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1 Introduction

Lower-dimensional topology has long been approached combinatorially. For most questions about imbed-
dings, there exist exhaustive algorithms. Since the number of combinatorial equivalence classes of graph
imbeddings is a super-exponential function of the number of vertices, such exhaustive algorithms are
computationally infeasible.

Many results have been obtained conceming the computation of minimum-genus imbeddings. Hopcroft
and Tarjan [11] discovered a linear-time algorithm to test planarity of graphs. Gross and Rosen [7] solved
the same problem for 2-complexes. Filotti [2] found a polynomial-time algorithm to determine if a cubic
graph can be imbedded in the torus, and Filotti, Miller, and Reif [3] generalized this 1o an algorithm
that imbeds a graph in a surface of minimum genus G in time O(v?©®). These algorithms produce an
imbedding whenever it exists and are based on extending partial imbeddings of graphs. Reif [20] showed
that there are limits to this approach, by showing that the problem of deciding whether a partial imbedding
in some surface can be extended to a full imbedding in that surface is NP-complete.

Our present concem is the determination of the “maximum genus” of a graph. There is no limit to
the number of handles one might add to a surface in which a graph is already imbedded. For the concept
of maximum genus to be meaningful, one must stipulate that every region of the imbedding be cellular
— that is, the interior of the region must be homeomorphic to an open disk. This is not an artificial
restriction. It corresponds to restricting handles to be “‘essential”.

Maximum-genus imbeddings, and the related notion of upper-imbeddable graphs, have received con-
siderable attention in recent years. A graph is called upper-imbeddable if it has a maximum-genus
imbedding with one or two faces. Nordhaus, Stewan, and White [17], Ringeisen [21],(22], and Zaks
(28] showed that various classes of graphs were upper-imbeddable. Nebesky [16] and Jungerman [12]
described combinatorial invariants of upper-imbeddable graphs. Xuong [27] showed that all graphs with
two disjoint spanning trees, such as 4-edge connected graphs, are upper-imbeddable.

We consider the computational complexity of obtaining a maximum-genus imbedding. Our starting
point is the combinatorial characterization by Xuong [26] of the maximum genus of a graph. This involves
the consideration of all spanning trees of a graph, of which there can be exponentially many. We improve
the obvious exponential-time algorithm to a polynomial-time algorithm.



2 Preliminaries about Topological Graph Theory

In topological graph theory, a “graph” is defined to be a (possibly) non-simplicial 1-complex. In other
words, multiple adjacencies and self-loops are permitted. In this paper, we consider only simplicial
(simple) graphs. Any graph containing self-loops and multiple adjacencies can be transformed into a
simplicial graph by inserting one or more vertices in the interior of these edges. Moreover, the resulting
graph is homeomorphic to the original graph, and accordingly, it has the same maximum genus. This
enables us to simplify the notation. We use the standard definitions relating to graphs (see, for example,
Harary [9]). All the graphs we discuss will be connected and undirected.

2.1 Surfaces

Our terminology is compatible with that of Gross and Tucker [8] and of White [25].

The ropological spaces of interest here are all homeomorphic to subspaces of E3. A homeomorphism
between two topological spaces is a continuous bijective mapping with a continuous inverse. A connected
topological space is a surface if every point has a neighborhood that is homeomorphic to the closed unit
disk. A surface S is orientable if it does not contain a M@bius band.

We deal only with closed orientable surfaces. Every such surface S is homeomorphic to a generalized
torus. The number of handles is denoted ¥(S) and is called the genus of the surface. A sphere, for

example, is a surface of genus 0, a torus is a surface of genus 1, and a 2-handled torus is a surface of

genus 2.

2.2 Graph imbeddings and faces

Although a graph is an abstract combinatorial object, there is a topological representation of it: in
Euclidean 3-space, we represent each vertex by a distinct point and each edge by a distinct curve between
the two endpoints, where a curve means a homeomorphic image of the unit interval (0,1]. We require
that the interior of an edge intersect no other edge or vertex of the graph. When referring to a graph in
a topological setting, we mean such a representation.

An imbedding G — S of a graph G in the surface S is a continuous one-to-one mapping. The
components of §— G are called regions. If each region is homeomorphic to an open disk, the imbedding
is cellular, and the regions are called faces. All our imbeddings are cellular. The set of faces of an
imbedding is denoted F.

A maximum-genus imbedding of a connected graph is a cellular imbedding of the graph in an orientablc



surface having maximum genus among all such imbedding surfaces. The Euler polyhedral equation
VI = |E} +|F] = 2 = 27(8)

holds for all cellular imbeddings. Thus, a maximum-genus imbedding is the same thing as a minimum-
facecount imbedding.

2.3 Rotation systems

A rotation at a vertex is a cyclic permutation of the edges incident on it. A vertex with degree d admits
(d — 1)! different rotations. A list of rotations, one for each vertex, is call a rotation system for the
graph. This concept is due to Heffter [10]. Starting with a graph imbedding in an oriented surface, there
corresponds an obvious rotation system, namely, the one in which the rotation at each vertex is consistent
with the cyclic order of the neighboring vertices in that imbedding.

Edmonds [1] was first to call attention explicitly to a method for inverting that correspondence. To
each oriented edge (i, v), one assigns the oriented edge (v, w) such that vertex w is the immediate successor
of vertex u in the rotation at vertex v. The result is a permutation on the set of oriented edges, that is, on
the set in which each undirected edge appears twice, once with each possible direction. In each edge-orbit
under this permutation, the consecutive oriented edges line up head to tail, from which it follows that
they form a directed cycle in the graph. We observe that it is possible for both orientations of the same
edge to appear twice in the same edge-orbit. If there are n oriented edges in the orbit, then an n-sided
polygon can be fitted into it. Fitting a polygon to every such edge-orbit results in a polygon on both sides
of each edge, and collectively the polygons form a surface in which the graph is cellularly imbedded.

Sometimes one describes the rotation system of a graph pictorially, as in Figure 1. The graph is drawn
in the plane so that the incidence of edges at each vertex is consistent with the rotation system. Obviously,
unless the rotation system happens to correspond to a planar imbedding, there will be edge-crossings in
the drawing. Such a drawing permits one to trace along the edge-orbits, as illustrated. Since the graph
shown has 6 vertices and 9 edges, and since the rotation system has 3 edge-orbits, the imbedding surface
has Euler characteristic 6 — 9 + 3, which equals zero, from which it follows that the imbedding surfacc

has genus one.

The existence of the bijective correspondence between the cellular imbeddings of a graph and the
rotation systems enables us to reformulate the problem of finding the maximum genus of the graph as
a problem of finding a rotation system with the minimum number of edge-orbits. Since edge-orbits

correspond to boundary-walks of faces, this is equivalent to seeking a minimum-facecount imbedding.



Figure 1: A graph and its edge-orbits.

2.4 Adding and deleting edges

If an edge is added to, or deleted from, an imbedded graph, then all faces in the imbedding are unchanged
except those incident on that edge. If the edge is pendant, connecting a vertex of degree one, the facecount
is unchanged. Otherwise, either two faces are merged or one face is split into two faces.

Suppose that an edge e = (v,w) is added to a connected graph and its imbedding, so that its ends
are inserted between two comers of one face. If the boundary-walk around the original face was of the
form vawfv, where a and # are subwalks, then as illustrated by Figure 2, the new edge splits the old
boundary-walk into two walks: vawev and wBvew. Similarly, if an edge e that is common to two faces
is deleted from an imbedding, then two boundary-walks are merged and the new imbedding has one less
face.

If an edge is added to a graph and its ends are inserted between comers of two different faces, then
both those faces are merged into one larger face. In particular, suppose that new edge e runs from the
comer of v in boundary-walk vav to the comer of w in boundary-walk wfAw. Then a merged face results,
with boundary-walk vewSwevav. This is depicted in Figure 3: the addition of edge e causes a *'shor-
circuit,” merging the two original boundary walks. Likewise, the deletion of an edge e occurring twice

on one boundary-walk splits the corresponding face into two smaller faces.
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Figure 2: Adding an edge across a face.

Figure 3: Adding an edge between two faces.




3 Maximum-Genus Imbeddings

We now direct our attention to the problem of constructing a maximum-genus imbedding. Xuong [26]
proved that calculating the maximum genus of a graph is reducible to calculating the value of a combi-
natorial invariant, which he called its deficiency.

The deficiency €(G,T) of a spanning tree T in a graph G is defined to be the number of connected
components of G — T that contain an odd number of edges. The deficiency £(G) of a graph G is defined
to be the minimum tree deficiency over all spanning trees T of G. We call a spanning tree that realizes
£(G) a Xuong tree. Figure 4 shows a graph and one of its Xuong trees. Since the complement of the
Xuong tree has two odd components, it follows that the graph has deficiency two.

The edge complement G — T of any tree T is called a corree. Tree T is a spanning tree if and only
if G — T is a minimum cotree. The number of edges in any minimum cotree of a connected graph G is
equal to |E| — |V] +1, and it is called the cycle rank (sometimes the Betti number) of G and denoted B(G).

By an adjacency matching in a subgraph of G, we mean a matching such that each edge in the
subgraph is paired with an adjacent edge. For example, one maximum adjacency matching in the cotree
of Figure 4 contains pairs (g, ) and (b, d), with cotree edges ¢ and f being unpaired.

The following reorganization of Xuong's methods and rederivation of his results is needed for our

construction of a maximum-genus algorithm.

Figure 4: A spanning tree (solid edges) with minimum deficiency.



Lemma 3.1 If a connected graph G has a completely-paired minimum cotree, then G has a one-face
imbedding.

Proof. By induction on k, the number of edge pairs in the minimum cotree.

Base case: k =0. In this case the graph G is a tree, and every imbedding has exactly one face.

Inductive case: k > 0. As an induction hypothesis, assume that a graph with k — 1 pairs of edges
in a minimum cotree has a one-face imbedding. We now argue that we can add a new pair of adjacent
edges e = (v,w) and f = (w, x) to the one-face imbedded graph in the following manner. First insert edge
e into the one face in any way between vertices v and w, thereby splitting the single face in two. Note
that vertex w now has comers on both faces. Then insert edge f between some comer of x and a comer
of w that lies on a different face, This merges the two faces, thereby resulting in a one-face imbedding
of G+e+f O

Lemma 3.2 [faconnected graph G has a minimum cotree with k unpaired edges, then G has an imbedding
with at most k + 1 faces.

Proof. Obtain a one-face imbedding of the spanning tree edges and paired cotree edges of G by the
construction in Lemma 3.1. Add each of the k unpaired edges to that imbedding, creating at most one
new face for each edge. O

Lemmas 3.1 and 3.2 are constructive, and given a maximum adjacency matching for a minimum
cotree, any reasonable implementation of the construction will run in polynomial-time. A naive upper
bound on the running time for a graph with e edges is O(e?). This can be achieved in the following
manner. Imbed the spanning tree in any way, in constant time per edge. Add the first edge of some pair
in any way, in constant time. Follow the boundary walks of the resulting imbedding, in O(e) time, t0
determine a placement of the second edge that merges the two faces. Repeat until all paired edges have

been added. Finally add the unpaired edges in any way, in constant time per edge.

Lemma 3.3 If a connected graph G has a one-face imbedding, then it has a completely-paired minimum

cotree.

Proof. By induction on the number of edges, . in G.
Base case I: k = |V] — 1. In this case, the graph G is a spanning tree for itself, the cotree is empty.

and trivially all edges are paired.
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Figure 5: Boundary-walk of G before deleting edges r and s.

Base case II: k = |V]. In this case, the graph G is a spanning tree plus one extra edge. A spanning
tree can only be imbedded with one face, and the addition of the extra edge to such a one-face imbedding
must break the face in two. Thus, the graph G can only be imbedded with two faces, and the lemma
holds vacuously.

Inductive case I: k > |V], and G has a vertex v of degree one. Consider the graph G’ obtained by
deleting v and its incident edge e = (v,w) from G. Since G has a one-face imbedding, we can readily
construct a one-face imbedding of G’ by starting with the one-face imbedding for G and deleting e and
v. By induction hypothesis, the graph G’ has a minimum cotree C with all its edges paired. Since the
edge e must be in any spanning tree of G, C is a completely-paired minimum cotree of G.

Inducrive case II: k > |V], and G has no vertex of degree one. Consider the boundary-walk around
the single face. There must be an edge r = (u, v) whose two appearances in the walk occur as closely
together as the two appearances of any other edge. Give the two appearances of r the labels 7 and
7 . so as to minimize the length of subwalk a from 7 to 7. Subwalk a must contain of at least one
cdge other than r, or else G would have a vertex of degree one, a contradiction. Similarly, if 5" is the
edge following 7, then a can not also contain ‘5, since the two appearances of edge s would then be
closer together than those of edge r. Therefore, the boundary-walk around G's face must be of the form
urvswav'r ufw's vyu, where s = (v, w) is an edge adjacent to 7 in G, and a, 8, and 7 are subwalks.
See Figure 5.

Delete edges r and s from G to obtain the graph G'. Vertices u and v are connected in G' by edges
that appeared in subwalk v, and vertices v and w are connected by edges that appeared in subwalk a.

Every other vertex in G' appeared in «, 8 or 4 and is thus connected to u, v, or w by edges in G'. Since



those three vertices are all connected, it follows that G' is connected.
By the induction hypothesis G’ has a cotree C that is completely paired. Clearly the tree G' — C is also

a spanning tree of G. Edges r and s can be paired and added to C to form a completely-paired minimum
cotree of G. O3

Lemma 3.4 If a connected graph G has a (k + 1)-face imbedding, then it has a minimum cotree with at

most k unpaired edges in its maximum adjacency matching.

Proof. By induction on the number &.

Base case: k =0. This follows from the previous lemma.

Inductive case: k > 1. Let e be an edge in G that lies on two different faces in some (k + 1)-face
imbedding. The graph G — e is connected, for otherwise e would lie on only one face, and it has a k-face
imbedding when edge ¢ is deleted from the (k + 1)-face imbedding of G. By the induction hypothesis,
the graph G — e has a minimum cotree C with at most k¥ — 1 unpaired edges. Thus C + ¢ is a minimum

cotree of G with at most & unpaired edges. [J

A Xuong cotree of graph G is any minimum cotree of G that admits an adjacency matching with
number of paired edges maximized (over all minimum cotrees). The number of unpaired edges in such
a cotree is denoted U(G).

Although Xuong did not emphasize algorithms, Theorem 3.5 is essentially contained in [26]. Theorem

3.6, which relates maximum genus to deficiency, is generally regarded as Xuong’s main result.

Theorem 3.5 A connected graph G has maximum genus

B(G) - UG)
—

Furthermore, given a Xuong cotree C and a maximum adjacency matching of C, an imbedding of G that

wm(G) =

minimizes facecount (and thereby maximizes genus) can be found in polynomial-time.

Proof. Follow the construction in Lemma 3.2 to obtain, from a maximum adjacency matching of a Xuong
cotree of G, an imbedding with U(G) + 1 faces. Lemma 3.4 shows that such an imbedding minimizes
the number of faces. Therefore, this is a maximum-genus imbedding in which, by Euler’s polyhedral
equation, Y4(G) = (B(G) - U(G))/2.0

Theorem 3.6 [26] Let G be a connected graph. The maximum genus of G is given by the formula

B(G) - £G)

m(G) = 3

10




Proof. It suffices to show that £(G) = U(G). We do this by proving that the deficiency of a spanning tree
in a graph equals the minimum number of unpaired edges in the corresponding minimum cotree.

A maximum pairing of a connected non-tree component can be found in the following manner. Do a
depth-first search of the component. On the post-visit 10 a vertex (i.e. while moving back up the search
tree) pair all the unpaired incident edges. If the number of edges is odd, leave the edge to the parent
unpaired. The unpaired edges never become disconnected, so eventually there will be no unpaired edges
(if the component had even size) or one unpaired edge (if the component had odd size).

It follows that the minimum deficiency of G, £(G), equals the minimum number of unpaired edges
in a minimum cotree, U(G). Moreover, we see that Xuong trees and Xuong cotrees, as defined here, are

indeed complementary objects. (]

4 Reduction of Maximum Genus to Linear Matroid Parity

In order to determine the maximum genus and find a maximum imbedding for an arbitrary graph G in
polynomial-time, we have shown that it suffices to show how to find a Xuong cotree and a maximum
adjacency matching of its edges in polynomial time. This problem resembles what is known as the matroid
parity problem for cographic matroids. We use the definitions relating to matroid parity that are found in
Stallman and Gabow's paper on linear matroid parity [24].

A matroid M = (E, I') consists of a finite ground set E and a family J of “independent” subsets of £
satisfying the following axioms:

l.IfA€e] and BC A, thenBe ].

2. If A,B€ I and |A| = |B] + 1, then there exists a € A such that B+a€ I.
The matroid parity problem [14] is the following. Given a matroid M = (E,I) and a perfect pairing
of the elements of the ground set E, find an optimum subset of E such that an element is in the subset
if and only if its paired edge is in the subset. Optimum means either a largest subset (the cardinaliry
parity problem) or a maximum weighted subset (the weighted parity problem). Both can be solved in
polynomial time for a large class of matroids known as linear (or matric) matroids [15], [18], [23}, [24].
The most efficient known algorithm for the cardinality parity problem on general linear matroids runs in
O(nr’) time, where m = |E| and n is the size of the optimum subset. Matroid parity is a generalization
of two well-known problems: graph matching and matroid intersection.

For any graph G = (V, E), there is a linear matroid M = (£, I), called the cographic matroid, in which
the ground sct is the edge set of the graph and C C E is an independent set if and only if G — Cis

connected. Maximum independent sets in cographic matroids are minimum cotrees of the corresponding
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Figure 6: A graph G and a corresponding auxiliary graph G'.

graph. For any perfect matching of the edges of the graph, we have an instance of the matroid parity
problem on cographic matroids, which we call the cotree parity problem. The cardinality parity problems
for both graphic (spanning tree) and cographic matroids are easier than general linear matroid parity,
and can be solved in O(nm?) time [13], [24]. Stallman and Gabow have reduced this time bound to
O(mnlog® n) [5).

If each edge of a graph G were adjacent to exactly one other edge, then we could directly apply an
algorithm for cotree parity to G and obtain a maximum adjacency matching. However, adjacency is not an
unambiguous pairing rule for most graphs, so direct application of a cotree parity algorithm is impossible. !
Therefore, in this section, we shall transform G into an auxiliary graph G' with unambiguous pairs. The
auxiliary graph G’ is a subdivision of the graph G itself. Precisely, each edge of G is subdivided into as
many edges as its number of edge-neighbors in G. Figure 6 illustrates such a subdivision.

As illustrated in Figure 6, we label each edge of the subdivided graph G' by a label of the form xy,
where x is the name of the edge in G of which it is a segment and where y is the name of some distinct
neighbor of edge x in the original graph G. The choice of which segment of G is to be labeled xy, for
any particular adjacent edge y, is completely arbitrary, provided there is exactly one segment of x labeled
xy.

We now consider edge xy 10 be paired with edge yx. Since this matching is unambiguous, we can

apply a cotree parity algorithm to G' and construct—in polynomial time—a minimum cotree C' with a

'Orlin and Vande Vate [19) recently obtained a polynomial-time algorithm for a variation on the matroid parity problem for
lincar matroids, the non-simple parity problem, that is general enough to include the maximum adjacency matching probiem.
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maximum number of paired edges.

Let T' be the edge-complement of the cotree C' in the auxiliary graph G'. Since T' is a spanning
tree for the auxiliary graph G', it contains either all the segments or all but one of the segments of every
edge of the original graph G. We now associate with spanning tree T' in graph G' a subgraph T in G,
according to the rule that an edge x of G appears in T if and only if every segment of x in G' occurs in
T'. Itis a consequence of the construction of G', T' and T that T is a spanning tree for G: T is acyclic
and connected because T' is acyclic and connected.

Let the edge-complement of spanning tree T in the original graph G be called C. Then C is a minimum
cotree. Two edges of C are matched if and only if they have matched segments in the cotree C' of the
auxiliary graph G'.

This adjacency matching of the edges of cotree C in G is a maximum matching among all possible
minimum cotrees of G, because there is a bijection between adjacency matchings in minimum cotrees of
G and matchings in minimum cotrees of G' that preserves the size of the matching.

Thus, we have constructed a Xuong cotree for G and a maximum adjacency pairing of its edges in
polynomial time.

5 The Algorithm

We now summarize and analyze the algorithm for obtaining a maximum-genus imbedding. It includes a
method for solving the cotree parity problem, described by Gabow [4], that takes advantage of the special
structure of our auxiliary graphs.

Suppose graph G has v vertices, e edges, and maximum degree d. The following steps are used.

1. Create auxiliary graph G' by subdividing edges in G. The new graph has ¢ = O(ed) edges and

vV =v+¢€ — e vertices. This step runs in time O(ed).

2. Find a maximum adjacency matching M in the original graph G. A matching can be found in O(e)-
time by depth-first search. (On the post-visit to any vertex v, pair up all unpaired edges incident on
it. If the number is odd, leave the edge to v's parent unpaired.) If G has an odd number of edges.
some edge remains unpaired. In this case, add 1o M an extra pair consisting of this edge and some
adjacent edge, even though this means that some edge is paired twice. Matching M consists of at

most [e/2] pairs.

3. Find a matching M' in G’ consisting of all edge pairs except those corresponding to pairs in M. The
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edges in this matching form a cycle-free subset of G', because every edge in G is in some pair in
M. At least € — e — 1 edges are paired in G'. This step requires O(¢’) = O(ed) time.

4. Extend M’ to a maximum matching in a spanning tree of G', by applying the graphic matroid parity
algorithm of Gabow and Stallman [S). Each step of this algorithm, which either adds another pair to
the matching or determines that no larger matching is possible, runs in O(¢’ log® v') time. Because
a complete spanning tree of G' has v/ — 1 = v+ ¢ — e — 1 edges, matching M’ can be augmented at
most v times, giving a total time of O(evdlog® v) for this step.

5. Extend M' to a complete spanning tree of G' by greedily adding edges, in O(e') = O(ed) time. This
spanning tree has a minimum number of unpaired edges, hence the corresponding minimum cotree

has minimum number of unpaired edges.

6. For each cotree edge in G', label the corresponding edge in G as a cotree edge. Pair the edges in
G that correspond to paired edges in G'. This requires O(¢') = O(ed) time.

7. Find a one-face imbedding of the spanning tree edges of G. This requires O(e) time.

8. Add the paired cotree edges to the imbedding. The first edge of each pair can be added in constant
time, but O(e) time is required to find the two resulting faces and determine the placement of the
second edge relative to the first. This step requires a total of 0(e?) = O(evd) time.

9. Add unpaired cotree edges to the imbedding. This takes O(v) time, since there is at most one

unpaired edge per vertex.

The enlire algorithm takes O(evd log® v) time.

6 Open Problems

1. The fact that maximum genus is reducible to linear matroid parity, which is a generalization of
maximum matching, suggests that the corresponding counting problem may be provably difficult.
[s it possible that counting the number of ways a graph may be imbedded in a surface of maximum

genus is #P-complete?

2. Our algorithm for computing a maximum genus imbedding runs in time polynomial in the size of
the graph. This is the only algorithm we know of for constructing any kind of imbedding that runs
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in time independent of the genus. Is it possible to extend the algorithm to retum imbeddings in

which the genus is a fixed constant less than the maximum?

. Suppose graphs G and H are non-isomorphic. One might ask how the non-isomorphism shows up in
the way the graphs may be imbedded in different surfaces. Knowing all the “‘counting information”
about how a graph imbeds in all surfaces is not a complete invariant for isomorphism. It clearly isn't
a complete invariant for trees, which only have planar imbeddings, and we have examples of non-
isomorphic, highly-connected graphs such that counting the number of imbeddings in all surfaces
does not distinguish them [6]. However, randomly sampling imbeddings and making estimates of
the number of ways different graphs imbed in different surfaces may prove to be an interesting new

isomorphism heuristic.
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