DIAL
DIagrammatic Animation Language
Tutorial and Reference Manual

Steven Feiner

Department of Computer Science
450 Computer Science Building
Columbia University
New York, NY 10027

feiner@cs.columbia.edu

Technical Report CUCS-276-87
September 1987
(Revised February 1989)

Abstract

This is a tutorial and reference manual for DIAL, a diagrammatic animation language
that allows parallel processes to be represented in a compact graphical ‘‘time line’.
DIAL provides a soft animation machine whose instruction set is determined by a user-
provided backend. Unlike more recent animation notations that rely on bitmapped
displays, and hence on special editors and extensive run-time support, DIAL requires
only a conventional full-screen editor for editing and no run-time support beyond its
compact interpreter. DIAL is implemented in C and runs on a wide variety of System V
and Berkeley versions of UNIX.

Keywords: computer graphics, animation languages, visual languages.

DIAL
Dlagrammatic Animation Language
Tutorial and Reference Manualt

Steven Feiner

Department of Computer Science
Columbia University
New York, NY 10027

feiner@cs.columbia.edu

1. Introduction

This is a tutorial and reference manual for DIAL, a diagrammatic animation language
that allows parallel processes to be represented in a compact graphical ‘‘time line’’. The
2D notation employed may be edited and displayed on any ASCII terminal. DIAL was
originally developed to serve as a convenient testbed for research on realtime animation
effects for raster graphics systems, and was used to animate pages of pictures and text in
the IGD hypermedia system described in [FEIN82a]. It has since been used for
animating higher-dimensional mathematical surfaces [FEIN82b] and as a general
purpose tool for scripted animation.

DIAL’s frontend interpreter is implemented separately from the backend packages of
animation capabilities that it supports. All graphics operations are performed by a
backend. The frontend only controls when the backend’s routines will be called, based
on the contents of an animation script. Thus, individual programmers may develop
packages of animation instructions that implement the particular animation capabilities
desired. In fact, there is nothing in the DIAL interpreter that restricts its use to computer
graphics animation. It may be used equally well for any application that requires scripted
control of a set of parallel processes, such as music synthesis or lighting control.

The remainder of this document is divided into several sections, the first of which is a
tutorial for prospective users. The next section is a reference manual for the scripting
language. The last section is a reference manual for the frontend interface and is
intended for programmers with UNIX and C experience who want to create or modify an
instruction set backend.

2. DIAL Tutorial

2.1. Overview

In DIAL, animation is accomplished through a set of instructions for a virtual
“‘animation machine,’’ defined by a particular backend. A few sample instructions from

1The original implementation of DIAL was accomplished while the author was at Brown University
and was supported in part by the Office of Naval Research under Contract No. N00014-78-C-0396, a grant
from The Foxboro Company, and an IBM Graduate Fellowship.

2 DIAL Tutorial

one backend will be discussed as DIAL’s syntax is explained. Note that these
instructions are not part of DIAL itself, but are part of a particular backend.

Each instruction in a typical backend may be passed parameters that specify how to
modify the displayed image and its underlying data structure representation. For
example, a moverel instruction may provide the capability to move a named object to a
new location specified as an offset relative to its current position. An event is an '
instruction whose actual parameters have been specified — for example, a moverel
instruction for a specific object and offset. DIAL provides the ability to define events in
terms of the instructions supported by the backend and to indicate when and for how long

they are to execute.

In DIAL, time is divided into small, finite-length ricks. Each event starts at a particular
tick and lasts for some integral number of ticks. The granularity implied by these finite
length ticks is realized by having the backend update the display (and relevant data
structures) at the end of each tick, leaving a visual record of the event’s incremental
execution. For example, a moverel event that lasts for one tick would result in an
object being moved to the specified new location at the end of the tick. A moverel
event that lasts for several ticks would result in the object being moved incrementally to
successive locations between its original location and the specified destination.

DIAL handles all flow of control by determining which events are to be executed during
each tick. Backend routines are called with the length of the event, the current tick in the
event’s execution, and the event’s parameters. These routines compute and execute the
intermediate alterations to the display and data structure by interpolating between current
and desired values during the execution of the event. Depending upon the event being
executed, the interpolation may occur between spatial coordinates, the values associated
with color table indices, etc. All interpolation calculations are performed by the
backend, based on the information passed to it by DIAL’s frontend.

2.2. Defining and Executing Events

The horizontal dimension of DIAL’s 2D language represents time, with each column
corresponding to a tick. Entries in each column of certain lines specify the events that
are to be performed during that column’s tick. Consider, for example, the simple
animation script of Figure 1. The first three lines (including the blank line) are comment
lines. Comment lines begin with a space, tab, or newline in column one (i.e., the line’s
first column). They may occur anywhere in the script, may contain any characters, and

Move an object the same distance 6 times, each time more
slowly than the last.

% throw moverel "ball™ 0.0 0.1

throw | 1= |-- |--- |===- [E———

Figure 1. A simple DIAL script.

DIAL Tutorial 3

are ignored by the system.

The fourth line is a definition line for an event, named throw, that will perform a
relative move instruction, moverel, when the event is executed. Definition lines begin
with a “‘&’" in column one, followed by an event name, an instruction name, and any
parameters. Note that this line defines the event, but does not cause it to be executed.

The last line in the example is an execution line that specifies a sequence of successively
executed events. Execution lines begin with an event name. Each column in an
execution line (starting at column nine, the first tab stop) corresponds to a tick during
which an event might be executed. In the example, the appearance of the execution
character ‘|’ in the first tick’s column causes throw to be executed during the first
tick. The blank in the second tick’s column indicates that nothing is to be done during
that tick. The first throw event in the above example starts and finishes execution
during the first tick and is one tick long.

The *“|”’ in the third tick’s column is followed by a *‘~’’. This is a continuation
character. The appearance of a continuation character after the execution character
means that the event’s execution is to be continued or extended into the next tick. The
second occurrence of the throw event above lasts two ticks; the third, three; and so on,
for a total of six events. As well, the number of ‘‘blank’’ ticks between events increases
with each successive event in the example, so that the time between the termination of
the previous event and the onset of the next also increases.

In DIAL no numbers are needed to indicate the number of ticks during or between
events. Much as the analog display of a clock with hands is often preferable to a numeric
digital readout, the visually obvious relative durations expressed in this notation can be
more telling than numeric procedure parameters. When exact starting and stopping ticks
and event durations are needed, however, execution lines may be placed below
comments that serve as ruled scales.

2.3. Expressing Parallelism

All of the events in Figure 1 are executed sequentially. Figure 2 shows how parallelism
is notated. This example contains a number of definitions for mix events that change the
values in color table locations. The mix instruction, which was developed as part of one
of DIAL’s first backends, takes three parameters: a destination color table index, the
number of sequential destination entries to affect, and a source color table index. When a
mix event has completed, its destination colors will have been replaced with the source
color. If the event lasts longer than one tick, the replacement is done gradually by
mixing the destination values with successively greater amounts of the source value,
interpolating the colors between their original and final values. The negative color table
values refer to special ‘‘read-only’’ colors that are not affected by color table
manipulation. Optional parameters to the mix instruction allow blending only a
percentage of the source color in the final mix and matching multiple source colors with
destination colors.

Any group of contiguous execution lines, optionally separated only by nonblank

_ comments, will be executed in parallel. The first four execution lines of Figure 2 form
such a group. Two-thirds of the way into the execution of the fade51 event, swap52
starts execution. The reset51 and fade52 events likewise overlap their preceding

4 DIAL Tutorial

One color is faded to background while a sacond is faded
to another color. The first is then fadad back to its
original color while the second is faded to background.

% fade51 mix 51 1 -1
% swap52 mix 52 1 -2
% raeset51 mix 51 1 -51
% fade52 mix 52 1 -1
% fadeall mix 1 64 -1
1 2 3 4 5 6
123456789012345678901234567890123456789012345678901234567890
fadeb51 |[--------————-—--—---
resetS5l e
swap52 ===
fade52 [m=—mmmmm e
Now fada the entire picture to the background color.
7 8 9 10 11 12
123456789012345678901234567890123456789012345678901234567890
fadeall R ettt L L P T

Figure 2. A DIAL script with parallel execution lines.

events. Here subtle timing differences may be easily determined by eye.

Imagine the entire script to be represented by a single set of parallel horizontal execution
lines. Since this notation would be awkward to view or edit, DIAL allows the set of lines
to be ‘‘folded’’ to fit on a page or display of finite width by slicing them vertically into
sections placed one after the other vertically down the page. We call each of these
sections a staff (pl. staves), after the set of horizontal lines used in conventional western
musical notation. The execution lines in a staff may execute any previously defined
events, may occur in any order, and may be optionally separated by nonblank comments.
An event’s execution line may not be duplicated in a staff. The first appearance of a
definition or a blank line will begin a new staff. Since nonblank comments may be
interspersed throughout a staff, animators may temporarily disable execution lines by
indenting them and annotate interesting events with inline comments.

DIAL simulates parallelism by incrementally executing events in the order in which their
execution lines appear in the staff. Thus, since execution order is well defined,
noncommutative operations such as parallel rotations may be specified with predictable
results. If desired, the relative order of execution lines may change between two staves.
There may be as many staves as needed in a script. Figure 2 has two staves, the second
of which has just a single line for the fadeall event that fades all of the colors to
background.

2.4. Advanced Features

Figure 3 demonstrates several additional facilities provided by DIAL. Here, unlike
previous examples, the execution line for M.bus contains blanks interspersed with its

DIAL Tutorial 5

% M.bus moverel "flxible" 0.5 0.0
% M.car moverel "porsche" 1.0 0.0
% M.fly moverel "medfly" 0.02 -0.05

% Fade mix 1 64 -1

Move the bus and car along the road, while fading all colors.
Move the fly every now and then.

! time "off"
Move the fly very slowly diagonally upwards as it grows.

% M.fly moverel "medfly” 0.2 0.2; scale "medfly" 1.5
10

M. fly j{——----——---
Fade = eemmeeemmememem e —— e === - -

Figure 3. Advanced features.

continuation characters. During those ticks for which blanks appear, the event is
‘“‘suspended’’ and will resume execution only during those ticks for which a continuation
character appears. An event starts at the occurrence of an execution character in an
execution line and terminates at the last continuation character before its next execution
character (if any). Thus, the number of ticks for which the event executes is the number
of continuation characters plus one for the execution character itself. Events may span
staff boundaries, making possible events, such as Fade, that continue over several
staves, much like a musical ‘‘pedal point.”

‘6'7)
H .

The immediate line is a convenient variant of the definition line that begins with an
It has no name and is immediately executed ‘‘in place’’ as a one-tick-long event. This
facility allows events that are typically executed only once, such as modal toggles, to be
defined and executed on the same line. For example, the time instruction used above
causes timing information to be output at the end of each tick.

An event may be associated with multiple instructions, allowing several events that
would normally occur simultaneously to be referenced by a single name. For example,
the redefinition of M. £1y specifies two instructions, both of which will be executed
during each tick of the event in the order in which they appear. Events are separated by

6 DIAL Tutorial

‘“;’s and may be continued onto any number of following lines as long as all but the last

L.

end witha ‘“;"".

Specifying long event executions can be quite tedious. Therefore, a shorthand notation
has been provided, using the special characters, ‘“‘#’” and *‘=’’, shown in the final staff.
These are, respectively, DIAL’s super execution and super continuation characters,
which allow a column to represent more than one tick. The number of ticks represented
by these ‘‘super ticks’’ is specified by the most recent line beginning with the super
execution character, ‘‘#’’, and followed by the desired number of ticks. The appearance
of such a line setting the length of super characters ends a staff. In Figure 2 the length of
a super tick is set to 10 in the line following the last definition of M. £1y. Conceptually,
each “‘#’ is expanded to *‘| -==---~-- > and each ‘="’ is expanded to *‘--------
--"". If a super execution or continuation character appears in a column with a regular
execution or continuation character, the regular characters act as if they were padded on
the right with blanks.

Although there is no ‘‘super blank’’ character, a user can get a similar effect by including
in each staff an execution line for a no-op instruction (which must be provided by the
backend) and placing super characters in the desired columns. For example, if the
no-op lines contained a single super execution character in the first execution column of
an execution line and a super continuation character in every column thereafter, all
columns of the script would be ‘‘super columns.”’ Long animation sequences may be
quickly previewed by using super ticks whose length is temporarily set to one.

Note that increasing the length of a supertick only increases the number of ticks executed
during an animation, not the length of time represented by a single tick. Typical
backends provide instructions that let the user determine the length of a single tick, e.g.,
by sending timing delays to the graphics system.

DIAL User’s Reference Manual 7

3. DIAL User’s Reference Manual

3.1. Lexical conventions

Tab characters may appear wherever blanks are allowed. Each is interpreted as
representing the appropriate number of spaces, assuming tab stops every eight columns.
Therefore, the word ‘‘blank’’ will be used here to refer to either a tab or space. All
tokens may be separated by an arbitrary number of blanks, except in execution lines, in
which precise column positions are significant. There are no reserved words.

3.2. Scripts

A DIAL script is a file containing comment lines, definition lines, immediate lines,
definition continuation lines, super tick set lines, and execution lines. Execution lines are
grouped together in szaves to support parallelism.

3.3. Comment lines

A comment line is a line whose first character is a blank or whose only character is a
newline. Comment lines may contain any other character. They are commonly used not
only to document a script, but to temporarily disable a definition line, immediate line,
super tick set line, or execution line by indenting it or blanking out its first character.

3.4. Definition lines

A definition line begins with a *‘%’’ in column one, followed by an event name and any
number of semicolon-separated event definitions. A definition line names and defines
one or more events, but does not cause them to be executed. An event name may be
reused as many times as desired in a script. A definition’s scope lasts until the next
definition line with the same event name.

3.4.1. Event names

An event name may be up to 7 characters in length. It may contain any character other
than space and tab, but may not begin witha *‘#’’, “*%’’, or “‘t"",

3.4.2. Event definitions

An event definition consists of an instruction name, optionally followed by parameters.

3.4.3. Instruction names
An instruction name is the arbitrarily long name of one of the instructions provided by

(%3 Yy

the backend. It may contain any character other than space, tab, or **; ",

3.4.4. Parameters
DIAL allows three kinds of parameter: integer, floating point, and string.

3.4.4.1. Integer and floating point parameters

Integer and floating point parameters should be in the same form accepted by C and are
stored as C ints and floats, respectively. Integers may be either decimal or hexadecimal.

8 DIAL User’s Reference Manual

Hexadecimal numbers must be prefixed by ‘‘0x’’ or *‘0X’’. Since parsing is done with
the C library procedures scanf{(), atoi(), and atof{) in the current implementation, no error
checking is done. Hence, a number is terminated by the first invalid character. For
example, if an integer is expected then ‘‘1£’’ (without a preceding ‘‘0x’” or “‘0X’’) is
treated as the decimal integer ‘‘1’’, and not the hexadecimal integer “‘1£°’.

3.4.4.2, String parameters

Strings must be enclosed in double quotes (). To get a double quote inside a string it
must be preceded by a backslash (\). Any character may be preceded by a backslash,
except for the newline character, which may not be used in a string. These backslashes
will remain in the string, however. The backend must copy and convert the string if the
equivalent of C’s backslash escapes is desired. Therefore, a DIAL string parameter is
exactly like a C string, except for the prohibition against escaped newlines and the
requirement that the backend remove and interpret embedded backslashes if desired.

3.4.5. Multiple event definitions

More than one event definition may be placed on an event definition line, causing a
single execution line to execute several instructions. If the first event definition is

terminated with a “*; ”’, it may be followed by additional ones, each of which should
consist of an instruction name, optional parameters and a ‘‘; *’ if another event definition
is to follow. Blanks are optional on either side of the ‘‘; ”’. The events will be executed

in the order in which they appear on the line. The first line of Figure 4 shows event1l
being defined so that it will execute three instructions.

3.5. Immediate lines

An immediate line looks like a definition line, except that a ‘‘1’’ appears instead of a
‘%’ and an event name is not used. An immediate line defines one or more unnamed
events that are executed immediately for a single tick. Immediate lines provide a
convenient way to specify events that need be executed only once.

Animators often include in their scripts a ‘‘menu’’ of comment lines, each of which may
be selectively turned into an immediate event by placing a ‘1"’ in its first column.
These are commonly used to specify modal settings in the animation system. Should it
be necessary for timing purposes to not count such a tick as a regular tick, the backend
could provide a notick instruction for the user to include as an additional event in each

of these immediate lines.

3.6. Definition continuation lines

Additional event definitions for a definition line or immediate line may be placed on one
or more definition continuation lines. A definition continuation line begins with at least
one blank, and contains one or more event definitions separated by semicolons. It must
follow a preceding definition line, immediate line, or definition continuation line, each of

which must have terminated with a trailing ‘‘;’’. Interspersed comment lines containing
only blanks and ‘‘;’s are also allowed. Note that a definition continuation line would be
treated as a comment were it not for the trailing *‘;’’ on the preceding nonblank line.

The last event definition on the last definition continuation line may be optionally

DIAL User’s Reference Manual 9

terminated by a semicolon only if the next nonblank line begins in column one. An
individual event definition (an instruction name and its parameters) may not be split over
several lines, putting some parameters on one line and some on another.

In Figure 4, note that a **; ** may be placed after instruc?, since the next nonblank
line starts in column one. In addition, if the ‘‘; " after instrucd4 were missing, then
the definition would terminate on that line and the lines beginning with instzuc5 and
instruc? would be parsed as comments, since the line containing instruc4 would

not have ended with a ““;>’. This would occur even if there were a *‘;”’ immediately
preceding instruc5 on its line.

3.7. Super tick set lines

A super tick set line contains a “‘#’’ in column one, followed by a positive number. The
length of super execution and continuation characters is set to that number of ticks. The
default super tick length is 10.

3.8. Execution lines

An execution line begins with an event name. The event name must have been defined
by an earlier definition line. The columns between the end of the event name and the
ninth column (the first tab stop) must be blank. Each successive column in an execution
line (starting at column nine) normally corresponds to a tick during which an event might
be executed. Five kinds of characters may appear in a tick’s column: blank, execution
character, continuation character, super execution character, and super continuation
character.

An event’s execution is specified by an execution or super execution character optionally
followed by continuation and super continuation characters. An event begins with an
execution or super execution character and terminates with the last continuation or super
continuation character before the next execution or super execution character. The
continuation characters associated with an event may be broken over one or more
execution lines following the line containing its execution character. The event is
suspended during blanks interspersed among its execution and continuation characters.

% eventl instrucl parml; instruc2? parml parm2 parm3; instruc3 parml

% event2? instrucl parml parm2; instruc2; instruc3 parml: instruc4:;
instruc5;inatrucé parml parm2 parm3:;

instruc?

% event3 instrucl parml; instruc2

Figure 4. Multiple event definitions.

10 DIAL User’s Reference Manual

3.8.1. Blank

The event is not executed during the tick.

3.8.2. Execution character

A ‘*| " executes the first tick’s worth of an event associated with the execution line.

3.8.3. Continuation character

A ‘‘="’ executes the next tick of the event started by the *‘|’’ or *‘#’’ that was most
recently encountered in an execution line with this event name.

3.8.4. Super execution character
A “‘# acts like a ** |’ followed by enough ‘‘-’’s to equal the current super tick length.

3.8.5. Super continuation character
A ‘=" acts like as many ‘‘-"’s as are needed to equal the current super tick length.

3.9, Staves

A suaff consists of a number of execution lines separated only by nonblank comment
lines. All execution lines in a staff are incrementally executed in parallel, one tick
(column) at a time. This pseudo-parallelism is accomplished by executing a tick’s worth
of each execution line in the order in which the lines appear in the staff. If more than one
event is associated with an execution line, then they are executed, in the order in which
they appeared in their definition line, before the events for the next execution line are
executed. The length of a staff is that of its longest execution line. Thus, each execution
line acts as if it were padded with enough blanks to make it equal the length of the staff’s
longest execution line. A blank comment (consisting solely of 0 or more blanks) will
terminate a staff. Nonblank comments may be embedded in a staff without terminating
it. A staff may contain at most one execution line with a given event name.

If a super execution or super continuation character appears in a column of a staff, then
all blanks, regular execution characters, and continuation characters in that column of the
staff are treated as if they were right-padded with enough blanks to equal the super tick
length.

DIAL Programmer’s Reference Manual 11

4. DIAL Programmer’s Reference Manual

4.1, Overview

The instructions that a DIAL script can execute are implemented by one or more backend
modules prepared by the programmer in accordance with the format specified below. All
backend files that use dial should include the line

#include "dial.h"

There are only three entry points in the frontend:

DIALinit (backend) Initializes dial to use a backend
DIALrun (script) Runs a script
DIALtrace (flag) Toggles execution trace output

The following sections describe the frontend entry points and data structures needed to
construct a backend and run scripts that use it.

4.2. Frontend Calls

DIALbackend DIALinit (backend)
DIALbackend backend;

DIALinit is called to initialize DIAL for a particular backend (defined by the
DIALbackend data structure described below). It must be called before the first call to
DIALrun. It should not be called from any of the programmer-defined routines called by
DIALrun. DIALinit returns the previous DIALbackend. Note that it is only
necessary to call DIALinit again in order to replace the old backend with a new one.

int DIALrun (script)
char * script:;

script is the filename of a DIAL script to be run. DIALzun may be called for as
many scripts as desired after each invocation of DIALinit. DIALrun returns O if
successful, nonzero if an error occurred.

int DIALtrace (flag)
int flag;

An execution trace is output if £lag is nonzero, suppressed otherwise (the default).
DIALtrace returns the previous value of £lag. DIALtrace may be called at any
time. Many backends provide a trace instruction that invokes DIALtrace and also
controls backend-specific tracing code. If DIALtrace is called before DIALinit, then
the trace will include a listing of the backend contents.

4.3. Backend Data Structures and Entry Points

The user’s program may be linked with one or more backends, each of which defines a
separate instruction set. A backend contains a number of routines and data structures
whose addresses DIAL learns about through the DIALbackend data structure passed to
DIALinit. All of the data structures described below are defined in dial.h.

4.3.1. DIALbackend

DIAL Programmer’s Reference Manual

typedef struct DIALbackend { /* Dial backend */
DIALinstruction * instruction; /* -> Instruction array */
int num instructions; /* # of instructions */
int (*init_script) (): /* script init routine */
int (*end script) (): /* script end routine */
int (*end_tick) (): /* tick end routine */

} DIAlbackend:;

A DIALbackend defines a DIAL backend. It contains the following elements:

instruction

nu.m_instructions

init script ()

end script ()

end tick ()

The address of an array containing one entry for each
DIALinstruction (described below). The array must be
sorted in alphabetically ascending order by the name field.

The number of instructions in the instruction array.

Called before each script is executed, it performs whatever
initialization the backend needs. It must return 0 if initialization
was successful, nonzero otherwise (in which case execution of
DIALrun terminates).

Called after each script is executed (even after error termination).
It performs whatever cleanup the backend needs and must return
0 for success, nonzero otherwise.

Called at the end of each tick. It would typically send the
instructions that accomplish the animation. It must return 0 if the
tick was successful, nonzero if an error occurred (in which case
execution of DIALrun terminates).

4.3.2. Backend Routine Return Codes

Backend routines (init_script, end script, end_tick, and the backend
instruction procedures described below) all indicate successful execution by returning a
zero return code. If any backend routine returns a nonzero return code, then DIALrun
returns immediately (calling end_script first, if the nonzero return code was not
returned from end_script). If the return code is positive, then DIALrun prints an
appropriate error message and returns a positive return code (not necessarily that returned
by the backend routine). This is the usual way to terminate a backend routine. If the
return code is negative then DIALrun treats this as a ‘‘soft error.”’ In this case, no error
message will be printed and DIALrun will return the same negative return code returned
by the backend routine that caused the soft error. The soft error facility makes it possible
for any backend routine to terminate DIALrun quickly and silently, and to indicate the
reason for termination by an appropriate return code. The backend must make its own
arrangements if additional information related to the termination is to be made available
to DIALrun's caller when a soft error occurs.

4.3.3. DIALinstruction

DIAL Programmer’s Reference Manual 13

typedef struct DIALinastruction { /* Dial instruction */
char * name:; /* Instruction name */
int (*proc) (): /* Procedure to verify/execute */
char * parm type: /* Parameter types */

} DIALinstruction:

A DIALinstruction contains:
name The character string equivalent of the instruction name,

proc () The address of the procedure that will be called to execute the
instruction and verify its parameters. A procedure whose address
is assigned to proc may be declared static if it is included in the
backend file.

parm_type A coded string indicating the number (by its strlen) and type of
parameters to be parsed for and passed to the instruction. The
type of the nth parameter is determined by the nth character of
parm_type, which must be one of:

i Integer — atoi() format or C hexadecimal constant
format (e.g., 0x1b2€£).

£ Float — arof() format.

s String — must be bracketed by double quotes (). A

double quote may be included if it is preceded by a
backslash (\), but the backslash will remain in the
string. Multiline strings (i.e., with embedded
newlines) are not allowed. Strings are returned
exactly as they occur in the script, null terminated
and without their bracketing double quotes.

Both proc and parm type may be changed during execution, allowing the routine and
number/type of parameters associated with an instruction to be altered. An instruction’s
procedure may have up to DIAL_ MAX PARMS parameters.

4.3.4. Backend Instruction Procedures

int proc (done_ticks, total ticks, info, op)
int done_ticks;
int total_ticks;
DIALevent_ info * info;
int op:;

Each instruction procedure is called to verify its parameters or to execute its share of the
current tick’s worth of the event. It is passed:

done_ticks The number of ticks done so far (1 for the first tick).
total ticks The total number of ticks for the event.
info A pointer to the event’'s DIALevent_info.

- op Either DIAL VERIFY or DIAL_ EXECUTE. Ifitis

DIAL VERIFY then the parameters in DIALevent info are to

14 DIAL Programmer’s Reference Manual

be verified for correctness (and fixed if necessary), but no
execution is to be done. This occurs only once when the event is
defined. If itis DIAL EXECUTE, then the event should be
executed for the current tick.

The procedure’s return code is checked whenever it is called and DIALrun's execution
will be terminated if the return code is nonzero. Like all other backend routines, negative
return codes are treated as defining “‘soft errors’’ (see the Section 4.3.2 above on
Backend Routine Return Codes.)

4.3.5. DIALparm and DIALevent_info

typedef union DIALparm /* Parameter */
{
int 4 /* Integer parm */
float £ /* Float parm */
char * s=s; /* String parm (-> script) */
} DIALparm;
typadef struct DIALevent_info /* Event’s execution info */
{
int instruction_index: /* DIALinstruction index *x/
int parm count; /* Number of parms *x/
DIALparm parm /* Instruction’s parms */

[DIAL MAX_PARMS)
} bIALevent_info;

A DIALevent_info is passed to each instruction’s procedure. It contains:

instruction_index The index of the instruction in the backend’s instruction
array. This allows multiple instructions to share the same
instruction procedure, with the correct instruction distinguished
by its index.

parm_count The actual number of parameters parsed by the frontend. It is
never more than the number provided for in the parm type
entry in the instruction’s DIALinstruction., thus allowing
trailing parameters to be made optional. The instruction’s
routine may substitute default values for missing parameters or
treat them as an error.

parm The instruction’s parameters. The relevant member of each
DIALparm union is determined by the corresponding character
(‘‘47’, ‘£, or *‘s’’) of the instruction’s parm_type entry in its
DIALinstruction.

All values in the DIALevent_info may be freely modified by the programmer, for
example to set default values for optional parameters that were not passed. In the case of
string parameters, both the address in the parm union and the actual string may be
altered. If the original string is modified in place, then only characters before its
terminating null may be changed. All programmer changes will be retained until the
event is redefined.

DIAL Programmer’s Reference Manual 15

4.3.6. Building a DIALbackend Data Structure
The following example shows one way to build a DIALbackend data structure:
static int inst_first (): /* Instruction procedures */

static int inst_second ():
static int inst third ()

static
DIALinstruction inst [] = { /* Array of dial instructions */
"first", inst first, "s",
"second", inst_second, nn,
"third", inst_third, "ssfii"
}:
static int init /) ; /* Script init routine *x/
static int end () /* Script end routine */
static int tick ():; /* Tick end routine * /
static
DIALbackend back = { /* Dial backend */
inst,
sizeof (inst) / sizeof (DIALinstruction),
init,
end,
tick
}:
References

FEIN82a Feiner, S., Nagy, S., and van Dam, A. An experimental system for creating
and presenting interactive graphical documents. ACM Transactions on
Graphics 1:1, January 1982, 59-77.

FEIN82b Feiner, S., Salesin, D., and Banchoff, T. DIAL: A diagrammatic animation
language. IEEE Computer Graphics and Applications, 2:7, September 1982,
43-54,

