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1. Introduction

RB is a set of constructs which can be added to a pro-
gramming language to specify redundancy in a program; a
complete implementation of the macro processor and its
support library is underway at Columbia University. While
the main focus of our research is fault tolerance, we have
made some observations which we believe are of interest to
the programming language community.

We decided that implementation of RB as a macro
preprocessor for some underlying programming language
(we’ve chosen C) best suited our needs and design goals.
The remainder of this report details those goals and our
decisions.

1.1. Goalsof RB

The goal we have for RB is to specify redundant por-
tions of programs; the specification and its meaning are dis-
cussed in another report [1] where the fault tolerant aspects
of the language constructs are emphasized. We recap three
portions of that material here in order that the design issues
be properly motivated and that this report be self-contained.
These are: what is fault-tolerance, how does RB attempt to
address it, and what does RB look like.

1.2. Fault Tolerance

There are two approaches to constructing highly reli-
able systems, fault intolerance, and fault tolerance. The
basic notion of fault intolerance is that the systems should
be as fault-free as the construction process allows, by using
careful design and quality components. In software,
failures, and faults causing errors, can be reduced or
removed by verification, precise specifications combined
with testing, and design methodologies such as structured
programming techniques. Experience [2] has shown that
these techniques are insufficient, i.e., "bugs” remain.
Gerhart and Yelowitz [3] point out that applications of the

methods may themselves have bugs.

Hence, an alternate point of view is that faults exist,
and that we must provide reliable systems in spite of them.
This approach is called fault-tolerance. The basic idea
behind all of fault tolerance is the use of redundancy, which
is used to detect faults and mask failures.

1.3. Redundancy

Redundancy is used in the construction of faulr-
tolerant software. There can be redundancy in space, where
multiple identical copies of a program exist; redundancy in
time, where multiple applications of a software system are
attempted; and redundancy in logic, where multiple methods
of achieving a specified result are applied. Avizienis and
Kelly (4] suggest the notation T / H / S, for Time !/
Hardware / Software, to describe the different types of
redundancy possible in a computation.

In each of these dimensions, RB allows a programmer
to specify the desired level of redundancy, and in the case of
logic, the means for achieving it. The use of redundancy
relies on the statisiical independence[5] of the failures of
the component subsystems.

1.4. Software Fault Tolerance

Hardware faults can be the result of physical degrada-
tion [6] or they can result from poor design. Software can
only have faults due 1o mistakes in design and implementa-
tion; the logic encoded by a program does not degrade with
time. Thus, assuming a fixed underlying system (that is. a
fixed set of hardware and a set of conditions that retry will
not change), the only variation we can effect is in the pro-
gram logic. Logic redundancy, that is, a multiplicity of
methods for computing results, has been applied as a tech-
nique to achieve reliable! software.  Statistical

1.) Software reliability has an extensive literature; Musa, lanmno,



indepe_:ndence of method failures is often assumed? in order
to derive reliability estimates.

Several techniques used to provide fault-tolerance in
sqftware Systems have been developed. The major tech-
niques are N-version Programming [14-16] and the
Recovery Block [ 17-21] scheme. The Consensus Recove
Block [22] is a synthesis of these two methods. W. .

. We have
chosen the Recovery Block as the basis for RB’s logic
redundancy specification; see Smith and Maguire (1] for
Justification. The Recovery Block is a language construct
analogous to a block in block structured programming
languages, in that a block has both private variables and
access to global variables (those declared external to the
block). The recovery block either reliably updates the
external variables, or fails. The scheme is conceptually
similar to the "standby spare" technique used in hardware.
N alternate methods of passing an acceprance test are pro-
vided. The first such method is referred to as the primary;
they are rank-ordered based on some metric such as
observed performance. Each method is tested, and the first
which passes the acceptance test provides the result of the
recovery block. Each alternate is guaranteed (o begin exe-
cution with the system’s state as it was when the recovery
block was entered. This prevents previously executed alter-
nates from damaging state assumed by the currently execut-
ing alternate. Assuming that the acceptance test performs
perfectly’, the Recovery Block method fails on inputs where
all methods fail the acceptance test.

1.5. RB Syntax

An example of a Recovery Block designed to perform

a numerical calculation is given in Figure 1, using RB nota-

tion*;

and Okumoto [7)] provide a detailed reference on software reliability;
the survey paper by Ramamoorthy and Bastani {8] discusses a wide
variety of models and issues.

2.) Knight and Leveson's [9-11] experimental work suggests the in-
dependence assumption of multiple software versions is not upheld in
practice. Eckhardl and Lee (12] provide a theoretical analysis of
coincident errors and their effects on some software fault tolerance
schemes. Recent work by Litlewood and Miller [13] has shown that
while multiple versions using a single methodology have little hope
of independence with respect 1o their failures, multiple methodolo-
gies offer some promise.

3.) Scott, Gault, and McAllister [23] and Scott, et al. [24] have
shown that reliability of software can be improved even with accep-
tance test failure rates of up to 25 per cent. Cha, ef al. [25] have
shown that Self-Checks (a generalization of the Acceptance Tests
used by Recovery Blocks ) can be effective in finding faults. Howev-
er, there is difficulty both in the writing of the Self-Checks and their
placement within the program structure. They also note a greal varia-
lion in the ability to write effective self-checks, and the efficacy of
combining code-based checks with specification-based checks com-
pared 1o specification-based alone.

4.) The notation almost exactly follows Randell’s. [17]

#define TOLERANCE (1.0e-5)
#define EQUAL (_a,_b) \
((((_a)-(_b))/ (b)) < TOLERANCE)

double ft_sqrt( x )
double x;
{

double y, newton(), bisection();

ENSURE EQUAL( y*y, x )

BY

Y = newton( x );
ELSE_BY

Y = bisection( x );
ELSE_ERROR

fail();
END

return( y );
}
Figure I: Recovery Block using RB

The goal of the routine is to provide an output which is the
square root of the numerical argument. The ENSURE key-
word indicates that what follows is to be used as the accep-
tance test for this recovery block; the acceptance test is an
arbitrary sequence of language statements which results in a
Boolean value. In this example, we have defined a macro
EQUAL which defines equality in terms of a relative error
measure to make the example more realistic.

The BY keyword ends the specification of the accep-
tance test and denotes the beginning of the primary alter-
nate, which can consist of arbitrary program text which is
intended to perform the computation which the acceptance
test is verifying, in this case the square root of x.
ELSE BY is used to specify further alternates; the
ELSE_ERROR keyword specifies arbitrary code to be exe-
cuted upon failure of the set of alternates to produce an
acceptable answer. The END keyword terminates the
recovery block syntactically.

RB performs a source-to-source translation; source
text between keywords is copied verbaum. Hence, any syn.
tactically correct construction in the base language, e.g.,
compound statements, may be used in the alternates.

RB provides several features to specify redundancy
other than the redundant logic expressed by the recovery
block method. In order to expose these features, we'll
expand on the previous example with the routine in Figure
2:



#define TOLERANCE (1.0e-5)
¥define EQUAL( a, b)\
((((_a)-(_b))/( b)) < TOLERANCE )

double ft_sqrt( x )
double x;
{

double y, newton(), bisection();

ENSURE EQUAL( y*y, x )
BY 2 REPETITIONS OF
Yy = newton( x );
ELSE_BY 2 REPLICATES OF
y = bisection( x );
ELSE_ERROR
fail():
END

return( y );
}
Figure 2: RB: Repetition and Replication

1.5.1. Repetition

Intermittent failures can be dealt with by retry, thus
we would like to specify that multiple REPETITIONS OF
a computation are to take place. In our current design, we
make multiple attempts to pass the same acceptance test,
exposing a user to a danger of poor quality acceptance tests.

1.5.2. Replication

Another possibility for robust execution of computa-
tions is to have multiple identical copies of a piece of
software executing, as is specified with the REPLICATES
OF keyword used in Figure 2. If multiple hardware nodes
are available and utilized to execute the replicates, replica-
tion reduces the likelihood of a hardware failure destroying
the results of a correct software alternate. In addition, it
may take advantage of differences in processor loads for
better real time performance if we synchronize by accepting
the results of the first successful execution, We have not
included syntax to specify a synchronization mechanism,
but further research may require this. In any case, it is easy
to add, e.g., a WITH SYNCHRONIZATION keyword to
specify either arbitrary code or a limited set of synchroniza-
tion primitives. Note also that if we specify an ENSURE
TRUE acceptance test and REPLICATES OF a single
alternate, we have pure replicates of a computation.

1.5.3. Combinations

Combinations of redundancy specifications lead to
interesting behaviors that may be exploited by the program-
mer. For example, Figure 2 specifies 2 REPETITIONS
OF newton() and 2 REPLICATES OF

bisection (). While we don’t currently make provision
for arbitrary nesting in RB, we do allow a fashion of nesting
for combinations of specification of replication and specifi-
cation of iteration. For example, we could specify 2
REPLICATES OF 2 REPETITIONS OF newton():in
this case we would create two copies of the computation,
each of which would make up to two attempts to pass the
acceptance test. 2 REPETITIONS OF 2 REPLICATES
OF would perform analogously.

2. Design of RB

RB has been designed as a C pre-processor; this
approach is much like that of a sophisticated macro [26]
processor. This approach has been used for example, in
Stroustrup’s [27] C++ programming language; its imple-
mentation consists of a C preprocessor coupled with a
powerful support library.,

RB’s syntax is specified using common UNIX [28]
tools, in particular lex[29] and yacc,[30] for specifying lexi-
cal analyzers and grammars. RB processes an input file
which consists of intermixed C code and RB keywords. If
the input is syntactically acceptable to RB, the preprocessor
generates an output file which mixes the C code from the
input with calls to a support library. It is this support library
which defines the mapping between the language syntax and
semantics, so that the programmer can precisely specify
what is to occur.

For example, the degree of replication may be speci-
fied; if this is to be supported as a distribution across multi-
ple hardware nodes, the support library must provide a facil-
ity which allows relevant state to be transferred [31] 0 a
specified remote machine. Consequently, we require a
mechanism which allows synchronization of the replicales.

As the implementation of RB’s support library is not
complete, we cannot yet offer observations about the effi-
cacy of the design; use typically points out failures in the
design process most effectively. However, we feel that
several choices in our design are well-supported, in particu-
lar that of RB as a language preprocessor. This is argued in
the next section.

3. Design Choices

As was mentioned in the introduction, our research is
in fault-tolerance, not programming languages. Conse-
quently, we have a set of goals for RB which may be dif-
ferent than other programming language systems:

1.) We want to focus on fault-tolerance.

2.) We need to be able to measure reliability.

3.) The design should be language independent.

4.) We need control over VO.

The applicability of RB to these goals is argued in the



following sections.

3.1, Focus

The focus on fault-tolerance is important to us; we
have neither the time, interest, nor inclination to construct a
complete programming language system. However, as our
research involved the development of fault-tolerant
software, we needed a vehicle to carry out some experi-
ments in applications of redundancy. We identified a small
number of constructs which expressed the types of redun-
dancy we believe possible in software systems. Reasoning
about the support necessary for the constructs convinced us
that we could implement the constructs with a few primi-
tives, for, e.g., address space copying, remote execution,
and process synchronization.

As the other details did not concern us and the con-
structs and primitives were so few, building on top of an
existing language offered programmers all the features they
expect from a language in addition to the redundancy
specification offered by RB, as well as limiting our efforts.

This approach has proved fruitful, as the parser and
"C" code generator were operational in about two weeks of
programming; our current effort is focused on the imple-
mentation of the support library.

3.2. Reliability

In order to make any claims about increases in relia-
bility offered by RB, we need to be able to measure com-
ponent reliabilides. For hardware, and hence replication,
these reliability figures and their measurement are well
understood; measuring the effectiveness of the retry effected
by repetition is not particularly difficult either. The diffi-
culty is the measurement of reliability [32] of software. The
topic has a large literature, as mentioned in the introduction,
but in many cases, e.g., the ime-domain models [33, 34] the
data is difficult to gather because programmers must
cooperate, recording failure times, etc. In addition, the vali-
dity of many models is only established for large programs,
e.g., those of greater than 5000 [8] source lines. Data-
domain modeling [22] is one technique to simplify reliabil-
ity data gathering.

In order to show reliability gains, we must first meas-
ure reliability and then compare the reliability figures from
the "fault-tolerant" implementation combining a set of ver-
sions to the best performing single version in that set. In
orde_r that the reliability figures for the single and compaosite
versions be comparable, we would like to perturb the
single-versions as little as possible. This is aided by our
terse set of constructs; they cause only minimal perturbation
in software complexity metrics applied to the single ver-
;‘;c;n:e 2::1%]1 the c;omposiws, In addition, as there is no need
inuoducmggngwszg\:ﬁn{; ILS:;;E, there is little chance of

g code. Such errors are

often caused by unfamiliarity with language features and

subtleti}es introduced by the complexity of a new syntax and
semantics.

3.3. Language independence

The design of RB as a language preprocessor
embodying a few simple concepts about redundancy enables
it to be adapted readily to almost any block-structured pro-
gramming language, since the RB processor is concerned
solely with its own syntax and performs simple text-to-text
transformations. The hard work is done by the support
libraries and the underlying programming language system.
We are quite sure that a variant form of RB, or at least
access to its support library, can be implemented in other
language environments, e.g., Common Lisp. [35]

One limitation on portability may be the semantics
implied by the support library; when it is complete it must
be examined to see which design choices affect portability.
One choice we have made is that we wish to control certain
aspects of the I/O behavior of program modules, particularly
the writing of data. This may significantly reduce our
choice of implementation environments and is discussed in
the next section.

3.4, Control of I/O

One of the design choices of the C programming
language [36] is the deliberate omission of VO primitives as
part of the language definition. I/O is typically accom-
plished by procedure-like requests made of the underlying
operating system called system calls; typically a "standard
[/O" library is implemented using these system calls. Refer-
ences to these calls are resolved when the program image is
created, by reference to object libraries accessible to the
linkage editor. This particular design is amenable to cus-
tomization, in the following sense; references to system rou-
tines such as write () can be replaced by routines which
buffer /O until a synchronization primitive is successfully
executed; this can be accomplished transparently, that is
with no change in the source code. This characteristic of C
allows us to control a certain class of programs whose out-
put can be delayed; highly interactive programs would not
be in this class.

3.5. Conclusions on Design

The design of RB as a C pre-processor coupled with a
support library allows us to achieve our research goals. The
simple set of constructs allow for significant expressive
power in the specification of redundant portians of software.
The RB language feamres are portable between base

languages, as a run-time support library allows the seman-
ucs to be implemented for many run-time environments.

;1:{? im ;ongna L‘he design of the s filem s Jl
ol g iy U ] - i
Wy f
v

I



reliabilities can be readily compared with the reliability of
the composite systems specified with RB, therefore allow-
ing confirmation of our method.

4. Related Work

The ISIS system [37] provides distributed k-resilient
objects. An example specification for a 3-resilient ticket
vendor is given, which implies 4 replicates of the ticket ven-
dor object must be created. While repetition and application
of software fault tolerance schemes can be implemented, no
explicit notation other than for replication is presented.

Cooper [38] discusses the use of generators to make
replication explicit. A generator is a function which rather
than returning a single value, returns a sequence of values.
The degree of replication of a given module can be deter-
mined using generators, but the specification of that redun-
dancy is implicit, by repeated use of the
add_troupe_member primitive. Such specification is
also done in Liskov’s ARGUS [39] system, where replicated
components of a guardian are created with iterators.
Although repetition and software fault tolerance can be
implemented on Cooper's CIRCUS [40] system, there is not
a compact notation for expressing these. While ISIS pro-
vides checkpoints as a necessary feature, it is not clear that
the design of CIRCUS is amenable to the sort of state-
saving behavior necessary for backward error recovery. [19]

Welch [41] and Kim [42) have discussed distributed
execution of recovery blocks as a uniform approach to fault
tolerance across hardware and software. While this work
shows that distribution is viable, its utility to a programmer
is limited:

— The recovery blocks were handcrafted to the

application, rather than being provided as a gen-
eral feature to the programmer.

__ There were two alternates, a primary and a secon-
dary, for each recovery block.

— Replication was not available.

— The implementation was on a shared-memqry
multiprocessor, and thus communications link
failures were not addressed.

RB’s implementation is similar in spirit to that of Helr-
lihy and Wing's Avalon (43) language. Like BB. Avalon is
used to specify reliable distributed programs; it also uses the
approach of a small number of constructs aflded to a base
language such as C, coupled with a support library. Avalon
is similar to Liskov’s ARGUS system in its use of transac-
tions and other features to provide robust execution. Rl} is
orthogonal to Avalon in that it accomplishes its goals. in a
different manner; if we view an RB “block” as effgcung a
transaction on the external variables, the speciﬁcauor.l is a
description of how to accomplish the transaction rella.bly.
It is clear that Avalon's mechanisms could be combined

with RB’s, and vice-versa.

Strom and Yemini's NIL {44] programming language
is designed to address the problem of reliable software for
distributed systems via a combination of a higher-level pro-
gramming language and a programming environment pro-
viding mechanisms (45, 46] for reliable execution. The
mechanisms are transparent to the programmer, unlike
RB’s. Process checkpoints, messages, and inter-process
message dependencies form a redundant description of the
system’s state. Replaying messages to a process restored
from a checkpoint results in a consistent state. Johnson and
Zwaenepoel’s Sender-Based Message Logging [47] pro-
vides similar mechanisms.

RB attempts to be much more explicit about the
specification of redundancy and so offers a different point in
the design space. Most importantly from an implementer’s
point of view, RB can use modules generated in a base pro-
gramming language for which complexity measures and
reliability estimates have been developed. Thus, we can
isolate the effect of RB in measurements of reliability.

5. Conclusions

RB provides a shorthand notation to the programmer
seeking fault-tolerance through the use of redundancy. It
allows the specification of three types of redundancy: time,
space, and logic.

The design of RB as a language preprocessor allows
us to make rapid adaptations for new experiments and
environments. We have argued also that it does not inter-
fere with the reliability measurement necessary for our
research. We feel that this preservation of the base
language characteristics is an important feature of RB, as it
allows us to separate the effects of a better programming
language from the effects of the reliability enhancements
RB provides.
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