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1. INTRODUCTION

The concept of a well-posed problem was introduced in Hadamard (1952). A problem is said to be
well-posed if it its solution exists, is unique, and depends continuously on its data; a problem that is not
well-posed is said to be ill-posed. Hadamard gives the impression that any well-formulated physical problem
must be well-posed, and that ill-posed problems were merely problems that had not been formulated correctly.
However, in the years since the appearance of Hadamard’s treatise, many important practical problems have
been found to be ill-posed. Examples of such problems include the following:

e inversion of the Laplace transform, whether the “usual” transform defined over [0, c0) or the finite
transform whose inversion is discussed in Dunn (1967),

o Fujita’s equation relating molecular weight distribution to the steady-state concentration or optical
density in a centrifuged sample, see Gehatia (1970),

e problems in computational vision, such as edge detection, optical flow, surface reconstruction, and
determining shape from shading, see Poggio (1985), and

e problems in remote sensing, see Twomey (1977).

These problems are examples of the Fredholm problem of the first kind, in which one is trying to solve a
problem of the following form:

Let L: U — V be a compact linear transformation of an infinite-dimensional normed linear space U
into a normed or seminormed linear space V. Let D denote the range of L. For f € D, find u € U
such that

Lu=f. (1.1)

In this paper, we will assume that L is an injection, so that for any f € D, there exists a unique u € U
satisfying (1.1). This will allow us to talk about the solution of the problem (1.1). :

To help fix our ideas, it will be useful to consider the following example, which we will follow throughout
this paper.

ExaMPLE 1.1. The problem of inverting the finite Laplace transform arises in the “measurement of the
distribution of an absorbing gas (such as ozone in the earth’s atmosphere) from the spectrum of scattered
light;” see pp. 12-13 of Twomey (1977) for details.

For the sake of normalization, we let I denote the unit interval [0, 1]. We take U = L3(I), the usual space
of (Lebesgue) square-integrable functions on I. Given a non-negative integer r, we choose V = H"(I), the
Sobolev space consisting of those functions whose (r — 1) derivative is absolutely continuous and whose r*®
derivative is in Ly(I). The space H"(I) is a Hilbert space under the usual Sobolev norm || - [|g-(7). (See
Ciarlet (1978) for further discussion of Sobolev spaces and norms.)

We define an operator L: Ly(I) — H"(I) by setting

(Lu)(s) = /1 e~tu(t)dt (0<s8<1)
0

for u € Ly(I). It is straightforward to verify that L is a compact operator. Moreover, Marti (1983) shows
that the operator L is injective. |

Since the inverse of a compact linear transformation with infinite-dimensional domain is always unbounded,
this means that the solution of a Fredholm problem of the first kind does not depend continuously on its
data. Thus, the Fredholm problem of the first kind is ill-posed. Most of the important ill-posed problems
arise as Fredholm problems of the first kind. Hence, we limit our discussion of ill-posed problems in this
paper to such problems. We do this partially for expository purposes; many of the results described below
hold for more general kinds of ill-posed problems.

There is a huge literature dealing with the calculation of approximations to solutions of ill-posed problems;
see, e.g., Carasso and Stone (1975), Haimmerlin and Hoffmann (1983), Tikhonov (1963), and Tikhonov and
Arsenin (1977), as well as the references contained therein. One successful technique is regularization, in

- which the ill-posed problem to be solved is replaced by a (well-posed) minimization problem:

Let f € D. Given A > 0, find ux € U such that
E,\(u,\)zuérelg Ex\(w),
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where
Ex(w) = ||ILw - fII* + AJ(f),

J being a quadratic “penalty functional.”

See, e.g., Tikhonov (1963), Tikhonov and Arsenin (1977) for further discussion.

Clearly, the success of a regularization methods depends on the choice of the regularization parameter A
and the penalty functional J. Note that a careful balance must be maintained in the choice of A: if A is too
large, the error of the method will be large; however, as A gets small, the minimization problem becomes
less and less well-posed. This problem seems to be well-addressed in the literature. Perhaps one of the most
successful techniques for choosing A is generalized cross validation, as described in, e.g., Wahba (1985) and
Wahba (1986). Unfortunately, good criteria for choosing the penalty functional are harder to find. A typical
choice is to let J(f) be the r*f-order Sobolev seminorm of f, for some value of r.

There is one additional problem with regularization methods. To get a bound on the error of a regulariza-
tion method, it appears to be necessary to make additional a priori assumptions about the solution. Such
assumptions are often difficult to verify in practice.

Why do we need such assumptions for regularization methods? The problem can be traced to one of two
sources:

(1) The fault lies with using regularization methods for these problems. That is, we should look at a
wider class of algorithmas.

(2) There is something inherent in ill-posed problems that causes difficulties. That is, no matter what
class of algorithms we use, we can expect ill-posed problems to be hard to solve.

This survey paper describes how information-based complexity has recently been used to analyze ill-posed -
problems. An expository account of information-based complexity may be found in WoZniakowski (19886); a-
more technical discussion may be found in Traub and Woiniakowski (1980). For more detailed information
about the results in this paper (including more general statements of those results, as well as proofs of all
the theorems), the interested reader is referred to Werschulz (1986) and to Werschulz (1987).

To use the information-based approach, we first specify the problem and the permissible information about
the problem. Since this information is generally incomplete, in the sense that the information available about
a particular right-hand side f does not completely determine f, no algorithm using this information can give
the exact solution for all f. Hence, we must also specify our measure of the accuracy of an algorithm that
(approximately) solves the problem using this information. Having done this, we may then seek the best
algorithm for the problem that uses this information, where we say an algorithm is “best” if its error is
minimal among all algorithms using the same information. :

Our results will depend strongly on the problem, the available information, and the way in which we
measure error. In this paper, our problem will be given by (1.1). We shall assume (mainly for expository
purposes) that the spaces U and V are Hilbert spaces, although many of the results of this paper extend to
more general normed linear spaces. In addition, we shall also assume that the range D of L is dense in V;
of course, this is no loss of generality since we can always replace V by the closure DofDinV.

We assume that the available information about a problem element f consists of the values of a finite
number of linear functionals at f. Since we are dealing with a Hilbert space setting, this means that we

assume that there exist fy,..., f, such that for any f € V, the only knowledge we have of f is the information
Nf given by
(f) fl)
NE=| |, (1.2)
(f fa)
where (-, -) denotes the inner product of V. The cardinality of information N defined by (1.2) is the number of
linearly independent elements among {fi,..., fan}. Thus, information N of cardinality n is a linear operator
N:V = R"

EXAMPLE 1.1 (continued). For the problem of the finite Laplace transform, we assume that for any set
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{f1...., fa} of linearly independent functions from H~"(I), we can evaluate the information

Jo F@)fi(z)dz
Nf=|~ : Vfe H(I).
Jo (&) falz)dz
Clearly, N is information of cardinality n. O

Once we have determined the available information, an algorithm is merely a function that combines the
information values for a particular problem element f into an approximation of the solution u of the problem
Lu = f. Hence, an algorithm using information N of cardinality n is a mapping ¢: R" — U, and P(Nf) is
the approximation to u = L= f produced by the algorithm ¢.

Now, we must specify how to measure the error of an algorithm ¢ using information N. This may be
conveniently divided into two parts. First, we must choose an error criterion; that is, we must decide how
to measure the error at a particular problem element f. Then, we must choose a setting that tells us how to
combine these error measurements at each f into a measurement over the full set of problem elements. In
this paper, we will consider two error criteria. The absolute error.criterion measures the error of ¢ at f by

eabs(: N. f) = IL7'f = (Nf)llu-

The residual error criterion measures the error of ¢ at f by

eres(@, N, f) = ||f — Lo(Nf)|lw,

Here, W is a Hilbert space containing V such that V is densely embedded in W; that is, V' is a dense.
subspace of W, and the inclusion mapping from V into W is continuous. Thus, the norm of the space W
measures the error in the residual at f, whereas the norm of the original space V measures the smoothness
of the problem elements.

EXAMPLE 1.1 (continued). For the problem of inverting the finite Laplace transform, we let W = L3(I)
when using the residual error criterion. That is, we use the Ly(I)-norm to measure the residual error and the

H"(I)-norm to measure smoothness of the problem elements. It is well-known that the inclusion mapping
from H"(I) into Ly(I) is a dense embedding. a

We also consider two settings. Let e denote either of eape OF €req. First, we give the worst case setting by
defining the worst case error of ¢ by

ewor(so, N) = sup e(«p, N, f) 3
JeD

Wiv<t

the restriction to problem elements whose norm is at most one being a normalization. Next, we give an
average case setting. Let u be a probability measure on V such the range D of L is of full measure, i.e.,
u(D) = 1. Then the average case error of v is given by

s(o,N) = ([ el .17 u(df))m .

So, we have four possibilities to consider when measuring the error of the algorithm, since the choice of
setting and the choice of how error is measured at a particular problem element are independent. We will
denote these four possibilities by eler, e, €ars, and e 5, which respectively denote the worst case setting
with the absolute error criterion, the worst case setting with the residual error criterion, the average case
setting with the absolute error criterion, and the average case setting with the residual error criterion.

The crucial idea underlying the results of this paper is the radius of information, which is defined to be
the minimal error among all algorithms using given information. Note that the radius of information is a

function only of the problem, the way that the error is measured, and the information. In particular, it
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is independent of any particular algorithm. Stated differently, the radius is an invariant of the problem,
depending only on the problem formulation and the resources that are available to solve the problem.

We now outline the remainder of this paper. In Section 2, we give results for the absolute error criterion.
Our results for this setting may be summarized by saying that there exist algorithms having finite error for a
given setting if and only if L~! is bounded with respect to that setting. In the worst case setting, this means
that there is no algorithm for solving an ill-posed problem whose error is finite. In the average case setting,
this means that finite-error algorithms exist if and only if the operator L~=! is “bounded on the average.”
When this holds, we exhibit an optimal error elgorithm using N, i.e., an algorithm whose average case error
is minimal among all algorithms using N. Then, we exhibit optimal information N, of cardinality n (i.e.,
information such that the average radius of N, is minimal among all information of cardinality at most n)
and show that the n*® minimal average radius (i.e., the radius of N,;) goes to zero as n — oo. Hence, we can
get arbitrarily-accurate solutions of an ill-posed problem in the average case setting for the absolute error
criterion if and only if L~! is bounded on the average.

In Section 3, we give results for the residual error criterion. Our approach for both the worst case and
average settings is to reduce the ill-posed problem to the standard “approximation problem” of approximat-
ing F in W. We find that finite-error algorithms always exist for either setting, and we exhibit optimal error
algorithms. In particular, we show that for any information N, the same algorithm is optimal in the average
case setting for both the absolute error criterion and the residual error criterion. We also exhibit optimal
information of cardinality n for either setting. In the worst case setting, we show that the n*® minimal radius
goes to zero as n — oo if and only if the embedding of V' in W is compact, whereas in the average case
setting, the n*® minimal radius always goes to zero.

Finally, in Section 4, we use these results to determine the e-complexity of ill-posed problems, i.e., the-
minimal cost of finding an e-accurate approximation. In the worst case setting with the absolute error-
criterion, the e-complexity is infinite for any € > 0. In the worst case setting with the relative error criterion
and the average case setting with the absolute error criterion, we find conditions that are necessary and
sufficient for the e-complexity to be finite for all ¢ > 0. In the average case setting with the relative error
criterion, we find that the e-complexity is always finite for all ¢ > 0. Moreover, we find algorithms yielding
e-accurate approximations with almost minimal cost in all these cases.

2. THE ABSOLUTE ERROR CRITERION

In this section, we cite results about the existence of optimal error algorithms when the error at a given
problem element is measured by the absolute error espe. In some instances, we sketch the proofs of results
mentioned in this survey paper, while in others, we omit the proofs. The proofs of all results in this section
may be found in Werschulz (1988).

We deal with the worst case and average case settings. In the worst case setting, we find that the error is
always infinite. Moreover, we find that bad cases happen often, i.e., that the set of problem elements at which
the error is large is “big.” In the average case setting, we show that the error is finite iff L~} is “bounded on
the average.” Furthermore, when L~! is bounded on the average, we describe, for any information, a linear
optimal error algorithm, i.e., an algorithm that is a linear combination of the information it uses whose error
is minimal among all algorithms using that information. Finally, when L~! is bounded on the average, we
describe optimal information of cardinality n for any nonnegative integer n.

2.1. The worst case setling.
Recall that we are trying to solve the problem

Lu=f Vf such that || f|lv <1,

where L: U — V is a compact injection whose range D is dense in V. As before, our sole knowledge of a
problem element f is the information Nf, where N: V — R™ is a continuous linear transformation. Hence,
there exist fy, ..., fa such that

(f. f)
Nf=| vfev.
(f. fn)
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In this section, the error of an algorithm ¢ using information N is given by
enm (@ N) = sup [IL7}f —o(Nf)llv -
JeD
Is1lv <1

Our main result is

THEOREM 2.1.1. For any algorithm ¢ using information N,

exis (92 V) =
Sketch of proof. Let
WOI'(N) lnf eWOl‘(‘P’ N)

denote the radius of information, i.e., the minimal error among all algorithms using the information N.

Then
Patn (V) < ria(N) < 2p75,(N),

abs
where L-1h
wor(N) - sup II ”U ,
neDnker N ||Allv
see, e.g., Traub and Wozniakowski (1980). Assume (without serious loss of generality) that fi, ..., fn are

orthonormal and belong to D. Let

h=f=3_(f fi)fis

ij=1
Then A € D nker N, from which we easily see that

fle < an,uvuL il + A5
Since L~! is unbounded, this inequality 1mp11es that pw°'(N ) is infinite, which in turn implies that rw°"(N )
is infinite. Hence, there exists no finite-error algorithm using the information N.

So, no algorithm can give finite worst case error for our problem. But perhaps we can find an algonthm
whose worst case behavior (which, by the previous theorem, must be bad) does not often occur. The next
result quashes that hope. For any information N, define the zero algorithm ¢° using N by

P(Nf)y=0 VfeD.

Admittedly, the zero algorithm is about as naive an algorithm as one could possibly invent. The next theorem
tells us that no algorithm can be much better than the zero algorithm:

THEOREM 2.1.2. Let g € [0,1). For any information N and for any algorithm ¢ using N, let

L7 f — o(N)llv
=qf€D: < .
{ I =" (NPlv = *
Then the relative interior of A, in D is empty. a
What does this really tell us? For 0 < ¢ < 1, the set A, is the set of all problem elements f at which

C;ba(‘P,Naf) < qeab‘(‘pova f)
That is, f € A, if and only if the absolute error of ¢ at f is no worse than ¢ times the absolute error of
the zero algorithm at f. The theorem tells us that A, has empty relative interior, i.e., that A, is “small.”
Since g can be arbitrarily close to 1, this means that the set of problem elements at which the algorithm ¢
does appreciably better than the zero algorithm is small. Note that this result does not make use of the
worst case setting; it tells us what happens at an arbitrary problem element. Hence, it tells us that there
are many problem elements that are “bad cases.”

So, there is no algorithm with finite worst case absolute error. Moreover, the bad cases occur often.
One might think that the fault may be found in the class of permissible information, i.e., this class is too
restrictive. In Werschulz (1986), we show that this is not the case. We can greatly generalize the class of
permissible information, including such cases as adaptive information, non-continuous linear information,
and mildly-smooth nonlinear information; in all these cases, there is no algorithm for the Fredholm problem
of the first kind whose worst case absolute error is finite.
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2.2, The average case selling.
We now turn to the average case setting for the absolute error criterion. To do this, we must first put a

probability measure on the Hilbert space V, see, e.g., Kuo (1975) and Skorohod (1974). Let A:V — V be
a compact, self-adjoint, positive definite injection whose trace (i.e., the sum of its eigenvalues) is finite. We
then let x be a Gaussian measure whose mean element is zero, i.e.,

/V(f,v)u(df)=0 YveV,
and covariance operalor is A, i.e.,
(ao,0) = [(Fo)fw)ud)  Vowev,
Expressed using the characteristic functional, this means that

/ VTTUD) y(df) = e~ (A9 Yy V.
v

Alternatively, for any v € V and any d € R, we have

—17/(2(Av,v)) dt ,

d
p({feV:(fiv)<d}) =E/(IT'_1J)/_OOC

which gives a relation between Gaussian measures on Hilbert spaces and the familiar Gaussian distribution -
on the real numbers. In what follows, we will write S, for the covariance operator A of the measure u, to
emphasize the connection between the measure and the covariance operator.

Given such a measure u on V, we make one further assumption relating L and u, namely, that D is
measurable and u(D) = 1. The reason for this assumption is that we are interested in average behavior over

the domain D of L~!.
ExaMPLE 2.2.1. Suppose that Ay > A3 > ... > 0 are the singular values of L, and that u; is the

eigenvector of L* L corresponding to the eigenvalue A?. Define

1

,\iLu; i=1,2,....

e =

Let u be the Gaussian measure whose covariance operator S, is defined by
Syei = oie; 1i=1,2,...,

where
gy2>2022...>0 with lime; =0

1= 00

satisfies

i)

i < oo

23
i=1

Then D is measurable and (D) = 1. O

As before, information N of cardinality at most n is a continuous linear transformation

-

N:V —R".
However, an algorithm ¢ using N is now defined to be a mapping

p:R*" = U



such that ||@(N-)||} is measurable. The average case error of ¢ (under the absolute error criterion) is then
given by

e2¥5(p, N) = [/ 1L~ f — (NI u(df)]m.

avg

Since L is compact, it may be checked that L~! is measurable, and so e, 5(p, N) is well-defined. Note that
the average case error e,,5(p, N) can be either finite or infinite.
Guided by our experience in Section 2.1, we first ask whether there exist algorithms whose error is finite.

Let
rave (V) = inf e 3(, V)

denote the (average case) radius of information. We need to know when r y8(N) is finite.
Let us say that L~! is bounded on the average if

/ L2 I3 u(df) < oo
D

Note that there exist unbounded operators that are bounded on the average:

EXAMPLE 2.2.1 (continued). With the measure u defined above, we find that

J 1wy = 3 35 < oo

Hence, L~! is bounded on the average, even though L~?! is unbounded. a.
We then have

THEOREM 2.2.1. The following are equivalent:

(1) L! is bounded on the average.
(2) For any continuous linear information N,

rabs(N) < oo. O

So, if L~! is not bounded on the average, then for any information N, there exists no algorithm using N
whose average case error is finite. If L=! is bounded on the average, then for every information N, there
exists an algorithm using N whose average case error is finite.

Without loss of generality, we assume that there exist fy,..., fn such that
(.f! fl)
(fx fﬂ)
where

(Sufi. fi)=68; (1<i,j<n).
Define P:V — V by

PF=) (£ f)Sufi VfEV;
i=1

we say that Pf is the u-spline interpolating f € V. Then the u-spline algorithm ¢* using N is given by
PN =L PF=) (FF)L7'Sufi  VfeV.
i=1

It may be shown that under the assumptions of this subsection, the mapping L“S,l,/zz V — U is a bounded
linear transformation. From this, it follows that the y-spline algorithm is well-defined. The well-definedness
of the y-spline algorithm holds, regardless of whether L~=! is bounded on the average.

We then have



THEOREM 2.2.2. For any information N, the p-spline algorithm using N is an optimal error algorithm,

ie.,
1/2

(e, N) = ritE(N) = [ [ U= 1wt = YN S, =

i=1

Thus the algorithm ¢*® is an optimal error algorithm using N in the average case. Note that this optimal
error algorithm is linear, i.e., it is a linear combination of the information it uses. Hence, the structure of
this optimal error algorithm is uncomplicated, which makes it easy to 1mplement

Now that we know the optimal algorithm using given information, it is only natural to seek optimal
information of given cardinality n. Let

r28(n) = inf{ r2y5(N) : N is information of cardinality at most n }

denote the nt® minimal radius of information. Information N, of cardinality at most n is said to be nth
optimal information if

riE(Na) = riE(n).

Tabs

If L—* is not bounded on the average, then
BVg(n)

Tabs

and so any information is (trivially) optimal. We now suppose that L-! is bounded on the average. Let

K = (L' (LS v - V.

Since L‘l.S'},/"1 is bounded, its adjoint (L'lsllz) is defined; however, since L~! is unbounded, it is not

generally true that (L'IS,I,/Z)‘ = si/? (L~!')". We find that K is compact and has finite trace. More

precisely, if we let x; > &3 > --- > 0 denote the eigenvalues of K, corresponding to the orthonormal
eigenvectors zj, 22, ..., it may be shown that

o0
wk=Y mi= [ L7 ) = 1L S22,
i=1 D
We now describe how to find nearly optimal information of cardinality n. Let § > 0. Choose

[= o]
= (o,min{n}/’, is —7—2'-"“1 ,}) }
Zt IK:

It may be shown that there exist fy,..., fn such that

(Sufl'»fj)=6ij (1Sirj5n)

and 9
llz:i = S fill < =——=7= (1<i<n).
S L1871
Define information N, s of cardinality n by
(fl fl)
Nnsf= : vfeV.
(f. Ja)

We then have



THEOREM 2.2.3. Let L~! be bounded on the average. For any non-negative integer n, the ntt minimal
average radius is given by

s = [ [ e wan - 3] = [ 5 s

i=1 i=n+4l
Moreover, for any § > 0,
Tabs(Vn,s) < VI +8r3p8(n),
and so the information N, s is n*! optimal information, to within a factor of V1 + 6. O

Note also that this result implies that when L~! is bounded on the average,
nlim rog(n) = 0.

This means that for any ¢ > 0, one can find information and an algorithm using that information, such
that the average case absolute error of that algorithm is at most e. In the terminology of Traub and
Woiniakowski (1980), this means that the problem is convergent.

We apply these results to our

ExaMPLE 2.2.1 (concluded). We find that

o
Ke; = —e;.
1 A?
Hence,
avg ai 13
be(1) = Z
1_n+1
Choosing

fi=oi?e (1 <i<n),

we find that ¢; = S,l,/zfg. So, we will be able to find optimal information, rather than information that is
optimal only to within a factor of /1 + é for arbitrary § > 0. Using the construction of Theorem 2.2.3, we
define information N, by

(f) fl)

Naf=| VfEeV.
(f, fn)

Then N, is n*® optimal information, i.e.,
FAE(N) = rieE(r).
Finally, define an algorithm ¢, using N,, by
n
) 6§
on(Naf) = 3 L,
i=1 !
Then ¢, is an optimal error algorithm using N,,, i.e.,
€ape(@n: Nn) = rop¥(Na) = ripé(n),
and so ¢, is an n'® minimal error algorithm for this problem, i.e.,
Fabo(#ns Nu) < rip8(o, N)

for any algorithm ¢ using information N of cardinality at most n. O
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3. THE RESIDUAL ERROR CRITERION

In this section, we cite results about the existence of optimal error algorithms when the error at a given
problem element is measured by the residual error e;,,. Our main approach is to show that for the residual
error criterion, the solution of the problem Lu = f using information Nf about the problem element f can
be formally reduced to the approzimation problem of approximating f using information Nf. In particular,
this means that optimal information for the two problems is the same.

As in the previous section, we deal with worst case and average case settings. The results of the worst
case setting are taken from Werschulz (1987), whereas the results of the average case setting are new. For
the worst case setting, we find that the problem is convergent if and only if the embedding of the space V
(which measures the smoothness of the problem elements) into the space W (in which we are measuring the
error) is compact. For the average case setting, we find that the problem is always convergent. In each of
these settings, we characterize n*® optimal information.

S.1. The worst case selling.
In this section, the error of an algorithm ¢ using information N is given by

€rea (9, N) = sup lf = Le(Nf)liw - (3.1.1)
I/llv <1

Here, W is a Hilbert space containing V such that V is densely embedded in W.

Our first goal is to find the minimal error among all algorithms using information N. This is given by the
radius of information
wor(N) — igfewor(v’ N)

rrel res

The following theorem gives a simple formula for the radius of information:

THEOREM 3.1.1. For any information N, the radius of information is given by

r*"(NY= sup |[|h||w., 3.1.2
res

he€ker N

[IAllv <1

where
kerN ={heV:Nh=0}

denotes the nullspace of N in V.

Sketch of proof. Given information N, we show that the right-hand side of (3.1.2) is a lower bound for
rre (N). (That it is also an upper-bound for r i, (N) will follow from Theorem 3.1.2.) Let ¢ be an algorithm

using N. Choose h € ker N 1 D satisfying ||h|lyv < 1. Since Nh = N(—h) = 0, we see that

2¢/3°(9, N) 2 [|h = Lo(Nh)llw + [I(=h) = Lo(N(=h))llw
= |l — Le(0)llw + 1A + Le(0)|lw
2 2||hllw -

Since h is arbitrary, this implies that

e (P N)>  sup |lhllw. (3.1.3)
heker NND
TiAlly <1

Since ¢ is an arbitrary algorithm using N, it follows that r],."(N) is bounded from below by the right-hand

side of (3.1.3). Finally, since D is dense in V, it may be shown that the right-hand sides of (3.1.2) and (3.1.3)
are equal, which establishes that r">"(N) is bounded from below by the right-hand side of (3.1.2). O

res
Note that since V is embedded in W, the radius r].3"(N) is finite for any information N. Hence, for
any information, there always exists a finite-residual algorithm using that information. We now exhibit an
algorithm with almost optimal error.
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Let N be information of the form

(f. fi)

(f, fa)
where the inner product (-,-) is the inner product in V, and not that of W. Without loss of generality, we
may assume that f),..., f, € W have been chosen so that

(fi: fi)=6; (1<i,j<n).
Choose § > 0. Since D is dense in U, there exist uy,...,un € U such that

wor

) é .
“Lu.i - f]“w < 2—71 hESIBeIr)N ”h”W = 2_n'rres (N) (1 <J< n)'
IAllv<1

Define the algorithm ;s using N by
n
es(Nf) =D _(f.f)u; VeV
j=1

We then have the following result:
THEOREM 3.1.2. For any information N, and for any § > 0,

res (P8) N) < (14 8)r ST (N). =

el‘ﬂ

Thus the algorithm ¢; is, to within a factor of 1 + 6, an optimal error algorithm using N. Note that this
almost-optimal error algorithm is linear, which makes it easy to implement.

EXAMPLE 1.1 (continued). Let N be information of cardinality n for the problem of inverting the finite

Laplace transform. Then there exist functions fy,..., f, such that
Jo £(s)fi(s) ds
Nf = : Vfe H(I). (3.1.9)
Jo £(8)fn(s)ds
Without loss of generality, we may assume that f;,..., f, have been chosen so that
1
/0 fi(8)fi(8)ds = &;; (1<t j<n). (3.1.5)

Pick 6 > 0. Since H"(I) is dense in Ly(I), there exist functions uy,...,u, € La(I) such that

)
Lu;, — f; < — su h .
[1Luj = fillL,cn o™ hekeEN” [lw
lisllv <1

Then the algorithm ¢; defined by
n 1
w0 =3 [ [ rosas]ue  0sisy verm
j=1

satisfies
rea (96, N) < (14 8)r["(N),

eres

12




and so ¢ is an almost-optimal algorithm using N.

Unfortunately, it may be difficult to explicitly construct such functions. However, this part of the algorithm
is independent of any particular problem element f € H"(I). So, finding such u,..., u, may be considered
as preprocessing that can be done before calculating ps(Nf) for any problem element f.

Alternatively, one can start out with functions uy, ..., u, € L3(I) and define f,,..., fon € H"(I) by

1
) =)o = [ euwa asi<o). (3.16)

Assume without loss of generality that u,, ..., u, have been chosen so that (3.1.5) holds. For information N
of the form (3.1.4), with fy,..., f, given by (3.1.6), we define an algorithm ¢* using N by

n 1
N0 =3[ ron@alun  ©stsy ver.
j=1 70

Then ¢* is an optimal error algorithm using the information N. a

Knowing the optimal algorithm using given information, we seek optimal information of given cardinality n.

Let

Trea (n) = inf{ r2(N) : N is information of cardinality at most n }

denote the n'® minimal radius of information. Information N, of cardinality at most n is said to be n'P

optimal information if

Tres (V) = 1" (n).

To do this, we recall the concept of the Gelfand n-width, see, e.g., Pinkus (1985). Let .A™ denote the class
of subspaces of W whose codimension is at most n. For a balanced convex subset X of W, the Gelfand
n-width d”(X,W) of X in W is defined to be

d*(X,W)= inf sup |z|lw.
AEA® s ANX

Furthermore, if there exists a subspace A™ € A™ such that

d*(X, W)= sup |z|lw,
TeANX

then A" is said to be a Gelfand eziremal subspace of codimension at most n.
Using Theorem 2.6.1 of Traub and Woiniakowski (1980), we immediately have
THEOREM 3.1.3.

(1) The n** minimal radius is given by

wor(ny = d*(BV, W),

rrea

where BV denotes the unit ball of V.

(2) Suppose that A™ is a Gelfand eziremal subspace of codimension at most n. Choose a basis wy, ..., w;
for the orthogonal complement of A™ in W, where k = codim A™ < n. Let (-,-)w denote the inner
product of W. Then informaiion N, defined by

(f wi)w
N.f= : VfeV

(j» u;k)W

is n'P optimal information. O

Let us say that the problem is convergent if limp_ riry (n) = 0. Using standard results on n-widths,

such as Pinkus (1985), we find

13



COROLLARY 3.1.1. The problem is convergent if and only if the embedding of V into W is compact. O

We now consider convergent problems in more detail. Let £ denote the embedding of V into W, which is
now a compact dense injection. Denote the singular values of E by

K12 K22...>0.
There is a complete orthonormal basis {v;}$2, for V such that
E"Ev,-:nfvj j=1,2,....

We then have the following

THEOREM 3.1.4. For any non-negative integer n, define information N,, of cardinality n by

(f» vx)
Nnf = : VfeV.
(fl vn)
Then N, is n*® optimal information, and
rof(n) = rl‘_”;‘:r(N,.,) = Kn4l- O

We illustrate the ideas of this subsection by their application to our example of inverting the finite Laplace
transform.

EXAMPLE 1.1 (continued). Recall that the class of problem elements is the unit ball of H"(I), and that
the (residual) error of an algorithm is being measured in the La(J) norm. Suppose first that r = 0. Then
the embedding of H"(I) = La(I) into Ly(I) is not compact, and so the problem is not convergent. This
means that for some positive threshold eg, there is no algorithm whose residual error is less than €. Hence,

we need only consider the case where r is a positive integer.
Since r > 1, the embedding E: H"(I) — La(I) is compact. Integrating by parts, we find that the
eigenfunctions v; and eigenvalues :cf- of E*E are the nonzero solutions v and x? of the eigenproblem

zr:(—l)"v(z")(s) = x"2u(s) Vs € [0,1],
i=0
VD) =vd(1)=0 (0<i<r-1).

So, we see that the information N, defined by

Js f(s)vi(s)ds
Naf = : vfeH ()

. :
Jo f(s)vn(s)ds
is n'" optimal information, and the n*® minimal radius is
i (n) = Kn41-

Suppose first that r = 1. We find that

v(s) = \/15;

sin jws

and that



Hence,
1 1

WOX‘( ) ~
Vi+r(n+1)?2 w(n+1)
Unfortunately, exact determination of the eigenvalues and eigenfunctions appears to be intractable for ar-

bitrary r. However, an asymptotic result for arbitrary r may be found in, e.g., Pinkus (1985). Using the
standard theta-notation of Knuth (1976), we have

rra(n)=0(n"")  asn— oo.

asn — oo.

Moreover, it is possible to show that inner products with the basis functions of an n-dimensional spline space
of piecewise polynomials of degree r — 1 taken over a uniform discretization of I is (to within a constant
factor, independent of n) n'® optimal information. ]
3.2 The average case setting.

We now consider the average case setting for the residual error criterion. The results of this subsection
are new, and so we prove them in somewhat more detail than the results of previous sections.

Since we are dealing with an average case setting, we first need a measure u on the Hilbert space V. We
suppose that u has the properties described in Section 2.2. That is, we assume that u is a Gaussian measure
on V with zero mean and positive definite covariance operator S,.. Moreover, we also assume that D is
measurable and that u(D) = 1.

Once again, our only knowledge of a problem element f is the information Nf, where N: V — R" is
a continuous linear transformation. An algorithm ¢ using N is then a mapping ¢: R® — U such that
[|Le(-)]l} is measurable. We then let
1/2

exib(o,N) = | [ 1 = LOANT) Iy e

denote the error of an algorithm ¢ using information N. Since the information N is continuous and V is a
Hilbert space, there exist fy,..., fn € V satisfying

(Sufisfi)=6; (1<i,j<n)
such that

(fvfl)
Nf = vieV.
(f, fn)

Our first goal is to find the minimal error among all algorithms using the information N. This is given by |

rov8(N) = mfe“s(tp, N),

re:

the radius of information. In addition, we wish to find an optimal error algorithm using N, which is an
algorithm * using N whose error is minimal, so that

eres (97 N) = r J3(N).

To do this, we will reduce our problem to that of approximating the identity injection E of V into W
(which we call the approzimation problem for short). For information N of the form (3.2.1), an algorithm
for the approximation problem is a mapping ¥: R® — V such that ||$(N-)||3 is measurable. The error of
such an algorithm ¢ for the approximation problem will be denoted by

= [ - t/)(Nf)llwu(df)]m-

Let

rapp(V) = infearg(¥, N)

denote the radius of information for the approximation problem.
Recalling the definition of the u-spline algorithm ¢® using information N from Section 2.2, we have
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THEOREM 3.2.1. For any information N, the following hold:
(1) The radii of information for the Fredholm problem and the approzimation problem are the same, i.e.,

r2E(N) = raE(N).

Tres app

(2) The p-spline algorithm ©® is an optimal error algorithm for the Fredholm problem, i.e.,

Eres (9" N) = 1 2(N) = ragh(N).

Proof. Let N be information of cardinality n. We first show that

Free (V) 2 rag8(N).
Let ¢ be an algorithm for the Fredholm problem. Then Ly is an algorithm for the approximation problem.
Since D is of full measure, we find

228 (o, Y = [ 1LoNP) = il ) 2 inf [ IOV = Sl ) = PP

Since ¢ is an arbitrary algorithm using N for the Fredholm problem, we may take the infimum over all such
algorithms to establish the desired lower bound.
To complete the proof of the theorem, it suffices to show that
€res (9%, N) = ri8(N).
We have
O'(Nfy=L"'Pf VfeV,

where Pf is the u-spline interpolating f. As we pointed out in Section 2.2, Pf is in the range of L, and so
the u-spline algorithm *® using N is well-defined. Now Pf depends on f only through Nf. Hence we may
write

Pf = ¢*(Nf).

From the results of Wasilkowski and Wozniakowski (1986), y* is an optimal error algorithm for the approx-
imation problem, i.e.,
&Vg('p N) = rnVs(N).

€app app
Since
(e’ N)? = /v If — L(*(NH)) I3 u(df) = _/; If = ¥ (NIl (df)
the desired result follows immediately. a

Hence, for any information N, the u-spline algorithm is an optimal error algorithm using N in the average
case setting, regardless of which error criterion (absolute or relative) we are using.

Knowing the optimal algorithm using given information, it is natural to seek optimal information of given
cardinality n. Let

rev8(n) = inf{ ri.8(N) : N is information of cardinality at most n }

denote the n'M minimal radius of information. Information N, of cardinality at most n is said to be nth
optimal information if
&V v
g(N ) - r:g.s(n)‘

Moreover, an optimal error algorithm using n*® optimal information is said to be an n*® minimal error algo-

rithm, since the error of such an algorithm is minimal among all algorithms using information of cardinality
at most n.
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The main idea that we use in finding n*® optimal information is to reduce the problem to the approximation
problem, since Theorem 3.2.1 implies that

av,
Tres (1) = 1228(n).
That is, the n*® minimal radii for the problems are the same, and the same information is optimal information
for both problems.
Let 03 > 02 > ... > 0 be the eigenvalues of the covariance operator S,. Let e;,e2,... denote the
corresponding eigenvectors, which we assume to be orthonormal without loss of generality. Of course,

oo
tr S, = Za; < 0.
i=1
Let
f.-:a-_lne; i=1,2,....

3

Then
(Sufi, f3) = 6ij i,j=1,2,....

Define the information N, to be
(fv fl)
N.f= VfeV.
(f) fa)

We also define an algorithm ¢,, using N, by

Pn(Naf) = Y (fre)L ™ e;.

i=1

Note that the algorithm ¢, is well-defined, since the eigenvectors of the covariance operator lie in the range
of S,, which is a subset of the range of L~!.

Using the results of Wasilkowski and WoZniakowski (1986), along with Theorem 3.2.1, we immediately
find

THEOREM 3.2.2. For any non-negative integer n, the information N, is n*t optimal information and the

algorithm @, is an n*® minimal error algorithm. That is,
0 1/2
228 (n M) = 2E N = ) = [ D ] o
i=n+l

Since the covariance operator has finite trace, Theorem 3.2.3 implies that

im r2¥8(n) =

nan;o T (1) = 0.

That is, for any positive error tolerance ¢, there exists an algorithm whose error is at most €. Hence the
yp g

problem is always convergent when using the residual error criterion in the average case setting.

4. COMPLEXITY ANALYSIS

The previous sections of this paper dealt with optimal error algorithms for the Fredholm problem of the
first kind. In this section, we use these results to find the e-complexity of such problems, i.e., the minimal
cost of finding an approximation whose error is at most €. Of course, we expect the complexity to depend on
the error criterion and the setting. Moreover, it will also depend on the model of computation used, which
defines the cost of any algorithm.

Our first step in defining our model of computation is to decide how much to charge for basic operations.
As in Traub and Woiniakowski (1980), we assume that

(1) the cost of evaluating any linear functional is ¢ > 0, and
(2) any arithmetic operation has unit cost.
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Next, we determine the cost of evaluating an algorithm ¢ using information N at a particular problem
element f as follows. Let cost(Nf) denote the cost of evaluating the information Nf, and let cost(p, Nf)
denote the cost of combining this information to find p(Nf). Then

cost(p, N, f) = cost(Nf) + cost(p, Nf).

That is, the cost of evaluating an algorithm using given information at a particular problem element is the
sum of its informational cost and its combinatory cost. Finally, we define the cost of an algorithm ¢ using
information N to be

cost(p, N)= sup cost(p, N, f).
JeD
IfHiv<r
We can now define the complexity of the problem. Fix a particular error criterion (absolute or residual)

and setting (worst or average case). This, of course, determines the error e(p, N) of an algorithm ¢ using
information N. For € > 0, we define the e-complezily of the problem to be

comp(e) = inf{ cost(, N) : ¢ and N such that e(p, N) < e}.

Note that there are four ways of defining comp(z), depending on the error criterion and the setting,.

REMARK 4.1. Note that we are using a worst case model of computation, i.e., cost(p, N) is given by
a worst case of cost(p(Nf)) over all problem elements f. One can also consider an average case model of
computation, in which we take

cost(p, N) = /D cost(p, N, f) u(df).

Since we are dealing with information of fized cardinality (i.e., the cardinality of the information is indepen-
dent of the problem element), it is easy to see that the results of this section are the same for either model
of computation. From the results of Wasilkowski (1986), we find that this will also be true for information
of varying cardinality (in which the cardinality can vary with the problem element). O

Our main goal is to find conditions that are necessary and sufficient for comp(€) to be finite for all ¢ > 0.
To do this, we define the e-cardinality number to be
m(e) = inf{n:r(n)<e€}.
Then
comp(e) > cm(e).
Moreover, if there exists a linear m(e)'® minimal error algorithm, then

comp(e) < (¢ +2)m(e) — 1.

Since ¢ > 1 in practice, we see that the e-complexity is roughly equal to ¢ m(e). Of course, m(¢) will depend
on the setting and the error criterion, and so there will be four different e-cardinality numbers.

We first look at the absolute error criterion. For the worst case setting, it is easy to see that the results
of Section 2.1 imply that my o, (€) = +oco for any € > 0. This immediately gives us

THEOREM 4.1. For the worst case setling in the absolule error criterion,

comp,a(e) = +0 Ve > 0. O
Hence, it is impossible to find an e-approximation using the absolute error criterion in the worst case
setting, no matter how large ¢ is.

EXAMPLE 1.1 (continued). For the problem of inverting the finite Laplace transform with problem
elements in the unit ball of H7(I), we have compjui(c) = +oo for any € > 0. This means that it is
impossible to find a finite-error approximation to this problem with finite cost. Note that this result is true

for all #, no matter how large (where, as before, r denotes the smoothness of the class of problem elements).0}

Next, we turn to the average case setting:
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THEOREM 4.2. For the average case setling in the absolute error criterion, the following alternatives hold:
(1) If L~} is not bounded on the average, then for any € > 0,

compae(e) =
(2) If L™ is bounded on the average, then

ma5(e) 1nf{ Z ki <e }
i=n+4l
where k; is the i*M-largest eigenvalue of the Hilbert-Schmidt operator (L-ls,‘/?)' (L'IS,I,/2). Hence,

avg

emi8(e) < compii(e) < (e +2)my8(e) — 1 Ve>0. O

abs

Thus the e-complexity is finite for all € > 0 if and only if L~} is bounded on the average. When this holds,

we can find an almost-optimal complexity algorithm as follows. Let n = m2§(¢), and let N, be n'™® optimal

information. (Of course, if Ny, does not exist, we can use the approximation techniques of Section 2.2.) Then
the u-spline algorithm using N, is an almost-optimal complexity. algorithm.

We now turn to the residual error criterion. Recall that E denotes the embedding of V into W. In the
worst case setting, we have

THEOREM 4.3. The following alternatives hold for the worst case setling using the residual error criterion:
(1) If E is not compacl, then there ezists eg > 0 such that

compra (€) = 400 if0 < £ < .

res
(2) If E is compact, then
mie'(e) = inf{n:Kxn41 <€},

where K, i3 the n‘h-largest singular value of E. Hence,

myo'(e) < comprg(€) < (c+2)m(e) -1 Ye>0. o

Thus the e-complexity is finite for all ¢ > 0 if and only if V is compactly embedded in W. In that
case, we can find an almost-optimal complexity algorithm as follows. Let n = m/5'(¢), and let N, be n*?
optimal information. Then a linear optimal error algorithm using N, will be an almost-optimal complexity
algorithm.

EXAMPLE 1.1 (continued). We find that for our problem of inverting the finite Laplace transform with -
problem elements in the unit ball of H7(I),

compo(e) = ©(e~H") ase — 0

if r > 0. Of course, when r = 0, then the problem is not convergent. Hence,
comple. (€) = +00 for sufficiently small £ > 0
ifr=0. a
Finally, we consider the average case setting:

THEOREM 4.4. For the average case seliing using the residual error criterion, the e-cardinality number is

given by
m8(e) = mf{ Z oi<e }

i=n+1
where o; is the i*M-largest eigenvalue of the covariance operator S,,. Hence, the e-complezitly is given by
8(e) < compiE(e) < (c+2)m E(e) -1 Ve> 0. O
In particular, this means that the e-complexity is finite for all ¢ > 0. We find an almost-optimal complexity

algorithm as follows. Let n = m®5(¢), and let N, be n*" optimal information. Then the u-spline algorithm

using N,, will be an almost-optimal complexity algorithm.
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