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Abstract

This paper explores the complexity-theoretic approach to the transmission of knowledge that was
introduced by Goldwasser, Micali, and Rackoff, and further studied by a number of authors. Roughly
speaking, a protocol designed to solve a given computational problem is said to be minimum-knowledge if
its outputs give no more information than an oracle for the problem would give to a user whose
computational resources are polynomially bounded. This notion has important consequences for the
design of cryptographic protocols. A few slightly different definitions have been given in the literature;
some of the results included here have been published previously without proofs. This paper proposes a
uniform definition, collects the known results and proves them, and describes the problems that are still
not understood.
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1. Introduction

‘‘What is knowledge?'’ is an old philosophical riddle. Recently, theoretical computer scientists have
attempted to formulate a theory of the knowledge possessed by the participants in a multi-party protocol
(e.g. [14, 21, 13]). From researchers in cryptography and complexity theory have come the notions of
‘‘interactive proof-systems’’ and ‘‘zero-knowledge’’ (or ‘‘minimum-knowledge’’) protocols, which are
the subject of this survey [20]. These were first introduced by Goldwasser, Micali, and Rackoff. Among
the motivations for this work we mention the following:

e A desire to quantify the ‘‘amount of knowledge' transmitted by a message or gleaned from
an interaction by one of the participants. The first step, perhaps, is to characterize those
situations in which no knowledge (or information), or at least the minimum possible
knowledge, is communicated.

¢ Modularity and decomposability of protocols: We would like to be able to combine
cryptographic protocols in such a way as to preserve their properties of cryptographic
security. Protocols are still not well understood. For example, in many protocols the
participants use random bits; the question is, what exactly should we require of a sub-routine
(sub-protocol) for producing or distributing these bits?

» Security of cryptographic keys: What does it mean to say that a key is not compromised?
How long is it ‘‘safe’’ to use a key?

In this approach, instead of trying to prove theorems directly about the ‘‘knowledge’’ transmitted by a
communicated message, or about users’ changing ‘‘knowledge states’’ during the course of a protocol
execution [13), we take a computational approach and consider certain theoretically more tractable
objects. We model the participants involved in a protocol as interacting Turing machines, and we study
the sets of strings that may appear on the various tapes of these machines.

In the next section, we give the necessary definitions. In section 3, we describe a minimum-knowledge
protocol for proving two given graphs isomorphic, and another protocol for proving them nonisomorphic;
these two protocols exemplify the techniques that have been used so far in constructing minimum-
knowledge protocols, as well as several of the questions about their construction that are still not well
understood. In section 4, we discuss a class of problems, the ‘‘random-self-reducible’’ languages, that
seems 10 be appropriate for cryptographic applications, and all of which can be shown to have minimum-
knowledge protocols for proving membership. Section 5 presents minimum-knowledge protocols for
several problems in elementary number theory. In section 6, we prove the theorem of Goldreich, Micali,
and Wigderson that, under the assumption that one-way functions exist, every language in NP has a
minimum-knowledge protocol for proving membership [17]. Finally, in section 7, we briefly discuss the
consequences of the results of section 6 for the design of cryptographic protocols.

2. Preliminaries

2.1. Ensembles of strings

We need the following definitions {20, 30]. Let /< {0,1}° be an infinite set of strings; for each xe /,
let ©_be a probability distribution on the set of bit-strings. (Without loss of generality, we often assume
that ®t_ assigns positive probability only to strings of length |x|¥, where k is a positive constant.) We call
IT={n_ |xel} an ensemble of strings (usually suppressing mention of / and k).



For example, if M is a probabilistic Turing machine, then any input string x defines a probability
distribution, induced by the coin tosses of M’s computation, on the set M([x] of possible outputs of M on
input x. Thus, forany /, { M[x] |xe./}isan ensemble.

A crucial notion for the work surveyed here is that of distinguishing between two different ensembles
of strings [T= {n_|xe [} and IT"= (x| xe /}. Weimagine the following experiment being performed.
A string is drawn at random, either with probability distribution _or with probability distribution & ’, and
the string is given to a judge, who is charged with the task of deciding which of the two distribution was
used. If it can be shown that no judge is able to decide, then the two ensembles may be used

interchangeably.

More formally, a distinguisher is a probabilistic Turing machine that, given a string as input, outputs a
bit. Suppose that IT and IT’ are ensembles of strings, and that D is a distinguisher. For any xe I, let p,(x)
be the probability that D outputs a 1 when it is given as input a string of length |x|°, randomly selected
according to probability distribution ®_, and let p,’(x), depending on the distribution nt/, be defined
similarly. We call the two ensembles (polynomial-time) indistinguishable if for any polynomial-time
distinguisher D, for all m and all sufficiently long x,

Py -py @I < |xI™.
We call the two ensembles statistically indistinguishable if there is a constant ¢ such that for any
distinguisher D, no matter how powerful, for sufficiently long x,

|pp@)—pp ()| < 279,
i.e., for all sufficiently long x the two distributions given by that x differ only on an exponentially quickly
vanishing fraction of the set of strings of the appropriate length. This is true, of course, if the two
ensembles are exactly identical; in this case the difference IpD(x)—pD'(x)l is exactly zero, for any
distinguisher D.

2.2. Model of computation

Two probabilistic Turing machines M, and M, form a pair of communicating Turing machines if they
share a read-only input tape and a pair of communication tapes; one of the communication tapes is
read-only for M, and write-only for M,, while the other is read-only for M, and write-only for M,. In
addition, each machine has a private input tape and a private output tape. The two machines take tums
being active. While it is active, a machine can read the appropriate tapes, perform computation using its
own work tape, and send a message to the other machine by writing the message on its write-only
communication tape. Whatever is written on each machine’s output tape when they both halt is the result
of its computation. Unless stated otherwise, all Turing machines are assumed to be limited to feasible
computations; that is, they are limited to probabilistic polynomial time. Finally, a two-party protocol is
simply a pair of such machines.

In many of the protocols that we describe below, we use the notation “M,—>M,:m’" 10 indicate the
transmission of the message m from Turing machine M oM,

In order to study mult-party protocols, we formalize the interacting parties as a system of
communicating probabilistic Turing machines. Every machine has a private input tape, a private output



tape, and one public communication tape for each of the other machines. There is a global clock, and the
protocol proceeds in rounds; during each round every machine reads its communication tapes, performs
some polynomial-time computation, perhaps using some random bits, and then may write messages on
the communication tapes. There is also a global input k, a parameter of input size, of cryptographic
security, and of certainty [16, 20, 12].

By an n-party protocol we mean an n-tuple M=(M,, ... ,M,) of such machines. Given local input i
and global input &, each machine makes some (probabilistic) computations, sends messages to and
receives messages from other machines, and halts in time polynomial in the parameter k with a string o on

its output tape.

We are concemed with computational problems as formalized by Yao [31] in the following way. Let
£={0,1}. If k is the global input, then we have local inputs (i,...,i) distributed according to a
probability distribution I, over (£%)". Our aim is to design an n-party protocol M=(M,, . ..,M,) whose
outputs (0, ... ,0,) are distributed according to another probability distribution O,(i,, . . . ,i); here, 0; is
the output of Mj. For example, the special case in which 0= j}(il, ..., ) with probability 1 describes in
this framework the problem of designing a protocol whose outputs are n specified functions of the inputs.
Briefly, we speak of the computational problem [I,,0,]. A protocol M for the problem [/,,0,] is correct
if its outputs are indeed distributed according to O, when the input distribution is /,.

In the case of two parties A and B, we often write their respective inputs in the form (k.i,) and (k.ip),
where (i, ,ig) is an instance distributed according to /,.

We let (M,,Mp)[k.i,ip] denote the set of possible ordered sequences of messages written on the
communication tapes of Turing machines M, and M, during their computation on inputs (k.i,) and (k.ip).
This set has a natural probability distribution induced by the coin tosses of M, and M,. Thus, the
communications ensemble

{(M M)k .ig)l (i,.ip)distributed according to/, }
is another example of an ensemble of strings.

Since we are interested in feasible computation, we assume that both the input distributions {/, } and
the output distributions { O(i,, ... .i,)} form polynomial-time computable ensembles. That is, there is a
probabilistic Turing machine that, given input k, generates in time polynomial in k£ an instance (i, ... ,i)
randomly distributed according to the distribution /,. (Altemnatively, there is a uniform family of
probabilistic polynomial-sized circuits whose k& member has output distribution / ) We make a similar
assumption on the output distributions for which we hope to construct protocols: there is a probabilistic
Turing machine that, on input k and any n-tuple (i,,....i,) to which /, assigns positive probability,
generates an instance distributed according to O,(i;, . . . ,i).

2.3. Interactive. proof-systems

Much of this paper is devoted to a special sort of two-party computational problem, that of interactively
proving membership in a language L. In this case, the desired protocol allows one party, the prover P, to
convince the other party, the verifier V, that a given input string is in fact (with high probability) in L; if



the input string is not in L, then even a cheating prover should not (except with vanishing probability) be
able to convince the verifier that it is.

Such a protocol. is called an interactive proof-system for the language L. This can be formalized in
terms of input distributions by requiring that i, =i, = (k. x), where x is the string whose membership is in
question and k is a parameter of certainty. (Sometimes the prover’s input may be of the form i, =(k, x,w),
where w is a witness or a short proof that xe L.) We distinguish between a confirming proof-system for
L, whose purpose is that the verifier confirm membership in L for the input string, and a deciding proof-
system for L, whose purpose is that the verifier decide whether or not the input string is in L. At the end
of a confirming protocol, the verifier may either accept the proof that xe L, or reject the proof; if in fact
xe L, then V should reject the proof, even if P is replaced by another Turing machine P* (no matter how
powerful). At the end of a deciding protocol, the verifier may either accept a proof that xe L, or accept a
proof that xe L, or reject the proof. The cormrect answers define the desired output distribution for V; we
allow a positive error probability that is, for any constant c, less than k™ for sufficiently large k! (The
output distribution for P is null. However, P may halt the protocol when it detects cheating on the part of
V)

The definition of a confirming proof-system requires that V correctly accept instances of strings xe L,
and that no malevolent adversary can convince V incorrectly to accept strings xe L, except with
vanishingly small probability. The definition of a deciding proof-system requires that, given any input
string x, V correctly decide whether xe L or xe L, and that no adversary can convince V of what is not the
case, except with vanishingly small probability.

One of the well-known characterizations of NP may be rephrased in these terms. Every language
L e NP has a confiming interactive proof-system, consisting of a single interaction: given xe L as input,
the prover simply sends to the verifier a proof w; after checking that w does indeed prove that xe L (a
polynomial-time computation), the verifier accepts the proof. (For example, if L is the language of
Hamiltonian graphs, then the witmess w could be a Hamiltonian circuit in the input graph x.) If the input
string x is not in L, then no such w exists.

2.4. Minimum-knowledge: definitions
Suppose that M=(M .M ) is a protocol that solves the two-party computational problem [/,0,]. We
say that the protocol M is minimum-knowledge for B if, given any probabilistic polynomial-time Turing
machine M,", there exists another probabilistic polynomial-time Turing machine § such that:
l.Gich any input (ki) whose second coordinate comes from a pair (i ig) 0 which 1,
assigns positive probability, 'S has one-time access to an oracle which retumns a value 0p
randomly distributed according to 0,2(i ,.i).
2. § can use B® as a subroutine, as described below.
3. The ensembles {S[k,is]} and {(M A,MB‘)[k,z' +igl ] are indistinguishable.
If the ensembles are statistically indistinguishable, we say that the protocol is statistically

Un fact, all of the examples we give satisfy the stronger requirement of an error probability which is exponentially
vanishing in k&




minimum-knowledge; if they are exactly identical, we will say that the protocol is perfectly
minimum-knowledge.

The simulating .machine S can use M " as a subroutine in the following way. We model the
probabilistic nature of M," by providing it with a random read-only tape. While carrying on its
computation, the machine S may back up a few steps in the simulated protocol, re-setting both the read-
head of M B"s random tape as well as the write-head of its own output tape to where they had been eatlier,
and then to proceed with the protocol.

In order to motivate this definition, recall that we are trying to formalize the notion of the amount of
knowledge transmitted by a sequence of messages. Speaking informally, one gains no knowledge from a
message that is the result of a feasible computation that one could just as well have carried out by oneself.
In particular, a message that consists of a randomly chosen element of a set conveys no knowledge to the
receiver, since the receiver is able to use its own coin-flips in order to choose an element at random. This
fact is used many times in the design of minimum-knowledge protocols.

If the purpose of a protocol followed by two interacting parties A and B is that A transmit to B a value
0g(i, ig), we would like to be able to say exactly when the protocol transmits no more knowledge than
this value. We might also demand that the protocol accomplish this even if B somehow tries to cheat ---
that is, even if the Turing machine M, is replaced by another (polynomial-time, but possibly cheating)
machine M B'. The simple transmission of the value oy(i,.ip) can be modelled by a single oracle query. If
the provision of this oracle query makes it possible, by means of a feasible computation, to simulate the
entire ‘‘conversation’’ that M, and MB‘ would have had on input (k,i,.ip), then we can say that when A
and B actually have a conversation (i.e. follow the protocol) with these inputs (and B follows the program
M®), there is no additional knowledge transmitted to B besides the value op(i,.ig). Anything that a
cheating party is able to compute using what it leams from A (by running the program MB‘ when it
interacts with A), it would be able to compute for itself by first running the simulation S.

Note that if 0,(i,.ip) is feasibly computable just from the input (k,ig), then the oracle adds no power to
the machine S. In this case S (or, for that matter, B) can compute oB(i A,i B) without the assistance of A.

In the literature, a confirming interactive proof-system for a language that is minimum-knowledge for
the verifier has often been called a zero-knowledge interactive proof-system. This definition was first
given by Goldwasser, Micali, and Rackoff [20]); Galil, Haber, and Yung proposed the above
generalization to any two-party protocol [15]. The reader who would like to see an example of a
minimum-knowledge protocol, without wading through any more definitions, should tumn immediately to
Section 3.1 below.

2.5. Number theory

Many of the protocol examples discussed in this paper involve problems that come from number
‘theory; therefore, we assume that the reader is familiar with the following notions from elementary
number theory. (See, for example, [22, 27] for the number theory, and [24] for a computational point of

view.)



We use Z,’ to denote the multiplicative group of integers relatively prime to N. Any element ze ZN‘ is
called a quadratic residue if it is:a square mod N (i.e. if the equation x*=zmodN has a solution);
otherwise, z is a quadratic nonresidue mod N. It be convenient to define, for any positive integer N and
any element ze Z,", the predicate

RES = J 0 ifzis a quadratic residue mod¥,
N(Z) { 1 otherwise.

If N=p is prime, then RES (2) is given by the Legendre symbol (2)=(-1RE,®, which happens to be

equal to z"2modp. If N has prime factorization N=[]._, pfi, then the Jacobi symbol of any ze Z,’
(generalizing the Legendre symbol modulo a prime) is given by

(-G

Without using the factorization of N, the Jacobi symbol (,{7) can be computed efficiently (i.e. in time
polynomial in logN) by using the law of quadratic reciprocity, and takes on the values +1 and —-1. If
(#)=-1, then z must be a quadratic nonresidue mod N. On the other hand, if (§)=+1, then z may be
either a residue or a nonresidue. Détermining which is the case, without knowing the factorization of N,
appears to be an intractable problem. (However, given the prime factorization of N, it is easy to
determine whether or not z is a quadratic residue, because z is a quadratic residue mod N if and only if it
is a quadratic residue modulo every prime that divides N.) Several cryptographic schemes have been
proposed that base their claim to security on the assumed difficulty of distinguishing between residues
and nonresidues modulo an integer N that is hard to factor {19, 6, 26].

If pj<p,<...<p, are the primes that divide N, and ze Z,’, then we may call the list
[(},11), Ve ’Gl)] € (-1,+1) the Legendre list of z mod N. Two elements y,ze Z," have the same
Legendre list if and only if their product yzmod N is a quadratic residue mod N.

3. Minimum-knowledge interactive proof-systems

Our first examples of minimum-knowledge protocols are confirming interactive proof-systems for the
languages of graph isomorphism and of graph nonisomorphism. These examples do not require much
deep mathematics; they depend only on the fact that two graphs G and G’ are either isomorphic or
nonisomorphic, and that if a given map from the vertices of G to the vertices of G’ is claimed to be an
isomorphism, then this assertion can be verified or refuted quickly. These two examples illustrate most of
the issues that arise in the study of minimum-knowledge proof-systems: the varying computational
power that may be required of the prover, whether or not the protocol is perfectly minimum-knowledge,
and whether or not the protocol can be executed in parallel while preserving its minimum-knowledge
properties.

. To compute a random isomorphism of a given graph G =(V,E) is to choose a permutation « of the set V
of vertices of G, uniformly and at random from the set of these permutations, and then to compute the
permuted edge-set E' = { (r(u), *(v))| (4, v) € E }; the resulting graph G’ =(V, E") is isomorphic to G. For
convenience, we may speak simply of choosing a random isomorphism n: G — G’.




3.1. Graph isomorphism
We begin with a confirming interactive proof-system for graph isomorphism, i.e. for the language
GI = {(G,,G,) | Gyand G, are isomorphic graphs }.
The protocol is perfectly minimum-knowledge. Here (along with the usual input parameter k) the
verifier’s input is a pair of graphs (G, G)). and the prover's input is (G, G,,9), where $:G,—>G, is an
isomorphism. Both prover and verifier are probabilistic polynomial-time machines.

Repeat k times:
1. P computes y: G, — H, a random isomorphism of G,;
P>V:H

2. V chooses e {0, 1} at random (and will ask to be convinced that G, is isomorphic to H);
VoP:e

3. P computes: if e=0 then rt:= else if e=1 then n:=y¢ ! else (if ee {0, 1)) P HALTS;
PoVin
4.V checks that n: G, — H is an isomorphism; if it is not, then V REJECTs the proof
V ACCEPTs the proof

To see that this is a confirming interactive proof-system, first note that if the two input graphs are
indeed isomorphic, and both P and V follow the protocol, then V will accept the proof. On the other hand,
if the two graphs are not isomorphic, the only way for a cheating prover to convince V that they are
isomorphic is to guess ahead of time, in each of the k iterations, whether V will ask him to show that H is
isomorphic to G, or to G,; his chance of doing this successfully is 27,

To prove that this protocol is minimum-knowledge for the verifier, let V* be any communicating
Turing machine that can interact with P; we have to specify the computation of a Turing machine S that
uses V* as a subroutine and whose output, on input (k, G, G)), is a simulation of the communications that
P and V* would have had on the same input (with P’s input augmented by an isomorphism between the
two graphs). We make no assumptions about the internal computations of V*. However, if V* departs so
far from the specified protocol that appropriate messages are not sent when they are assigned --- e.g., if V*
rejects the proof (and halts the protocol) even though the two graphs are isomorphic and P has been
acting correctly --- then P can detect this and halt execution of the protocol. Since this departure is easily
detectible in polynomial time, S can simulate the communications between P and such a V*. Thus,
without loss of generality we can assume that V* behaves *‘reasonably’’.

In this case, the communications ensemble that § must simulate consists of & triples (H, €, ), where
n:G,— H is an isomorphism. S will operate by simulating the actions of P in its ‘‘interactions’’ with V*;
this is how § ‘‘uses V* as a subroutine’’. § proceeds as follows.

Repeat k times:
i. choose €€ (0,1} at random;

ii. compute n: G, — H, a random isomorphism of G;
“*send’’ H to V* (simulating step 1 of the protocol);

iii. *‘receive’’ o from V* (simulating step 2)




iv. (if e {0, 1} then HALT; else)
if a=¢ then ‘‘send”’ & to V* (simulating step 3) and append the triple (H, €, ) to the output
tape else
(a€) reset V* to its configuration at the beginning of the current iteration and go to step i.

If the two input graphs are isomorphic, then in each iteration of the loop above, the graph H is a
random variable that is uniformly distributed over the set of isomorphic copies (according to the graph-
representation used), regardless of whether S has chosen €=0 or e=1. It follows that the event a=¢ will
occur with probability exactly 1/2, so that the expected number of times (per iteration) that the loop will
be repeated is two. The ensemble {S[k, Go’le |Gy=G, } is identical to the ensemble
{(P.VD)k, GG 0.(Gyp, G |$:G,—G,is an isomorphism }, and therefore the protocol above is
perfectly minimum-knowledge.

The version of this protocol in which all k iterations are executed in parallel, while it is stll an
interactive proof-system for GI, does not appear to be minimum-knowledge for V. At least, the proof just
given does not generalize to the parallelized version, since the expected number of repetitions that the
simulator would have to repeat its guess would be 2 which is no longer polynomial-time.

Next, we discuss a perfectly minimum-knowledge confirming interactive proof-system for a variant of
graph isomorphism, namely the language
lof2-GI = {(G,, G, F) |eitherF=G orF=G, ).
We will use this as a sub-protocol in the interactive proof-system for graph nonisomorphism. For this
protocol, the verifier’s input is a triple of graphs (G, G,,F), and the prover’s input is (G, G,,F.€,p),
where €€ (0,1} and p: G, — F is an isomorphism. Both prover and verifier are probabilistic polynomial-
time machines.

Repeat & times:

1. P chooses €'e {0,1} at random and computes random isomorphisms 6,:G.—H, and
0:G¢—H,;
P—-V:(H,H l)

2.V chooses ae (0,1} at random;
VoP «a

3.if a=0 then P V: (€, 0,, 0));
else if =1 then P computes ¢:=€®D¢’ and the map 1:= oep" (an isomorphism F—H ), and
PoV.1;
else (if ae {0, 1)) P HALTs (detecting cheating)

4.V checks that 6,:G,,—H, and 6,:G,_,— H, are isomorphisms if a=0 or that (for at least
one choice of ee {0,1}) T: F— H  is an isomorphism if a=1;
if not, then V REJECTS the proof

V ACCEPTs the proof

A straightforward generalization of the proof above for GI shows that this protocol is a perfectly
minimum-knowledge confiming interactive proof-system for 1of2-GI; as before, the parallelized version
of the same protocol may not be minimum-knowledge. Note that after an execution of this protocol, the




verifier, while convinced that the triple (G,,G|.F) is of the required form --- i.e., that F is isomorphic
either to G, or to G, --- has learned nothing that would help him decide which of these is the case.

3.2. Graph nonisomorphism
In this section we give a statistically minimum-knowledge confirming interactive proof-system for
graph nonisomorphism, i.e. for the language

GNI = {(G,,G,) | G,and G, are not isomorphic graphs }.

Here the shared input is of the form (k,G,,,G,). For this protocol, the prover must be able to carry out
certain computations that are not (known to be) feasible. To be precise, given a third graph, the prover
must be able to recognize whether it is isomorphic to G, to G, or to neither. For example, the prover
may be a probabilistic polynomial-time Turing machine with a GNI-oracle (or with a GI-oracle). The
verifier is simply a probabilistic polynomial-time machine.

We begin with an interactive proof-system that is not minimum-knowledge for V.

Repeat k times:
1. V chooses €€ {0, 1} at random, and computes a random isomorphism p: G — F;
VoSP.F
2. P chooses €’e (0,1} so that G =F;
P-V:e

3. V checks that £'=g¢; if not, then V REJECTs the proof
V ACCEPTs the proof

In step 2, the prover uses its ability to tell which of the two input graphs is isomorphic to any given
graph F. If the input graphs are indeed nonisomorphic, and both prover and verifier follow the protocol,
then the verifier will accept the proof. On the other hand, if the input string is not in the language GNI,
i.e. if G, and G, are isomorphic, then the k graphs F sent by the verifier in step 1 of each iteration are all
isomorphic. Even a prover with unlimited computational power would be unable to tell, in each round,
whether F was computed after a choice of e=0 or of e=1. The only way a cheating prover can convince
the verifier to accept the proof incorrectly is by guessing, & consecutive times, the verifier’s coin-flip &;
thus the probability that V will accept the cheater’s proof is at most 2%, Hence, the above protocol is
indeed a confirming interactive proof-system for GNI.

But the protocol i8 not minimum-knowledge for V, since in step 1 the verifier may ask about a graph F
whose isomorphism type bhe does not know, and in this case P's answer in step 2 gives him additional
knowledge. However, before P's answer V can now use the interactive proof-system given above for the
language lof2-GI in order to prove to P that the triple (G, G,, F) is of the required form, i.e. that he does
know the isomorphism type of F. Note that P and V must reverse the roles they played before; now, as a
sub-protocol of our proof-system for GNI, it is V that is proving something to P. A subtle point is that,
because of this reversal of roles, we are able to use the parallelized version of the sub-protocol. (The
parallelized sub-protocol is still a proof-system; we don’t need it to be minimum-knowledge for P, since
P is presumed to be able to decide whether F is isomorphic to G, or to G,. The purpose of the sub-
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protocol is to assure P that V *‘knows’’ which is the case.) The full protocol is as follows.

Repeat k times:
1. V chooses e {0,1} at random, and computes a random isomorphism p: G, — F;
VoP. F
1.1 for i=1...k, V chooses €€ {0,1} at random and computes random isomorphisms
Gy GE‘_—)H‘.0 and 0;: Gl_el_—aH“;
VP HgHydey i
1.2 Pchooses Ic{1,... .k} at random;
P-V:I
1.3 foreachje I, V computes ej=e®ej and the map T,=C, _p":
7
Vo Pi(€,00.0:)ic 1 (Wi s
1.4 P checks that 0,:G, & Hand 6,:G, . —H,, are isomorphisms for i€ /, and that
(for at least one choice of L {0,1}) 1};F-—>H}.¢_ is an isomorphism for je I;
J .
if any of these conditions does not hold, then P HALTs the protocol (detecting
cheating)
2. P chooses €’e {0,1} sothat G, =F;
PV ¢
3. V checks that £'=¢; if not, then V REJECTS the proof
V ACCEPTSs the proof

As before, if the input graphs are nonisomorphic, and both prover and verifier follow the protocol, then
the verifier accepts the proof. On the other hand, if G,=G,, then the sub-protocol refinement (steps 1.1
through 1.4) will not help the prover --- even a prover with unlimited computing power --- to distinguish
an iteration in which V has chosen e=0 from one in which V has chosen €=1; in either case, the prover
only receives a list of random isomorphic copies of G, Thus, again as before, the only way a cheating
prover can convince the verifier to accept the proof incorrectly is by guessing, k consecutive times, the
verifier’s coin-flip &; thus the probability that V will accept the cheater’s proof is at most 27*. Hence,
refined protocol is a confirming interactive proof-system for GNI.

To prove that the protocol is minimum-knowledge for the verifier, let V* be an arbitrary probabilistic
polynomial-time Turing machine that interacts with P. We must specify the computation of a machine §
whose output, on input (k, G, G,) satisfying (G, G,) € GNI, will be a simulation of the ‘‘conversation’’
recorded on the communication tapes of P and V* when they are given the same input. Assume, without
loss of generality, that V* behaves ‘‘reasonably’’, i.e. that with high probability P does not detect cheating
on the part of V* and halt the protocol.

In each round, S carries on the protocol through step 1.4 in a straightforward manner: S ‘‘interacts’’
with V*, and easily simulates P’s role, choosing the set / in step 1.2 and then checking several graph
isomorphisms in step 1.4. The difficulty comes in simulating P’s communication in step 2; our
polynomial-time machine § has no way (given our present knowledge) of computing whether V* has sent
a graph F which is isomorphic to G, or to G,. § accomplishes this by saving the messages “‘sent’’ so far,
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and resetting the random read-head of V and its own output head so as to restart the computation at step
1.2. Continuing its probabilistic computation, S flips new coins in order to choose a new set I’ that is not
a superset of /, and ‘‘sends’’ it to V*. Since we are assuming that (with high probability) the messages
“‘sent’’ by V* would pass P's checks in step 1.4, there must be an index je /-/’, so that V* ‘‘sent’’
(ej, Ca» cﬂ) in the first repetition of step 1.3 and T; the second time. These isomorphisms enable S to
recover the isomorphism p: G, — F, and therefore to continue with step 2 of the round.

The above computations are repeated k times, once for each round. By construction, the output
ensemble computed by S is statistically indistinguishable from the communication ensemble generated by
P and V, and therefore the protocol is indeed statistically minimum-knowledge for the verifier. (The only
difference between the two ensembles occurs when V* attempts to cheat during the refinement sub-
protocol by guessing ahead of time the subset /. There is a positive, though vanishingly small, probability
that P does not catch him in a particular execution of the protocol; however, because of the backtracking
in our simulation, the simulator S insists on catching V* cheating and then halts the protocol --- and this

happens very quickly.)

If all & iterations are performed in parallel, then the resulting protocol is still an interactive proof-
system for GNI. Moreover, the simulator can also perform in parallel all k iterations of the simulating
procedure just described; thus the parallel version of this protocol is also statistically minimum-
knowledge.

The assertion that both GI and GNI possess minimum-knowledge interactive proof-systems for
confirming membership relies on no unproved assumptions (such as the existence of the one-way
functions required by the protocols of Sections 6 and 7 below). Of course, it may be the case that there
exists a polynomial-time algorithm for graph isomorphism, in which case this assertion is only vacuously
true, since a polynomially limited verifier would not need the assistance of a prover in order to ascertain
whether two given graphs were or were not isomorphic.

Both protocols rely on what may be called the random-self-reducibility of the graph-isomorphism
problem. This is made precise in the next section.

We call attention to several important differences between the two interactive proof-systems described
above. The protocol for graph isomorphism is perfectly minimum-knowledge for the verifier when it is
performed sequentially, but the parallel version might not be minimum-knowledge; the prover is a
probabilistic polynomial-time machine --- no more powerful than the verifier --- which is provided with a
witness to the fact that the two input graphs are isomorphic. (The protocol may be regarded as a proof to
V that P knows this witness.) On the other hand, the protocol for graph nonisomorphism is statistically
minimum-knowledge, even when it is performed in parallel; the prover must possess some additional
computational power in order to perform its role in the protocol. The reader will notice, as we present
more examples of minimum-knowledge protocols, that these two sets of characteristics tend to occur
together.
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4. Randome-self-reducible problems

The notion of random-self-reducibility was mentioned by Angluin and Lichtenstein as a possible
explanation of why certain number-theoretic functions are good candidates for use in cryptographic
applications [3]. The notion was formalized by [28], who proved the theorem described in this section,
and by [1], whose results imply that there probably do not exist many examples of random-self-reducible
languages.

Following both [28] and [1], we say that a language L is random-self-reducible if there is a polynomial-
time mapping p:L— L that uses a source of independent random bits, satisfying the following conditions.
Without loss of generality, assume that p uses k° bits on inputs of length k; we write p(x, 7) for the output
of p on input xe L and re {0, 1}'*. For convenience, we write the elements of L as pairs x=<u, v>.

1.Forall xe L and re {0, 1}"*, |p(x,r)|=|x|, and if x=<u,v> then p(x, r)=<u, v'>.
p

2. For every x=<u,v>e€ L, when r is chosen with uniform distribution in {0, l}lx'c, the outputs
p(x,r) occur with the uniform distribution on the set of instances <u,v'> € L of length | x|.

If L is a set in NP, then there is a polynomial-time predicate p, such that a string x is in L if and only if
there is a witness-string w (of size polynomial in | x[|) satisfying pL(x. w)=1; let W(x) denote the set of all
witnesses for x. We will say that L is sampleablé? if:

Given an integer /, we can generate pairs (x,w) in time polynomial in /, with x uniformly
distributed over strings in L of length / and w uniformly distributed over W(x).

In our examples, we would like the self-reduction p to interact well with witness-strings, in the following
way. We say that the self-reduction p is witness-respecting if it has the following properties.
1. Let p(x,r)=x' and we W(x). Given x,r and w it is possible to compute (in polynomial time)
a witness w'e W(¥). If r is chosen with uniform distribution in {0,1}'*F, then each
w e W(x’) should occur with equal probability.

2.Let p(x,r)=x" and w e W(x). Given x,r and w it is possible to compute (in polynomial
lime) a witness w e W(x).

Example 1. The language GI = { (GG 1Gy=G,} of graph isomorphism is also random-self-
reducible. With a slight abuse of notation, let p(GO.G,.r)=(Go. G"), where %, is a randomly chosen
permutation of the vertices of G, and G’=¢,(G,,) is the resulting isomorphic copy of G (In the notation
of our definition, we have u=G,, v=G |, and v'=G’.) If the (single) witness for an instance (G, G,) is the
isomorphism between the two graphs, then GI is sampleable, and this random-self-reduction is easily seen

to be witness-respecting.

Example 2. The language QR = ((N,z) | N> 1, za quadratic residue mod N } of quadratic residues has
a random-self-reduction defined as follows. Abusing notation again, let p(N,z,r)=(N,Z), where r is a
randomly chosen element of ZN‘ and Z=z"modN. (Here we have u=N, v=z, and v=7.) In this case,
with witness sets defined in the obvious way by W(N,z2)= {we z; |z=w?mod N }, QR is sampleable; the
equivalence w'=wrmod N shows that the mapping p is witness-respecting.

2E. Allender and J. Feigenbaum, personal communication.
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Example 3; The language
SameQ = {(N,y.z) | N>1,yandze Z,' have the same Legendre list> mod N }
has a random-self-reduction defined as follows. Let p(N,y,z,r)=(N,y,Z), where r is a randomly chosen
clement of Z,* and Z=2z*modN. (In this example we have u=(N.y), v=z, and v’=7’.) The witness set is
W(N.y,2)={we Z,’|z=yw?modN}. The equivalence w’=wrmodN shows that the mapping p is
witness-respecting. This language is sampleable.

By taking y=1, which is a quadratic residue for any modulus N, we see that QR is (isomorphic to) a
witness-respecting sub-language of SameQ.

Example 4: Consider the language
L= {(p.a,x)|pprime, a,x€ ZP' such that3we [1...p-1],a¥=xmodp}.

The exponent w is the witness that x belongs to the multiplicative subgroup of ZP‘ generated by the

element a.* The mapping defined by p(p,a,x,r)=(p,a,x), where re [1 ... p—1] is chosen at random and
X =xa" mod p, is a random-self-reduction. Since x” has witness w’=w+rmod p—1, p is witness-respecting.

The following theorem was proved by Tompa and Woll [28].

Theorem 1: If the sampleable NP language L has a witness-respecting random-self-reduction
p, then there is a perfect minimum-knowledge confirming interactive proof-system for L; the
prover is a probabilistic polynomial-time Turing machine that is given as additional input a
witness for the input string.

The theorem is proved by exhibiting an interactive proof-system for L. The verifier’s input is of the
form i,,= (k, x), while the prover’s input is of the form i, = (k,x,w), where we W(x).

Repeat k times:
1. P chooses re {0, 1}'*!" at random, and computes ¥ =p(x, r) and w' € W(x’);
P-oV:XY

2.V chooses e {0,1) at random;
VoP.e

3. P computes: if e=0 then z:=r else if e=1 then z:=w/ else (if e {0, 1}) P HALTS;
P-oV:.z

4.V checks that p(x, z)=x" if e=0 or that ze W(x") if e=1; if not, then V REJECTs the proof
V ACCEPTs the proof

To see that this is a confirming interactive proof-system, observe that when the input is of the required
form and both prover and verifier follow the protocol, the verifier will in fact accept the proof. On the
other hand, if the input string x is not in L then there is no witness-string w for x. The only way for a

.. y and z have the same quadratic character modulo every prime dividing N.

4Using the best known algorithm for primality testing, this language can only be said 1o be statistically sampleable.
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cheating prover to convince V that xe L is by correctly guessing, before each iteration, whether V will
choose €=0 --- in which case the cheater can compute X’ =p(x,r) as specified, and send z=r in step 3 --- or
will choose e=1 --- in which case the cheater can deceive V by generating a a random instance X' € L
along with a witness w/, sending x’ in step 1 and z=w’ in step 3; the fact that p is witness-respecting
implies that the cheater is unable to prepare simultaneously for both possibilities. The probability of
cheating the verifier by guessing successfully in k consecutive iterations is 27,

To prove that this protocol is minimum-knowledge, let V* be any communicating Turing machine that
interacts with P. We have to specify the computation of a Turing machine § that, on input (k,x) with
xe L, computes a simulation of the communication tapes of P and V* on input (k,x,w) and (k,x). Here,
the communications transcript of an accepting computation consists of k triples (¥, €,2) that satisfy the
conditions of step 4 above. § proceeds as follows.

Repeat & times:

i.choose €e {0,1} at random; if e=0 then choose re {O,l}"'c at random, and compute
X' =p(x,r) and w’' e W(X);
else generate a random pair (X', w") withx e L, w'e W(X), |x|=|X|

ii. “‘send”’ X" to V*
iii. *‘receive’’ o from V*
iv. if ae {0, 1} then halt; else
if (ce#¢€) then reset V* to its configuration at the beginning of the current iteration and go to
step i; else
if a=e=0 then set z:=r else (a=¢e=1) set z:=w/;
“‘send’’ z to V* and append (x’, €, z) to the output tape

In each iteration of the loop above, the element ¥’ is uniformly distributed over L~{0,1}'*!, whether §
has chosen €=0 or e=1. It follows that the event a=e occurs with probability exactly 1/2, so that the
expected number of times (per iteration) that the loop will be repeated is two. The ensemble
{S[k,x] |xe L} is identical to the ensemble {(P.V*)[k (x,w),x]|xe L,we W(x)}, and therefore the
protocol above is perfectly minimum-knowledge.

As with the example of GI presented in Section 3.1 above, the version of this protocol in which all &
iterations are executed in parallel, while it is still an interactive proof-system for L, does not appear to be
minimum-knowledge for the verifier.

5. Number-theoretic examples

5.1. Quadratic residues and nonresidues
These were the first examples that motivated the original definition of minimum-knowledge protocol
[20].

By the results of Section 4 above, the language of quadratic residues, defined by
QR = {(N,z) | N>1, za quadratic residue modN },
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has a confirming interactive proof-system that is perfectly minimum-knowledge. For completeness, we
give the protocol below. The prover is a probabilistic polynomial-time Turing machine that receives, in
addition to the input string (V, z), a witness w satisfying w>=zmod N.

Repeat & times:
1. P chooses re Z," at random, and computes z'=r>mod ¥;
PV
2.V chooses ee {0,1} at random;
VoPe

3. P computes: if e=0 then y:=r else if €=1 then y:=wrmodAN else (if ee {0,1}) P HALTS;
P->V:y

4. V checks that y?=z"mod N if e=0 or that y=zZ’ if e=1; if not, then V REJECTS the proof
V ACCEPTs the proof

Just as we defined the language 10f2-GlI, a variant of the graph isomorphism language, in order to

specify a protocol for graph nonisomorphism, we now define the language

1of2-Q = {(N.y,.y,,x) N> 1, either(N,y;,x)or(N,y,, x) € SameQ }.
A simple adaptation of the interactive proof-system for QR (or for SameQ) --- analogous to the adaptation
of the protocol for GI to give a protocol for 19f2-GI --- results in a confirming interactive proof-system
for 1of2-Q that is perfectly minimum-knowledge for the verifier. Similarly, we could give a confirming
interactive proof-system for the language

10f3-Q = {((N.y;.Y5, 73, 0 IN>1, (N, y,,. x)or (N, y,, x) or (N, y5,x) € SameQ }
that is perfectly minimum-knowledge for the verifier.

Next, we give a statistically minimum-knowledge confimming interactive proof-system for the language
of quadratic nonresidues, defined by
ONR = ((N,y) | N> 1, ya quadratic nonresidue modN }.
The prover and the verifier both have inputs of the form (k,N,y). As was true in the case of GNI, the
prover must possess some additional computational power. Namely, the prover must be able to
distinguish between quadratic residues and quadratic nonresidues modulo N; for example, it can receive,
as additional input, N’s prime factorization.

We begin with an interactive proof-system that is not minimum-knowledge for the verifier.

Repeat & times:

1.V chooses re Z,” and ee {0,1) at random, and computes x:=y*P’modN (so that
RES,(x)=€);
VoP:x

2. P computes € :=RES,(x);
P>V:e

3. V checks that €’=¢; if not, then V REJECTS the proof

V ACCEPTs the proof
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In step 2, the prover uses its power to distinguish between residues and nonresidues mod N. If y is
indeed a quadratic nonresidue, and both prover and verifier follow the protocol, then the verifier accepts
the proof. On the other hand, if y is a quadratic residue, then the numbers x sent in step 1 of each round
form a list of k randomly chosen quadratic residues mod N. Even a prover with unlimited computational
power would be unable to tell, in each round, whether x was computed after a choice of =0 or of e=1.
The only way a cheating prover can convince the verifier to accept the proof incorrectly is by guessing, &
consecutive times, the verifier’s coin-flip €, thus the probability that V' accepts the cheater’s proof is at
most 27%. Hence, the above protocol is indeed a confirming interactive proof-system for QNR.

But the protocol is not minimum-knowledge for V, since in step 1 the verifier may ask about a number
x whose quadratic character he does not know, so that P’s answer in step 2 gives him additional
knowledge. However, before P’s answer V can now use a variation of the interactive proof-system for
1of2-Q in order to prove that x was constructed as specified, i.e. either as a random quadratic residue or as
a random element of the same quadratic character as y. As in the protocol for graph isomorphism, we will
be able to use a parallelized version of this sub-protocol step. The full protocol is as follows.

Repeat k& times:
1.V chooses re ZN‘ and €e (0,1} at random, and computes x:=y*2?modN (so that
RES, (x)=¢);
VoP:x
1.1 for i=1...k V chooses €€ (0,1} and ryr, € Z,” at random and computes
xgi=rpdfiand x, i=r %' imodN;
Vo P (g Xy a

1.2 Pchoosesic{1,...,k} at random;
PV

1.3 for each je I, V computes ej:eEBel. and wj:=y‘rrj“modN (Wj is a wimess that
J
RES N(x}.‘j) =RES,(x));
Vo Pi(&rg fidier Wi

1.4 P checks that x =r %% and x, =r, %' imodN for i€/, and that wjzixxj‘_modN
j
(for at least one choice of e;€ {0, 1)) forje I

if any of these conditions does not hold, then P HALTs the protocol (detecting
cheating)
2. P computes € :=RES,(x);
PV
3. V checks that &’=¢; if not, then V REJECTS the proof
V ACCEPTs the proof

We omit the proof that this protocol is a confimming interactive proof-system for QNR that is
- statistically minimum-knowledge for the verifier, since it is exactly analogous to the proof given in
section 3.2 for the graph nonisomorphism protocol.

The fact that the number w; computed in step 1.3 is a witness that RESN(x)=RESN(xj‘) --- in fact, a
Jj
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witness that x and X, have the same quadratic character modulo every prime dividing N --- follows from

the calculation:
2 - 2 2 2y — : ey 2= Jyor, 2 = y&i-r, 2
we = (. ) = (¥ r9)(Ofr. ©) = xx_, modN, sinceytr ¢ = 0 iTh
J *j #j *j %j S2 el
ytrjl =)y -’rjl

zsxp ife1=0.

= x., ife=1.
Xy ejl

As with the protocol for GNI, if all k iterations are performed in parallel, then the simulator can also
perform in parallel all & iterations of the simulating procedure; thus the parallel version of this protocol is
also statistically minimum-knowledge for the verifier.

In the original presentation of this protocol, the verifier uses a slightly different sub-protocol
refinement (of similar cost) in order to convince the prover that each number x sent in step 1 is correctly
constructed [20]. The version above was chosen for ease of explanation.

Of course it may tumn out that there is a polynomial-time (probabilistic or deterministic) algorithm for
distinguishing residues from nonresidues mod ¥, in which case the protocols described above are only
trivially minimum-knowledge. Another minimum-knowledge protocol involving quadratic residues and
nonresidues is described in section 5.5 below.

5.2. Blum integers

Our next example concemns the set of integers with prime factorization N= H;l p/isuch that for some
i,pfi=3mod4. Let BL (for Blum, who pointed out their usefulness in cryptographic protocols) denote
the language consisting of these integers. If N®3mod4, an easy condition to check, then clearly ¥ is in
this language. However, if N=1mod4, it is not clear how to tell whether or not its prime factorization is
of this form. There are two equivalent formulations of membership in BL: (1) N € BL if and bnly if, for
any quadratic residue mod N, half its square roots (mod N) have Jacobi symbol +1 and half its square
roots have Jacobi symbol —1. (2) N € BL if and only if there exists a quadratic residue mod N that has
two square roots with different Jacobi symbols [4].

The following protocol, due to Blum, may have been the first protocol in the literature that satisfied the
definition of minimum-knowledge (4). It is a perfectly minimum-knowledge confirming interactive
proof-system for BL. The prover and the verifier share the input (k,N); the additional input for P is the
prime factorization of N (or, equivalently, any means of computing square roots mod N).

Repeat k times:
1. P chooses a quadratic residue re Z,;" at random;
P-V:r

2. V chooses 6=+1o0r-1 at random:
VoP.o

3. P computes s such that s*=rmod N and (})=0;
PoV:s

4.V checks to make sure that s satisfies the above conditions; if not, then V HALTs the protocol
and REJECTs the proof.
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V ACCEPTS the proof

The correctness of this protocol --- i.e. the fact that it is a proof-system --- depends on the altemate
characterizations of membership in BL. If Ne BL, then each quadratic residue r sent by P has at least
one square root mod N with Jacobi symbol +1 and at least one square root mod N with Jacobi symbol —1;
no matter which sign o V chooses, P can respond with a square root of the appropriate sign. On the other
hand, if N¢ BL then no quadratic residue mod N has two square roots with Jacobi symbols of opposite
sign. In this case, it is highly probable that there is some i for which P will be unable to send an
appropriate s, and V will halt the protocol. The only way for a cheating P* to convince V that Ne BL (by
sending the appropriate elements s)) is by guessing the entire sign-sequence G, . .. ,0,; such a guess will
only be correct with probability 27*. Thus, this protocol is indeed a confirming interactive proof-system
for BL.

To prove the minimum-knowledge property, we have to specify the computation of a simulating Turing
machine §. (Once again, as discussed in Section 3.1 above, we can assume that V* behaves
‘‘reasonably’’.) In this case, S must simulate a communications ensemble that consists of triples (7, G, 5)
satisfying the conditions implicitly defined by the specification of the protocol.

On input (k,N), S repeats the following loop & times:
1. choose se Z," at random
2. r:=s*modN
3.‘'send" rto V*, and ‘‘receive’’ o in retum

4.if (§) #0 then re-set the random read-head of V* and go back to step 1;
else output (r, ¢, 5)

Assume now that Ne BL. For each iteration, the expected number of times this loop will have to be
repeated is 2, since, for any value of r, the probability that (§)=0 is exactly 1/2. The random triples
produced by S do satisfy the required conditions, and so the two ensembles are indeed identical. This
completes the proof that the protocol is perfectly minimum-knowledge.

This is another example in which it is not clear how to perform the simulation required for the
minimum-knowledge proof, if all k iterations of the protocol are executed in parallel.

5.3. Blum’s coin-flip
There are many two-party protocols that require random bits. Each of the parties, A and B, has to be
sure that the other cannot bias these bits. They can do this by following a protocol due to Blum [4].

An integer Ne BL, N=1mod4, is given.

A and B generate a random bit B:

1. B chooses ue Z,; at random, computes v=u*mod N,
B—oA:v

2. A chooses 6 = +1 or -1 at random, a guess for the value of (g);
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A->B:c
3.B—>A:u
4.if 6 = (§) then B:=1else f:=0

The protocol indeed achieves its task: The first altemate characterization of BL (Section 5.2) implies
that, no matter what its computational power, A cannot bias the bit produced, since A cannot guess the
Jacobi symbol of the square root of v chosen by B and be correct with probability greater than 1/2.

If B picks u at random, then the bit B chosen by this protocol is random. A cheating Turing machine B*
could bias the bit solely by using its ability to produce two numbers « and «’, both square roots (mod N)
of v, with opposite Jacobi symbols; this capacity would enable B* to factor N simply by computing the
greatest common divisor (u—u’, N).

The protocol is perfectly minimum-knowledge for B. The reason is that A’s only task is to transmit a
guess, ¢ = +1 or —1, for a sign, a task that can be performed easily by a simulator interacting with the
verifier B*. We show how to formalize this argument, when the coin-flip is used as a sub-protocol in
another protocol, in the next section.

5.4. Number of prime factors
We use v(N) to denote the number of distinct prime factors of an integer N.

Given an integer from the set
L={N|NeBL N=1mod4,v(N)>1},
the protocol below is a perfectly minimum-knowledge confirming interactive proof-system for the
language L N { N| v(¥)=2}. Note that it is easy to determine that a given integer N is not a prime power.

Let us use Z,’(£1) to denote the set of elements of Z,” with Jacobi symbol t1 (respectively). This
protocol relies on the fact that if N has exactly { prime factors (i.e. v(¥)=1), then exactly 1727} of the
elements of ZN‘(+1) are quadratic residues. P and V jointly pick random elements of ZN‘(+1). If P can
show that about half of them are residues (e.g. by producing their square roots mod ), then V should be
convinced that v(N)<2. Since N is not a prime power, v(N) must be equal to 2.

In order to pick a list of random elements of Z,’(+1), P and V follow Blum'’s coin-flip protocol, which
requires that Ne BLand N= 1 mod4.

1. P and V use Blum's coin-flip protocol to generate k random elements r,, ... ,r € Z,'(+1):
i=0;
do until i=k:
a. generating it bit by bit using Blum's coin-flip protocol, P and V choose a number
a,0<a<N

b. if g.c.d.(a, N) #1 (which will happen very rarely) then HALT the protocol
c.if (§)=+1then {i:=i+1;r;:=a)
2.For each i=1,...,k such that r; is a quadratic residue, P computes s; such that
".'55.'2 mod N;
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PoV:.(s)
3.V checks that at least 3/8 of the r; are quadratic residues; if so it ACCEPTs the proof, and
otherwise it REJECTs the proof

During the above protocol, P and V together choose random elements of Z,(+1). Since they do this
by means of Blum's coin-flip protocol, and no Turing machine P* can bias the bits produced by Blum's
procedure, these elements are indeed produced at random. In order to prove that this stage is a proof-
system, consider the experiment of choosing a random element of ZN‘(+1). where the experiment is a
success if the chosen element is a quadratic residue mod N; let F,(¥) denote the frequency of successes in
k independent trials. Recall that V accepts the proof if the frequency F (N)23/8. As mentioned above,
the probability of success in one trial is exactly 1/2¥*! (Since N is known to have at least two prime
factors, this probability is at most 1/2.) If v(N) is exactly 2, then the probability that V does not accept is,
by Bemstein’s law of large numbers,

Prob{ F,(N)<3/8 } < Prob{ |F(M-1/2|21/8} <2 e-"(”s)z,
which is exponentially vanishing in . On the other hand, if N has more than two prime factors, the
probability of success in one trial is at most 1/4, and thus the probability that V will incorrectly accept the
proof (when interacting with a cheating P*) is

Prob( F,(NV)23/8 } < Prob( |F,(N)—1/4{21/8 ) < 2¢740%,

To prove the minimum-knowledge property, we have to specify the computation of a simulating Turing
machine §. (Once again, as discussed in Section 3.1 above, we can assume that V* behaves
‘‘reasonably’’.) The communications ensemble (P, V*)(k,N] that S must simulate includes a sequence of
Blum coin-flips, so we begin by showing that Blum’s coin-flip protocol is perfectly minimum-knowledge
for V. To prove this, we must specify the computation of a probabilistic polynomial-time Turing machine
Scoin Whose output, on input N (satisfying Ne BL and N= 1 mod 4), is a simulation of the communications

ensemble (P, V*)[ N ], namely a triple (v, 0, &) that encodes a bit as described in Section 5.3 above.

Given a random bit f (the result of a fair coin flip), S, proceeds as follows:
a. Sgoi, €Xecutes the protocol with V*: letting V* *‘send’’ v, simulating P’s action in step 2 by
flipping a coin to choose ¢ and ‘‘sending’’ it to V*, and then letting V* “*send’’ u
b. if the bit generated by this execution is §, then S__;  outputs the triple (v, 0, 1)

c. otherwise, S, re-sets V*'s random read-head, goes back to step 2, ‘‘sends’’ —o instead of
ot V", and lets V* *‘send’’ & now S, outputs the triple (v,—0, u")

Note that if V* does not follow the protocol it may happen that the numbers u and &’ are not the same; if
their Jacobi symbol is the same the outcome of the protocol is the same random bit B and this has no
effect on the output distribution (since V*, when interacting with P, can decide to send either u or —u). On
the other hand, if they have opposite Jacobi symbols mod N, then the outcome bit 1-B has been
determined by V* and not chosen at random. As noted above, this can only happen if V* can factor N, in
which case it indeed has the ability to dictate the outcome of the protocol, regardless of whether it is
interacting with P or serving S ;. as a subroutine.
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Whether the output triple was generated by S_.; in step b or step c, the distribution of its possible
values (and thus the probability distribution of the bit it encodes) is identical to that of (P, VHIN], and
thus the coin-flip protocol is perfectly minimum knowledge for V.

Next we describe the simulation by S of the protocol above. The communications ensemble (P, VHIN]
that S must simulate begins with a sequence of Blum coin-flips, which are used to generate random
elements of Z,*. The simulation of these coin-flips can be performed as just described; the difficulty for
S, a polynomial-time machine that may not be able to factor N, is that those elements that are quadratic
residues must be randomly generated along with their square roots. Therefore S uses fair coin-flips in
order to pick the quadratic character of the elements of Z," that are being chosen. An element of Z,,’(-1)
should be chosen with probability 1/2, a quadratic nonresidue in Z,°(+1) should be chosen with
probability 1/4, and a quadratic residue (which is necessarily an element of ZN‘(+1)) should be chosen
with probability 1/4.

Given as input an integer N (satisfying Ne BL, N=1mod4, v(N)> 1), § proceeds as follows:
1. i:=0; A:= the empty list
2. do until i=k:

choose a random number a, 0<a<N;
if g.c.d.(a,N)# 1 (which will happen very rarely) then FLAG the number g, adjoin it to A,

and go to step 3;
else:

choose a random bit € (1o decide the Jacobi symbol of the next element generated);
if £=0 then adjoin to A a random element of ZN‘(—I);
else:

a. i:=i+l

b. choose 5;€ Z,; at random

c. choose a random bit €; (to decide whether the next element generated should be a

quadratic residue);
if =0thenr,:=5? mod N (a random residue in Z,°(+1))

else r;:=—s2 mod N (a random nonresidue in Z,*(+1))
d. adjoin 7, to A

3. (simulate as many executions as needed of Blum's coin-flip in order to ‘generate’ the
sequence of bits in the resulting list A)
for each bit B in the representation of each number in A:

follow the procedure above for S_;, (using V* as a subroutine), recording the numbers 4
(and possibly &) ‘‘sent’’ by V*;
if the outcome of the coin-flip simulation is indeed B, then continue with the next bit in A;

otherwise V* has *‘forced’’ the complementary outcome 1-B by *‘sending’’ u and ¥’ with
(%) # (%), in which case:
a. use u and & to factor N
b. discard the rest of A

c. repeatedly execute Blum'’s coin-flip with V* (as originally specified, without re-
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setting the random read-head of V™) in order to choose elements of Z,°, bit by bit,
until the resulting list contains k elements (r,, .. .,r,, say) with Jacobi symbol +1;
again let A denote the new list

4. if the last number in A is FLAGGED then halt
5. discard the elements in A with Jacobi symbol —1

6. if V* has not *‘forced’’ the outcome of any of the coin-flip simulations of step 3, then for
each r; in A such that € =0 output (i, 5);
otherwise, use the factorization of N to test each r, in A to see whether it is a quadratic

residue; if it is, then compute s, such that r‘.ss,.2 mod N and output (i, 5,)

S generates lists of elements of Z, with the same distribution as do P and V*, so that the
communications ensemble (P, V*)[k, N] and the output ensemble S[k, N] are identical.

Note that the above protocol can be adapted slightly so that instead of being an interactive proof-system
for the language of suitable integers N satisfying v(V)=2, it would be a protocol for communicating the
value of v(N). In the last step of the protocol, V counts the proportion of the randomly chosen elements of
Z,;(+1) that are shown to be quadratic residues. If this proportion is at least 3/8, then V accepts a proof
that v(N)=2; if it is between 3/16 and 3/8, then V accepts a proof that v(N)=3; and so on.

5.5. Quadratic residues and nonresidues, result-indistinguishably

Before describing the next number-theoretic example, we give a general definition. We call a deciding
interactive proof-system (P,V) for a language L (with input language ) ‘‘result-indistinguishable’’ if an
eavesdropper that has access to the communications of P and V gains no knowledge. More formally, the
protocol is result-indistinguishable if there exists a probabilistic polynomial-time Turing machine S such
that the ensembles {S(kx]|xe !} and { (P,V)(k.x]}|xe I} are indistinguishable. If the ensembles are
statistically indistinguishable, we say that the proof-system is statistically result-indistinguishable; if they
are exactly identical, we say that the proof-system is perfectly result-indistinguishable.

Observe that unlike the machine S in the definition of the minimum-knowledge property, this machine
§ does not have access to an oracle for the result of the computation, i.e. for the membership bit (xe L); in
other words, S can simulate the communications of P and V on input (k,x), regardless of whether or not
xe L (even if recognizing membership in L is an intractable computation). Since this simulation is by
means of a feasible computation that an eavesdropping adversary could carry out for himself, the
adversary gains no knowledge if he is given the text of a ‘‘conversation’’ belonging to the
communications ensemble { (P,V)[k,x]|xe [}.

In this section, we present a protocol that deals with Blum integers of a special form, namely the set
N={N:NeBL N=1mod4, v(N)=2 }. Itis not hard to see that this set may equivalently be defined as
N={p'¢:p#qprime,i j21, p's¢=3mod4}. The protocols presented in Sections 5.3 and 5.4 may be
concatenated so as to give a perfectly minimum-knowledge confimming interactive proof-system for N.
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We define the languages

I={(N.2): NeN,ze Z,], (i,)=+1 } and L = { (N,z)e I : za quadratic residuemodN }.
Taking [ as the set of inputs, this section gives a deciding interactive proof-system for L. Observe that a
pair (N, z) that is known to belong to / either is or is not also a member of L according to whether or not z
is a quadratic residue mod ¥, i.e. according to the value RES,(z). Thus, instead of regarding the protocol
below as deciding membership, it can be useful to look at it as transmitting the result of the computation
of the value RES,(2).

As in the case of the protocol for the language QNR, the prover must be able to distinguish between
quadratic residues and quadratic nonresidues modulo N; for example, it can receive, as additional input,
N’s prime factorization. The verifier is simply a probabilistic polynomial-time machine.

Let y=—1modN. Everything that follows holds for any nonresidue ye ZN‘ which has Jacobi symbol
+1. Aslong as Ne BLand N=1mod4, we can take y=—1.

This protocol relies on the fact that if re Z, is chosen at random, then r»modN is a random quadratic
residue in the set Z,’(+1) and yPmodN is a random quadratic nonresidue in Z,’(+1); similary,
zrPmod N is either a random residue or a random nonresidue in ZN‘(+1) according to whetherornot zis a
residue mod N.

Repeat & times:
1. V chooses re Z,;" and ce (1,2,3) at random and computes case ¢ of:
1: x:=r* modN
2: x:=yr* modN
3: x:=z modN
VP x
2. P computes e=RESN(x):
P-oVe
3.V checks that if c=1 then e=1, if c=2 then £=0, and if c=3 then € is consistent with any
previous iterations for which ¢ was = 3; if not then V HALTS the protocol
V ACCEPTs the proof that RES,(z) = the consistent value of € for case-3 iterations

As explained above, if z is a quadratic residue then x's constructed in case 1 are indistinguishable from
x's constructed in case 3. If P acts as specified, then when the protocol finishes V is convinced that z is a
residue. The only way that a cheating P* can convince V that z is not a residue is by comrectly guessing,
among all iterations during which V has sent a residue x, which of these were constructed in case 1 and
which of them in case 3; if there are ck such iterations in a particular execution of the protocol, then the
probability of successful cheating is 2%, Because c¢ is very likely to be close to 2/3, a simple calculation
using Bemstein's law of large numbers shows that the probability of successful cheating is exponentially
vanishing in k. Similarly if z is a quadratic nonresidue. Hence the above version is a deciding interactive
proof-system for L.

However, the protocol is not minimum-knowledge for the verifier, since V can ask about numbers
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x€ Z,” whose quadratic character it does not know. In order to make the protocol minimum-knowledge,
we can add, as a refinement sub-protocol to step 1, a (parallelized) variant of the interactive proof-system
for 1of3-Q sketched above. V uses this sub-protocol to prove to P that x has been chosen in one of the
three specified ways, without transmitting to him any knowledge about which of the three ways. The
resulting protocol is a statistically minimum-knowledge deciding interactive proof-system for L. We omit
the proof, since it is exactly analogous to the proof given in section 3.2 for the graph nonisomorphism
protocol.

If all k iterations of the protocol are performed in parallel, then the simulator can also perform in
parallel all k iterations of the simulating procedure; thus the parallel version of this protocol is also
statistically minimum-knowledge for the verifier.

The above protocol is not result-indistinguishable, however, because an observer of an execution of the
protocol can easily tell whether he is watching an interactive proof that RES,(z)=1 or a proof that
RES,(2)=0 by keeping a tally of the bits € sent by P in step 2 of each iteration.

But a simple modification of the protocol does hide the result from an eavesdropper. The only change
is that at the beginning, P flips a fair coin in order to decide whether to use R(x)=RES,(x) or
R(x)=1-RES,(x) as the bit € to be sent to V in step 2 of each iteration throughout the protocol. R(x) can
be regarded as an encoding, chosen at random, of RES,(x). In step 3, V checks for consistency in the
obvious way: V should receive the same bit € in all case-1 iterations and the complementary bit in all
case-2 iterations; V should receive a consistent bit € in all case-3 iterations, and its value indicates to V
whether or not z is a quadratic residue. As before, if in step 3 of any iteration V finds that the value of € is
not consistent then V halts the protocol, detecting cheating.

With this modification, the protocol is still --- arguing as above --- a minimum-knowledge deciding
interactive proof-system for L. Furthermore, it is result-indistinguishable. An eavesdropper expects to
overhear one bit about 2/3 of the time during step 2 of each iteration and the complementary bit the
remaining 1/3 of the time; whether the majority bit in a particular execution of the protocol is 0 or 1 gives
him no knowledge. In order to prove that the protocol is result-indistinguishable, we must specify the
computation of a probabilistic Turing machine § that simulates the communications ensemble
{(P.V)[k,N,2]). (Recall that S does not have access to an oracle for RESN(z).) S begins by flipping a
coin to decide whether to simulate the choice R(z)=0 or the choice R(z)=1. Then in each iteration S
simulates the specified computations of P and V, except for the following changes. In (simulated) step 1,
S chooses x:=z?mod N with probability 2/3 and x:=yz*mod N with probability 1/3. In (simulated) step
2, S outputs £=R(z) if x=zr* and e=1-R(z) if x=yzr>. We omit here the details of the simulation by § of
the lof3-Q sub-protocol refinement of step 1. The output ensemble S[k,N,z] is identical to the
communications ensemble (P, V)[k, N, z], and therefore the protocol is perfectly result-indistinguishable.

6. Protocols based on cryptographic assumptions

In this section we discuss a number of protocols that can be shown to be minimum-knowledge, but
only under the assumption that a particular computational problem is intractable. Our ‘‘cryptographic’’
assumption (so called because much of the recent work in cryptography depends on assumptions of this
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nature) is that there exist one-way functions, functions that are easy to compute but intractably hard to
invert. (The weakest complexity-theoretic assumption that suffices for the theorem of this section is that

of Levin [25]; see also [8, 30, 24,9, 6,2, 7, 29].)

Specifically, we assume the existence of a sequence (f,} of probabilistic encryption functions. The K
of these functions may be used to encrypt the bit B by choosing a bit-string r at random in the appropriate
domain® and computing the encryption e:= f,(B.r). Given e, no polynomial-time machine has any
computational advantage in guessing the value of the bit . To open the encryption e is to reveal the
string r (and thus the encrypted bit ) that was used to compute it. It is then a simple matter to check that

indeed f,(B.r)=e.

6.1. Minimum-knowledge interactive proof-systems for languages in NP
Goldreich, Micali, and Wigderson have shown that, under the assumption that one-way functions exist,
every language in NP has a minimum-knowledge confirming interactive proof-system [17, 5].

We begin by exhibiting a minimum-knowledge confirming interactive proof-system for the (NP-
complete) language of graphs containing a Hamiltonian cycle. Prover and verifier share the input (k,G);
the prover has as additional input a Hamiltonian cycle in G. Let the nodes of G be (1,...,n}, and let the
given Hamiltonian cycle pass through the nodes [1,i.i,, ... ,i,_;,1], in that order. We assume that both
the prover and the verifier have a sequence {f,} of probabilistic encryption functions, indexed by the

security parameter k.

Repeat & times:

1. P chooses a permutation n: {1,...,n} = {1,...,n) at random; let [1,j,,j, - .. wJpyr 1] bE
the corresponding Hamiltonian cycle in the permuted graph.
For each i,je (1...n] P chooses ri at random in the domain offk and computes e a
probabilistic encryption of either 1 or 0, according to whether (x~'({), x~1())) is or is not an
edge of G;
PoVileicn.. .a

2.V choosesee (0,1} at random;
VP ¢

3.ife=sOthen P> V: n, (ra.’.)‘.‘je 0...n
elseife=1then P V: [jijge . -+ iy s [r‘fx'rflfz' - 'rfn-ﬂ]
4. V checks that the values ¢; correctly encode the permuted graph if e=0, or that the sequence
(e, € FAREE 6 ll] correctly encodes a Hamiltonian cycle (in the permuted graph) if
.—
e=1; if not, then V REJECTS the proof

V ACCEPTs the proof

If the inputs to P and V are as specified, and both prover and verifier follow the protocol, then V
accepts the proof. On the other hand, if the input graph G is not Hamiltonian, then the only way for a
cheating prover to convince the verifier that it is Hamiltonian is by guessing, in each iteration, whether

5 will be of length polynomial in k.
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the verifier will send him a Q or a 1 in step 2. If V is about to send him €=0, then the prover can satisfy V
by following the instuctions of step 1 above, sending a probabilistic encryption of the adjacency matrix of
a random isomorphic copy of G; if V is about to send him e=1, then the prover can satisfy him by
choosing a sequence of indices [1./,./, . - - .J,_;» 1] at random and then sending him values (el.,.)‘.'j ell...nl
in which e‘il'eflfz' e .ej”_11 are all encryptions of 1, and the other n®—n entries are all encryptions of O .
If the graph does not have a Hamiltonian cycle, then the cheater cannot prepare simultaneously for both
possibilities. Thus the probability that any communicating Turing machine P* will convince V to accept
the proof incorrectly is bounded by 27*, and the above protocol is indeed a confirming interactive proof-

system for the language of Hamiltonian graphs.

The proof that the above protocol is minimum-knowledge for the verifier is very similar to the proofs
for GI and for sampleable random-self-reducible languages. In each simulated round, the simulator S
guesses €, the bit to be ‘‘sent’” in step 2 by V°, in order to decide whether to compute a good encryption
of (a permutation of) the input graph or to follow the cheater’s second option and prepare a random
encoding which contains an encrypted Hamiltonian cycle. If V* “‘sends’’ the wrong bit, then S resets V*
and begins the iteration again. By the hypothesized properties of the probabilistic encryption function f,,
the polynomial-time machine V* can have no computational advantage in guessing whether S has
predicted e=0 or e=1, given the n? values e; ‘‘sent”’ by S. Hence the simulator guesses the wrong bit with
probability (computationally indistinguishable from) 1/2, so that the expected number of times per
iteration that the loop will be repeated is two. Again by the properties of the encryption function, the
simulator’s output ensemble and the communications ensemble are indistinguishable. (However, they are
not statistically indistinguishable, because that would require a much stronger assumption on the
encryption function.)

Another similarity with the protocol for GI is that the version of this protocol in which all k iterations
are executed in parallel, while it is still an interactive proof-system for the language of graphs containing
a Hamiltonian cycle, does not appear to be minimum-knowledge for the verifier.

We have just seen that one particular NP-complete language has a minimum-knowledge confirming
interactive proof-system. In order to prove the following theorem, we need only note in addition that the
polynomial transformations between NP languages map witness strings to witness strings.

Theorem 2: If there exists a secure family of probabilistic encryption functions, then every
language in NP has a minimum-knowledge confirming interactive proof-system in which both
the prover and the verifier are probabilistic polynomial-time Turing machines, and the prover
receives as additional input a witness that the input string is indeed in the language.

Another way interactively to prove membership in an NP language is by means of minimum-
knowledge circuit simulation, as follows. Every NP language L has a polynomial-time computable
‘predicate p; so that '

L = { x| 3w, |w|polynomial in|x|, p,(x,w)=1}.
The idea is that the prover should interactively lead the verifier through a minimum-knowledge
simulation of the circuit that computes p, --- a simulation that proves to the verifier that p, (x,w)=1 for
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some witness string w, without revealing any knowledge of the value of w. Brassard and Crepeau have
shown how to do this by using the properties of quadratic residues (and assuming the intractability of
distinguishing between residues and nonresidues modulo an integer N with unknown factorization)
[10, 11]. Yung and Impagliazzo have shown how to do this, using any one-way function {32, 23].

7. Applications for cryptographic computation

The fact that membership in any NP language can be prbved interactively in a minimum-knowledge
fashion has important consequences for the design of cryptographic protocols [17]. Assume, for example,
that at a certain point in the course of executing a protocol, after receiving a string of messages x, a party
P is supposed to flip several coins to obtain a random bit-string r, compute a value y=fx,r), and then
send this value as a message (perhaps keeping r secret). Even though f may be hard to invert, as long as f
is polynomial-time computable, the set

L={y|3r,fx.r)=y)

of next messages which are legal for P at this point in the protocol, given the history of messages sent so
far, is an NP language. Thus P’s message y can be accompanied by an interactive proof that it is an
appropriate one. If P, not following its program, sends an illegal message y'¢ L, then (with
overwhelming probability) it will be unable to prove to the other parties that y' € L.

Thus any protocol M for which all required computations (such as f in the above example) are publicly
specified may be transformed into a validated protocol M’ in which every message is accompanied by an
interactive minimum-knowledge proof to all parties that it is indeed a correct message. The resulting
protocol will have the property that a Byzantine user --- one who tries to send an erroneous message --- is
almost certain to be caught when he tries to cheat. The transformed protocol is polynomial in all relevant
parameters, and the transformation from M to M’ is by means of a polynomial-time algorithm. - Studying
different models of faulty behavior in multi-party cryptographic protocols, researchers have recently
described several different fault-recovery procedures that can be invoked when an illegal message is

detected [17, 18, 16].
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