Process Migration: Effects on Scientific Computation.

Gerald Q. Maguire, Jr.
Jonathan M. Smith

Columbia University Computer Science Department
450 Computer Science, Columbia University, NY, NY 10027

Technical Report No. CUCS-268-87

ABSTRACT

This report describes the notion of process migration, and points out certain
vulnerabilities to architectural assumptions.

Computationally intensive processes, typified by scientific computations, are
among the best candidates for migration. In architecturally heterogeneous
systems, these processes fuce particular problems due to their dependence on
architectural features such as "machine precision”. We point out some of these
problems, and suggest some solutions.




Process Migration: Effects on Scientific Computation.

Gerald Q. Maguire, Jr.
Jonathan M. Smith

Computer Science Department
Columbia University, New York, NY 10027

1. Introduction

Process migration has been proposed or implemented as a feature of several operating systems!!! 21 31 A discussion
of such mechanisms is found in Tanenbaum and Van Renesse!®; the point of these designs has typically been load-
sharing] in distributed systems. These systems have typically been composed of homogeneous nodes; some
interesting questions arise if we attempt to extend the notion of process migration to heterogeneous nodes.

The remainder of the introduction provides background material on process migration and the mechanics of
migration,

1.1 Process Migration

An image is a description of a computation which can be executed by a computer. A process is a computation in
some state of execution, with the initial state given by the image. At any given time, the state of the process can be
represented as two components: the initial state and the changes which have occurred due to execution. The total
information, that is, the initial state together with the changes, gives us the state of a process. If we transfer the state
of a process from one processor to another (Figure 1),

Source state | Destination
System [transter| System

Figure 1. State Transfer

so that an ongoing computation can be correctly continued (Figure 2),

TIME Source Destination

Figure 2. Flow of execution of migrating process
we have migrated the process.

Process migration is most interesting in systems where the involved processors do not share main memory; in the
case where they do the state transfer is trivial. A typical environment where process migration is interesting is
autonomous computers connected by a network.

1.2 External Data Representation

An environment where the computer systems are exactly alike is called homogeneous; differing processor types or
operating systems define a heterogeneous environment.

Process migration between processors of the same type is really a problem of saving the state information on the
local processor, and restoring it on the remote processor; since the interpretation of the data is consistent on the
sender and the receiver, there is no translation problem.

Consider the approach of data translation between two processor types. Each processor type must be able to
convert the data from the foreign processor type into a format which it can use. If a third processor type is added,
each processor must be able to translate between its own representation and that of two other processors. In general,
the complexity of the translation software, in terms of the number of data representations which must be supported,
grows with n processor types as follows:



» Each processor must be able to translate from the representations of n-1 other processor types,

o This is multiplied by the number,n, of processor types,

« For a total of O(n2 ) pieces of translation software.
This is undesirable, as adding a new processor type becomes a more difficult task over time. A way to reduce the
software complexity of the translation process is to use a standard representation for the transport of data. A new
processor then needs only to be able to convert data to and from the standard form; this bounds the complexity of
the software. Thus, process migration schemes between heterogeneous processors will require an external data
representation. The external data representation must successfully address the problem of different representations
for data such as characters, integers, and floating point numbers.

One important issue that should be dealt with in such an external data representation scheme is the different
precisions and magnitudes of floating point representations. If this issue is not dealt with intelligently, users
performing scientific computation may not be able to trust their results.

2. The Problem

The two (not counting the sign) parts of a floating point number' must be handled differently, as the side effects
caused by an external data representation affect each of the two components differently. These two parts are the
exponent and the mantissa. The problems will be discussed in the two sections following.

2.1 Exponent

Different architectures? allocate different numbers of binary digits (bits) in a floating point datum to processor
exponents. Assume processor A uses 8 bits, processor B uses 16 bits, and the external data represeniation,
designed by users of processor architecture A, provides 12 bits (4 to be safe). Assume, for the sake of this section’s
discussion, that all three representations use the same number of bits for the mantissa.

A process on processor A which is migrated to processor B should experience no problems in representing its
floating data; the external data representation has plenty of room for its 8 bits of exponent in its 12 bits, and the 12
bits used by the external data representation again easily fit in the 16 bits of processor B’s exponent.

However, the process on processor B may face several problems. First, if the exponent of a number requires more
than 12 bits, the external data representation cannot contain it. If inadequate error handling exists, the process may
not have meaningful data by the time it gets to processor A. Thus, the migration mechanism must be made aware
that this process cannot be migrated, as its floating point data cannot be represented. Note that the problem here is
with the representation, as processes using such a scheme cannot even be transferred between processors of the
same type (B), which can represent the same numbers,

This problem of the representation can only be eliminated by guaranteeing that the external data representation
have at least as many bits in the exponent as the longest exponent on any processor in the distributed system.

A second problem, not so easily addressable, is the problem of a number on processor B with 8 < # bits <= 12 in the
exponent. In this case, the external data representation easily handles the number, but processor A cannot; it must
raise an overflow or underflow® exception upon conversion from the external data representation or expect
meaningless results.

The only obvious solution to this problem is to guarantee that numbers used by programs which migrate have a
smaller exponent value than the smallest processor on the network; this may be intolerable for serious scientific
computation. Solutions such as emulating the larger processor’s values may be prohibitively expensive in terms of
computation time. Defining a subset of processors which can serve as destinations in a migration may be a viable
solution; the idea here is that the process may only be moved to a destination processor if the representable

1. Those not familiar with the topic of floating point representation may wish to consult a basic text on numerical computation, such as Ralston
& Rabinowitz'® or Cheney & Kincaid'™.

2. A description of architectural decisions relevant to floating point representations can be found in Chapter 2 of Stone™.
3. Depending upon the sign of the exponent.



exponent is at least as large as that on the source processor. In any case, exception handling for overflow or
underflow must be performed in some fashion.

2.2 The Mantissa

Another issue is the representation of mantissas; this discussion follows the same reasoning as above, but deals with
a rather more subtle problem that may creep in due to multiple process migrations. Assume that processor A and
processor B have different architectures; assume that processor A uses 32 bit mantissas, processor B uses 64 bit
mantissas, and that the external data representation uses 48 bit mantissas; assume that the exponent field is of the
same size on all processors.

Once again, the user of processor A has a fine situation, where both the external data representation and processor
B can represent his data with no loss of precision (in fact, computations on processor B will occur with less loss of
precision than those carried out on processor Al).

The user of processor B has several concerns, however. The conversion process from his representation to the
external data representation throws away 15 bits of data with rounding, 16 with chopping. The conversion process
from external data representation to processor B’s format throws away another 16 bits of data. This means that the
computation on processor A will be carried out in "half-precision”, a fact that the numerical analyst may not have
counted on when designing the program which the process is executing.

The solutions to these problems are similar to those discussed above; the external data representation must have
sufficient precision to handle the largest mantissa, and the migration will not be transparent without either
conformance with some limits on expected precision or emulation of higher precision computation.

2.2.1 Muliiple migrations

One item of concern here is the effect of multiple transitions between a set of processors, where our example
processors A and B might be a subset. This is a concern only in the mantissa case because loss of data in the
exponent is catastrophic, while loss of data in the mantissa can be viewed as an additional perturbation of a
computation.

One suspects that the precison loss which we have discussed (in the case of moving from A to B) may be
cumulative, and thus a series of migrations may totally invalidate a computation. However, the situation is not that
bad, assuming that the external data representation is properly designed, i.e. that it is adequate to represent the
longest mantissa of any processor encountered in the course of the computation. If we take an alternate point of
view, we can see why multiple migrations are not a problem. Informally, postulate a processor C, with a floating
point representation such that processor C has precision (number of bits in the mantissa) less than or equal to any
other processor that processes migrate to. Then, the precision of our results will never be worse than performing the
calculation on processor C with no migration. This is because we can view the remote computations as "extra
precision” calculations with respect to processor C’s floating point,

2.3 Other issues

Other issues which the external data representation designer should address may arise. Two of these are signed
infinity and signed zero. Some architectures support a value which indicates that a result too large (or too small) to
store has been generated; this is the result of an overflow (underflow), and is called signed infinity.

Other architectures may use the sign bit of a value which would otherwise be zero, thus giving rise to a signed zero.

The problem that we have is that these representations may not be supported on all systems; decisions have to be
made in the translation algorithms about how to deal with these situations, but the external data representation
should provide support for these values, so that a given processor can either take advantage of the extra information
or discard it.

3. Conclusions

The important point of this discussion for the external data representation designer is that he must be extremely
knowledgeable and conservative in the design of the external data representation; for example, precision loss can
also be caused by conversion between bases, e.g. 0.10 p San not be represented exactly in base 2. Such conversion
could occur if, for example, an American Standard Code for Information Interchange (ASCII) base-10
representation was chosen.



For the designer of a process migration facility, however, the problems of heterogenity are somewhat more difficult
than just the external data representation design. For example, performance considerations may prohibit using an
otherwise satisfactory technique such as a virtual machine with the required precision®, These problems must be
addressed for such a facility to be useable.

The issues here are real, and can affect the users of facilities; for examples, SUN's XDR® uses IEEE standard
floating point format® which is insufficient to represent the fioating point values of several architectures, including
several floating point data types® supported by the VAX-11 Architecture!™® which is often found in networks
containing SUN workstations.

4. E.g, a mechanism which migrates LISP processes may convert a running program into a symbolic representation, which can be copicd to a
remote processor and interpreted by the LISP on that processor. BIGNUM behavior will be independent of the underlying processor.

5. A number is described by (-1)S*25 8% £ where:
S is the sign. 1 encode positive/negative.
E is the base 2 exponent. 8 bits for floats, 12 for doubles. The corresponding Biases are 127 and 1023, respectively.
F is the base 2 fractional part of the mantissa, with 23 bits for floats and 52 for doubles.

6. More specifically, the H_floating data type has an excess-16384 binary exponent (15 bits), and a 112 bit field devoted 1o the mantissa. The
112 bits are used to represent a 113 bit quantity by not representing the redundant most significant fraction bit.



6.

10.

REFERENCES

. Process Migration in DEMOS/MP

Michael L. Powell and Barton P. Miller

Proceedings of the Ninth ACM Symposium on Operating Systems Principles
1983

. Network Tasking in the LOCUS Distributed UNIX System

David A. Butterfield and Gerald J. Popek
USENIX Conference Proceedings
Summer 1984

pp. 62-71

. Preemptable Remote Execution Facilities for the V-System

Marvin M. Theimer, Keith A. Lantz, and David R. Cheriton
10th ACM Symposium on Operating Systems Principles
1985

pp. 2-12

. Distributed Operating Systems

Andrew S. Tanenbaum and Robbert Van Renesse
ACM Computing Surveys

Volume 17

Number 4,

December 1985

pp. 419-470

. A Distributed Load-balancing Policy for a Multicomputer

Amnon Barak and Amnon Shiloh

SOFTWARE - PRACTICE AND EXPERIENCE
Volume 15(9), pp. 901-913

(September 1985)

A First Course in Numerical Analysis (2nd Edition)
Anthony Ralston and Philip Rabinowitz
McGraw-Hill

1978

. Numerical Mathematics and Computing (2nd Edition)

Ward Cheney and David Kincaid
Brooks/Cole
1985

. Introduction to Computer Architecture (2nd Edition)

Harold S. Stone
SRA
1980

. SUN XDR Protocol Specification (Release 2.0)

SUN Microsystems, Inc.
1985

VAX Architecture Handbook
Digital Equipment Corporation
1982-1983



