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ABSTRACT: The Synthesis distributed operating
system combines efficient kernel calls with a high-
level, orthogonal interface. The key concept is the
use of a code synthesizer in the kernel to generate
specialized (thus short and fast) kernel routines for
specific situations. We have three methods of
synthesizing code: Factoring Invariants to bypass
redundant computations; Collapsing Layers to
eliminate unnecessary procedure calls and context
switches; and Executable Data Structures to shorten
data structure traversal time. Applying these
methods, the kernel call synthesized to read
/dev/mem takes about 15 microseconds on a 68020
machine. A simple model of computation called a
synthetic machine supports parallel and distributed
processing. The interface to synthetic machine
consists of six operations on four kinds of objects.
This combination of a high-level interface with the
code synthesizer avoids the traditional trade-off in
operating systems between powerful interfaces and
efficient implementations.
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1. Introduction

A trade-off between powerful features and efficient
implementation exists in many operating systems. Systems with

high-level interfaces and powerful features, like Argus'® and Eden,?

require a lot of code for their implementation, and this added
overhead makes the systems slow. Systems with simple kernel
calls, like the V kernel,® Amoeba,'® and Mach,' have little
overhead and run fast. However, the application software then
becomes more complex and slower because extra code is required
to make up for the missing kernel functions. Our goal in
developing the Synthesis distributed operating system is to escape
from this trade-off. We want to provide a simple but high-level
operating system interface to ease application development and at
the same time offer fast execution.

To achieve our goal, we combine two concepts in Synthesis.
The most important idea is the inclusion of a code synthesizer in
the kernel. The code synthesizer provides efficiency through the
generation of specialized code for frequently-executed kernel calls.
For instance, when the programmer asks the operating system to
open a file, special routines to read and write that specific filc are
returned. Through the generation of these frequently-executed
system calls, Synthesis reduces operating system overhead. For
example, typical Synthesis read routines average an execution path
of 20 to 30 machine instructions. In contrast, the 4.3 BSD read
call contains on the order of 500 lines of C code (Appendix B).

The second idea is an orthogonal interface called a synthetic
machine. To a programmer, a synthetic machine presents a
logical multi-processor with its own protected address space. Two
reasons motivated this model of computation: to take advantage
of general-purpose shared-memory multiprocessors, and to
support the growing number of concurrent programs. The
synthetic machine consists of three basic components: synthetic
CPUs 10 run the program, synthetic memory to store the program
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and data, and synthetic /O units to move data in to and out of
the synthetic machine.

The synthetic machine interface and kernel code synthesizer
are independent ideas that have a synergistic eflect. Without the
code synthesizer, even a sophisticated implementation of synthetic
machines would be very inethicient. Each high-level kernel call
would require a large amount of code with a long execution time.
Instead, the kernel code synthesizer generates specialized routines
to make kernel calls short. Without a high-level interface, more
layers of sofiware would be needed to provide adequate
functionality. The synthetic machine supplies high-level system
calls to reduce the number of layers and the associated overhead.
In Synthesis, application programmers will enjoy a high-level
system interface with the efficiency of a “‘lean and mean” kernel.

To test these ideas, we have designed and implemented a
prototype system, with a simplified kernel code synthesizer that
implements a subset of the synthetic machine interface.
Encouraged by positive results of the prototype, which confirmed
our expectations on its performance, we are now implementing
the full version of Synthesis.

In Section 2, we describe how the code synthesizer generates
and optimizes code in the kernel. In Section 3, we summarize the
synthetic machine interface and illustrate the power of the
interface with an emulation of the UNIX system using synthetic
machines. We outline the current Synthesis prototype in Section
4, including some measurements to illustrate the ethiciency gained
with synthesized code. Section 5 compares Synthesis with related
work, and Section 6 concludes with a summary of progress.

2. Kernel Code Synthesizer

Typical operating system kernel routines maintain t.hc sysiem state
in data structures such as linked lists. To perform its function, a
kernel routine finds out the system state by traversing the
appropriate data structurcs and then takes the corresponding
action. In current operating systems, there arc few short cuts to
reach frequently-visited system states, which may require lengthy
data structure traversals,
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The fundamental idea of kernel code synthesis is to capture
frequently visited system states in small chunks of code. Instead
of traversing the data structures, we branch to the synthesized
code directly. In this section, we describe three methods to

synthesize code: Factoring Invariants, Collapsing Layers, and
Executable Data Structures.

2.1 Fuactoring Invariants

The factoring invariants method is based on the observation that a
functional restriction is usually easier to calculate than the original
function. Let us consider a general function:

Frylplp2. ... pn)

By factoring out the parameter p/ through a process called
currying,'* we can obtain an equivalent composite function:

(FTpDIp2. ... .pn) = Fuplp2 ... .pn)

Fee is a second-order function. Given the parameter p/, FTo
returns another function, F,,.y, which is the restriction of F,,, that
has absorbed the constant argument p/:

Fiman(p2. ... .pn) C Foplp2, . .. pn)

If F#< is independent of global data, then for a given pl,
Foe will always compute the same F,,,, regardless of global
state. This allows F™(p 1) to be evaluated once and the resulting
Foma used thereafter. If F .y is executed m times, generating and
using it pays off when

Cost (F(p 1)+ m*Cost (F,pay(p2. . . . .pn)) <
m*Cost{Fyp, (pl. .. ..pn))

As the “‘factoring invariants’ name suggests, this method
resembles the constant folding optimization in compiler code
generation. The analogy is strong, but the difference is also
significant. Constant folding in code generation eliminates static
code. In contrast, Factoring Invariants skips dynamic data
structure traversals in addition to eliminating code.
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As an example, we can use UNIX open as Fo* and read as
Fomay» and the file name as the constant parameter p/. Constant
global data are the process id, address of kernel buffers, and the
device that the file resides on. F“* consists of many small
procedure templates, cach of which knows how to generate code
for a basic operation such as *“‘read disk block™ or “process TTY
input.” The parameters passed to F&*' determine which of these
procedures are called and in what order. The final Fp,y is created
by filling these templates with addresses of the process table and
device registers.

2.2 Collapsing Layers

The collapsing layers method is based on the observation that in a
layered design, separation between layers is a part of specification,
not implementation. In other words, procedure calls and context
switches between functional layers can be bypassed at execution
time. Let us consider an example from the layered OSI model:

Foglpip2, . ...pn) =
N..:ESEG _.sﬂv:‘_g.:u 2 essionl " m‘.b._:-.?»csv )

F.ppica 18 @ function at the Application layer that calls successive
lower layers to send a message. Through in-line code substitution
Of Fyresen 10 Fuppiea, WE CAN obtain an equivalent flat function by
eliminating the procedure call from the Application to the
Presentation layer:

Flot (1,02, Fseponl ) =
%.:E?.:Q _.xub\:«igm.%‘“agik ER))

The process to eliminate the procedure call can be embedded
into two second-order functions. Fpréven TEMUTNS code equivalent to
Fyrpsem and suitable for in-line insertion. FSel¢, incorporates that

code to generate FJa, .

oo p ) Faee 2 ) Flppua@ V02,00

appitca

This technique is analogous to in-line code substitution for
procedure calls in compiler code generation. In addition to the
elimination of procedure calls and maybe context switches, the
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resulting code typically exhibits opportunities for further
optirpizalion, such as Factoring Invariants and elimination of data
copying.

By induction, Fysd can eliminate the procedure call to the
Session layer, and down through all layers. When we execute
Fipphis 1o establish a virtual circuit, the Fflai, . code used thereafter
to send and receive messages may consist of only sequential code.
The performance gain analysis is similar to the one in section 2.1,

2.3 Executable Data Structures

The exccutuble data structures method is based on the observation
that some data structures are traversed in some preferred order.
Therefore, adding the executable code to the data structures to
make them self-traversing may decrease the traversal overhead.

Let us consider the simplified example of the active Job queue
managed by a round-robin scheduler. Each element in the quecue
contains two short sequences of code: stopjob and startjob. The
stopjob saves the registers and branches into the next job's startjob
routine (in the next element in queue). The startjob restores the
registers, installs the address of its own stopjob in the timer
interrupt vector table, and resumes processing.

An interrupt causing a context switch will trigger the current
program’s stopjob, which saves the current state and branches
directly into the next job's startjob. Note that the scheduler has
been taken out of the loop. It is the queue itself that does the
context switch, with a critical path on the order of ten machine
instructions. The scheduler intervenes only to insert and delete
elements from the queue.

2.4 Kernel Programmability

In the previous sections, we have described several innovative
programming techniques to gain performance through code
synthesis. Historically, the lambda functions in LISP have created
S-expressions, which are executable in the LISP environment.
However, new problems arose in our use of code synthesis on bare
machine. Here, we summarize briefly the problems we have
encountered and the approaches we have taken to solve them:
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« Inflated kernel size due to code redundancy.
« Structuring of kernel and correctness of its algorithms.
« Protection of synthesized code.

One important concern in Synthesis is kernel size inflation due
to the potential redundancy in the many F,,,, and F/ programs
generated by the same F*, To solve this problem, Fereae
generates either in-line code or subroutine calls using a
mechanism similar 1o threaded code.® Frequently invoked
functions are expanded in-line into the user’s synthetic machine
and executed there. Rarely executed functions are stored in a
common area, shared by all synthetic machines running threaded
code. The decision of when to expand in-line is made by the
programmer writing Feee,

Although the size of the code synthesizer depends heavily on
the kinds of facilities supported by the kernel, we hope to
minimize the cost paid for code specialization. For example, the
Synthesis Fte, ., calls correspond to the UNIX open system calls,
with similar data structures and algorithms. The main difference
between them resides in the actions taken by the system calls;
open fills in the UNIX data structures, and F{ear,. places machine
op-codes into an array. Therefore, we expect the cost of Fiie,,,
to be comparable to that of the UNIX open.

The structure of Synthesis kernel is superficially similar to a
traditional operating system. Kernel calls of the F“*" type are
invoked just like a normal system call. However, synthesized
kernel calls created by F** are invoked in the kernel mode
(usually through trap) through a branch into the synthesized code.
By construction, the synthesized kernel calls perform a subset of
the actions of normal kernel calls. These subsets calculate the
same results and cause the same side effects for cach specific case.

Synthesized code is protected through memory management.
Each address space has its own page table, and synthesized code is
placed in protected pages, inaccessible to the user program. To
prevent the user program from tricking the kernel into executing
code outside the protected pages, the synthesized routines are
accessed via a jump table in the protected area of the address
space. Since the user program can only specify an index into this
table, the synthesized routines are entered at the proper entry
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points. This protection mechanism is similar to C-lists to prevent
the forgery of capabilities.'®

Synthesized routines run in supervisor state. The transition
from user to supervisor state is made via a frap instruction. Thus
&:5&:& code can perform privileged operations such as .
accessing protected buffer pages. Just before returning control to
the caller, the synthesized code reverts to the previous mode.

3. Synthetic Machines

3.1 Model of Computation

The synthetic machine is the unit of protection. Data in a
synthetic machine are freely shared within it, but are carefully
protected from access by other synthetic machines. Each

synthetic machine runs one program, and has three kinds of
components:

« synthetic CPUs (SCPU) to run the program,
- synthetic memory (SMEM) to store the program and data,

« synthetic I/0 units (SIO) 10 move data into and out from the
synthetic machine.

Each synthetic machine may have any number of SCPUs, SMEMs,
and S10s. Each SCPU is a thread of control scheduled on a
physical CPU. Each SMEM is a segment of memory, accessible
from all SCPUs of the same synthetic machine,

Examples of SMEM include program segments and shared
memory between synthetic machines. Each SIO provides input or
output to the synthetic machine. Examples of SIO are ordinary
files, devices, and network communications.

An interesting example of a program running in a synthetic
machine is a multiplexor supporting other synthetic machines to
form a hierarchical structure similar to VM/370.” Child synthetic
machines are scheduled as any other SCPU, but they may *‘sub-
schedule™ their own SCPUs with different scheduling algorithms.
Similarly, their SMEMs are allocated by the parent synthetic
machine. The SIO system calls for the child synthetic machine are
synthesized from the parent’s S10 system calls. Careful
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application of the Collapsing Layers method decreases the cost of
indirection and hierarchy in Synthesis.

The Synthesis kernel implements the root synthetic machine
running on the real machine. The scheduler, memory
management, and file system are part of the multiplexor program
running in the root synthetic machine. Actual user programs run
within child synthetic machines. The conceptual nesting of
synthetic machines does not introduce run-time overhead because
of code synthesis, in particular Collapsing Layers.

Many existing operating systems have entities corresponding
10 a synthetic machine. Some examples are the virtual machine in
VM/370 and the UNIX process, which are similar to a synthetic
machine with only one SCPU, or Mach tasks' and Distributed V
teams,” which are similar to multiple synthetic CPUs. Although
these systems share the same von Neumann model of
computation, their kernel interfaces are less orthogonal than the
synthetic machine interface that now we describe.

3.2 Synthetic Machine Interface

For each synthetic machine, the create kernel call is generative,
synthesizing code for the executive kernel calls: terminate,
reconfigure, and query. To destroy a synthetic machine, we call
terminate. During a synthetic machine’s lifetime, reconfigure
changes its state, and query reads its state. The synthetic machine
kernel calls are summarized in the second column of Table | (with
the Synthetic Machine heading).

Analogous to synthetic machines, each component must be
created before it can be used. The generative create kernel call
returns the code synthesized for the executive kernel calls, which
include read and write in addition o terminate, reconfigure, and
query. The read kernel call moves data into a synthetic machine,
while write moves data out from it. Table | contains a partial
summary of the interface to synthetic components. During
execution, if new situations require new code, the synthetic
components may be resynthesized using the create kernel call with
the REUSE option and a modified set of parameters.
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Syntheuc Synthetic Synthetic Synthetic
Machine CPU Memory o
n creates ports,
create, creates an creates a thread allocates opens bles,
(generanive) SMACH of control memory allocates
devices
kills an SMACH frees
termunate and all s kills a thread memory kiils ports,
{execulive) components of control closes files
resumes/suspen. | resumes/suspen. changes Iseck,
reconfigure an SMACH, SCPU, changes | proiection, changes
{exccutive) changes its priority, initiates protection
its priority wail on event shanng
gels priority, gets prionity, gets size, gets device
query gets SMACH 1id, gets state, starting type, siatc,
(executive) gets wid gets SCPU d address device pointer
reads file,
read FeC. TICSSAgeS,
(executive) unused unused unused and any other
input operation
wriles file,
write scnds messages,
(cxccutive) unused unused unused and any other

output operation

Table 1: Examples of Synthetic Machine Kernel Calls

To illustrate the use of these calls,
we give an SIO_create example,
which opens a file. Given the file
name and a read/ write option, it
returns the code for the executive
calls. You call read 10 read from

the file and write to write (o it.
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To find the fle length, current
seck position and other file attri-
butes, you use query. The
reconfigure call changes those
attributes. Finally, terminate
closes the file.

The synthetic machine interface is object-oriented. Synthetic
machines and synthetic components are encapsulated resources,
and users must ask them to perform the kernel calls defined in
Table 1. Pioneer object-oriented systems such as Hydra,'® Eden,?
and Argus'” have achieved performance adequate for a prototype,
while Mach is comparable 10 BSD UNIX,' We believe that
synthesized code will take the performance of Synthesis one step
ahead of current systems. In Section 4.2, we justify our
expectations with preliminary measurements.

3.3 Resource Sharing and Protection

To support the shared-memory model of parallel processing, all
SCPUs within a synthetic machine share the same address space
and thus, SMEMs can be used for communication and sharing
between them. Semaphores control the synchronization between
SCPUs. Currently, we are developing a high-level language to
support concurrent programming with synthetic machines.

Efficient sharing between synthetic machines requires more
care, since we enforce protection across their boundaries. SMEM
may be shared between two cooperating synthetic machines, The
original creator of the SMEM sends the appropriate routines
(synthesized for sharing) to its peer synthetic machine through a
protected SIO channel. The peer then uses the routines to map
the SMEM into its own synthetic machine. The access routines
given 1o the peer determine the access privileges.

To support the message-passing model of parallel and
distributed processing, $10s include network traffic. Sharing S10s
is similar 1o sharing SMEM, in that the creator of the 810, ¢.g. a
port for inter-process communication, also passes the access
routines to the peer. Since the access routines are passed through
the protected SIO channel, no forging is possible. This protection
mechanism is more flexible than that achieved by capabilities with
a constant number of bits, since these routines can implement any
kind of control, for example, access control lists. Furthermore,
the creator may reconfigure or resynthesize the SMEM or §10 in
such a way as to invalidate the carlier access routines, thus
revoking access rights already conceded.
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4. Work in Progress

4.1 Target Hardware

For single-CPU systems, Synthesis is intended to run on a von
Neumann-style CPU with memory management unit and large
physical memory. The Synthesis prototype runs on an
experimental machine based on a 68020 processor at 20 MHz with
a 16-bit-wide bus.’ For debugging and measurements, the
prototype hardware provides single-step and real-time trace
facilities. In addition, a ROM-based monitor contains an
assembler, a disassembler, and a process manager, with a C-style
interface.!" Other commercially available machines are SUN-3,
Macintosh 11, and similar products. With multiple SCPUs in the
same address space and SIOs 1o send/receive messages, Synthesis
supports parallel machines of both shared-memory model and
message-passing model.

For efficiency and lack of code synthesis support in high-level
languages, we are using 68020 assembly language to write the first
full version of Synthesis kernel. Our own assembler supports
recursive calls to itself for translating static templates of code 10
be synthesized. Ponability of application software is very
important due to its volume and decentralized development.
However, we believe that for the small kernel code efficiency is of
paramount importance and no concessions should be made. We
recognize that writing a Synthesis kernel for a different processor,
say DEC's VAX family, may be a non-trivial experience. But an
operating system should be defined by its interface and mode! of
computation, not implementation. Until there is an optimizing
compiler for a high-level language supporting code synthesis (LISP

has 100 high run-time overhead), we plan to write a different set of
programs to implement Synthesis for each type of hardware. Each

implementation will emphasize performance, use the particular
features of its own hardware, and maintain rigorous compatibility
with the synthetic machine interface.
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4.2 First Version of Software

The first version of Synthesis kernel is being written incrementally
on top of a small kernel.' At the moment, the Factoring
Invariants method has been used in all input and output devices
(S10), including terminal /O and a RAM-based file system. In the
round-robin scheduler, the Executable Data Structures method
provides fast context switch between synthetic machines and
synthetic CPUs.

We are designing the message passing kernel primitives to
support distributed processing. At the core of the high-level
message passing support is the optimization based on the
Collapsing Layers method.

The first program we measured reads one character from the
memory special-device file (equivalent to UNIX /dev/mem). Since
the only significant part of the program is the system call to read a
byte, this program shows the promise of efficiency gained with
synthesized code. A single example does not “prove” our
approach, but it shows how far code synthesis can go.

In C, the program is:

#include <si0/S10.h>
struct SIO_if *myfile, *SIO_create();
char buf]4};
int i;
myfile = SIO_create(FILEACCESS, *tdev/mem”, FA_RDONLY),
for(i= 100000; i--; )
read{mylfle, buf, 1),
$10_terminate(myfile);
A trace of the generated code running on the prototype is included
in Appendix A.
The second program is similar to the first one.
char y[{1000];
int 1)
for(i=10000; i--; )
read(myhle, y, 1000);
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In this example, we have 4 more common situation where the
overhead of a system call is amortized over a larger amount of
useful work.

The numbers actually measured on the prototype system
appear in the “Measured” column of Table 2. For comparison
purposes, we translated the numbers measured from the prototype
system into corresponding ones for a 68020-based machine
running at 16 MHz, with a 32-bit data bus. This configuration is
similar to SUN-3 and HP 9000/320 workstations. The translation
was obtained by hand-counting the CPU cycles for such machines,
and the results appear in the column titled “Corrected.” The
same programs were run on the HP 9000/320 workstation with the
HP-UX 5.17, SUN-3/50 with the SUN-OS 3.2, and Masscomp
MC5600 model 56S-02, with the RTU UNIX 3.1 operating system.
The results appear in the same table, columns HP, SUN-3, and
Masscomp.

program | Mecasured | Corrected HP SUN-3 | Masscomp

Prog. | 1.6 sec 1.2sec | 77sec | 48 sec 29 sec

—#mw. 2 | 20sec 2.0 sec 15 scc | 4.9 sec 4.5 sec

Table 2: Mcasured Figures and Comparison

4.3 Prototype Experience

Of the three synthetic components, we have found SI1O to benefit
the most from synthesized code. Most of the improvement comes
from the elimination of code that check parameters and states,
since these remain the same from call to call. A concrete
example, the read system call in 4.3 BSD, is included in Appendix
B.

The current prototype includes a UNIX-like hierarchical file
system. In addition, several file systems will co-exist in Synthesis.
Some file systems will consist of file servers running in synthetic
machines, with well-known SIO ports for local and remote file
service. Others, like the current hierarchical file system, may be
incorporated into the kernel, accessible through a special type of
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S10. Even the file servers return synthesized code to speed up file
access.

A music synthesizer program has been written to run as an
application on the prototype system. The application consists of
six SCPUs in three stages. First, a note sequencer running in one
SCPU feeds a four-voice sampling synthesizer, one voice per
SCPU. The voices from the second stage go to a summing
program in a sixth SCPU, which sends its output to the digital-to-
analog converter port. The music synthesizer runs in real-time
with a 25 kHz sampling rate and has demonstrated the speed of
our 1/0 operations and context switches.

We are developing a varnant of the C language, called
Lambda-C, to support code synthesis in a high-level language.
Lambda-C will serve several purposes. First, we plan to build a
portable version of Synthesis, written in this language. Second,
we believe that code-generating programs make for efficient
applications, not just operating systems. A high-level language
such as Lambda-C will make these methods available to
application programmers. Third, type-checking of synthesized
code is non-trivial, and we need languages to support it.

5. Comparison with Other Systems

The main difference between Synthesis and other operating
systems is in the combination of the synthetic machine interface
and the kernel code synthesizer. No other operating system offers
a high-level interface and the potential to generate efficient code.

UNIX'? has evolved into a large system with Fourth Berkeley
Distribution'? and AT&T System V. Although the interface
remains approximately the same in the many different variants of
UNIX, the synthetic machine interface is more orthogonal. To the
best of our knowledge, no UNIX system uses a kernel code
synthesizer.

The V kernel’ and Amoeba'® are two examples of small
distributed operating system kernels, They both encourage layers
of software to be written on top of the kernel. Synthesis difters
from both by the high-level synthetic machine interface, and the
code synthesizer.
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Mach' offers an object-oriented interface that is isomorphic to
a specialized synthetic machine. A Mach task corresponds to a
synthetic machine; Mach thread, an SCPU; Mach port, the
network SIO; Mach messages, network SIO read and write; and
Mach virtual memory, an SMem. The synthetic machine uses the
same interface for all 1/0 activities, and child synthetic machines
may be nested within a parent. As with other systems, Mach does
not use a kernel code synthesizer.

Emerald®® is an object-oriented, integrated language and
system. Synthesis lacks the language support in Emerald, in
particular the sophisticated typing system. In compensation,
although Emerald objects may be constructed at run-time (in a
way similar to synthesized code), its kernel calls are not
synthesized.

6. Conclusion

We have combined two ideas in Synthesis. First, a kernel code
synthesizer produces specialized and extremely efficient code for
system calls. Second, an orthogonal, object-oriented, and high-
level interface has been derived from a simple model of
computation. This combination gives Synthesis unique
advantages. The kernel code synthesizer reduces the high-level
interface inefficiency problem. The high-level interface removes
the slowdown due to multiple layers of software built on small
kernels.

Efficiency derived from the code synthesizer has been
demonstrated on a prototype system. An example is a specialized
read system call, which takes about fifteen microseconds. In
comparison, the HP-UX and Masscomp RTU systems running on
similar hardware need a few hundred microseconds for an
equivalent, non-specialized read call. We expect to do even better
in our full system, with very efficient S10 kernel calls including file
systems, network communications, and other devices.

We are implementing the full version of Synthesis for SUN-3
workstations and a 68020-based machine. After the kernel, we will
design and implement language support, transaction processing,
and real-time suppon, all taking advantage of synthesized code.
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WF !JCllCVC that the unique combination of simplicity and
efficiency makes Synthesis an excellent system to write and
cxecute programs.
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Appendix A:
Trace of Generated Code

003r8000 7061 moveq #00000061, d0
003F8002 223C 000F 4240 move.l WNO000F4240, d2
27---- 003FB008 4E&1 trap W1
20 00000ACE 4BE7 40EO (1) movem.l <a2, a1, a0, d1>, -(sp)
6 | 00000AD2 2078 0000 (2] move.l SYSVARS, a0
4 00000AD6 E989 [3) tst.t #, d1
6 | 00000AD8 DOFC FF3C (4] lea (PROCTABLE ,a0,d1), a0
7 00000ADC 2468 0004 [5) move.l (FN_READ,a0), a2
5 | 00000AEO0 43E8 000C [6) lea (SEEKPOINTER,00), o1
Tays 00000AE4 2068 0008 [7) wmove.l (MEMBASE,s0), a0
15cat! O00000AEB 4E92 [(8) jsr (a2)
71 000010A0 D1D1 {9] add.l (al), a0
6 | 000010A2 1010 [(10) move.b (a0), d0
9?1 000010A4 5291 [11) addq.lL #1, (a1
7 1 000010A8 44FC 0000 [12) move.w #0, cc
10 | 00000AEA &4ET7S [13) rts
28 | 00000AEC 4COF 0702 [14) movem.l (8sp)+, <d1, a0, al, a2>
54 00000AF0 4007 [15) move.w sr, (a?7)
21---- 00000AF2 &E73 (16] rte
4 003F800A 5381 subq.t w¥1, d2
9 003F800C O66FA bne 003F8008
D03F8008 4E41 trap (Al

Figure 1: Trace of Code Actually Measured

In Figure i, we show the trace produced by the execution of
the code synthesized for program 1 (Section 4.2). Instruction [1]
saves the registers that will be used. Instruction [2] gets the
address of the kernel data space; instructions {3) and (4] adds an
offset 10 point into the SCPU'’s file table. The file table contains
the address of the specialized read routine and its static data. The
specialized read routine address is placed in register a2 (51, and
the two pieces of static data is extracted: the file seek position
161, and the base memory address (71. The specialized routine is
called (81, and the seek position is added to the base memory
address [91. The byte is read (10}, and the seek position is
updated (111, The “read OK" status code is signalled (12} and
the function returns (131, Finally the registers are restored (141,
the status saved (151, and the system call exits [16].

Calton Pu, Henry Massahn, and John loannidis

clocks addr op-codes instruction

27---- 003FB8008 4E41 trap 1

28 ¢ 00000800 4EBO 1DAS6 0000 jsr ([SYSVARS) ,PROCTBL,d1%4)
| FF3C

16 | 003F2EDC 1030 05F1 003F move.b ([SEEKPOINTER)), dO
| 2ED8

10 003F2e€4 5289 003F 2e08 addq.l #1, SEEKPOINTER

7] O003F2EEA  44FC 0000 move.w #0, cc

10 | 003FF2E8 4E7S rts

5 00000808 4007 move.w sr, (sp)

21---- 00000BDA 4E?73 rte

Figure 2: Trace of Expected Code

We describe in Figure 2 the optimized code synthesis we
expect to produce in the full version. We will now explain what is
happening in these two versions of the read call, and this will help
illustrate the effect that the full code optimizer will have once it is
implemented. There are several places where the long code is less
than optimal. The seek position and the base address should be
kept with the specialized read function rather than in the file
table. Doing so will eliminate the need for instructions (6] and
£71, as well as the save and restore of registers a0 and al When
the full optimizer is implemented, instructions (21, (31, (4] and
(81 can be collapsed into one of the 68020 memory indirect
addressing modes. Finally, there is no need to keep both a base
address and a seek pointer. A trivial modification of the seck
routine (not shown here) allows us to use just one pointer. Figure
2 is the result of applying all these optimizations. The execution
trace of a *“*vanilla”™ UNIX read is too long to be included here, but
we summarize its actions in Appendix B.
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