Reliable Network Communications

Gail E, Kaiser
Yael J. Cycowicz
Wenwey Hseush
Josephine Micallef
Columbia University
Department of Computer Science
New York, NY 10027

December 1987

CUCS-278-87

Abstract

This technical report consists of three papers from the INTERCOMS project. A Network Architec-
ture for Reliable Distributed Computing introduces the view section model, a network layer for
exception handling in response to disruptions in communication channels due to failures of net-
work links or nodes. Remote Exception Handling discusses for a network layer for exception
handling among cooperating application processes. Demand-Driven Parameter Passing in
Remote Procedure Call describes how remote exception handling solves the problem of passing
referential data types (pointers) as parameters to remote procedures.

This research is supported in part by grants from AT&T Foundation, Siemens Research and
Technology Laboratories, and the New York State Center of Advanced Technology — Com-
puter & Information Systems, and in part by a Digital Equipment Corporation Faculty Award.
Ms. Cycowicz is an AT&T Fellow. Mr. Hseush is supported in part by the New York State
Center of Advanced Technology — Computer & Information Systems. Ms. Micallef is a past
IBM Fellow.



Reliable Network Communications

Gail E. Kaiser
Yael J. Cycowicz
Wenwey Hseush
Josephine Micallef
Columbia University
Department of Computer Science
New York, NY 10027

December 1987

Abstract

This technical report consists of three papers from the INTERCOMS project. A Network Architec-
ture for Reliable Distributed Compusing introduces the view section model, a network layer for
exception handling in response to disruptions in communication channels due to failures of net-
work links or nodes. Remote Exception Handling discusses for a network layer for exception
handling among cooperating application processes. Demand-Driven Parameter Passing in
Remote Procedure Call describes how remote exception handling solves the problem of passing
referential data types (pointers) as parameters to remote procedures.

This research is supported in part by grants from AT&T Foundation, Siemens Research and
Technology Laboratories, and the New York State Center of Advanced Technology — Com-
puter & Information Systems, and in part by a Digital Equipment Corporation Faculty Award.
Ms. Cycowicz is an AT&T Fellow. Mr. Hseush is supported in part by the New York State
Center of Advanced Technology — Computer & Information Systems. Ms. Micallef is a past
IBM Fellow.



A NETWORK ARCHITECTURE FOR
RELIABLE DISTRIBUTED COMPUTING

Wenwey Hseush

Gail E. Kaiser

Columbia University
Department of Computer Science
New York, NY 10027

Abstract

The complexity of message passing in loosely-coupled dis-
tributed systems is dramatically increasing, partially due to the
movement towards large scale distibuted sysiems and intel-
ligent distributed applicadons. Traditional approaches such as
the client-server model are no longer appropriate. We propose
a reliable distribused environment (RDE) based on an efficient
and reliable extension to datagram communications that
provides reliable communication and configuration services.
We introduce the coupled relation to measure the degree of
reliability of distributed environments. We also present view
sections, which protect against changes in node status
(available or unavailable) in the same sense that critical
Sections protect against changes to shared memory, as suppont
for distributed communications tasks. We give simulation
results for coupled relations based on different algorithms,
node failure rates, recovery times and message arrival rates,
and o illustrate the behavior of distibuted systems con-
structed using our view section model on top of RDE.

1. Introduction

A Reliable Distributed Environment (RDE) is a collection of
loosely-coupled dismbuted nodes where the environment en-
sures reliable communicarion and close view. Reliable com-
munication guarantces messages are received by the destina-
uon nodes if the destination nodes are functionally working at
the moment of message arival, thus protecting against link
falures. Close view provides a snapshot of the environment
1o prolect against nods failures (process deaths, machine
falures!, or any wmporary functonal failures on nodes).
Close view implies precise prediction of node status. We use
the term “node” to refer 10 a “process” in the transport layer n
order to distinguish from a "host” in the network layer and the
term “virtual curcuit” to refer to an end-io-end communicauon
channel in the ransport layer.

It would be unnecessary for us to propose RDE if the com-
plexity of message passing had remained a3 simple as in most
raditional distributed applications, 0 which the client-server
model® ! has been applied successfully. The client-server
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model implies end-to-end communications between two dif-
ferent nodes which need not know the status of any nodes ex-
cept cach other. The notion of close view is becoming 1mpor-
1ant since the complexity of message passing is dramaucally
increasing in cases like large scale and/or intelligent dis-
ributed systems, which both require more complicated com-
munications patterns. The client-server relationship no longer
holds and failure to predict network-wide node status results in
severe degradation of performance.

We propose a programming framework, the view secrion
model, in which to construct reliable distributed computing
tasks on top of RDE. View sections protect against the change
of the giobal view as crirical sections® protect against the
change of shared memory. A view section defines a period of
time and a sequence of instructions during which the global
view should remain the same to maintin the correctness of
the computation performed by the instructions. The fact is,
however, that the global view changes from time to time as
nodes fail and are restored, even during view sections. We
handle this by invoking an application-specific compensation
funcnion via an immediate notification generated by RDE
when it senses a change of the global view. The compensation
function decides what 10 do to preserve the view section. Fur-
ther work is required to constuct a full transaction
mechanism® 5 based on the view section: note therefore that
we are not concerned here with the issues of reliable dis-
tributed databases.
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1.1 Simple Communication Patterns

In most loosely-coupled distributed systemsS, typical com-
munication patterns are limited to the foilowing cases so that
the existing transport layer protocols (e.g.. TCP7) can perform
efficiently and reliably. We use the term "communication
task” to refer 10 a collection of message passing interactions
between two or more nodes.

1. Client-server model: A temporal and reliable virtual circuit
or an end-to-end datagram link is built between two nodes, say
nodes C and S, at the beginning of a communication task and
is disconnected when the task is finished in order to permit
following communication tasks, associated with either node C
or S, to be processed.

2. Complete connections in small domains: Node domains,
which specify nodes in distributed systems, are so small and
fixed that a complete set of virtual circuits can be built for
message comumunications during system initialization, and the
virtual circuits can be closed upon the termination of the dis-
tributed system.

1.2 Complicated Communication Patterns

In large scale and intelligent distributed sysiems, communica-
tion patterns are much more complicated than these conven-
tional models can handle. Consider the following cases:

1. Single-intersction communicadon tasks: Single com-
munications randomly and frequently ke place among the
possible pairs of nodes. Typically, instead of using datagram,
virtual circuits are applied to end-to-end communications be-
cause of the necessity of reliable message delivery. The
datagram protocol neither guarantees that messages are safely
received by the remote node nor notifies the sender what hap-
pened on the remots nods. Unfortunamly, it is insppropriam
to use virnal circuits for end-to-end communications in this
case, because the cost of connecting reliabis virtual circuits is
comparatively heavy against that of passing messages. The
performance degrades dramaticaily.

2. Complete connections is s largs domain: Large cale dis-
mbuted systems, with & very largs oumber of nodes, usually
run in a dynamic configurationd. Nodes coms and go without
afTecting the rest of the system.  Again, it is inappropriste
use virtal circuits in this cass, because the complexity of
number of VO ports, O(N), complicates each node. The com-
plexity of O(N) looks reasonably good, but in fact it is bad
since 1O resources are limited in most operating sysiems. For
example, in Berkeley Unix™ the number of file descriptors
which can be associsted with LO ports (ie., sueam

sockets® 10) is quite small. For each file opened as an /O
channel, the kemel reserves a memory buffer for storing in-
coming data packets and pays attention (CPU time) to detect-
ing the failures of connections and nodes. These costs are ex-
pensive.

3. Multicast transport services: Some distributed systems in-
itiate and complete communication tasks through multicasting.
Grouping, reliable message delivery and exception control are
important to build a reliable distibuted system. Unfor-
tunately, in most existing transport layer network environ-
ments, multicast transport services are not supported. Even
when supported in a network environment, unreliability is
usually a problem.

1.3 Using Datagram For Complicated Communication
Patterns

Datagram eliminates the problems of high O ports com-
plexity and expensive virtual circuit connections, so it seems
to be a better approach for large scale loosely-coupled dis-
tributed systems. The disadvantages and advantages of using
datagram have 0 be pointed out to explain our design of RDE
using datagram. For most existing datagram transport services
(e.g., User Datagram Protocol), unseliability is the major
problem. Datagram packets may be delivered multiple times
or out of sequence, or not delivered at all. A sender neither
knows the status of the destination nodes, nor can it be assured
that the message packets have been safely received. A posi-
tive acknowledgment scheme is often used to ensure safe
delivery of messages. The most pleasant aspect of datagram is
that oaly ons 1/0 port is needed for each node to send and
receive messages, which is perticularly important when /O
resources are limited. Therefore, it makes more sense to im-
plement a protocol on wp of datagram to ensure reliable
delivery of messages than 10 implement a protocol on top of
virtual circuit 10 reduce the aumber of ports used.

The simplicity of one O port is a very coavincing reason for
largs scale distributed syswems o use datagram. This results
in the trend for intelligent distributed applications to handle
incremsingly complex patierns of messige communications
using ons 1O port for each node, which listens to or talks to
all other nodes without building end-to-end connections and
expecting a small degree of unrelisbility.



2. A Reliable Distributed Environment Using
Datagram

The goal of a reliable distributed environment is to extend the
reliability between a pair of nodes, which has been promised
with virtual ctrcuit, to the reliability among a group of nodes.
As mentioned above, a reliable distributed environment is
defined as a collecdon of loosely-coupled distributed nodes
that ensures reliable communication and close view. Each dis-
mibuted node has a static view, called local view, (o reflect the
statys of the environment (i.e. which node is up and which
node is down). Reliable communication and close view are
not mutually independent. Reliable communications together
with the effect of close view ensures highly reliable delivery
of messages. Also, close view with the effect of reliable com-
munications ensures precise prediction of node status and im-
mediate notification of exceptions.

Reliable delivery means two things: i) reliable ransmission of
messages and ii) messages safely received by the destination
nodes. Remember that 100% reliable delivery, even through a
100% reliable communication channel, is impossible, because
the local view can reflect at best the environment status in the
near past due to the nature of message passing, and there is no
way to guarantec that messages will be safely received by the
destination nodes at the moment of transmission. Our simula-
tions, which we descnbe later, demonstrate that the closer the
relation among nodes, the more reliable is message delivery.
That is, the more precisely a node can predict its local view of
the status of all the other nodes, the less exceptions due o un-
expecled events regarding message delivenies.

Consider, for example, that the positive acknowledgments re-
quired to ensure safe arivals when multicasting a message are
expected at a very high probability because of precise predic-
ton of the global view. The basic reason why muiticast re-
quires waiting for all acknowledgmenas, or untl umeout, is to
mow what is going on with the destination nodes, even
though the result comes out almost the same as that predicted
at the beginning of multicasting. It is unreasonabie to thus
sacnfice performance if the extremely small probability of ex-
cepuons can be compeasased {or in some way. Highly reliable
delivery in RDE leads o high performance for the targeted
dismbuted computing tasks. One more imporant service in
RDE is configurasion exceprion control, which 15 proposed to
complement highly reliable delivery; this is discussed in the
next subsection. Basically, the philosophy of the RDE model
is highly reliable delivery plus configuration exception con-
tol. The predicting algorithms are also discussed shortly.

Let’s define some terminology before we go on.
Configurartion-bits is defined as a bit string which indicates
the status of nodes, active or inactive, in a designated order
according to the nodes domain of the distributed environment.
Each node has a local configurarion-bits as its local view to
keep track of its knowledge of the configurauon of the dis-
tributed environment; each node is designated as active or
inactive. Local configurarion-bits is a special representation
of local view. Global configurarion-bits, representing the
global view, is an imagined configurarion-bits constructed
from the status of all nodes in the same order as the local

configurarion-bits, Configurarion-bits is the simplest version
of local view.

2.1 RDE Services

Two important services are supported in RDE: i)
communication transport service and ii) configurarion service.
Communication transport service supports reliable com-
munication, and configuration service is for close view.

Communication transport service uses the standard

mechanisrs  of sequence number and timeouvrery to

climinate the possibilities of duplication, out of sequence and

missing data packets in datagram communications. {t supports

three types of operations:

* Multicast: send messages to a group of nodes. Nodes in the

domain can be arbitrarily grouped by setting different chan-

nels. Grouping will be discussed with configuration service

below.

»End-to-end send: send message to one node. The two
relevant function calls for this type are send:o and reply.

¢ Multiread: read messages from multiple inputs. Two or more
[/O ports can be created for different classes of communica-
toes. Each /O pont corresponds to a domain. Two or more
domains can be specified in a distributed environment. Each
domain defines a class of communication.

The major difference between RDE and traditional transport
services is that the messages are assumed 1o be safely received
by the destination nodes at the moment of sending messages,
and coatrol is immediately returned to the caller. This is be-
cause messages are safely delivered with very high probabil-
ity, which we explain in the section on simulation. The dif-
ficultes of highly reliable delivery of messages are solved by
configuration exception coatrol.

Configuration service supports the following:
o Configuration exception control: The idea is whenever RDE



senses changing of configuration or unexpected conditions of
message delivery, it notifies the higher level layer with a con-
figuration exception. The service protocol guarantees that the
related nodes will be notified in time ¢ after 2 message delivery
is initiated if the related exception occurs. The notification
procedure first enters exception events into a global event
queue, then generates a signal that invokes a handler routine.

¢ Grouping: Nodes can be grouped by setting channels. One
node might become a member of multiple groups by setting
two or more channels. A node can release group membership
by unsetting the channels.

¢ Dynamic configuration: Nodes can come or go without af-
fecting the whole system. This is very important in large scale
distributed systeams which disallow turning off all the nodes in
order to reconfigure the environment.

2.2 Coupled Relation and Idealized RDE

In order to measure the degree of reliability of a distributed
environment, the coupled relation is inroduced as a function
of how closely nodes must interact. The "more closely” the
distributed nodes interact, the more reliably the distributed
computing tasks are achieved. In other wonds, the coupled
relation is used to quantify the reliability of a message-passing
based distributed environment, where the reliability lies be-
tween closely-coupled and looselycoupled with respect to
message passing rather than concwrrent processing. That is we
try to quantify the unreliability due to the deficiency of mes-
sage passing. A closelycoupled distributed environment,
where nodes communicate with each other through shared
memory, can be considered 100% reliable with respect to mes-
sage passing.

Two versions of coupled relation have been defined: i) as the
coefficient of statistical correlation between local
configurarion-bits and global configuration-bitz, and ii) as the
probabuity that local coafiguradoa-bits mawch global
configurarion-bits. There is 2 monotonically increasing rels-
ton between the coefficient of correlation and the probability.
We simply use the second version as our experimental coupled
relation on the simulstion. This means that the coupled rela-
tion specifies how precisely a node's local view predicts the
status of other nodes. If the coupled relation is equal to |, we
call it a closely coupled relation. In our RDE model, where the
difficulties of highly reliable delivery of messages are solved
by configuration exception coatrol, a higher coupled relaton
that more precisely predicts node starus will reduce the cost of
exception handling,

Many parameters like message armrival rate, node failure rate,
node recovery time, predicting algorithms and data missing
rate affect coupled relation; these are discussed in the section
on simulation.

An idealized RDE is a distributed environment with the fol-

lowing conditions:

¢ Closely-coupled relanion: This is the most swrong version of

close view discussed above. The relation exists in distributed

environments if all local configurarion-bits in active nodes are

consistent with the global configurarion-bits at any time when

message deliveries are initiated during the life-time of an en-

vironment. The closely-coupled relation makes loosely-
coupled distributed sysiems look like they share a portion of
memory, configurarion-bits, the major feawre of closely-
coupled distributed systems. This is the reason we call this the
closely-coupled relation.

¢ Immadiate effecr: Immediate effect guarantees that the status
of the related nodes remain unchanged during the transmission
of messages. This means that messages are received by the
destination nodes instantaneously with sending out the mes-
sages.

Idealized RDE guarantees 100% reliable delivery of messages.

It is impossible for idealized RDE to exist in a2 message pass-
ing system due to the nature of message passing: transmission
time is required. The goal of this paper is not to achieve ideal-
ized RDE but instead to build a framework for distributed sys-
tems based oa an architecture of highly reliable delivery plus
configuration exception control; these services are supported
in RDE. This framework makes it possible to achieve an al-
most idealized RDE.

2.3 Distributed Predicting Algorithms For Local
Views

A distributed predicting algorithm is used in RDE in order to
maintain local views. We present three algorithms:

1. Algorithm A: This is the simplest algorithm. Configuration
bits are updated in the following cases: i) When a new node
comes up, send out control packets "I am up” o all nodes, and
then wait for ACK within a timeout slice; this turns on the
configunation bits corresponding to the nodes which the ACKs
were received from, tuming the rest of the configuration bits
off. ii) When a sending function is invoked, send data packets
to the destination nodes and send control packets to all other
nodes, and wait for ACKs from all active nodes within the
timeout slice; turn off the coafiguration bits corresponding to




the nodes from which expected ACKs are not received and
turn on the configuration bits corresponding to the nodes from
which unexcepted ACKs are received (send out the data
packet to these nodes if necessary). iii) When a packet is
received, no matter whether it is a data packet or a control
packet, send back an ACK; if the configuration bit cor-
responding to the node that the packet is received from is off,
turn it on. It would be unnecessary to send control packets to
inactive nodes if the missing rate of packet transmission is
equal 0 zero, where no unexpected ACKs which respond to
control packets will possibly come back since all active nodes
are nodced when one node comes up.
2. Algorithm B: This algorithm is identical to algorithm A ex-
cept that the configuration bits is sent out with the packet to
actve nodes. Each receiving node compares its configuration
bits with those received, and then turns off its configuration
bits where an inconsistency occurs. The reason for turning off
the configuration bit instead of turning it on is because we as-
sume a reliable communicaton after k-retry/timeout is ap-
plied. A node changing from inactive to active can broadcast
a control packet, but a node changing from active to inactive
cannot broadcast any more. The small probability of missing
data ensures that almost all inconsistent bits which are on cor-
respond to inactive nodes.
3. Algorithm C: This algorithm is similar to algorithm B ex-
cept that the node which tumns the bits on when eventually
receiving unexpected ACKs or tumns the bits off when not
receiving expected ACKs within the timeout slice sends out its
configuration bits 0 all active nodes after updating. That is,
the first node which notices the failure of a node informs all
the other active nodes. An active node might receive a notice
of the failure of itself due to packets missing in ransmission.
The node has 10 immediately broadcast a message "1 am sull
alive!™ to correct the inconsisiency between local view and
global view.

3. Simulation

The purpose of the simulation is to obtain the coupled relation,
which indicates the reliability of message passing in a dis-
tnbuted environment based on our architecture. The perfor-
mance of distributed computing tasks depends heavily on the
coupled relation of the environment distributed compuung
tasks on a higher coupled relation environment incur lower ex-
ception handling costss. Clearly, coupied relauon 13 2 measure-
ment of the performance of distributed systems consuucted
with our model since we require some level of reliabulity ach-

ieved through exception handling. For dismbuted compuung
tasks running on a given distributed environment based on dif-
ferent parameters, we adjust the performance o the highest
end where any exception handling is incorporated, so the
reliabilities of distributed computing tasks are decreasing to
the lowest end which is the reliability of the distnbuted en-
vironment. The coupled relation is thus designed to quanufy
the naked reliability consistent with the nature of the message
passing.

3.1 Environmental Factors

The coupled relation is affected by some environmental fac-

tors:

1. Distributed predictng algorithms provide different degrees

of consistency between local views and the global view. The

more precisely distributed predicting algorithms can predict
cach node’s local view, the more reliable the environment

2. Node failure rate R, is the number of nodes that fail in 2
time unit. Since a failed node can not broadcast a message to
announce its failure, the node failure rate directly affects the
precision of view prediction.

3. Node recovery time is the interval from the time that a node
fails to the time it recovers. The reciprocal of node recovery
time is node recovery rate R, ..

4. Message arrival rate R, is the number of message passing
operations in a ime unit

5. Missing rate of data transmission is the probability that data
packets are missing or can not be delivered in a certain time
slice.

The simulation assumes a distributed computing task running
on cight nodes. Each node interacts only through broadcasting
messages. Three assumptions are made:

¢ Poisson amival rates for node failure, node recovery and
message broadcast

* No partition.

¢ No duplicate, missing or out of sequence data packets. The
missing rate of data ransmission is zero. Reliable transmus-
sion can be achieved by the mechanisms of k-retry/timeout
and sequence number.

Three parameters are used in the simulation as follows:

1. Predicting algorithms: algorithm A, B and C as descnbed

above.

2.Pu ™ :2. : the ratio of node recovery rate 1o message amnval
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3.2 The Behavior Of The Coupled Relation

Two sets of data were collected for each predicting algonthm,
one obtained by fixing p, and changing p,, the other by fixing
p.. and changing p,. Figure 3 presents the graphs for coupled
relation when p, is fixed and p, changes from 0.0 to 2.0.
Every curve in figure 3 has two phases. First, as p_ increases
from zero, the coupled relation decreases dramatically to a
minimum point. Second, as p, continues increasing, the
coupled relation increases smoothly.

Three things are helpful to understand this two-phase be-
havior: i) ,L is the number of messages broadcast during the

period of node failure, and every node broadcasting a message
can discover the fact of node failure and correct local views;
ii) one control message “I am up” is broadcast when a node
comes up to end the period of node failure, forcing all local
views (o be corrected if the data missing rate is zero — the end
of node failure period is a check point that guarantees the cor-
rectness of local views during the period that no node fails; iii)
the coupled relation is important and effective only when data
messages are broadcast

This is the way that the coupled relations were calculated in
the simulation: Assume PL is N and the number of broadcast-

ing nodes is M. For ease of explaining the two-phase behavior,
we pick the case of algorithm C. In the first phase that p_ i3
small (N >> 1), let us focus on the penod of node failure since
ali local views are correct during the period that no node fails.
Only the node broadcasting the first message suffers the incor-
rectness of its local view due to the node failure, and then
broadcasts a control message (o correct the local views of all
other nodes. All nodes that broadcast the following N-1 mes-
sages ke advanuge of comrect prediction of local views and
N-1 messages are delivered without exception. o descnibes the

degree of inconsisiency between local views and the global
view dunng the period of node failure. When N increases, the
degree of inconsistency decresses. The lower p_ indicates
higher coupled relation in this phase. In the second phase
where p_ is not small (N < 1), the effect of the conaol mes-
sage "[ am up” broadcast whea a node recovers from failure 13
significant, most likely causing the local views of all active
nodes 10 be corrected before any dawa is broadcast The inter-
val between two disunct broadcasts is larger than the interval
of node failure. The number of contol messages "1 am up” is

more than the number of data messages. The smaller N causes
the lower probability of incorrect local views. This results ina
high probability of safely delivered messages. The higher p_
has the higher coupled relation.

Coupled relations with the different distributed predicting ai-
gorithms drop at different rates. This can be explained with N
and M as mentioned above, when we focus on the penod of
node failure. For algorithm A, every node from M suffers the
incotrectness of its local view once, and only N-M messages
can be delivered without trouble; thus the probability of
having incorrect local views (that is, active configuration-bits
corresponding to inactive nodes) is 3 and the portion that the
environment predicts precisely is # For algorithm C, only
the first node from M suffers incorrect view prediction and the
following N-1 messages are delivered without troubles; thus
the probability of incorrect local views is ; and the portion of

precise prediction is L For algoritim B, the number of

nodes that suffer the incorrectness is between 1 and M, since
the local views of a subtet of nodes from M are corrected
through comparing the local configuraron-bits with remote
configurarion-bits in previous message broadcasts. The de-
gree of correctness of local views using algorithm B lies be-
tween that of using algorithms A and C. Generally speaking,
algorithm C is better than B and algorithm B is better than A
when the missing rate is zero.

Figure 4 presents the graphs for coupled relations where p_ is
fued and p, changes from 0.0 0 2.0. One phase is shown in
most curves ( p, is small): when p, increases from zero, the
coupled relation decreases. This behavior can be explained as
follows:

p, can be considered as the period of node failure, called
T e if we fix the period that no node fails to 1. During this
peniod, all local views are consistent with the global view un-
der the assumption that the missing rale is zero. All messages
sent during this period should be safely delivered if the im-
mediam effect is applied. Thtrpobability of incorrect local
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creases, the probability increases also. When the probability
of suffering incorrectness increases, the coupled relation
decreases. By comparing the two sets of graphs, we see that
the factor of p_, affects the coupled relation more than p, does.
Increasing p,_, has a much more significant effect on decreas-
ing the coupled relation than increasing p,.
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Figure 5 shows the differences among coupled relations based
on three algorithms. Algorithm C is clearly better than B, and
algorithm B is clearly better than A,

[f the assumption of zero missing rate is no longer kept, algo-
nthm C might not be the best because a node might receive
wrong information due to missing data, and then it broadcasts
the wrong information. For example, a link between node;
and node, is down for some reason. Node, broadcasts a mes-
sage. Clearly, it can not receive any responsé from node,.
Then node 1 assumes node, is down and broadcasts a message
“nodey is down” to all other nodes. Agan, node, cannot
receive this message and never has a chance to correct this er-
ror. All other nodes update their local views that node, is
down, even though the links berween node, and other nodes
are up.

4. View Section for Constructing Distributed
Computing Tasks

Qur view section model is a programming framework for con-
structing distributed computing tasks on top of RDE. View
secuons protect against changes to the imagined shared
memory, global view, in the same way that cnitical sections
protect against the change of real shared memory. Centain dif-
ferences exist: for critical section, shared vanables can be
locked against being further accessed until they are unlocked.
In contrast, the change of global view due to the failure of
nodes is totally out of control, so there is no way W prevent
the global view from changing. The philosophy is that a view
section, which defines a penod of ime and a sequence of in-
sgructions, is declared as a protecied section duning which the
global view is desired to remain the same. If the global view
does change during the protected section, a3 compensation
function, defined in the beganning of thg view section, is in-

voked by a notification generated from the underlying RDE.

A compensation function behaves a a special form of excep-
tion handler. The service supported by the underlying RDE is
configuration excepton handling as meanoned above.

Each section begins with the swawement,
Begin View Section, and may end with the sutement
End View Section, or end without the sawement
End View_Section. We call them close-type view section and
open-type view section respectively 0 distinguish the statc
characteristcs of programming saructure. In run time, a view
" section may end with the satement Ead_View_Section or end
in a given time slice. We call them code-bound view section
and time-bound view section respectively. An open-type view

view

section must be a time-bound view section, but a close-type
view section does not have to be a code-bound view secuon —
it may end with code or with time.

Open-Type View Section

vsec:=Begin_View_Secton(ngroup,mslice.cfunc)

Close-Type View Section
vsec:=Begin_View_Section(ngroup,mmslice.cfunc);

EI:Ad_V iew_Secuon(vsec);

The statement, Begin_View_Secrion, initializes a view section.
The first parameter ngroup specifies a set of participant nodes.
The second parameter tmslice is the maximum time peniod 1n
which the tasks executed in the view section are expected to
be accomplished. Programmers can set the time slice them-
selves, or use a time estimation function, provided by the un-
derlying RDE, to get the time slice. Alternatively, they can
leave the problem to RDE by setting DEFAULT. The third
parameter, cfunc, is an exception handler for when exceptions
arise during the view section. Because a computing task may
be involved in more than one view section at the same time,
vsec acts as a handle that uniquely identifies a particular view
section. The handle viec i3 very important when nested view
sections or overlapped view sections are allowed. For ex-
ample, an open-type view section can be inside a close-type
view section.

The statement, End_View _Section, is a function call which
ends the view section immediately. If the given ime penod is
consumed before the statement Ead_View_Secton is executed,

- -\ha view sggtion is forced to ead by implicidy invoking an

RDE procedure which checks the status of the distributed en-

-vsnmget and, if necessary, invokes the compensation func-
ton. Then the program continues to execute the current state-
msnt if the view section is open-type, or jumps to the next
statement of Ead_View_Secrion if close-type.

Another important statement is:
Updass_View_Section(vsec, malics, cfunc)

which reinitializes view section vsec and changes the tme
slice and the compensation function if necessary. If program-
mers do not want to change the parameters, they can set the
parameters 1o SAME. Parameter ngroup is unnecessary here.
This watement can also be used 0 end a view section if the
time slice is set w0 zero. The possible usage is that it is called
from the compensation function to end the view secuon, when

a faal exception arises.




One typical pattern of view secticn is
vsec:=Begin_View_Secuon(ngroup,mmslice.cfunc);
multcast(ngroup. message);
fortnode 1 in ngroup is acuve) receivet message);
End_View_Section(vsec);
Nested view sections and overlapped view sections are per-
mutted in our model.
Nested View Section
vsecl:=Begin_View_Section(group!.imel,funcuon!);
vsec:=Begin_View_Secton(group2,time2 function2);

End_View_Section(vsec2)
End_View_Section(vsecl),

Overlapped View Section

vsecl:-Begin_View_Section(groupl.timel,functionl);
vsec2:=Begin_View_Secuon(group2.time2.function);
End_View_Section(vsec!);
End_View_Section(vsec2);

Many problems arise due to the time slices, but these are out-
side the scope of this paper. In the next subsecuons, we give
two examples using view sections.

4.1 Example 1: Summation of Distributed Data

This example does not illustrate the feature of reliability when
using view section. [t illuszrates only how to use view section
on top of RDE. Example 2 will describe how reliability is ach-
ieved by using the view section model.

A system has N nodes which are each randomly active or in-
active. Each node has a variable X that changes in value from
ume to ume. A designated node executes a function that
returns the sum of the X values for all active nodes. The mul-
ucast functon is supported by RDE. Two functions are
presented below to solve the problem. One important assump-
uon is that we allow the glodal view to change during the
processing Gme in order W get the sum from the most recent
group of active nodes. The main function is Sum, which
broadcasts 2 message o all active nodes and then waits ©
receive the X value from each active node.

After it initalizes the array X, Sum begins a view section by
execunng the statement Begin_View_Section, which defines a
umeout slice, sume, and a compensauon function,
Check_Sum.  Then the Sum function multicasts a request o
al acuve nodes and waits for the X values from all acuve
nodes. It adds each received X value 10 S unul values have
been received from all ctive nodes. Remember the local view
mught be updated by the compensanon funciion dunng the
processing.

The compensation function, Check_Sum, will be invoxed as
an exception handler routine whenever the global view s
changed. Function Get_Exception_Node wiil return the node
whose status changed to cause the exception. Funcuon (n-
acuve will return que if the current stats of node nd is in-
active and function Active will return true if the status 1s ac-
uve. If the status of the exceptional node nd changes from ac-
tive o inactive, then it will i) subtract X's vaiue of node nd
from the sum ; ii) set X’s value of node nd to zero: 1) update
view section, which makes the following exceptions happen
based on new view, old timeout slice and old compensation
function. If the starus of the exceptional node (nd) changes
from inactive to active, it will i) send a request message to the
exceptional node; and ii) update the view section. which
makes the following exceptions arise based on the new view,
new timeout and old compensation function.
Procedure Sum;
begin
far(node nd in group) X(nd) = 0;
S:e0;
viec:=Begin_View Secti ime.Check_Sum);
multicast(group,”send back X value®);
for(node nd in group is active)
begin
receive(X);
S:aS+X;
X{nd] = X;
end;
End_View_Secton(viec);
Sum:e §;
end;

procadure Check _Sum;
begia
nd := Get_Exception_Node();
Y([lnactive(nd) « TRUE) thea
begim
S :e S - X(nd);
X(nd} :« 0
Updas View_Secuon(viec.SAME.SAME);
od
elxt f{Actve(nd) « TRUE) then
begm
send_w(nd." send dack X value®):
Updas_View_Section(vsecsume SAMEY);
od;
end;

4.2 Example 2: Reliable Resource Redistribution

A distributed environment has N+l nodes, nodeg, node,
-..nodey, which may be active or inactive. Nodey is the leader
which was previously elected by all the nodes. Each node has
several resources that might be allocated by 2 local process.
For node;, the set of available resources is R;. The leader,



node, invokes a task of resource redismribution upon a request
from another node that has consumed all its available
resources. The leader broadcasts a message to ask other nodes
to relinquish their available resources. After the leader
receives all relinquished resources, R +R,+...+Ry, it reassigns
resources so that the set of available resources for node i is Q;.
Then the leader sends Q,, Q,, ..., QN to node,, nodesy, ...,
nodey,, respectively.

The problem is that every node, including the leader, might
fail unexpectedly during the process of resource redistribution.
We do not want 1o lose or duplicate resources due to the
failure of regular nodes (i.e., not the leader). We also do not
want the leader to swallow resources due to the failure of the
leader; this might block or dramatically slow down the whole
system. We do not address the reassignment problem, but we
assume it takes time to complete this task.

The main function is Resource_Redistribution, which divides
into three blocks. In the first block, it inidalizes a view section
with compensation function Check_Total. [t multicasts a mes-
sage REQUEST to ask all nodes to give up and send back
their available resources R;s, and then waits for all resources
to be relinquished. After it receives the available resources
from all active nodes, it reinitializes the view section with
compensation function Check Fail and goes to the second
block. In the second block, it reassigns resources into Q;, and
sends the Q; to nodes. One important consideration is that the
leader has to ask nodes to lock the resources R; before they get
Q; back and if a node fails before genting Q;, it should consider
R; as the available resource when it recovers {rom failure.
This prevents the received resources from premature ailoca-
tion to local processes unal the leader makes sure that the
redistributed resources have been safely received by all nodes.
If node; fails during the second block, i) all resources which
were already distributed have to be cancelled; ii) the resources
received from node; in the first block have 10 be discarded s0
that node; can consider R; &3 its available resources after it
recovers from failure; iii) reassignment of resources has o be
done again and thea the leader redistributes the sets of
resources. The view section ends at the end of the second
block. In the third block, not inside the view section, it broad-
casts a message OK to unlock the resources. Message OK in-
dicates the leader knows all nodes have received the newly as-
signed resources Q.

Two compensation functions are used in the view section:
Check_Toal in the first biock and Check_Fail in the second

block. Check_Total is almost the same as the compensation
Check_Sum in the previous example “summation of dis-
tributed data” except that resources are used here. I[n the
second block, Check_Fail is the compensation function which,
when some node; fails, asks all the nodes that already received
resources Q to give them up, and restarts the second block
again. Function Set_Resume is used to jump gracefully to the
beginning of the second block, label REASSIGN. We don't
care about the case that nodes are restored from previous
failures, because it is oo late to reassign the resources for the
"coming up” node. It has to wait until the next round of
resource redistribudon.

From the view point of a regular node;, several rules are fol-
lowed:

1. Node; considers R; as its available resources in the follow-
ing cases:

¢ Node; does not receive Q; within a given time slice, after it
sends out R;. When timeout occurs, the leader is assumed to
have failed.

* Node; fails after it gives up R; and before it receives its
newly assigned resources Q;.

¢ Node; doesn’t receive an OK message from the leader within
a given time slice. The leader is assumed to have failed. The
OK message is sent out by the leader, when the leader makes
sure all nodes received newly assigned resources Q;, Q,, ...,
Qu.

This is to protect resources from being swallowed by leader, if
the leader node fails after it receives part or all of the
resources. '

2. Node; considers Q; as its available resources, if it receives
an OK message after it received Q, from the leader.

3.Node; considers R; and Q; as its possible available
resources, if it fails after it receives Q; and before it receives
an OK messags. A checking procedure, which checks
whether R or Q is its available resources will be invoked
when node; recovers from failure. That is the procedure: i)
node ; broedcasts a message to ask whether Q; is a valid
resource set or not, where we can use version number of Q; to
verify it; ii) if nodeg, which was the leader when node; failed,
says "no", it uses R, as its available resources: iii) if any node
says "yes", it uses Q; as its available resources; iv) otherwise,
it waits until a node comes up, and repeats the whole proce-
dure. This is %0 protect resources from been duplicated or lost
A stam diagram is presented to describe the behavior of
regular nodes.




procedure Resource_Redismbution;
begin
vsec:«Begin_View_Section(group,sime.Check _Total);
multicasy group.REQUEST);
for{node nd in group is active)
receive(R[nd]);
Update_View_Section(vsec,stime,Check_Fail);
REASSIGN:
reassign_resources(Qf));
forinode nd in group is active)
send_to(nd, Q(nd]);
End_View_Secton(vsec);
multicast(group, OK);
end;

procedure Check _Toual:
begin
nd := Get_Exception_Node();
f(Inactive(nd) « TRUE) then
Updaee View_Section(vsec.SAME.SAME):
else if(Acuve(nd) « TRUE) then
begin
send_wo(nd, REQUEST);
Updas_View_Secuon(vsec.stime.SAME);
end.
end;

procedure Check Fal;
begin
nd ;= Get_Exception_Node();
t(Inactve(nd) = TRUE) thea
begin
for(node nd 1o which Q{nd| has besn sent)
mulucas group. DISCARDY;
Updam View_Secton(viac SAME.SAME);
Set_Resume(REASSIGN);
end;
end;
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5. Related Work

Peterson’s conversarions!'! is another [PC abstraction that at-
tempts to achieve reliability in distmbuted computing by incor-
porating a notion of view. In a conversation, however, a view
is @ contexr graph giving the partial ordering of all past mes-
sages. As with our RDE, the global view is the truth and the
local view is what distributed nodes know about the wuth.
Distributed nodes sense the truth through message passing,
and the difference between the global view and a local view is
due to the unreliability of message passing. That is, a node
may not be aware of the entire context due to missing or out of
order messages, as well as node failures or network partitions.
Each message is passed with the entire context graph known
by the sender, 50 the receiver has the opportunity to update 1ts
own and/or the sender’s view of the truth with any messages
included in one but not the other.

Peterson’s conversations and our RDE have the following fea-
tures in common:

¢ Global view: There exists a global entity, the truth, which
might change from time to time. In the conversation [PC
abstraction, it is the context graph. In our model, it is global
configuration-bits.

¢ Local view: Every node has a view that represents its
knowledge about the global view. Local views are updated
incrementally through message passing and are rebuilt after
node failure or network partition. I[n conversations, it is par-
ticipant p's view of the context graph. In our model, it is local
configurarion-bits.

* Knowledge basis: Distributed nodes behave according to
their local views, and local views and operations are mutually
affectad. In conversations, the operations are the standard
send() and receive(). Our model also provides sendto() and
muiticasy().

Peterson attempts to achieve ordering of messages for group
communication, whereas we Uy (0 atwain safe delivery of
messages {or group communication. This difference in goals
cxplains the differences between views. The dynamic views
used In conversations preserve context information, while the
(concepeually) suatic views used in RDE preserve configura-
uon information. Conversations support ordered broadcast
while RDE protects against node failure.

Thus, conversations and our model are really complementary.
It would be nice 1o implement conversations on top of RDE,
using view sections w0 build the component of conversauons
that protects against node failure. This would solve centain



problems of conversations, such as nodes expecting an ac-
knowledge from a failed process and lack of reliable broad-
casts. [t would also be easy to use view sections to rebuild the
context graph when the system recovers from node failure or
network partition.

6. Conclusion

We propose a reliable distributed environment (RDE) among
large groups of nodes to ensure the reliability of complicated
communication patterns as virtual circuits are already applied
10 pairs of nodes to ensure the reliability of simple com-
municatdons. RDE serves as a basic communication environ-
ment to handle large scale and/or intelligent distributed sys-
tems. RDE provides reliable communication services and
configuration services which do not exist in traditional com-
munication environments.

We characterize the reliability of a distributed environment by
its coupled relarion, which is based on different predicting al-
gorithms, p_ and p,. Our simulation results clearly illustrate
how the coupled relation affects the performance of a dis-
ributed environment.

We have demonstrated the utility of our view section model by
our reliable resource redistribution example. We believe this
model, which supports a high level of abstraction for handling
low level environmental changes, will prove o be a good pro-
gramming framework for comstructing reliable distnbuted
computing tasks.

We expect our network architecture, with view section as the
top layer, RDE in the middle and datagram communication on
the bottom, to become increasingly imporunt due to the
movement towards large scale distributed systems and intel-
ligent distnbuted systems.
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Abstract

Programmers generally want to be sure that the systems they are building are
consistent, both with respect to source code versions used, and with respect to type
safety. Most modern high-level language systems enforce this consistency upon the
system instances they build. However, in a large system this can lead to very large
recompilation costs after small changes. Therefore, programmers often circumvent
enforcement mechanisms in order to get their jobs done. The CONMAN configuration
management project explores the premise that some degree of inconsistency is inevitable
in software object bases, and that programming tools should be designed to analyze and
accomodate it, rather than to abhor it. The CONMAN programming environment will
help the programmer contend with inconsistency by automatically identifying and
tracking six distinct kinds of inconsistencies, without requiring that they be removed; by
reducing the cost of restoring type safety after a change, through a technique called
smarter recompilation; and by supplying the debugger and testing tools with
inconsistency information, so that they can protect the programmer from flaws in the
code.




1. Introduction

Every programmer remembers wasting large amounts of time looking for a bug caused
by changing and recompiling one source file and failing to recompile a related file. This
kind of problem has made the Unix™ rmake tool [3] very popular; when invoked after a

change to a source file, make rebuilds every file derived (directly or indirectly) from the

changed file.

Programmers generally want to ensure that the systems they are building are
consistent. For example, they want to know that the object code they are running was
built from the exact source code they are looking at, rather than from some previous
version of the source code. They also want to ensure that the executable program is
type safe; that is, that it satisfies the type rules of the programming language. Most
modern high-level language systems enforce this consistency upon the system instances
they build. In a large system, however, this can lead to very large recompilation costs
even after small changes. Therefore, programmers often circumvent enforcement

mechanisms in order to get their jobs done.

This practice is not only commonplace; it is commendable! The programmer can do it
successfully by using design knowledge to decide which inconsistencies are harmless and
which are dangerous. Allowing inconsistency can speed up the edit-compile-debug cycle,
and can also reduce the coordination needed between programmers. Both benefits

improve productivity dramatically.

The CONMAN configuration management project is exploring the premise that some
degree of inconsistency is inevitable in software databases, and that programming tools

should be designed

to analyze and accomodate it, rather than to abhor it. The CONMAN programming

environment helps the programmer contend with inconsistency by:

e Automatically identifying and tracking inconsistencies: CONMAN classifies
each inconsistency into one of six categories, and tracks it for the
programmer, without requiring her to remove it right away.



[}

¢ Reducing the cost of type safety: CONMAN's type safety is based on a
constraint called link consistency, which is less stringent than in
conventional systems. This permits use of a technique called smarter
recomptlation to reduce the cost of restoring type safety after a change [15].

e Supporting debugging and testing: The debugger automatically stops
execution upon reaching inconsistent code, thus helping to prevent crashes.
The test coverage analyzer tells the programmer which tests can be executed
in <the presence of an inconsistency.

This paper begins by presenting several scenarios in which allowing inconsistency is
more cost-effective than removing it. Then it describes the six kinds of consistency that
CONMAN recognizes automatically. Next, it explains how smarter recompilation uses
link consistency to decide which modules really must be recompiled after a source code
change. Finally, it describes how the CONMAN programming environment uses

consistency analysis to help the programmer build, debug and test inconsistent systems.

2. Beneficial Inconsistency

Inconsistency is commonplace in software project libraries. A project library typically
contains many system configurations, where each configuration might contain
requirements, specifications, code, test data and documentation. Informally, a project
library is inconsistent if it contains direct contradictions. For example, if a global data
type is somehow defined differently in different parts of a configuration, this constitutes
a contradiction (because most languages permit only one definition of each global
identifier). On the other hand, two distinct system configurations may define the type

differently, and that would not be a contradiction.

Inconsistency is likely to occur when permitting it is more cost effective than
forbidding it. For example:
o Debugging and testing under deadline pressure. On fixing a bug, the
programmer should recompile the minimum amount of code necessary to

continue testing. She can wait to recompile the rest of the system until she
goes home for the night.

o Debugging an incomplete implementation. In a language such as Ada(R),




with specifications separated from package bodies, an early version of a
package body might not contain all of the procedures. The programmer
should not be distracted from her creative task by the tedium of writing
stubs. (Wolf studies this form of incompleteness [18].)

e Changing requirements after implementation is under way. When
requirements change, it may be easier to start by combining the new
requirements with the old implementation -- even though they contradict

each other -- rather than keeping them in separate system configurations
until they agree.

¢ Handling "software rot". Sometimes a bug fix introduces new bugs. Until
the new bugs are resolved, debugging may be easier if some parts of the
system use the old version of the code, while others use the new version.

o Large teams debugging related changes. During large system maintenance, a
single change request often involves several modules and the interfaces
between them. Each team member would debug her changes independently,
before integrating them with the work of others. To do so she should build
an executable system instance with whatever versions of others’ modules she
deems appropriate, even if some of them still use obsolete, incompatible
interface specifications.

This last example, when elaborated, provides many clues as to how a programming
environment should support programming with inconsistency. Consider a typical

operating system maintenance project, having [5]

e 1,000,000 lines of source code,
e 300 programmers,
e a new release about once per year,

e 300,000 lines of new or changed code per release,

Suppose there were one bug for every 30 lines of changed code, the syntax is correct but

before any debugging or testing. That would add up to about 10,000 bugs per release.

Many module changes include modified interfaces. Suppose that each programmer has
been assigned to modify a different module. Because tasks progress at different rates,

and because some tasks must be redone, several new versions of each module will be



produced. Each programmer is responsible for debugging and testing her own code as
well as she can before releasing it to others. To do so, she selects the versions of other
modules that she thinks will work best with her module. However, the ones she wants
to use may not be ready yet. She might choose not to simulate them with a test
harness, because test harnesses are often too expensive for early debugging and unit
testing. They must be updated whenever the interface changes, which requires both
manpower and calendar time. Therefore, programmers often build inconsistent
configurations of the real system to use for debugging. In fact, large projects often
assign their best analysts to figure out workable, albeit inconsistent, configurations for

debugging and testing.

To build, debug and test inconsistent systems, programmers need tools that
e Identify and evaluate the severity of inconsistencies.
e Display the inconsistency information in a useful way, such as by
incorporating it in a browser or by using it to compare several alternative

module versions, none of which is completely compatible with the rest of the
system.

o Protect the programmer from system crashes due to known inconsistencies,
by placing firewalls around dangerous code.

3. Kinds of Consistency

CONMAN formalizes the concept of inconsistency by defining six distinct kinds of

consistency, to use for classifying inconsistencies it discovers in programs.

We use the term system instance to mean an executable representation of a program,
typically created by compiling numerous separate program units and linking them
together. We assume that the programming language specifies some form of static type
checking, and that the programming environment provides a way of uniquely
identifying versions of both source code files and derived files (such as object code files).

The six kinds of consistency are:

o Full consistency: A system instance satisfies the rules that the programming
language specifies for legal programs, insofar as they can be checked prior to




execution. It also must be version consistent, as defined below.

e Type consistency. The system instance satisfies the static type checking
rules of the programming language.

e Version consistency. The system instance is built using exactly one version
of each logical source code file.

o Derivation consistency. The system instance is operationally equivalent to

some version consistent system instance (which need not have actually been
built).

o Link consistency. Each compilation unit is free of static type errors, and
each symbolic reference between compilation units is type safe according to
the rules of the programming language.

e Reachable consistency. All code and data that could be accessed or executed
by invoking the system through one of its entry points are type safe.

The definitions above have the following partial ordering:

/ version —derivation
full \ link —— > reachable
\ ype /

3.1. Full Consistency

The strongest form of consistency is full consistency. The definition tries to capture
the ideal world. For example, a system written in Ada is consistent when it is built
with exactly one version of each compilation unit, and the units have all been compiled

without error in an order compatible with the inter-package dependencies, and then
linked.

3.2. Type Consistency

Type consistency depends only on those language rules that deal with the types of
identifiers. Operationally, a system instance is type consistent if the compiler reports no
type errors for any separately compiled component, and if each identifier whose scope

spans more than one compilation unit has the same type in every such unit. (For the C




language, the rules checked by the Unix /int tool [6] define type consistency across

boundaries of separately-compiled modules.)

3.3. Version Consistency
Version consistency is the system property enforced by Unix make. For example, if a
system written in C contains a source file named "symtab.h", then make ensures that

all files that include it (incorporate its text) are compiled with the latest version.

Version consistency is also important because it provides a practical means of ensuring
(or circumventing!) type consistency. Many language systems implement type checking
across separately compiled modules by using a file of definitions, called an "include
file", to define the types of the identifiers exported from a compilation unit. If the
same version of the include file is used to compile the exporting module and every
importing module, then the exported identifiers will have the same type throughout
their scopes. Conversely, one can trick a compiler into generating code for a module
that is not type consistent with other modules, by using different versions of the include

file when compiling different modules.

The definition of version consistency includes the word "logical" to cover a special
class of systems in which two or more versions of a module are included by design. For
example, a test configuration might be created to compare the behavior of two versions
of a module. Its system construction model (cf. DSEE [9], Cedar [8]) would treat the
two versions as separate logical entities during compilation and linking. A version
consistent instance of this system could still use two different versions of the module,

because the versions would implement two different logical modules.

3.4. Derivation Consistency

Derivation consistency includes the class of systems that one can build by foregoing
unnecessary recompilations, and then use as if they were version consistent. For
example, when a type is changed in an include file, only the modules that use the
changed type need to be recompiled. Other modules that include the changed file, but

do not use the type that was changed, need not be recompiled. Linking the object




modules together produces a system that is equivalent to one where all modules were

recompiled to use the new version of the changed include file.

3.5. Link Consistency

Link consistency is weaker than type consistency, because it enforces type safety
pairwise between compilation units, rather than requiring types to be defined and used
consistently system-wide. Nonetheless, this definition is sufficient to support debugging,
because the actual executable code is all type safe according to the rules of the
language. If each object module is internally type safe, and every data path between
modules is type safe, then there is no place in the system where machine code that

expects data of one type can operate on data of some other type.

Link consistency can be achieved without type consistency by using different versions
of include files with different compilation units. Two units need to use equivalent
versions of an included definition only if the link-time interface between them is

affected (directly or indirectly) by that definition.

Link consistency describes some situations where a widely-used definition has been
changed, but only some of the places where it is used have been rewritten to
accomodate the change. Consider a system in which one module defines the type
linked list, and two other subsystems each use linked lists internally, but do not pass

linked lists between subsystems. This example is depicted in figure 3-1.

Suppose it is decided to change the implementation from singly-linked lists to doubly-
linked lists, to enable sequencing in both directions. The programmer would like to try
out the doubly-linked implementation in a limited context, before rewriting all of the
places it is used. If she rewrites and recompiles the linked list module and just one of
the subsystems that uses it, the system instance will be link consistent (because every
module and every link is type safe), but not type consistent (because some modules were
compiled with the singly-linked implementation, and some with the doubly-linked
implementation). Assuming that the list representation is directly manipulated by the

subsystems that use it (to increase efficiency), the programmer cannot compile the
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Figure 3-1: Clusters That Use a Type Independently

second subsystem with the doubly-linked implementation until she rewrites it.
Recompiling without rewriting would give lots of error messages, and probably no

object code.

Such independent uses of a global type are consistent with sound design principles. A
large system is frequently layered into levels, where each level uses services provided by

the levels below it, and provides services to the levels above it. In a system that




provides a broad range of end-user services, it is not unusual for the middle layers of
the system to contain several subsystems that do not call each other at all. In that

situation a service type defined by a lower level could be used independently by the

subsystems at the next level.

Besides global types, several other language constructs permit multiple coexisting
definitions without sacrificing link consistency. For example, Ada’s inline procedures
and generics both cause a definition to be instantiated separately at each place where it
is used. Usually, separate instances of a generic package are treated as unrelated at run
time, even though they were derived from a common definition. (Of course, Ada's rules

currently forbid version inconsistency.)

3.8. Reachable Consistency
Reachable consistency is useful during development when service routines are written
before the external interfaces that use them are ready. Any type errors in unused

routines can not interfere with debugging the code that is reachable.

3.7. Automatic Checking

CONMAN checks all six kinds of consistency automatically. Version consistency is
checked by straightforward configuration management methods. Type consistency and
derivation consistency are checked by the methods used in smart recompilation [17].
(Full consistency simply means version consistency and no compilation errors.) Link
consistency is checked by a simple method described in the next section. Reachability is
checked by incremental, interprocedural data flow analysis, recently made efficient by

Ryder and Carroll [14].

4. Reducing the Cost of Consistency
The Unix make tool restores version consistency by rederiving any output files that
are older than the current versions of the input files from which they are supposed to be

built. This can cause many recompilations after only a small change.

Toolpack [12] and smart recompilation reduce the cost of restoring consistency by
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restoring only derivation consistency. Both systems maintain a single, consistent
version list of the "latest versions" of each file. They reduce recompilation costs by not
rederiving a file when the existing derived file is operationally equivalent to what would

be created by rederiving it with the new source file versions.

Toolpack defines "operationally equivalent" to mean "identical contents"; it permits
certain attributes such as timestamps to be different. Toolpack uses the same "older
than" rule as make to trigger recompilation, but avoids some processing steps by
noticing when a certain step produces an output file with contents identical to the one
it is replacing. This means that using the new output file in a subsequent translation
step would be equivalent to using the old version, so the next step is avoided unless

other inputs have changed.

Smart recompilation determines equivalence by extracting, from the inputs to a
compilation, the set of declarations that actually affect the output files; two output files
are equivalent if they are derived from equivalent extracted inputs. (The output files
are also allowed to include unused code that differs.) Smart recompilation preprocesses
each changed file to identify the declarations that have changed in it. The method then

recompiles only the files that actually contain or use the changed declarations.

Smart recompilation succeeds because it performs only local semantic analysis, which
it can do cheaply. Local semantic analysis examines each source file in isolation. Any
identifiers occurring free in that file are assumed to be declared in some compatible
way; they are typically bound by include statements to other files. The analysis
produces a dependency file listing the identifiers exported by that file, and the free
identifiers on which they depend. The details of smart recompilation are thoroughly

explained in [17].
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4.1. Checking Link Consistency

To simplify the following sections, we limit our discussion to a simple Pascal
programming system, such as provided by the Berkeley Pascal compiler running on
Berkeley Unix 4.2. This environment provides a version of Pascal that has been
augmented with a separate compilation facility. Procedure headers can be separated
from procedure bodies. Typically, the interface to a module is placed in a separate
"include" file, which is included in the module that provides the interface and in every
module that uses the interface. In the remainder of this paper, we use the term
"module" to refer to a normal compilation unit, and "file" to refer to a module or an
include file. Our discussion does not cover overloading nor identifiers that are moved
between modules during a change. These extensions can be handled analogously to the

way smart recompilation handles them.

Link consistency is defined on links between object modules. A link is a
(definition, use) pair consisting of an identifier declared global in the object module that
defines it, and ezternal in the object module that uses it. A link is consistent if the
definition and the use were compiled using equivalent declarations of the identifier’s
type. For example, if a procedure P with one parameter of type T is exported by one
module and imported by another, then the two modules must agree that P has only one

parameter, that its type is T, and that T’s type is equivalent in both modules.

To check link consistency, we first identify the source code constructs that produce
global and external references. Then, we use preprocessing methods derived from smart

recompilation to analyze dependencies involving these constructs.

The only two kinds of object module links in Pascal are variables and procedures.
Where Pascal programs define enumerations, records, constants, etc., the compiler
translates them directly into object code, without leaving any links to external
identifiers. We know, therefore, that a link exists only where a procedure or variable is

exported from one module and imported by another.

To check link consistency, we augment the smart recompilation preprocessor in two




ways:

e We divide dependencies into interface dependencies and implementation
dependencies. For example,
extern
procedure P(a:T);
var b:V;

This procedure has an interface dependency on type T, and an
implementation dependency on type V.

e For each exported procedure and variable, we record its type signature, in
which bound type names are replaced by their definitions, but free type
names are treated as primitive. For example,

(1mport type R)
type Q 1s 1integer;
type T 1s record

a: Q.

b: R

end

extern var v: T;

In this case, v's type signature would be record(integer,R). (This kind of
type signature defines type safety by structural equivalence. It can be easily
modified to use name equivalence instead.)

To test whether a link is consistent, we compare the versions of the identifiers that

affect the definition site and the use site. We do so in the following steps:

1. Determine which source file versions to associate with the definition site, and
which to associate with the use site. These can either be the files that were
actually used, or files that are proposed to be used.

2. For both the definition and use sites, locate the source file version that
defines the identifier’'s type.

3. Compare the two definitions for equivalence, as follows:

a. If the version numbers are different, compare the type signatures. If
they are different, the definitions are not equivalent.

b. For each free identifier in the type signature, compare its two
definitions (in the "definition site" versions and the "use site"
versions) for equivalence, using this same algorithm recursively.
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c. If all the free identifiers in the type signature are equivalent. the
definitions are equivalent.

4. (The results of every comparison should be saved for re-use should the type
appear again elsewhere in the signature, or in the signature of another link
between the same pair of modules.)

4.2. Smarter Recompilation

Smarter recompilation works by finding clusters of modules that must agree on certain
identifier definitions in order to be link consistent. Specifically, clusters are defined
with respect to a specific set of global identifiers. Two modules are in the same cluster
if and only if they are connected by a link that depends on any of those identifiers.
(Modules whose interfaces don't depend on the identifiers at all are not placed in any
cluster.) Smarter recompilation saves processing time and programming time whenever
a system contains two or more clusters with respect to a set of changed identifiers. The
method reduces to smart recompilation when this definition causes all modules to be in
the same cluster. It starts with the files that have changed, and at least one module
that must be recompiled to test the changes. It then "grows™ a cluster of modules that
are transitively connected to the starting module via links affected by the changes.
These are the other modules that must be recompiled. The algorithm proceeds as

follows:

1. Begin with a previous system instance, all relevant source file versions, and
the results of preprocessing each of the source files. These results are
collected in a data structure that indexes all links, so that it is easy to find
which links to check when deciding to recompile a module. The data
structure is updated incrementally each time the system instance is modified.

(8

. Ask the programmer to select a set of file versions she wishes to debug or
test. There can be at most one version of each logical module in the system,
but the programmer need not choose versions of modules she does not care
about.

3. Use smart recompilation to select a set of build candidates. Smart
recompilation requires there to be a set of "new" file versions and a set of
"old" file versions. For this purpose, the versions chosen by the
programmer are the new ones, and any conflicting versions are the old ones.




14

4, Ask the programmer to select an initial build set from the candidates. These
modules define the context in which she wants to debug or test her change.
5. For each new member of the build set,

a. Determine which versions of the source files will be included when it is
recompiled. Use heuristics to select versions that the user left
unspecified, such as "latest", "whatever was used before", or
"whatever has already been used in the build set".

b. If the module's source code has changed, update the link index to
reflect any changes.

c. Using the proposed version bindings, check the consistency of each link
between the new member and other modules.

d. Augment the build set with any candidates that have become link-
inconsistent with it.

The total time to check consistency is proportional to B *I * T, where B is the size
of the build set, I is the average number of identifiers imported and exported from a
module, and T is the average number of identifiers that must be tested for equivalence

in the course of validating a link.

Smarter recompilation can be generalized to more complicated translation tools, and
additional kinds of derived files. For example, consider a system written in Ada. The
Ada compiler would generate interface files (.int files, containing compiled
specifications) and object code files (.ob] files, containing package bodies); the compiler
would read in interface files when compiling modules that depended on them. Suppose
main subprogram X depends on package specifications Y and Z, and package
specification Y depends on Z. Compiling X requires a consistency check between Y
and Z, to ensure that Y was compiled with a compatible version of Z. This processing

model is diagrammed in figure 4-1.

In this situation, the concept of "link" generalizes to "name binding". Each
compilation step resolves free names in some of its inputs by binding them to definitions

exported by other inputs. Since any exported definition could be involved in a binding,
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Figure 4-1: Compiling a2 Small Ada Program With Transitive Dependencies

the preprocessor would keep type signatures for all exported identifiers. Because the
inputs to a compilation step are sometimes produced by other compilation steps, there
can be version conflicts between inputs to compiles as well as to the link step. The
consistency checking algorithm must be augmented to account for such complications in

the version selection lists.

Smarter recompilation can be generalized furthér, to a broad class of translators and
derived files, including program generators (such as Unix utilities lez and yace), and
distributed execution environments. "Compilation" generalizes to any translation step
that produces an identifier definition or use based on input definitions and uses. For
each "source code" language in the system, one would look for the kinds of identifier
declarations that translate into unresolved references in derived files. For each such
kind of identifier, a preprocessor would perform local semantic analysis to determine the
equivalent of a type signature. Then, each tool that performs name binding can be
preceded by an analysis step that uses version lists and type signatures to identify link

inconsistencies.

In summary, smarter recompilation reduces the cost of restoring consistency by
enforcing only link consistency, rather than derivation consistency. It interacts with the
programmer to choose versions relevant to the current task, then performs the least
number of compilations necessary to construct a system instance that is link-consistent

with those choices.
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5. An Environment for Programming with Inconsistency

CONMAN is a programming environment that helps the programmer interactively
construct and debug inconsistent systems. The systems may contain different kinds of
inconsistency in different places. The environment consists of an object base and a set
of tools, consisting of a browser, a compiler, consistency analyzers, an incremental
linker, a flow analyzer, a debugger, a test coverage analyzer, and an automated
maintainer’s assistant. Each is based on available technology, modified to handle

inconsistent systems.

The object base is an integrated database of software artifacts [11, 1]. Each file is
stored as an object, together with attributes and relations that represent its
relationships to other parts of the system. The objects belong to a class hierarchy, with
multiple inheritance. Tools in the system can be classified as either foreign tools or
native tools. Foreign tools have no knowledge of the environment; they exchange data
with the environment through an envelope that sets up an execution environment, calls
the tool, and collects its results. Native tools can use the object base directly, such as
to store dependencies between source files or to analyze inconsistencies in a desired

system instance.

The compiler and linker are augmented with preprocessors to collect type signatures,

which the analyzers then use to detect inconsistencies.

The browser helps the programmer construct a description to build. (We call this
description a BCT for compatibility with the Domain Software Engineering
Environment's (DSEE’'s) Bound Configuration Thread [8].) A structure editor is a
promising type of browser for this application. Through it, the programmer can not
only construct the BCT itself, but can also examine its connections with the rest of the

object base.

The programmer starts by examining the BCT for some previous system build. The
editor presents her with all the new module versions that have been created since the

last system build, and asks her which ones she would like to use. The programmer
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assigns new version bindings to the derived objects she wants rebuilt. As the
programmer makes the version choices, the editor highlights version inconsistencies and
schedules background tasks to classify them further. Zooming shows details of an
inconsistency, including its severity and the specific identifiers involved. The

programmer can respond to an inconsistency by:

e Selecting modules to recompile.
e Choosing different source versions.

e Substituting previously compiled object files from the derived object pool
(cf. DSEE).

e Approving the inconsistency.

As each part of the BCT is approved, its derivation begins. Any warning or error

messages that result are presented to the programmer, who can further modify the BCT

if she wishes.

The linker and debugger cooperate to protect the programmer from link
inconsistencies. The linker inserts a debugger hook at each inconsistent link, so that
execution will stop before the code that uses the link is executed. The debugger then
permits the programmer to either move the program counter to a safer place, or

continue execution at her own risk.

The BCT description language allows the programmer to permit two versions of an
object module to coexist. The linker supports this by accepting multiple definitions of

global identifiers, and linking each use to the definition with the correct type.

The test coverage analyzer produces a database for each test indicating the code it
covers. On request, it compares this data to the link inconsistencies in a system

instance, and tells the programmer which tests are safe and which are not.

The maintainer’s assistant is facility for automating mundane programming tasks in a

controlled way, called opportunistic processing. Whenever a programmer makes a
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manual change to a source file, it schedules appropriate analysis and compilation tools
to run in background, as resources permit. [t monitors the costs of compilation and
linking, and uses them to estimate the costs of rebuilding after a change. This
information is fed back to the user through the browser. The analyzer performs the
consistency analysis in background, so that the information is ready when the
programmer is ready to edit her BCT. It also maintains an agenda of modules needing

rewriting due to changed interfaces.

This combination of tools helps the programmer keep track of inconsistencies, analyze
their severity, estimate the cost of recompiling to remove them, and helps select test
cases that avoid them. It also protects the programmer from inadvertently executing

inconsistent code, while still allowing her to do so if she insists.

8. Implementation

Smarter recompilation has been implemented for the C language, as a Master’s thesis
at Columbia University [10]. It was constructed by making source code modifications to
the portable C compiler and make. The prototype successfully handles such details as
macros, structs, unions, and even bit field sizes and anonymous struct fields. Although

it has not been tested on large systems, it demonstrates that the cost of adding the

functionality to existing tools is reasonable.

The CONMAN programming environment is being assembled from a collection of other
systems being developed and/or used at Siemens RTL. The object base and controlled
automation system are being designed in conjunction with the Marvel project [7]. The
browser is being implemented with the DOSE structure editor prototyping system [2].
The system modeling language draws ideas from both DSEE and Cedar, but adds
facilities for conveniently naming and manipulating derived objects, and for mapping
source-language dependencies into build step input-output dependencies. For example,
a system model could declare that one source file called procedures in another source
file; the system builder would automatically link the second file into system instances

that used the first. The debugger will be the Sun Unix dbztool (18], which will be
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primed with a set of breakpoint commands generated by the linker. Test coverage tools
and methods will be drawn from the Asset project [13, 4]. Reachability analysis will be

based on Ryder’s methods, in a future version of the system.

7. Conclusions

Inconsistency is commonplace in real software projects. It is permitted to remain

because it is often more cost-effective than consistency.

Automatically recognizing several gradations of consistency permits the programmer
to choose the level appropriate to her task. Better tools can reduce the cost of restoring
consistency, but not the cost of rewriting all the code affected by a change. Smarter
recompilation permits derivation inconsistency without sacrificing run-time type safety,
and thereby permits some rewriting to be deferred, reducing the length of the edit-
compile-debug cycle and reducing the amount of synchronization needed between

programmers.

The CONMAN configuration management project is developing a programming
environment that helps a programmer to select different degrees of consistency in
different parts of her system. The tools will recognize and keep track of inconsistencies
for her, and place firewalls around them during debugging, but will not force her to
remove them. By this approach, CONMAN will help the programmer live with

inconsistency.
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Abstract

Very large software systems tend to be long-lived and continuously evolving. Purely managerial means
for handling change are often adequate for small systems, but must be augmented by technological
mechanisms for very large systems simply because no one person can understand all the interactions
among modules. Many software development environments solve part of the problem, but most consider
change only as an external process that produces new versions. In contrast, INFUSE concentrates on the
actual change process and provides facilities for propagating changes that affect other modules. INFUSE
structures the set of modules involved in a change into a hierarchy of experimental databases, where each
experimental database isolates a collection of modules from the changes made to other modules and the
hierarchy controls the integration of changes made to separate subsystems. The focus of this paper is on
the clustering algorithm that automatically generates and maintains this hierarchy according to the
strengths of interdependencies among modules as they are added and modified during development and
maintenance.
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1. Introduction

A Very Large Software System (VLSS) is composed of a large number of interdependent modules that
typically undergo numerous changes during their lifetime. By module, we mean a separately compilable
syntactic unit, such as an Ada™ package, a Modula-2 module or a C source file. As such modules
change, they often diverge from their specifications and the number of interface errors grows [12].
Change management tools are needed to coordinate programmers as they modify their modules, o
propagate interface changes to dependent modules, and to enforce cooperation among programmers
towards their goal of preventing interface errors. We describe a new algorithm that provides the basis for
the INFUSE change management facility.

The change process in VLSS is considerably more complex than for small systems. For instance, deter-
mining the exzent of a change (what is affected by the change) and its implications (what is necessary for
restoring consistency after the change) is complicated by the sheer number of the interdependencies
among pieces of the system. Moreover, an apparently simple change can easily cascade in unpredictable
ways, requiring several rounds of changes for restoring consistency. Other problems such as the handling
of temporary inconsistencies or the support of the itcrative process of propagating changes become much
more complex as the size of the system increases. INFUSE handles all these problems for syntactic
consistency, that is, those inconsistencies that can be detected by a standard compiler; we are inves-
tigating extending INFUSE to semantic inconsistencies [14].

Several other tools have addressed simple cases of these problems. Make [3] automates recompilation of
all dependent modules after source changes; it determines the extent of changes, and restores consistency
by recompiling everything which might be affected, thus the first and fifth problems are solved in a rough
way. Cedar’'s System Modeller [9) and Apollo’s Domain Softiware Engineering Environment [10]
(DSEE™) give programmers more control over dependencies among distinct versions of modules, but
provide little more help than Make with respect to coordination and cooperation. None of these tools
directly monitor the change process: DSEE permits each programmer to set up his own monitors to carry
out specified actions whenever certain events occur, such as adding a new version to the baseline system.
In contrast, INFUSE does not wait for deposit into the baseline system to perform its actions.

The NuMIL prototype [11] and Smile {6] are both much closer to INFUSE. The NuMIL prototype deter-
mines the impact of alterations based upon upward compatibility but provides analysis rather than control
of the change process. Smile introduced the notion of an experimental database, which is a (virtual) copy
of the baseline system that permits changes only to the subset of the system reserved by the user, isolating
these changes from other programmers. INFUSE extends the notion of experimental database to a
multiple-level hierarchy, and, unlike Smile, gathers automatically the modules into databases. '

Previous papers on INFUSE have outlined its basic philosophy and discussed its automatic application of
consistency-checking tools (15, 7). In this paper, we briefly explain the INFUSE methodology and
describe its use of a hierarchy of experimental databases for controlling and coordinating changes. We
then present the algorithm INFUSE uses to automatically build and maintain this hierarchy.

2. The Hierarchy of Experimental Databases

INFUSE places all the modules involved in the change process in a distinguished experimental database:
the top level database. This change set is normally chosen manually by a system analyst to atempt to
satisfy the particular group of modification requests (MRs) appropriate for the next patch or release.
Since the more numerous the modules in the change set, the more difficult the determination of the
implications and the extent of changes, the top level experimental database is divided into several subsets
that are themselves experimental databases. The implications and extent of changes in these smaller




databases are easier to determine than in the top level one. By iteratively dividing the experimental
databases into smaller and smaller databases, INFUSE limits the interactions that the programmers must
cope with at one time. The hierarchy of experimental databases is the result of this division. The root of
the hierarchy is the top level database, and each hierarchy level, from coarse to fine, is a partition of the
original experimental database; a leaf contains a single module (see figure 1).

top-level database

singleton databases

1. A hierarchy of experimental databases

The actual changes are made by editing the modules within their singleton databases. Once a singleton
database is self-consistent it can be deposited into its parent database. An analysis tool is applied to -
determine this self-consistency: everything both defined and used within the module is used correctly
with respect to its definition and everything used but not defined within the module is always used in a
compatible manner. Once a singleton database is deposited, INFUSE coordinates and manages the itera-
tion of changes by applying the following process recursively on every experimental database from the
singletons to the top level (not included):

e When all child databases have been deposited into their parent, INFUSE invokes an analysis tool for
performing change propagations within this parent database and checking the consistency among its
subset of the changed modules. An analysis tool such as Lint {5] can be applied to the modules
after all changes are made, or errors can be detected incrementally as by Mercury (8].

o If the database is self-consistent, then it can be deposited into its own parent database.

» If not, the local inconsistencies are detected and reported to the responsible programmers, who then
negotiate and agree on new modifications for resolving the conflicts. The database, or only the part
of it requiring further changes, is repartitioned into a subtree, and the singleton databases of that
subtree are modified. The process above is reapplied to these experimental databases until the
problematic database becomes self-consistent and can be deposited into its parent database.

Finally, when all descendants have been deposited into the top level and it is both self-consistent and
consistent with the modules of the baseline system that do not appear in the top level, the top level is itself
merged back into the baseline.

The goal of this process is to support a widely accepted rule-of-thumb of software engineering: errors
discovered early are much less cosdy to repair than those discovered late. The purpose of the hierarchy is
to cluster together at the low levels those collections of modules where changes are most likely to lead to
interface errors, ensuring early detection, and those collections of modules where the changes are unlikely
to affect each other are not brought together until the high levels of the hierarchy.

Thus we need a measure for gathering collections of modules where changes are more or less likely to
lead 10 interface errors. Our measure is the interconnection strength among pairs of modules, an ap-
proximation to the oracle that would tell us exactly how the future changes will effect other modules. Our
approximation is based on the intuition that the probability of an interface error between modules M and




N is proportional to k, where module M uses i facilities imported from N, N uses j facilities from M, and
k is the sum of i and j.

Consider three modules, A, B and C, importing and exporting items between each other, where an item is
an importable syntactic unit of the programming language such as a procedure, a data type, etc. Since B
and C are more strongly connected to each other than to A (see figure 2), they should be gathered in the
same experimental database, A being added to them only at an upper level of the hierarchy.
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2. Clustering according to the interconnection strength

3. Building a Hierarchy of Experimental Databases

There are two ways to build a hierarchy: top-down or bottom-up. The first way corresponds to
partitioning methods and the second 1o clustering. In the partitioning approach we recursively divide the
top level experimental database until reaching the singleton databases. When dividing a database, we
need to know g priori the number of subsets we want to obtain; this approach is model-driven. Since the
modules are available before beginning the construction of the hierarchy, we prefer the data-driven ap-
proach of clustering methods.

There is a strong analogy between the construction of a hierarchy of experimental databases and the
hierarchical clustering of a set of objects. Clusters are groups of objects whose members are "more
similar” to each other than to members of another group. The similarity between two clusters is measured
by a dissimilarity index: the more similar any two clusters, the lower their dissimilarity index. There exist
numerous hierarchical clustering algorithms (17] that differ only by the choice of the measure of
similarity between clusters. Experimental databases correspond to clusters of modules, where the
measure of similarity between clusters is the interconnection strengths between modules.

Hierarchical clustering is usually divided into two tasks: The first consists of applying the following
general method [ 1] on the objects to be clustered.
e Identify the two clusters (initally a single object) that are the most similar according to the
dissimilarity index.
s Merge them together into a single cluster.
» Repeat this process iteratively until there is only one cluster.

Every iteraton in the clustering process forms a new level clustering by adding a new cluster and remov-
ing the merged clusters. The final output of the clustering process is often pictured as a hierarchy whose
levels are these successive level clusterings; the hierarchy arises because each new cluster merges its two
children in the immediately preceding level. The second task consists of selecting from this hierarchy the



‘meaningful’ level clusterings according to the needs of the application. This is usually done by an
analyst since it requires knowledge of the application domain.

INFUSE expects a hierarchy where the arity of each experimental database is specific to the actual inter-
connection strengths of the modules in the change set. Our proposed algorithm combines the two tasks
described above, without recourse to a human analyst; in particular, only the ‘meaningful’ level cluster-
ings are actually generated, thus forming directly the hierarchy of experimental databases supported by
INFUSE.

4. The Arity Controlled Clustering Algorithm

Unlike classical hierarchical clustering algorithms, our algorithm treats the level clusterings as temporary
as long as they are not ‘meaningful’. The temporary level clusterings are said to be prospecrive, whereas
each level clustering that is selected is said to be frozen. The sequence of frozen level clusterings gives
the hierarchy of experimental databases. To freeze level clusterings, the algorithm evaluates the
similarity between the prospective level clusterings and an exemplar. We define the arity of an ex-
perimental database as its number of immediate descendants in the next level of the hierarchy. The
similarity is computed by measuring the statistical dispersion of arities through a variance function
defined as follows:

Let LC be a prospective level clustering and (x,.x,,. . . .x,} the sequence of the arities of its k experimen-
tal databases; x; represents the number of descendants that the i database of LC has in the previous
frozen level clustering. The exemplar is defined by a single coefficient a. We define the measure v, for
evaluating the similarity between the LC and the exemplar by:

1 5
Va=-k-§(x"—a)

The initial frozen level clustering is composed of the singleton databases. Given this initial level cluster-
ing and an example arity for all the databases of the next level, the algorithm computes all the successive
prospective level clusterings and freezes the one that minimizes our variance measure in order to deter-
mine the next level of the hierarchy. However, it is too costly to compute all the forthcoming level
clusterings and to backtrack to the absolute optimum. In practice, the algorithm instead finds a local
optimum, where the degree of locality is defined by a lookahead coefficient — that is, how many
prospective level clusterings to generate.

The example arity is generated by the algorithm itself. It remembers past hierarchies involving the same
software system, and uses previously successful values whenever possible. When not possible, such as in
the early stages of the system's development when few changes have been made, the exemplar is chosen
randomly or provided by an analyst.

Controlling the arity of experimental databases is reminiscent of the model-driven partitioning approach
we rejected, where each partition splits an experimental database in a number of sets decided a priori.
The similarity is misleading. When our algorithm controls the clustering arity of every level clustering, it
treats this level arity as an exemplar that it is not necessary to meet. It chooses among several prospective
level clusterings the one closest to the exemplar but does not force the construction of a level clustering
identical to the exemplar.

We present a simplified version of our algorithm, with a lookahead equal to one, in figure 3. The overall
time complexity of our algorithm is O(n?log(n)), the same as the classical clustering algorithms [16),



even though we introduce supplementary computation by controlling the variance of the arities.

Input: The interconnection strength values between pairs of modules.
The coefficients a,b,c.d for computing the interconnection strengths.
The exemplar arity for every level clustering.

Output: A hierarchy of experimental databases.

Start from the inital level clustering,

L={{m}{m),....(m,)},

whose elements are the

singleton experimental databases reduced to a single module. Get
the value of « for the next level. The current prospective level
clustering is set to the previous frozen level clustering. The arity
of each of its experimental databases is set to 1.

While there are more than two experimental databases in the
current level clustering do:

1. Construct the next prospective level clustering, NLC, by merging together the two experimental
databases of the current level clustering that maximize & (if there is more than one pair of clusters
which realize this maximum, one of them is chosen arbitrarily. This new experimental database is
their ancestor in the hierarchy.

2. Update the interconnection strength values.

3. If the v of NLC is greater than that of the current level clustering, freeze the current level cluster-
ing. The arities of the experimental databases of the current level clustering are set to one. Get
the value of a for the next frozen level.

4. Else the NLC becomes the current level clustering.

End While

Merge together the last two clusters of the current level clustering,
in order to form the last frozen level of the hierarchy.

3. The arity controlled clustering algorithm

The sequence of all the frozen level clusterings gives us the hierarchy of experimental databases.

5. Maintaining the consistency of the hierarchy

Changes made to modules may invalidate the hierarchy, in the sense that it no longer correctly reflects the
interconnection strengths among modified modules. Two main classes of modifications can lead to in-
validation:

1. Modifying the interface of a module, since the structure of the hierarchy is based on intercon-
nection strength.

2. Adding a module to the hierarchy; a planned modification may involve creating a new module or
conflict resolution may require modifying modules in the baseline but not in the original change
set.

It is possible to treat a module whose interface has been modified in the same way as a new module. The
older version is removed from the hierarchy, and the new one added. Therefore, we focus on adding a



module to the hierarchy. The roughest way of updating the hierarchy is to recluster the entire change set,
including the new module. This is too costly: Many experimental databases not affected by the modifica-
tion would also be reprocessed, and deposits to these databases would have to be repeated. However, if
we reject full reclustering and instead make only local changes, we cannot guarantee the resulting hierar-
chy is as ‘good’ as the one produced by our clustering algorithm. Fortunately, most practical cases
(where relatively few interfaces are changed) affect only a small portion of the hierarchy and only this
portion may not be the same as had full reclustering been applied.

In most cases, our incremental reclustering algorithm works as follows. The new module, M, is added to
the top-level experimental database. Then it is merged into the next level experimental database with
which it has the highest interconnection strength. This process is applied recursively until a singleton
database is reached. The singleton is changed to contain two modules (the original and M) and has two
new singleton children.

This naive algorithm works very nicely except for special cases where M is only weakly connected to
each of the children of an experimental database, which occurs most frequently with a brand new module
that is empty. Such a module is called an outlier. To determine that the module M is an outlier among
several databases, E,.E,, . . . ,E,, our incremental algorithm computes the interconnection strength values
between every pair of databases in the set: (E|,E,,... .E,{M]}]}. If the maximum is realized by a pair
that does not include (M}, it means that M is less connected to any E; than the E; are intercormected
among themselves. In this case, M is added as a new child of the parent experimental database.

6. Some empirical results

We selected Smile — a multiple-user programming environment for C developed as part of the Gandalf
project (4] — as our test case for this paper since it is a medium sized system where the change processes
involve few enough modules to be illustrated nicely in figures. We have also applied our clustering
algorithm to the 60 modules of ALOE (2], also from the Gandalf project, as well as to several much
smaller systems. Our example assumes that two Smile modules, CMDS and CMDDATA, are to be
modified extensively. Therefore, the analyst also places the set of eleven modules related to them in the
top-level experimental database, since these may also need to be modified. The interconnection strength
values between these modules are automatically extracted from the program text and given in the follow-
ing matrix (figure 4). Utility modules imported everywhere are not considered, since they are handled
specially [15].




~1

CMDDATA | x
cMDS | 27 x
COMPILE | 17 8 x
CONCUR. | 2 13 3 x
DBLOGIC | 31 23 31 4 x
DBMGNT | 42 51 10 1 25 z
RESERV., | 18 9 0 0 1 6 x
UPDATE | 5 21 52 3 30 46 2 z
OTILITY | 27 21 28 2 0 6 o 31 x
MSG [ 1 0 0 0 0 0 0 0 0 x
PROFILE | O 2 1 3 o 2 0 o 3 0 x
synca [ 2 s 0 0 0 4 1 0 0 0 0 x
UTIL | 18 17 9 ) 5 19 4 4« 14 3 1 6§ =x
+ ---------------------------------------------------------------
| | | | | | | | | | |
CMDDATA | COMPILE | DBLOGIC | RESERV. | UTILITY | PROFILE | UTIL
aos CONCUR.  DRMNGT UPDATE MSG syNcH

4. Matrix of interconnection strengths
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5. Hierarchy of experimental databases for Smile



Given this data, our algorithm produces a hierarchy (see figure 5) similar to the one manually identified
by a Smile ‘expert’. When applied to the larger ALOE, the hierarchies obtained are still very similar but
not identical to the ones computed by hand.

7. Conclusion

We have described INFUSE, a software development environment that supports change management in
addition to recompilation and version control after changes. Unlike other tools, INFUSE assists program-
mers during rather than after the change process. Conflicts are detected early when they are relatively
inexpensive to repair, rather than later after the entire change process has completed and recompilation
and testing has begun. The major contribution of this paper is the presentation of a new clustering
algorithm which makes such conflict detection and resolution possible. From the change set, INFUSE
automatically builds a hierarchy of experimental databases where the most strongly connected modules
are collected together into the ‘natural’ clusters specific to the VLSS and negotiation of module interface
errors are enforced. INFUSE thus provides practical support for managing and coordinating changes in
very large software systems. We are currently extending INFUSE with mechanisms to combine stubs and
test drivers hand-constructed for unit testing to operate as test harnesses for the integration among
strongly connected clusters of modules.
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