the environment and that implement, together with structures, the policies
supported and enforced by the environment. Some of these mechanisms are visible to
the developers; others may be hidden from the user and function as lower-level
support mechanisms. For example, the UNIX™ System [25] tools for building
systems are available to the user. However, in Smile [21] these tools are hidden
beneath a facade that provides the developer with higher-level mechanisms that in tum
invoke individual UNIX tools.

Policies are encoded in mechanisms in one of two ways: either explicitly by policy

makers for a particular project, or implicitly by the toolsmiths in the tools that

comprise the environment. In the first case, mechanisms such as shell scripts [19],

Darwin’s, CLF's (5] or Marvel's rules [20], or process programs enable the policy

maker to define explicitly the policies to be supported by the system. Whether these

can also be enforced depends on how well these mechanisms restrict the developer in

what he or she uses in the environment. In the second case, the examples from the

preceding section (ilustrating hard-wired policies) exemplify implicit encoding. In
most SDEs, policies are implicitly encoded in the mechanisms. There are good
historical reasons for this situation: we must work out particular instances before we
can generalize. Particular mechanisms and structures must first be built that implicidy
encode policies in order to reach a sufficient understanding of the important issues.
Once we have reached this level of maturity, we can then separate the specification of
policies from mechanisms and structures.

2.3 Structrures

Structures are those objects or object aggregates on which the mechanisms operate. In
the simplest (and chronologically, earfiest) incamation, the basic structures — the
objects with which we build systems — are files (as in UNIX, for example). The
trend, however, is towards more complex and comprehensive objects as the basic
structures. One reason for complex basic swuctures is found in integrated
environments, particularly those centered around a syntax-directed editor (12, 30).
These SDEs share a complex interal representation such as an abstract syntax tree (9)
or an IDL graph (26] to gain efficiency in each tool (because, for example, each tool



does not need to reparse the textual form, but uses the intermediate, shared
representation). The disadvantage of this approach is that it is difficult to integrate
additional tools into the environment, particularly if the structure provided does not
support well the mechanisms and their intended policies. Garlan's tool views (14}
provide a partial* solution: a structure and a mechanism for generating the underlying
common structure consistent with all the requirements of the different tools in the
SDE.

Another reason for this trend is to maintain more information about software objects to
support more comprehensive mechanisms and policies. For example, the use of
project databases has been a topic of considerable interest in the recent past (1, 31}.
The basic structure currently generating a large amount of interest is the objectbase
(20, 49, 45] — it hoped that this approach will solve the deficiencies of files and
databases.

These basic structures are the foundation for building more complex and more

comprehensive higher-order structures. For exampie, Inscape [37, 38] maintains a

complex semantic interconnection structure among the system objects to provide

comprehensive semantic analysis and version control mechanisms and policies about

semantic consistency, completeness and compatibility among the system objects.

Smile’s experimental database is a higher-order organization of basic structures that

supports mechanisms and policies for managing changes to existing systems. The
Project Master Data Base (PMDB) (36] provides an entity-relationship-anribute model
(4] to represent, for example, problem reporting, evaluation and tracking processes.
CMS's Modification Request Tracking System ([43] builds a structure that is
interrwined with SCCS's configuration management database (which in rum is built on
top of the UNIX file system); it coordinates change requests with the actual changes in
the system. Finally, Apollo’'s Domain Software Engineering Environment (DSEE)
provides & comprehensive set of structures for coordinating the building and evolving
of softwase sysmms, thess souctures support, for example, configuration control,
planning and developer interactions.

=

* We say pernal in the senss tht Garlan's views do oot belp at all if the eavirooment and its tools
dready exust ndependendy of Garlan's mechamsms and new tools ased 10 be added uugﬁdl
solunon in the sease Lhat 1f oos develops the eotwre eovucoment with Garlag's views, then adding a
osw (00l requires that one adds the view aseded by chat wol © ths onginal sst and geasrates the
oewly uxegrased structure.




In general, structures tend to impose limitations on the kinds of policies that can be
supported and enforced by SDEs. Simple structures such as files provide a useful
communication medium between tools but limit the kinds of policies that can be
supported. The more complex structures required by integrated environments such as
Gandalf [32] enable more sophisticated policies, but make it harder to integrate new
mechanisms and policies into the environment. Higher-order structures such as
Infuse’s hierarchy of experimental databases [39] make it possible to enforce policies
that govern the interactions of large groups of developers, but do not allow the policy
maker the ability to define his or her own policies. 4

One fact should be clearr we have not yet reached a level of mamrity in our SDEs
with respect to structures. There is still a feeling of exploration about the kinds of
structures that are needed. Indeed, there is the same feeling of exploration about the
policies that can or should be supported by an SDE, particularly for those SDEs that

are concemed with large-scale projects.

3. Four Classes of Models

We present a classification of SDEs from the viewpoint of scale: how the problems of
size — primarily the numbers of developers, but by implication the size of the system
as well — affect the requirements of an SDE that suppons the development of those
systems. Our classification is in terms of a sociological metaphor that is suggestive of
the distinctions with respect to the problems of scale. Along what is a continuum of
possible models, we distinguish the following four classes of SDE models:

Individual Famuly City State

y - -

-

There may be further distinctions to be made to the right of the family model;
relatively litle is known about the kinds of SDEs that suppont the city model and
nothing is known about SDEs that support the state model. We concentrate our
artention on those two classes — that is, the city and the state.

We present two orthogonal characterizations for each class. The first emphasizes what
we consider to be the key aspect that distinguishes it in terms of scale from the others.

These aspects are:
« construction for the individual class of models;

« coordinanon for the famuly class,

« cooperanon for the city class; and



« commonality for the state class.

The second characterization emphasizes the relationships among the components.
Historically,

« mechanisms dominate in the individual class;

« structures dominate in the family class;

- policies dominate in the city class; and

« higher-order policies dominate in the state class.

For each class of models we present a description of the class and support our
characterizations with example SDEs. For convenience in the discussion below, we

use the term model instead of class of models.
3.1 The Individual Model

The individual model of software development environments represents those

environments that supply the minimum set of impiementation tools needed to build
software. These environments are often referred to as programming environments.

The mechanisms provided are the tools of program construction: editors, compilers,
linker/loaders and debuggers. These environments typically provide a single structure
that is shared among mechanisms. For example, the structure may be simple, such as
a file, or complex, such as a decorated tree. The policies are typically laissez faire
about methodological issues and hard-wired for nano-management issues.
[ndividual Model =
(
{ tool-induced policies® } ,
{ implemencarion tools } ,
( single structure )
)

These environments are dominated by issues of software consruction. This
orientation has led to an emphasis on the tools of construction — that is, the
mechanisms — with policies and stuctures assuming secondary importance. The

* We um iwlics for general descripions of e componenss and oormal typsface for specific
components.




policies are induced by the mechanisms — that is, hard-wired — while the structures
are dictated by the requirement of making the tools work together.

We discuss four groups of environments that are instantiations of the individual model:
toolkit environments, interpretive environments, language-oriented environments, and
transformational environments. The toolkit environments are exemplified by UNIX;
the interpretive environments by Interlisp [S1]; language-oriented environments by the
Comell Synthesizer (50]; and the transformational environments by Refine (46].

The toolkit environments are, historically, the archetype of the individual model. The
mechanisms communicate with each other by a simple structure, the file system.
Policies take the form of conventions for organizing structures (as for example in
UNLX, the bin, include, lib and src directories) and for ordering the sequence of
development and construction (as exemplified by Make [13]). These policies are very
weak and concemed with the minutiae of program construction. However, shell
scripts provide the administrator with a convenient, but not very extensive, mechanism
for integrating tools and providing support for policies beyond those encoded in the
tools.

Toolkit Model =
(
{ tools-induced policies, script-encoded policies, ... } ,
{ editors, compilers, linker/loaders, debuggers, ... },
{ file system }
)

[nterpretive environments are also an early incamation of the individual model. They

consist of an integrated set of tools that center around an interpreter for a single

language such as Lisp or Smalltalk (15). The language and the environment are not

really separable: the language is the interface to the user and the interpreter the tool
that the user teeracts with. The structure shared by the various tools is an intemal
representation of the program, possibly with some accompanying information as
exemplified by property lists. These environments are noted for their extreme
flexibility and there are virtually no policies enforced (or, for that marer, supported).
Thus, in contrast to the toolkit approach where the tools induce certain policies that
force the programmer into certain modes of operation, programmers can essentially do
as they please in the construction of their software.



[nterpretive Model =
(
{ virtually no resrrictive policies } ,
{ interpreter, underlying support tools } ,
{ intermediate representation }
)

Language-oriented environments are a blend of the toolkit and interpretive models.
They provide program construction tools integrated by a complex structure — 3
decorated syntax tree. Whereas the tools in the toolkit environments are batch in
narure and the tools in the interpretive are interactive, the tools in language-oriented
environments are incremental in narure — that is, the language-oriented tools try to
maintain consistency between the input and output at the grain of editing commands.
A single policy permeates the tools in this model: early error detection and
notification. These environments might be primarily hand-coded, as in Garden [40}, or

generated from a formal specification, such as by the Comell Synthesizer Generator
(41).

Language-Oriented Model =
(
{ error prevention, early error detection and notification, ... },
{ editor, compiler, debugger, ... } ,
{ decorated syntax tree }
)

Transformational environments rypically support a wide-spectrum language (such as V
{46]) that denotes 3 rangs of object and control structures from abstract to concrete.
Prograns are initially written in a abstract form and modified by a sequence of
transformations into an efficient, concrets form. The mechanisms are the
transformations themselves and the machinery for applying them. The structure is
typically & cross between the intermediate representation of the interpretive mode! and
the decorased syntax tree of the language-oriented model. As in the language-oriented
environments, a single policy defines ths style of the environment: the transformational
approach to constructing programs (as, for example, in Ergo (444] and PDS (3)).
Programmer apprentices, such as KBEmacs (53], are a variation of this policy in that
the programmer can switch between the transformational approsch and interpretive
approach at any time.
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Transformational Model =

(
{ ransformational construction, ... },

{ interpreter, transformational engine, ... },
{ intermediate representation/decorated syntax tree, ... }

)

We have discussed four differens groups of individual models and cited a few of the
many environments that are examples of these different models. Most research
environments and many commercial environments are instances of these individual

models.
3.2 The Family Model

The family model of softrware development environments represents those
environments that supply, in addition to the minimal set of program construction tools,
facilities that support the interactions of 2 small group of programmers (under, say,
10). The analogy to the family for this model is that the members of the family work
autonomously, for the most part, but trust the others to act in a reasonable way; there
are only a few rules that need to be enforced to maintain smooth interactions among
the members of the famuly. It is these rules, or policies, that distinguish the individual
from the family model of environments: in the individual model, no rules are needed
because there is no interaction: in the family model, some rules are needed to regulate
certain critical interactions among the programmers.

Family Model =
( .
{ ... coordination policies } ,
{ ..., coordination mechanisms }
{ ... special-purpose databases }
)
The characwristic that distinguishes the family model from the individual model is that
of enforced coordination. The environment provides a means of orchestrating the
interactions of the developers, with the goal that information and effort is neither lost
nor duplicated as a result of the simultaneous activities of the programmers. The
structures of the individual model do not provide the necessary (but weak form of)
concurrency control. Because the individual model's structures are not rich enough to
coordinate simultaneous activities, more compiex structures are required. It is these
structures that dominate the design of the environment, wherein the individual model
the mechanisms dominated; the mechanisms and policies o the family model are




- 11 -

adapted to the structures.

We discuss four groups* of environments that are instantiations of the family model:
extended toolkit environments, integrated environments, distributed environments, and
project management environments. The extended toolkit environments are exemplified
by UNIX together with either SCCS or RCS [52]; the integrated environments by
Smile; the distributed environments by Cedar [48]; and the project management
environments by CMS.

The extended toolkit model directly extends the individual toolkit model by adding a

version control structure and configuration control mechanisms (see, for example,

UNIX PWB (8]). Programmer coordination is supported with these structures and
mechanisms; enforced coordination is supplied by a management decision to generate
systems only from, for example, SCCS or RCS databases. Thus, this kind of family
environment provides individual programmers a great deal of freedom with
coordination supported only at points of deposit into the version control database. The
basic mechanisms for program construction from the individual toolkit model are
rerained. However, these tools must be adapted to the family model structure as, for
example, Make must be modified to work with RCS or SCCS. Altematively, the tools
may be constructed in conjunction with a database — e¢.g., the Ada program support
environments (APSEs) [2].

Extended Tootkit Model =
(
{ .... support version/configuration control } ,
{ ... version/configuration management } ,
{ ... compressed versions, version trees }
)

The intsgrased model extends by analogy the individual language-oriented model,
where the consissency policy permeates the tools. Here consistency is maintained
among the component modules in addition to within a module. As in the individual
model, the mechanisms determins consistency incrementally, although the grain size
ranges from the syntax tes nodes of the Gandalf Prototype (GP) (16] to procedures in

¢ These groupings are oot cscessanly mumally exclusve. [n particular, cither distribused or project
management aspecs cas be amuxed ad mached wubh csher exmaded toolkit or weegraed
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Smile, to entire modules in Toolpack (35] and R" [6]. This model's structure is
typically a special-purpose database, although in CLF it is generated from a
specification. The structures vary in their support from simple backup versions to both
parallel and sequential versions [17, 22].

[ntegrated Model =

(
{ ..., enforced version control, enforced consistency } .

{ ..., version description languages, consistency checking tools } ,
{ ..., special-purpose database }
)

The distributed mode! expands the integrated model across a number of machines
connected by a local area nerwork. Additional structures are required to support
reliability and high availability as machines and network links fail. For example,
Mercury [23] is a multiple-user, language-oriented environment that depends on a
special distributed algorithm that simulates a small shared memory to guarantee
consistency among module interfaces; DSEE's database (27], on the other hand, is a
simple extension Apollo’s network file system.

Distributed Model =
(
(..},

{ .... neework mechanisms }
{ ... distnibuted objects }
)

The project management model is orthogonal to the progression from the extended
toolkit modsl to the distributed model. These environments provide additional support
for coordinating changes by assigning tasks to individual programmers. In DSEE,
structures and mechanisms are provided for assigning and completing tasks that may
be composed of subtasks and activiries {28]). CMS adds a modification request (MR)
tracking system on top of SCCS in which individual programmers are assigned
particular change requests and the changes are associated with particular sets of SCCS
versions.
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Project Management Model =
(
{ ..., support activity coordination } ,
{ ..., acrivity coordination mechanisms } .
{ .... acnivity coordination structures }
)

The family model represents the current state of the art in software development
environments. In general, it is an individual model extended with mechanisms and
structures to provide a small degree of enforced coordination among the programmers.
The policies are generally /aissez faire with respect to most activities; enforcement of
coordination is generally centered around version control and configuration
management. The most elaborate instance of the family model with respect to
mechanisms is DSEE; the most elaborate with respect to structures is CLF.

3.3 The City Model

As the size of 2 project grows to, say, more than 20 people, the interactions among
these people increase both in number and in complexity. Although families allow a
great degree of freedom, much larger populations, such as cities, require many more
rules and regulations with their artendant restrictions on individual freedom. The
freedom appropriate in small groups produces anarchy when allowed to the same
degree in larger groups. It is precisely this problem of scale and the complexity of
interactions that leads us to introduce the city model.

City Mode! =
(
{ .... cooperation policies } ,
( .... cooperarion mechanisms },
{ ... structures for cooperation }
)

The notion of enforced coordination of the family model is insufficient when applied
to the scale represented by the city model. Consider the following analogy. On a
farm, very few rules are needed to govern the use of the farm vehicles while within
the confines of the farm. A minimal set of rules goven who uses which vehicles and
how they are to be used — basically, how the farm workers coordinate with each other
on use of the vehicles. Further, these rules can be determined in real rime — that is,
they can be adjusted as various needs arise or change. However, that set of rules and
mode of rule determination is inadequate to govemn the interactions of cars and trucks
in an average city: chaos would result without a more complex set of rules and
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mechanisms that enforce the cooperation of the people and vehicles; the alteration of
rules, of necessity, has serious consequences because they affect a much larger
population (consider the problem when Europe changed from driving on the left to
dnving on the right side of the road). Thus, enforced cooperation is the primary
characteristic of the city model.

It is our contention that the family model is currently being used where we need a city
model, and that the family model is not appropriate for the task. Because the family
model does not support or enforce an appropriate set of policies to handle the
problems incurred by an increase in scale, we generally have a set of methodologies
and management techniques that attempt to stave off the anarchy that can easily occur.
These methodologies and management techniques work with varying degrees of
success, depending on how well they enforce the necessary cooperation among
developers.

Lirtle work has been done on environments that implement a city model — that is,
that enforce cooperation among developers. We discuss two such environments:
Infuse (39] and ISTAR (10]. Infuse focuses on the technical management of the
change process in large systems whereas ISTAR focuses on project management
issues. [n both cases, the concemn for policies of enforced cooperation dominate the
design and implementation: in Infuse, the policy of enforced cooperation while
making a concerted set of changes by many programmers has led to the exploration of
various stuctures and mechanisms; in ISTAR, the contractual model and the policies
embodied in that model dominate the search for project management stuctures and
mecharusms.

The primary concern of Infuse® is the technical management of evolution in large
systems — that is, what kinds of policies, mechanisms and structures are needed to
automate support for making changes in large systems by large numbers of
programmers. [nfuse generalizes Smule’'s experimental databases into a hierarchy of
expenmental databases, which serves as the encompassing structure for enforcing
[nfuse’s policies about programmer interaction. These policies enforce cooperation

* l[nfuse onpased 3. and sull is. the change management compoaent of the loscaps Eavirooment
(wiach explores the use of formal eerface specificanons and of 3 semantic imercoanection moded in
the consoucnon and evolution of software sysiems). However, the madagement issues of bow (o
support a large oumber of developers are sufiGently orthogoaal to the semantic coacerns of [nscape
to be appticable @ a much wider coomext (for example. 10 eaviroaments and tools supporung 2
Syolachc wiercoanectoa model) and (0 be treased wndependently.
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among programmers in several ways (24].

- Infuse automatically partitions the set of modules involved in a concerted set of
changes into a hierarchy of experimental databases on the basis of the strength of
their interconnectivity (this measure is used as an approximation to the oracle that
tells which modules will be affected by which changes). This partitioning forms
the basis for enforcing cooperation: each experimental database proscribes the
limits of interaction (however, see the discussion of workspaces below).

« At the leaves of the hierarchy are singleton experimental databases where the

actual changes take place. When the changes to a module are self-consistent it
may be deposited into its parent database. At each non-leaf database, the effects of
changes are determined with respect to the components in that partition, that is,
analysis determines the /ocal consistency of the modules within the database. Only
when the modules within a partition are locally consistent may the databsse be
deposited into its parent. This iterative process continues until the entire system is
consistent.
When changes conflict, the experimental database provides the forum for
negotiating and resolving those conflicts. Currently, there are no formal facilities
for this negotiation, but only the framework for it. Once the conflicts have been
resolved, the database is repartitioned and the change process repeats for that (sub-)
partitioning.

+ Because the partitioning algorithm is only an approximation of the optimal oracle,
[nfuse provides an escaps mechanism, the workspace, in which programmers may
voluntarily coopsrase to forestall expensive inconsistencies at the top of the
hierarchy.

Thus the rules for inssraction are encoded in the mechanisms, with the hierarchy
providing the supporting strucrure®.
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Infuse Model =
(
{ ..., enforced and voluntary cooperation } ,
{ ..., automatic partitioning,
local consistency analysis,
database deposit,
local integration testing,
w}.
{ ..., hierarchy of experimental databases }
)

Whereas Infuse is concemed with the technical problems of managing system
evolution, ISTAR is concemed with the managerial problems of managing system
evolution. ISTAR is an integrated project support environment (IPSE) [29] and seeks
to provide an environment for managing the cooperation of large groups of people
producing a large system. To this end, it embodies and implements a contract model
of system development. I[STAR does not directly provide tools for system
construction but instead supports “plugging in" various kinds of workbenches. The
contract model dictates the allowable interactions among component developers [47).

+ The client specifies the required deliverables — that is, the products to be
produced by the contractor. Further, the cliemt specifies what the terms of
sansfaction are for the deliverables — that is, the specific validation tests for the
products.

- The contractor provides periodic reporting about the status of the project and the
state of the product being deveioped. Clients are thus able to monitor the progress
of their contracts.

- ISTAR provides support for amending the contracts as the project develops. Thus,
the conmtract structure can change in the same ways that the products themselves

can changs.
« A contract database provides the underlying structure for this environment.

Thus the interactions between the clients and the contractors are proscribed by the
underlying model and the mechanisms in the environment enforce those rules of
interaction. The exact inseraction of tools in the construction of the components of the
system is left unspecified, but the means of contracting for components of a system are
enforced by the environment.
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ISTAR Model =

(
{ ..., contract model } ,

{ .... contract support tools } ,
{ ..., contract data base }
)

3.4 The State Model

Pursuing our metaphor leads to the consideration of a state model. Certainly the notion

of a state as a collection of cities is suggestive of a company with a collection of

projects. There are, we think, intimations of this model in the following: the
Department of Defense standardizing on one particular language, Ada, for all its
projects; a company trying to establish a uniform development environment such as
UNIX for all its projects; a company establishing a common methodology and set of
standards to be used on all its projects. It is easy to understand the rationale behind
these decisions: reduction in cost and improvement in productivity. If there is a
uniform environment used by several projects, developers may move freely berween
projects without incurring the cost of leaming a new environment. Further, reuse of
various kinds is possible: tools may be distributed with little difficulty; code may be
reused; design and requirements may be reused; etc.

State Mode! =
(
{ commonality policies } ,
{ supporning mechanisms } ,
{ supporting structures }
)

[n this model, the concemn for commonality, for standards, is dominant. This policy of
commonality tends to induce policies in the specific projects (or, in their city model
environments). Thus, the policies of the state model are higher-order policies because
they have this quality of inducing policies, rather than particular structures and
mechanisms.

While one can imagine the existence of instances of this model (and there are certainly
many cases where it is needed), we do not know of one. Our intuition® suggesus the
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following general description.

+ Provide a generic model with its antendant tools and supporting structures for
software development to be used throughout a particular company.

- Instantiate the model for each project. tailoring each instance dynamically to the
particular needs of the individual project.

+ Manage the differences between the various instances to suppont movement
between projects.

Thus, while little is known about the state model, it appears to be a useful and fruirful
area for investigation.

335 Scaling Up from One Class to the Next

Ideally, scaling up from one class to the next would be a manter of adding structures
and mechanisms on top of an existing environment. In at least one case this has been
done without too much difficulty: scaling up from the individual toolkit model to the
family extended toolkit model. This example involves only a small increment in
policy.

[t is extremely attractive to think of the higher-level models as using the lower-level
models as components upon which to establish new policies, mechanisms and
structures. Unforrunately, there are several difficulties. First, there is the problem of
the tightness of coupling between structures and mechanisms. Even in scaling up from
the toolkit to the extended toolkit environments, retrofirting of old tools to new
structures is necessary. This raises the fundamental question of whether it is more
profitable to retrofit changes into the system of to reconstruct the entire environment
from scratch. For example, even though Infuse is a direct genenalization of Smile,
Infuse's implemnentation is a reconstruction reusing some code from Smile rather than
an extension on top of Smile. Because environment generators assume a common
kemnel that is optimized for a specific model, and often a particular group within the
model, they are difficult to scale up. Similar to Infuse/Smile, Mercury scales up the
Comnell Synthesizer Generator by extensive modifications to its common kemel rather

than by adding something to coordinate generated editors.

* See vasious potition papers and discussions o the 3rd lneernational Software Process Wodkshop
(1)
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Second, problems arise from the lack of structures and mechanisms in the base-level
environment suitable for the next level. For example, multiple-user interpretive
environments are extremely rare. Further, this lack of suitable structures and
mechanisms is particularly important in moving from the family model to the ciry
model where enforcement is a much more serious issue. Building security measures
on top of a permissive environment (such as UNIX) is particularly difficult; it is too
easy to subven the enforcement mechanisms.

Last, there is the problem of how well the granularity of the structures and the
mechanisms of one level lend themselves to supporting the next level. For example,
the file system in the toolkit approach is easily adapted to the extended toolkit.
However, some of the higher-level structure of the extensions is embedded, by
convention, within the lower-level structure, as in SCCS where version information is
embedded by an SCCS directive within the source files.

Note that most of our examples illustrating scaling difficulties are from the individual
to the family model. Since this increment is much smaller than from family to city,
we can expect greater obstructions in scaling from the family to the city model.

4. Contributions
We summarize the contributions of this paper as follows:

+ Our general model distinguishes precisely those aspects of an environment that are
useful in evaluating software development environments: policies, mechanisms
and structures.

+ Our taxonomy delinestes four important classes of interaction among software
developers with respect to the problems of scale.

« The individual and family models represent the current state of the ant in software
development environments. We explain why these two models are ill-suited for

the development of large systems.
+ We show that the city model introduces the qualitative differences in the policies,
structures and mechanisms required for very large software development projects.
+ We propose a staze model, which is in need of further clarification, understanding
and impilementaton.
We conclude that there is a pressing need for research in both the technical and
managenal aspects of city model envuonments.
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