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ABSTRACT 

Web pages contain clutter (such as ads, unnecessary 
images and extraneous links) around the body of an article, which 
distracts a user from actual content. Extraction of “useful and 
relevant” content from web pages has many applications, 
including cell phone and PDA browsing, speech rendering for the 
visually impaired, reducing noise for information retrieval 
systems and to generally improve the web browsing experience. 
In our previous work [16], we developed a framework that 
employed an easily extensible set of techniques that incorporated 
results from our earlier work on content extraction [16]. Our 
insight was to work with DOM trees, rather than raw HTML 
markup. We present here filters that reduce human involvement in 
applying heuristic settings for websites and instead automate the 
job by detecting and utilizing the physical layout and content 
genre of a given website. We also present work we have done 
towards improving the usability and performance of our content 
extraction proxy as well as the quality and accuracy of the 
heuristics that act as filters for inferring the context of a webpage. 

Categories and Subject Descriptors 

I.7.4 [Document and Text Processing]: Electronic 
Publishing; H.3.5 [Information Storage and Retrieval]: Online 
Information Services – Web-based Services 

General Terms 

Human Factors, Algorithms, Standardization. 

Keywords 

DOM trees, content extraction, reformatting, HTML, 
context, accessibility, speech rendering. 

1. INTRODUCTION 
 

Users are spending more and more time on the Internet 
in today’s world of online shopping and banking; meanwhile, 
webpages are getting more complex in design and content. Web 

pages are cluttered with guides and menus attempting to improve 
the user’s efficiency, but they often end up distracting from the 
actual content of interest. These “features” may include script- 
and flash-driven animation, menus, pop-up ads, obtrusive banner 
advertisements, unnecessary images, or links scattered around the 
screen. The automatic extraction of useful and relevant content 
from web pages has many applications, including enabling end 
users to access the web more easily over constrained devices like 
PDAs and cellular phones, providing better access to the web for 
the visually impaired, providing less noisy data for information 
retrieval and summarization algorithms, and generally improving 
the web surfing experience. 

Content extraction is particularly useful for the visually 
impaired and the blind. A common practice for improving 
webpage accessibility for the visually impaired is to increase font 
size and decrease screen resolution; however, this also increases 
the size of clutter, reducing efficiency.  Screen readers for the 
blind, like Hal Screen Reader, Microsoft’s Narrator or IBM 
Homepage Reader generally don’t remove such clutter either and 
often read out raw HTML. Natural Language Processing (NLP) 
and information retrieval (IR) algorithms can also benefit from 
content extraction, as they rely on the relevance of content and the 
reduction of “standard word error rate” to produce accurate results 
[13]. Content extraction allows such algorithms to process only 
the extracted content, instead of either using cluttered data from 
the web, or writing specialized extractors for each web domain 
[14][15]. 

Other traditional approaches to removing clutter or 
making content more readable include removing images, disabling 
JavaScript, etc., all of which eliminate the webpage’s original 
look-and-feel. Examples include WPAR [18], Webwiper [19] and 
JunkBusters [20].  All of these products involve hardcoded 
techniques for certain common web page designs as well as fixed 
“blacklists” of advertisers. This can produce inaccurate results if 
the software encounters a layout that it hasn’t been programmed 
to handle. There have also been multiple approaches suggested for 
formatting web pages to fit on the small screens of cellular phones 
and PDAs (including the Opera browser [16] and its use of the 
handheld CSS media type, and Bitstream ThunderHawk [17]); 
however, such techniques reorganize and reformat the content of 
the webpage to fit on a constrained device and require a user to 
scroll and hunt for content. __________________________________________________________________ 
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Our solution employs a series of techniques that 
addresses the aforementioned problems and creates a simple 
solution usable and customizable by an end-user. In order to 
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analyze a web page for content extraction, we pass web pages 
through an HTML parser, which corrects the markup and creates a 
Document Object Model tree. The Document Object Model 
(www.w3.org/DOM) is a standard for creating and manipulating 
in-memory representations of HTML (and XML) content.  By 
parsing a webpage's HTML into a DOM tree, we can not only 
extract information from large logical units similar to 
Buyukkokten’s “Semantic Textual Units” (STUs, see [3][4]), but 
can also manipulate smaller units such as specific links within the 
structure of the DOM tree.  

We found DOM trees to be highly editable and easily 
renderable as a complete webpage. Increasing support for the 
Document Object Model also makes our solution widely portable. 
This technique was used to create our initial proof of concept 
version, Crunch, which is an open ended framework for 
integrating content extraction heuristics developed by ourselves 
and others. Crunch is created as a web proxy usable with arbitrary 
browsers and assistive technologies. It is customizable by an 
administrator or user to toggle individual heuristics in order to 
produce the best results. Our initial work [16] showed that we 
were able to achieve good results but that we also had several 
limitations. We have since made our proxy more robust in terms 
of performance, created a multi-pass filtering mechanism, 
improved the user interface and further added support for various 
scripted pages as well as for cascading style-sheets (CSS). 

One problem with content extraction in general is that it 
is impossible to determine the intention of the author and the 
desires of the reader. Therefore our goal is to approach the 
problem heuristically and work towards making our heuristics as 
accurate as possible. Crunch extracts the “content”, with filters 
customizable by an administrator and/or by a savvy user. No “one 
size fits all” algorithm could achieve this goal. In particular, we 
did not attempt to model either author or user tasks, nor their 
corresponding context or intentions, but any non-intrusive 
approach to doing so would also likely be heuristic and thus also 
imprecise. Therefore, one of the limitations of our framework was 
that Crunch could potentially remove items from the web page 
that the user may be interested in, and may present content that 
the user is not particularly interested in. 

We have addressed this by employing a multi-pass 
filtering system where the resulting DOM tree produced after each 
stage of filtering is compared to the original copy. If too much or 
too little has been removed, given the settings, we assume that the 
settings were set incorrectly and fix them during the next pass 
over the DOM. We also try to determine the classification of a 
given website, both in its physical layout as well as the context of 
its content. We have found that, given a manually-created 
frequently updated database of preset heuristic settings for 
different genres of websites, we can use this contextual 
information to dynamically utilize matching settings from our 
database and produce better results of extracted webpage content. 

In this paper, we explain the improvements we have 
made to Crunch, and explain how we can dynamically categorize 
sites by determining layout structure and the content context of 
websites.  As we will describe, our solution enables dynamic 
filtering for a wider range of websites.  The following sections 
briefly describe the background, our approach to the problem, 
related work and implementation details, and we end with future 
work directions and a conclusion. 

 

2. BACKGROUND 
 

Crunch 1.0 [16] demonstrated the design of the system 
as a viable framework, but certain problems needed to be 
addressed for the system to be widely usable. After releasing 
Crunch 1.0 in September 2002, we received several suggestions 
from early users for additions and improvements. These ranged 
from changes in the aggressiveness of content removal by the 
filters, to the way our proxy reassembled a webpage from its 
constituent parts. We conducted an informal user study of 
blindfolded students in May 2003, followed by a formal user 
study with blind and visually impaired users, conducted in 
December 2003 [17]. The NLP group at Columbia University 
evaluated Crunch as an input mechanism to their Newsblaster 
[8][9] project, which is a system that automatically tracks, clusters 
and summarizes each day’s news programmatically.  They found 
results to be encouraging, especially since it required little prior 
training, and by utilizing Crunch they ran their natural language 
processing algorithms on content extracted by Crunch rather than 
noisy data streams coming straight from the web. 

Crunch 2.0 [17] was similar to its predecessor in that it 
utilized the DOM model and was also a filter plug-in based 
framework. We improved its performance, user interface, and 
heuristic filters. With the original version, we had problems 
filtering pages with frames or too many links, where the filters 
would either remove too much, resulting in a blank page, or too 
little, resulting in a mostly untouched page. Therefore, we 
implemented a multi-pass filtering system for the heuristics that 
re-evaluates the modified DOM tree after each pass. After each 
phase, the produced DOM tree is compared to the previous 
version, and that phase’s results are discarded if the change 
between the two is either insignificant or too drastic (given the 
settings). This prevents link-heavy pages like www.msn.com from 
returning blank pages as output. We improved the performance of 
the content extractor filter while maintaining its functionality. 
Additional filters were also added that allow the user to control 
the font size and word wrapping of the output. 

Crunch 3.0, presented in this paper, automates the 
application of filter settings for a varied range of websites by 
detecting content genres and the physical layout. We explain these 
improvements in greater detail in the following sections. 

3. CONTEXT EXTRACTION 
 

We find that with the DOM-based content extraction of 
the earlier version of Crunch (see section 5 for implementation 
details), we are able to achieve high levels of content extraction 
accuracy for a wide domain of websites. Example output 
screenshots shown in our original paper [16] and the subsequent 
journal paper [17] demonstrated that while the results that our 
proxy produced (with optimal settings) were quite accurate, the 
settings for the various filters often had to be tweaked by hand by 
the administrator or the end user for websites that differed in 
context and layout. For example, if a user were to browse a typical 
news-based site, e.g., CNN, then their settings would remove 
heavy links, images with links (menus), advertisements, and 
forms, since they would typically be looking for only the articles 
contained in each page. The results produced, as shown in Figure 
1, would be expected. However, if the user chose to switch 
workflow contexts and browse Amazon.com instead – a link-
heavy page with lots of advertisements, images and forms – those 
important links would be lost due to the news-optimized settings, 



resulting in an undesirable result as shown in Figure 2.  This 
would easily be fixed by adjusting the settings in the Content 
Extraction filter of our proxy; however it would require the user to 
switch application focus and do so manually. The user would have 
throttled the link/text ratio higher, perhaps even toggled off the 
advertise remover and the scripts remover (Figure 2) for a better 
shopping experience. 

   

 
Figure 1 - CNN (original, through Crunch 2.0 with shopping 

settings and through Crunch 3.0 with auto-settings) 

  

 
Figure 2 - Amazon (original, through Crunch 2.0 with news 

settings and through Crunch 3.0 with auto-settings) 
 

As explained before, this workflow results in poor user 
productivity. Since creating a set of filter settings for producing 
good results for known webpages is straightforward, we focused 

on classifying websites.  Ideally, a website’s classification would 
be matched against known classes and an appropriate 
configuration would be selected.  For example, if the user 
browsing CNN were to then browse Amazon.com, for which a 
classification didn’t already exist, Crunch would detect that 
Amazon.com is a shopping site, similar to others already 
categorized, and those settings would be adopted automatically. 
This eliminates the need for human intervention every time there 
is a context switch on the part of the user. 

We have chosen two types of classification to categorize 
websites – physical layout and content genre. Our approach to 
classifying websites based on genre involves a one-time initial 
processing stage where we pre-classify 200 of the top sites visited 
by our group on a daily basis. We combine the textual content of 
the site itself with the contents of search results returned by 
searching for the site’s domain name on three of the top Internet 
search engines (Google, Yahoo and Dogpile). Adding text from 
search engine results enables us to leverage the small blurb 
describing the site in the engine’s results, which assists in 
classifying the site. Combining results per domain also improves 
the frequency of the occurrence of words that describe the 
function and content of the site. We then remove all stop words 
and count the frequency of the words in the remaining text. Since 
the resulting 200 sets of frequency graphs contain both words that 
repeat across graphs and words that occur too infrequently to 
affect content information, we pick all unique words that occur in 
at least one of the graphs more than five times, creating a master 
set of Key Words. A re-graph against this new set of Key Words 
produces an accurate content genre identifier for each of these 
websites (examples of results for Amazon and eBay are shown in 
Figures 3 and 4 respectively). 
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Figure 3 - Frequency chart for Amazon 
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Figure 4 - Frequency Chart for eBay 



    

 
Figure 5 - eBay (original, through Crunch 2.0 with news 

settings and through Crunch 3.0 with auto-settings) 
 

We can now use our classifications in conjunction with 
a database containing filter settings for each of the 200 sites. 
When we encounter a website that we haven’t seen before, we 
again extract the text from the site and corresponding search 
engine blurb, and perform a frequency match against the 
frequently-occurring Key Words. We then use the Manhattan 
histogram distance measure algorithm to measure the distance 
between the website in question and our original classifications. 
The formula is defined as 
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The histogram ( , ) is represented as a vector, 
where is the number of bins in the histogram (i.e., the number 

of words in our Key Word Set). and  must first be 
normalized in order to satisfy the above distance function 
requirements. In Crunch, the sum of the histogram’s bins is 
normalized to 1 before computing the distance. We use the 
settings associated with the website whose distance is closest to 
the one being accessed.  
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In our previous example with CNN, Amazon and eBay, 
the user might have already defined preferences for CNN and 
Amazon. If the user navigates to eBay, the histogram matching 
algorithm finds it to be most similar to Amazon from our pool of 
categorized sites and picks the equivalent settings. We find that 
the resulting page (Crunch 3 result - Figure 5) is quite acceptable. 

We also tried other approaches and compared their 
accuracy and speed to the Manhattan distance. For example, 
Euclidean distance measuring gave us equivalent results with 
slightly greater computational overhead. 
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 We have also tried using a simplified version of the 
Mahalanobis histogram distance formula 

)()(),( 12 yxCyxyxd T −−= −  

where x  and y are two feature vectors, and each element of the 
vector is a variable. x  is the feature vector of the new 
observation,  is the averaged feature vector computed from the 

training examples, and is the inverse covariance matrix, 
where 

y
1−C
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are the ith  and jth elements of the training vector. The advantage of 
Mahalanobis distance is that it takes into account not only the 
average value but also its variance and the covariance of the 
variables measured. We expected the Mahalanobis formula to be 
most accurate; however, this was not the case, probably due to the 
lack of a large amount of variance in our training data. If we had 
results from more then three different search engines, we could 
potentially improve the variance in our data and the Mahalanobis 
histogram distance might give us more reliable results. The 
current system uses the simple and efficient Manhattan histogram 
distance measure. 

 In Figures 6 and 7, we show the frequency chart for 
CNN and Spacer.com (an astronomy news related site) 
respectively. Crunch determines that both these sites are similar 
enough to warrant the same set of settings. The results viewed in 
the browser can be seen in the Crunch 3.0 results of Figure 8. 
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Figure 6 - Frequency chart for CNN 
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Figure 7 - Frequency chart for Spacer 

 



       
 

   
Figure 8 - Spacer.com (original, through Crunch 2.0 with 

shopping settings and through Crunch 3.0 with auto-settings) 
 

As shown in Figures 4-8, we do not classify websites 
exclusively into predefined genres.  Based on the word frequency 
histogram we either find an already-defined genre with a similar 
histogram or create a new genre centered on the new website. 
Currently websites are assumed to be identical within the domain, 
which works well for homogeneous sites created with a content 
management system [39], but less well for heterogeneous sites 
such as geocities.com assumed to be of a single genre for the 
entire domain.  

In order to classify websites based on their physical 
characteristics, we manually created a database of physical 
layouts of the same 200 top visited sites, and classified them into 
several basic categories. Categorizations include the number of 
columns, link density, type of site (news, shopping, banking, 
Weblog, etc.) and the percentage amount of “content” data 
contained in the various columns. Future work includes 
automating this process.  Our approach will be to analyze the 
constituent parts of the HTML in the DOM tree using tree pattern 
inference. [38] 

The user has the option of overriding our automatic 
settings through Crunch’s user interface. Ultimately, we hope to 
use the data produced using physical classification to add to the 
information gained through content and genre classification to 
produce even more accurate results. 

4. RELATED WORK 
 
4.1 Content Extraction 

There is a large body of related work in content 
identification and information retrieval that attempts to solve 
similar problems using various other techniques. However, we 
have found that most of these solutions are too time consuming to 
be effective for web browsing. Rahman et al. [2] propose 
techniques that use structural analysis, contextual analysis, and 
summarization. The structure of an HTML document is first 
analyzed and then decomposed into smaller subsections. The 

content of the individual sections is then extracted and 
summarized. While the paper describes prerequisites for content 
extraction, it doesn’t propose methods to do so. The solution is 
meant for constrained devices like cell phones, but the user has 
little control over the output that s/he views. Their technique is not 
adjustable; therefore the user has low flexibility retrieving 
removed content. 

Finn et al. [1] discuss methods for content extraction 
from “single-article” sources, where content is presumed to be in 
a single body. The algorithm tokenizes a page into either words or 
tags; the page is then sectioned into 3 contiguous regions, placing 
boundaries to partition the document such that most tags are 
placed into outside regions and word tokens into the center region. 
This approach works well for single-body documents, but 
destroys the structure of the HTML and doesn’t produce good 
results for multi-body documents, i.e., where content is segmented 
into multiple smaller pieces, common on Web logs (“blogs”) like 
Slashdot (http://slashdot.org). In order for content of multi-body 
documents to be successfully extracted, the running time of the 
algorithm would become exponential with a degree equal to the 
number of separate bodies, i.e., extraction of a document 
containing 8 different bodies would run in O(N8), N being the 
number of tokens in the document. 

McKeown et al. [8][15], in the NLP group at Columbia 
University, detects the largest body of text on a webpage (by 
counting the number of words) and classifies that as content. This 
method works well with simple pages. However, this algorithm 
produces noisy or inaccurate results when handling multi-body 
documents, especially with random advertisement and image 
placement. 

Multiple approaches have been suggested for formatting 
web pages to fit on the small screens of cellular phones and PDAs 
(including the Opera browser [16] and its use of the handheld CSS 
media type, and Bitstream ThunderHawk [17]); however, the 
reformatting approaches generally do not distinguish significant 
from subsidiary content (that is, clutter), nor remove the latter. 

Buyukkokten et al. [3][10] define “accordion 
summarization” as a strategy where a page can be shrunk or 
expanded much like the instrument. They also discuss a method to 
transform a web page into a hierarchy of individual content units 
called Semantic Textual Units, or STUs. First, STUs are built by 
analyzing syntactic features of an HTML document, such as text 
contained within paragraph (<P>), table cell (<TD>), and frame 
component (<FRAME>) tags. These features are then arranged 
into a hierarchy based on the HTML formatting of each STU. 
STUs that contain HTML header tags (<H1>, <H2>, and <H3>) 
or bold text (<B>) are given a higher level in the hierarchy than 
plain text. This hierarchical structure is finally displayed on PDAs 
and cellular phones. While Buyukkokten’s hierarchy is similar to 
our DOM tree-based model, DOM trees remain highly editable 
and can easily be reconstructed back into a complete webpage. 
DOM trees are also a widely-adopted W3C standard, easing 
support and integration of our technology. The main problem with 
the STU approach is that once the STU has been identified, 
Buyukkokten, et al. [3][4] perform summarization on the STUs to 
produce the content that is then displayed on PDAs and cell 
phones. This requires very time consuming processing on the 
original content. 

Kaasinen et al. [5] discuss methods to divide a web page 
into individual units likened to cards in a deck. Like STUs, a web 
page is divided into a series of hierarchical “cards” that are placed 
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into a “deck”. This deck of cards is presented to the user one card 
at a time for easy browsing. The paper also suggests a simple 
conversion of HTML content to WML (Wireless Markup 
Language), resulting in the removal of simple information such as 
images and bitmaps from the web page so that scrolling is 
minimized for small displays. While this reduction has 
advantages, the method proposed in that paper shares problems 
with STUs. The problem with the deck-of-cards model is that it 
relies on splitting a page into tiny sections that can then be 
browsed as windows. But this means that it is up to the user to 
determine on which cards the actual contents are located.  

4.2 Genre Classification 

There is some related work that tries to classify 
webpages by genre which we found to be helpful.   Karlgren et al. 
[33][34] showed that the texts that were judged relevant to a set of 
queries differ substantially from the texts that were not relevant. 
Stamatatos et al. [29] show that the frequency of word occurrence 
is very useful in automatic text genre classification. This approach 
is similar to ours, and produces results that are domain 
independent and require minimal computation. 

There are approaches that detect genre based on surface 
cues where comparisons are made between the performances of 
function words and the Parts Of Speech trigrams. Kessler et al. 
[30] and Argamon et al. have shown good results with this 
technique; however, their approach is dependent on substantial 
bodies of text, the domain of their classification is fairly limited, 
and cannot be applied dynamically to all web-sites. 

Roussinov et al. [32] define genre as a group of 
documents with similar form, topic or purpose, “a distinctive type 
of communicative action, characterized by a socially recognized 
communicative purpose and common aspects of form”. They 
show the advantages of browsing the web by genre but their 
application is only designed to help categorize documents so users 
can see similar pages. There is no work in terms of content 
extraction. 

Rauber et al. [36] use the age of a document and 
frequency of lookups as important distinguishing features and 
present a method of automatic analysis based on various surface 
level features of the text. 

While all these approaches are valid, we find them all to 
be lacking for our problem domain. Most are either too 
computationally expensive or are too domain specific. We also 
find that most approaches try to extract a word or phrase to 
describe the context of a given page. We instead compute the 
genre from a large set of words with individual weights, as it 
allows for greater accuracy when comparing between an 
extremely varied ranges of websites. 

5. IMPLEMENTATION DETAILS 
 

In the new version of Crunch, we have improved 
flexibility for most filters by improving the plug-in API as well as 
by adding new features to each. Users now have the ability of 
controlling, at a finer granularity, the filtering of complex web 
pages where certain HTML structures are embedded within 
others, e.g., controlling not only the content on the entire page but 
also controlling the parameters that address table cells. 

Figures 10 and 11 show some of these changes.  
Additional example screenshots, including a high contrast scheme 

for vision-impaired users, are contained in the Appendix at the 
end of the paper. 

 
Figure 9 - Crunch 3.0 Plug-ins Window 

 

      

 
Figure 10 - Crunch 3.0 Settings Windows 



 

Like with the previous versions of Crunch, the average 
runtime complexity of the newer version remains at O(N+P), 
where N is the number of nodes in the DOM tree after the HTML 
page is parsed and P is the big-O complexity of the least-efficient 
plug-in.  However, the worst case running time increases to 
O(N*P) due to our addition of the multi-pass system: in case of a 
bad result, a filtered webpage may have to revert to a previous 
state and re-run through the proxy with a different set of options, 
and this may happen for any number of nodes in the DOM tree. 
[17] 

We have also added support for CSS files and script-
generated webpages. Previously, Crunch did not understand CSS, 
and it stripped away all such non-HTML content from a webpage. 
This often led to pages that had lost their original look and feel. 
We now preserve CSS alongside HTML, producing a page that 
largely retains the appearance of the original site. The user still 
has the ability to apply their own CSS directives should their web 
browser support it, since that is a client-side operation, and 
Crunch simply acts as a proxy. Additionally, we do not strip out 
Javascript or other embedded script tags out of the HTML content 
in our first pass. Both these features have allowed us to support a 
much wider variety of websites. 

As pointed out before, we have spent a fair amount of 
time on improving Crunch’s usability. Other implementation 
changes include: 

1) The original version of Crunch used OpenXML [25] as its 
HTML parser. As we noted in our previous work, OpenXML has 
efficiency problems that are unlikely to be fixed since OpenXML 
is apparently no longer an active project. Instead, we switched to 
NekoHTML [35] – an HTML scanner, tag balancer and parser for 
the Apache open-source project, Xerces [35]. We chose this new 
parser as it has many benefits – most notably, increased parsing 
speed and robust correction of buggy HTML/XML.  One of the 
key longer-term benefits is that we are now using a parser that is 
under active development. NekoHTML currently has some 
problems parsing some pages; in particular, the output is not 
always rendered the same as input, e.g., certain complex nested 
tables and some CSS-enabled pages. [17]  However, most of these 
errors are minor cosmetic ones that Crunch usually manages to fix 
in its new multi-pass scheme. Additionally, the developers of 
NekoHTML are working on its deficiencies. NekoHTML assists 
in our handling of multiple versions of HTML. Much like our 
work with the previous parser, Crunch downloads the appropriate 
HTML stream and sends it to NekoHTML and gets back a DOM 
tree upon which it applies filters. It then uses an HTML serializer 
to send data to the client. With this architecture, Crunch can 
handle any version of HTML NekoHTML supports, including all 
current versions of HTML and xHTML. [17] 

2) Since users often get frustrated with the latency in loading of 
webpages, we spent a substantial amount of time tuning the 
performance of the proxy to produce more near-real time results. 
Some speed improvement was achieved through switching to 
NekoHTML. The other major contributor to increased speed was 
the optimization of Crunch’s networking code, originally written 
using Java’s blocking I/O API.  By collapsing multiple writes and 
reads, dealing with timeouts more efficiently, and removing 
unnecessary or redundant calls in the transfer loops, server 
performance and bandwidth utilization now seems adequate. 

In order to try and deal with large workgroup loads, we 
have migrated Crunch to a staged event architecture using Java’s 
non-blocking I/O API. We now use asynchronous callbacks to 
avoid threading scalability issues. The concept of a staged event 
architecture was introduced formally by Welsh [37] for 
performance gains in highly concurrent server applications, so 
that they are able to “support massive concurrency demands” [37].  
The concept of thread pools helps large-scale systems like Apache 
webserver deal with the load spikes efficiently. We took the same 
concept and extended it in our framework so that Crunch can meet 
the demands of several parallel requests in a groupware setup. We 
have not yet conducted a performance study with large loads, but 
we hope to soon. 

3) One of the biggest changes made in recent versions of Crunch 
was to change the basis of the user interface from Java Swing to 
IBM’s SWT (Standard Widget Toolkit [16]). The original UI 
made our proxy sluggish and user unfriendly. SWT has an 
extremely clean interface, allows the creation of attractive UIs, 
and is highly responsive, partially due to its use of JNI and native 
routine calls that can take advantage of the operating system's 
built-in optimizations. It also uses native GUI widgets to provide 
a look and feel consistent with the operating system, while 
remaining operating system independent. As an added benefit, 
SWT allows the program to be compiled into a binary executable, 
resulting in a faster startup time, a smaller distribution, less 
memory utilization, and an easier installation for novice users.  
The latest version of Crunch can be downloaded in executable 
form from our website at http://www.psl.cs.columbia.edu/crunch. 

 Screenshots of the new proxy GUI are shown above as 
well as in the Appendix, where we see the basic settings and the 
available plug-ins as well as the advanced functions. 

4) Accessibility was another focus. Switching to SWT 
helped us maximize accessibility, as described below. One of 
Crunch’s main goals is to assist disabled persons in browsing the 
web, yet the previous version of Crunch’s UI was highly 
inaccessible. Visually impaired users were then dependent on an 
administrator to adjust their settings. There are millions of blind 
or visually impaired people in the US alone and only a small 
fraction of them are currently able to surf the web [17]. Worse, 
visually impaired users will often spend several minutes in finding 
the content they are seeking on a given website. We conducted a 
small user study with Dr. Michael Chiang, M.D., Instructor in 
Clinical Ophthalmology and a Research Master's Candidate in the 
Department of Medical Informatics here at Columbia University.  
The goal was to find the common causes of visually impaired 
users’ browsing latency to help us address them directly. Our goal 
was to use Crunch to reduce this time to something more in line 
with regular users. 

There are three basic categories of accessibility support: 
mobility enablement, visual enhancement, and screen readers 
[17]. Crunch provides mobility enablement as all settings can be 
easily accessed using a keyboard in lieu of a mouse. SWT 
provides keyboard accelerators in the API and supports intelligent 
tabbing through GUI components. SWT leverages the operating 
system’s accessibility support [17]; therefore Windows’ ability to 
use large fonts and high-contrast themes works with Crunch. SWT 
also supports Microsoft Active Accessibility Support (MAAS) 
and its associated widgets, so Crunch automatically supports 
screen readers that read content from the window with focus. An 
example screenshot of such changes is in the Appendix. 

http://www.psl.cs.columbia.edu/crunch


6. FUTURE WORK 
 

Detecting bad output, and especially quantifying what 
makes bad output bad, is a hard problem. Training our multi-pass 
filter to learn to detect bad output is one of our major goals for the 
future. 

We have found that sites that require large amount of 
form-based input, like most shopping and/or banking sites, often 
need to be rendered in a specific format in order for them to be 
usable by the user. Currently, we only have a binary option of 
removing forms or leaving them in. We plan to work on detecting 
related form items and showing those that are most relevant to the 
task at hand. 

While NekoHTML works well, we would also like to 
test a commercial HTML parser like the ones that are bundled 
with Mozilla or Internet Explorer and compare their efficiency. 

We will also continue to work on improving the latency 
and scalability of Crunch, especially since tabbed browsing is 
becoming increasingly popular and users often open up several 
tens of pages at a time. 

We would also like to create physical layout heuristics 
by inferring tree patterns [38], i.e., finding patterns within the 
DOM trees of multiple pages from the same domain and use 
dissimilarity information to extract content from webpages. 

We will continue to work on clustering websites into 
useful clusters of genres and find algorithms for interpolating 
settings for websites that do not clearly fall into one cluster 

Finally, we would like to use machine learning and 
natural language processing to learn user’s browsing habits and 
workflow from work done in other applications and applying that 
knowledge gained towards content extraction. 

7. CONCLUSION 

Many web pages contain excessive clutter around the 
body of an article. Although much research has been done on 
content extraction, it is still a relatively new field. We have 
presented the changes made to our proxy through user interface 
and performance improvements. We have found that while the 
results that our original proxy produced were quite accurate, they 
had to be tweaked by hand for various websites that differ 
drastically in content and form. We have started to address that 
problem by dynamically detecting the context of the website, both 
in terms of physical layout as well as content genre. Using this 
information and comparing this to previously known results that 
work well for certain genres of sites, we are able to select settings 
for our heuristics and achieve the same results automatically that 
previously required a human administrator. We have also further 
improved our previously published results by supporting a wider 
variety of webpages through the support of CSS as well as 
Javascript-enabled websites. The Crunch framework provides the 
basis for additional research in context extraction and 
accessibility. 
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10. APPENDIX 
 

 
Figure 11 - Crunch 3.0 Status Window 

 

 
Figure 12 - Crunch 3.0 Settings Window 

 

 
Figure 13 - Crunch 3.0 in contrast 

 

 
Figure 14 - Crunch 3.0 settings in contrast 

 

 
Figure 15 - Crunch 3.0 settings 
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