RB: Programmer Specification of Redundancy.

Jonathan M. Smith
Gerald Q. Maguire, Jr.

Computer Science Department
Columbia University
New York, NY 10027

Technical Report No. CUCS-269-87

ABSTRACT

RB is a programming language for specifying redundancy in various dimensions. Avizienis’s nota-
tion T/ H/ S, for Time / Hardware / Software, describes the different types of redundancy possible in a
computation: repetition (nT / H / S), redundant hardware (T / nH / S), and program (software) (T / H/ nS).
These can each be controlled by the programmer with RB. RB derives its name from its use of the recovery
block notion to specify fault-tolerant segments of software. RB also supplies the programmer with the abil-
ity to specify degrees of replication and repetition for a given recovery block alternate; the underlying sup-
port software can then take this advice to replicate in time or hardware, based on available resources. An
implementation of RB based on the C programming language is described in this paper. This implementa-
tion uses a combination of a language preprocessor for C and a runtime library to provide the desired
semantics. Modification of RB to support other programming languages, or programmer specification of
N-Version Programming as the decision mechanism, is straightforward.

Keywords: Fault Tolerance, Redundancy, Programming Languages.

1. Introduction

There are two approaches to constructing highly reli-
able systems, fault intolerance, and fault tolerance. The
basic notion of fault intolerance is that the systems should
be as fault-free as the construction process allows, by using
careful design and quality components. In software,
failures, and faults causing errors, can be reduced or
removed by verification [1-3] ; precise specifications com-
bined with testing [4] ; and structured programming tech-
niques. [5] Experience [6, 7] has shown that these tech-
niques are insufficient, i.e., "bugs” remain. Gerhart and
Yelowitz [8] point out that applications of the methods may
themselves have bugs.

Hence, an alternate point of view is that faults exist,
and that we must provide reliable systems in spite of them.
This approach is called fault-tolerance. The basic idea
behind all of fault tolerance is the use of redundancy.

Redundancy (multiple copies) is used to detect faults
and mask failures. Avizienis and Kelly [9) suggest the nota-
tion T/ H /S, for Time / Hardware / Software, to describe
the different types of redundancy possible in a computation:

s time (repetition) nT/H/ S
e space (hardware) T/nH/S
e program (software) T/ H/ nS

The use of redundancy relies on the statistical indepen-
dence[10] of the failures of the component subsystems.

1.1. Software Fault Tolerance

Hardware faults can be the result of physical degrada-
tion [11] or they can result from poor design. Software can
only have faults due to mistakes in design and implementa-
tion; the logic encoded by a program does not degrade with
time. Thus, assuming a fixed underlying system, the only
variation we can effect is in the program logic. Logic
redundancy, that is, a multiplicity of methods for computing
results, has been applied as a technique to achieve reliable’

1.) Software reliability has an extensive literature; Musa, lannino,
and Okumoto [12] provide a detailed reference on software reliabili-
ty; the survey paper by Ramamoorthy and Bastani [13] discusses a
wide variely of models and issues.



software. Statstical independence of method failures is
often assumed? in order to derive reliability estimates.

Several techniques used to deal with faults in software
systems are discussed in the following sub-sections.

1.1.1. N-Version Programming

N-version Programming [19-21] is conceptually simi-
lar to N-modular redundancy, a hardware reliability tech-
nique. The basic idea is that an odd number of indepen-
dently developed versions of a software system are executed
against an input. Voting® is used to produce a result or
determine failure. The simplest case is bitwise equality as it
is independent of the application. Some practical issues of
constructing such systems are being addressed by the
DEDIX [22] system under construction at UCLA.

1.1.2. Recovery Block

The recovery block [23-27] is a language construct
analogous to a block in block structured programming
languages, in that a block has both private variables and
access to global variables (those declared external to the
block). The recovery block either reliably updates the
external variables, or fails. The scheme is conceptually
similar to the "standby spare” technique used in hardware.
N alternate methods of passing an acceptance test are pro-
vided. The first such method is referred to as the primary;
they are rank-ordered based on some metric such as
observed performance. Each method is tested, and the first
which passes the acceptance test provides the result of the
recovery block. Each alternate is guaranteed 1o begin exe-
cution with the system’s state as it was when the recovery
block was entered. Assuming that the acceptance test per-
forms perfectly, the Recovery Block method fails on inputs
where all methods fail the acceptance test. The acceptance
test is application-specific. Hecht [28] provides a detailed
discussion of the forms such acceptance tests might take.
Scott, Gault, and McAllister [29] and Scott, et al. [30] have
shown that acceptance test failures can be tolerated within a
certain range, in particular failure rates f, 0.0 < f<0.25.
Scott’s thesis [31] proposes a synthetic software fault toler-
ance method, which is discussed in the next section.

2.) Knight and Leveson's {14-16] experimental work suggests the in-
dependence assumption of multiple software versions is not upheld in
practice. Eckhardt and Lee [17] provide a theoretical analysis of
coincident errors and their effects on some software fault tolerance
schemes. Recent work by Littlewood and Miller (18) has shown that
while multiple versions using a single methodology have little hope
of independence with respect to their failures, multiple methodolo-
gies offer some promise.

3.) There are several ways that the vote could in fact be implement-
ed For example, 2 2-out-of-N scheme could be used, where as soon
as 2 respondents agree on a2 result, the result is determined to be
valid. However, the rule is typically majority vote, as this intuitively
provides the greatest prolection against random errors.

1.1.3. Consensus Recovery Block

Scott [31] observed that the major difficulty with the
Recovery Block scheme is the acceptance test*; his analysis
shows that it is the most crucial component of the scheme if
reliability is to be increased. He proposed that N program
versions be independently developed, and that an accep-
tance test for the programs be developed as well. The pro-
grams are run concurrently; 2-of-N voting is used to select a
correct result. If no two agree the results of each version are
presented to the acceptance test until one passes. The
scheme avoids the acceptance test in cases where there is
agreement in 2-of-N of the voters, and thus a relatively
unreliable acceptance test may not have much impact on the
Consensus Recovery Block's output. If the versions fail
independently, the Consensus Recovery Block is more reli-
able than Recovery Block or N-Version Programming in
almost al! circumstances, and never less reliable.

1.1.4. Choice of Recovery Block Method

Scott’s analysis [31] of these three methodologies
concludes that the independence assumption is unwarranted®
based on a statistical analysis of many independently-
developed® versions of a program. His analysis of this
situation is that independently-developed programs tend to
fail on the same problems because the difficult cases remain
difficult’ across versions. Thus, the independence or lack of
it is as much a characteristic of the problem space as it is of
the solution space.

His experimental data indicated that N-Version Pro-
gramming decreased the reliability and the Recovery Block
scheme increased reliability for acceptance tests with relia-
bility 0.75 or greater. The Consensus Recovery Block per-
formed between the other two schemes, showing a reliabil-
ity gain for acceptance tests with reliability 0.90 or greater.

Thus, it appears that the Recovery Block scheme
currently provides the best protection against software
faults. The use of the Recovery Block scheme is discussed
in the next section.

4.) Cha, et al. [32] have shown that Self-Checks (a generalization of
the Acceplance Tests used by Recovery Blocks ) can be effective tn
finding faults. However, there is difficulty both in the writing of the
Sclf-Checks and their placement within the program structure. They
also nole a great vanation in the ability to write effective self-checks,
and the efficacy of combining code-based checks with specification-
based checks compared to specification-based alone.

5.) This concurs with Knight and Levesoa's resulls.

6.) It is possible to criticize such an experiment on the basis of the
programmers being students in the same class, with the same train-
ing. Then again, academic environments place constraints on sharing
of information not posed by the real world, e.g., accusations of pla-
giarism.

7.) This agrees with Eckhardt and Lee's [17] analysis.



2. RB: Specification of Redundancy

An example of a Recovery Block designed to perform
a numerical calculation is given in Figure® 1, using RB nota-
tion’. The goal of the routine is to provide an output which
is the square root of the numerical argument. The ENSURE
keyword indicates that what follows is t0 be used as the
acceptance test for this recovery block. In this example, we
have defined a macro EQUAL which defines equality in
terms of a relative error measure to make the example more
realistic.

The BY keyword ends the specification of the accep-
tance test and denotes the beginning of the primary alter-
nate. ELSE_BY is used to specify further alternates; the
ELSE_ERROR keyword specifies arbitrary code to be exe-
cuted upon failure of the set of alternates to produce an
acceptable answer. The END keyword terminates the
recovery block syntactically.

RB performs a source-to-source translation; source
text between keywords is copied verbatim. Hence, any syn-
tactically correct constuction in the base language, e.g.,
compound statements, may be used in the alternates. The
execution can be modeled as a sequence of actions, where
an action consists of computation of an alternate. Each
alternate is associated with an instance of the acceptance
test. Figure 3 illustrates the control flow in a world-line
diagram; the path marked "pass” is taken if the acceptance
test associated with {Alternate #1} is passed; external vari-
ables are then updated. Control returns to the box marked
"Normal Program” in Figure 3 when the recovery block ter-
minates, either in error or successfully.

There is opportunity for parallel execution as each
recovery block alternate is assured of beginning its execu-
tion with the state of the computation as it was when the
block was entered. Thus, the activities of any other alter-
nate are irrelevant, as they are not allowed to affect the state
of a given alternate. Thus, since, recovery block alternates
do not communicate, they can be executed concurrently,
giving rise to the model of execution illustrated in Figure 4.
The END keyword marks the place in a program where the
synchronization takes place. We have not decided how the
synchronization method is to be selected. This could be
done by using a fixed method, by selecting a library which
implements a synchronize () primitive generated by
the RB source-to-source transformation, or by creating new
syntax, e.g., WITH SYNCHRONIZATION {method}.

The acceptance test can execute with the alternates or
at the synchronization point. Results from failed tests need
not be sent. We do not show the conditional control flow in
examples which exhibit space redundancy; multiple alter-
nates imply a third dimension not illustrated in the figures.

8.) Referenced figures are found at the end of the documeat.
9.) The notation almost exactly follows Randeli's. [23]

Mapping concurrently executing alternates onto distinct
pieces of hardware can take advantage of available space
redundancy.

With support for concurrent execution, the alternates
can be used to effect an N-Version Programming scheme,
by setting the acceptance test to ENSURE TRUE, and
implementing the synchronizadon as voting.

RB provides several features to specify redundancy
other than the redundant logic expressed by the recovery
block method. In order to expose these features, we’ll
expand on the previous example with the routine in Figure
2.

2.1, Replication

One of the possibilities for robust execution of com-
putations is to have multiple identical copies of a piece of
software executing, as is specified with the REPLICATES
OF keyword used in Figure 2. The effect given by 2
REPLICATES OF {Alternate #1} is shown in Figure 5.
Replication reduces the likelihood of a hardware failure des-
troying the results of a correct software alternate. In addi-
tion, it may more effectively serve to take advantage of
differences in processor loads if we synchronize by accept-
ing the results of the first successful execution. Note also
that if we specify an ENSURE TRUE acceptance test and
REPLICATES OF a single alternate, we have pure repli-
cates of a computation; several systems of this style are
mentioned in Section 3 on related work.

2.2. Iteration

Intermittent failures can be dealt with by retry, thus
we would like to specify that multiple REPETITIONS OF
a computation are to take place. Figure 6 illustrates the con-
trol flow if we had specified 2 REPETITIONS OF (Alier-
nate #1}. In our current design, we make multiple attempts
to pass the same acceptance test, exposing a user to more
danger with poor quality acceptance tests.

2.3. Combinations

Combinations of redundancy specifications lead w0
interesting behaviors that may be exploited by the program-
mer. For example, Figure 2 specifies 2 REPETITIONS
OF newton() and 2 REPLICATES OF bisec-
tion(); this is illustrated in Figure 7. While we don't
currently make provision for arbitrary nesting in RB, we do
allow a fashion of nesting for combinations of specification
of replication and specification of iteration. For example, if
we specified BY 2 REPLICATES OF 2 REPETITIONS
OF {Alternate #1}, we would achieve the behavior illus-
trated in Figure 8; BY 2 REPETITIONS OF 2 REPLI-
CATES OF would perform analogously.



3. Related Work

Birman, et al. [33] discuss fault tolerant distributed
objects in the ISIS system, developed at Cornell. In the dis-
cussion of k-resilient objects in ISIS, a specification for a
3-resilient ticket vendor is given, which implies 4 replicates
of the ticket vendor object must be created. The ISIS
specification is concerned only with replication. While
repetition and application of software fault tolerance
schemes can be implemented, no explicit notation is
presented.

Cooper [34] discusses the use of generarors to make
the replication in his system explicit. A generator is a func-
tion which rather than returning a single value, returns a
sequence of values. The degree of replication of a given
module can be determined using generators, but the specifi-
caton of that redundancy is implicit, by repeated use of the
add_troupe member primitive. This sort of specifica-
ton is also done in Liskov’'s ARGUS [35] system, where
replicated components of a guardian are created with itera-
tors. As with ISIS, although repetition and software fault
tolerance can be implemented on Cooper’s CIRCUS [36]
system, there is not a compact notation for expressing these.
While ISIS provides checkpoints as a necessary feature, it is
not clear that the design of CIRCUS is amenable to the sort
of state-saving behavior necessary for a Recovery Block
implementation,

Welch [37] and Kim [38] have discussed distributed
execution of recovery blocks as a uniform approach to fault
tolerance across hardware and software. While this work
shows that distribution is viable, its utility to a programmer
is limited:

— The recovery blocks were handcrafted to the
application, rather than being provided as a gen-
eral feature to the programmer.

— There were only two alternates, a primary and a
secondary, for each recovery block.

— Replication features were not available,

— The implementation was on a shared-memory
multiprocessor, and thus communications link
failures were not addressed.

RB’s implementation is similar in spirit to that of Herlihy
and Wing’s Avalon {39] language. Like RB, Avalon is used
to specify reliable distributed programs; it also uses the
approach of a small number of constructs added to a base
language such as C, coupled with a support library, Avalon
is similar to Liskov’'s ARGUS system; it uses transactions
and other features to provide robust execution. RB is
orthogonal to Avalon in that it accomplishes its goals in a
different manner; if we view an RB "block” as effecting a
transaction on the external variables, the specification is a
description of how to accomplish the transaction reliably. [t
is clear that Avalon’s mechanisms could be combined with

RB’s, and vice-versa.

Strom and Yemini's NIL {40] programming language
is designed to address the problem of reliable software for
distributed systems via a combination of a higher-level pro-
gramming language and a programming environment pro-
viding mechanisms {41] for reliable execution. The
mechanisms are transparent to the programmer, unlike
RB’s. Process checkpoints, messages, and inter-process
message dependencies form a redundant description of the
system’s state. Replaying messages to a process restored
from a checkpoint results in a consistent state. Johnson and
Zwaenepoel's Sender-Based Message Logging [42] pro-
vides similar mechanisms.

RB attempts to be much more explicit about the
specification of redundancy and so offers a different point in
the design space. Most importantly from an implementer’s
point of view, RB can use modules generated in a base pro-
gramming language for which complexity measures and
reliability estimates have been developed. Thus, we can
isolate the effect of RB in measurements of reliability.

4. RB Implementation Notes

RB has been designed as a C pre-processor; this
approach is much like that of a sophisticated macro proces-
sor. This approach has been used previously in the con-
struction of programming languages, in particular,
Stroustrup’s [43] C++ programming language uses the
approach of a C preprocessor coupled with a powerful sup-
port library.

RB’s syntax is specified using common UNIX [44]
tools for specifying lexical analyzers and grammars. RB
processes an input file which consists of intermixed C code
and RB keywords. If the input is syntacticaily correct, RB
generates an output file which mixes the C code from the
input with calls t a support library. It is this support library
which defines the mapping between the language syntax and
semantics, so that the programmer can precisely specify
what is to occur.

For example, the degree of replication may be speci-
fied; if this is to be supported, the support library must pro-
vide facilities which allow relevant state to be ransferred 10
a specified remote machine. Thus, we also need a mechan-
ism which allows synchronization of the replicates.

Research on several components of a support library
is continuing at Columbia; while we can specify redun-
dancy, we need a complete implementation of the support
library in order to draw conclusions about the use of RB on
running software.

5. Conclusions

RB provides a shorthand notation to the programmer
seeking fault-tolerance through the use of redundancy. It



allows the specification of three types of redundancy: time,
space, and logic. The use of repetition to deal with intermit-
tent faults and the use of distribution and replication to deal
with hardware faults seem well understood. This level of
maturity is not evident in methods for "software fault" toler-
ance; the complexity of the medium makes metrics of relia-
bility difficult to devise and apply. Thus, it often not clear
how to model and measure the effects of software fault
tolerance methods on system reliability. While the
Recovery Block scheme for providing redundancy in the
logic component of a program has been used for the version
of RB described here, RB is easily modified to support other
software fault tolerance schemes, and development of the
support library will provide us with useful mechanisms for
support of distributed computation and reliable software.
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Figures

#define TOLEZRANCE (1.0e-5)
tdefine EQUAL(_a,_b) \

{{({_a)-(_b))/(_b)) < TOLERANCE)

double ft_sgre( x )
double x;

{

}

double y, newton({), bisection();

ENSURE EQUAL( y*y, x )

BY

y = newton( x );
ELSE_BY

y = bisection( x );
ELSE_ERROR

fail();
END

return( y )

Figure 1: Simple Recovery Block example

édefine TOLERANCE (1.0e-5)
sdefine EQUAL(_a, b)\

({{(_a)-(_b))/(_b)) < TOLERANCE )

double ft sgrt( x
double x;

{

} - 3
Figure 2: Using RB redundancy specification

double y, newton(), bisection{():

ENSURE EQUAL{ y*y, x )
BY 2 REPETITIONS OF
Yy = newton( x );
ELSE _BY 2 REPLICATES OF
y = bisection( x );
ELSE_ERROR
fail():
END

return{ y ):
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