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Abstract

We propose the superdatabase architecture to support atomic transactions across het-
erogeneous databases. We start with hierarhical composition of element databases, followed
by optimization and distribution. Heterogeneous crash recovery translates different commit
agreement protocols. Heterogeneous concurrency control groups different kinds of algorithms.
such as two-phase locking, timestamps, and optimistic methods to preserve transaction con-
currency, and certifies the subtransactions from participating groups at transation commit.
The superdatabase consumes very little run-time overhead and few messages. A prototype el-
ement database, called Nova, and a prototype superdatabase, called Supernova, are currently

under construction at Columbia University.
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1 Introduction

For both efficiency and extensibility, integrated and consistent access to a set of heterogeneous
databases is desirable. However, current commercial databases running on mainframes are,
by and large, centralized systems. R* [16]) and INGRESS/STAR [19] have demonstrated physical
distribution of homogeneous databases. Still, research on integrated heterogeneous databases

has been largely limited to query-only systems such as MULTIBASE and MERMAID.

MULTIBASE [14] is a retrieve-only system, developed at Computer Corporation of Amer-
ica. Through the DAPLEX functional language, MULTIBASE provides uniform access to a
CODASYL database and a hierarchical database. The focus of MULTIBASE is on query opti-
mization and reconciliation of data, and consistent access across databases were not part of
their goals. MERMAID [28] has been developed at System Development Corporation. Unlike
MULTIBASE, MERMAID supports the relational view of data directly, through the ARIEL
query language, a superset of SQL and QUEL. Another project providing a common query
language to access databases using different data models is SIRIUS-DELTA {9)].

Complementing earlier works on uniform query access, our research concentrates on con-
sistent update across heterogeneous databases. A superdatabase is the glue that supports
atomic transactions across heterogeneous element databases, which may be centralized, dis-

tributed, or another superdatabase.

Update support in homogeneous databases relies on two sets of fundamental techniques:
concurrency control and crash recovery. We are building the superdatabase through hierar-
chical composition of concurrency control and crash recovery, followed by optimziation and
distribution. Many years of research on nested transactions [17,20,25] have produced spe-
cific algorithms to implement nested transactions organized into a hierarchy. In the Eden
system (23], we have applied systematic hierarchical composition to derive the design and
implementation of a nested transaction mechanism. In the preliminary version of this paper
[24], we concentrated on hierarchical algorithms. Here, we optimize transaction concurrency
and execution overhead through grouping of concurrency control methods and flattening of

hierarchical recovery algorithms.

In Section 2 we describe the algorithms of hierarchical composition. Section 3 summarizes
the optimization techniques to improve superdatabase performance and transaction concur-
rency. Section 4 outlines current implementation status. In Section 5 we summarize related

work on many different aspects of heterogeneous databases. Finally, Section 6 concludes the

paper.
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Figure 1: Conceptual Structure of Superdatabases

2 Hierarchical Composition
2.1 Tree-Structured Superdatabase

We start by establishing terminology. An element database is a database manager with its own
concurrency control and crash recovery to support atomic transactions. A superdatabase is
the glue that implements atomic transactions across different element databases. In figure 1,
DB, (the leaves) represent different element databases glued together by superdatabases (the
internal nodes). A transaction spanning several element databases is called a supertransaction
[21]. When participating in a supertransaction, the local transaction on each element database
is called a subtransaction. We assume a supertransaction is translated into no more than one
subtransaction for each element database. This is a standard assumption [11].

Two reasons motivated this initial tree-structured organization. First, hierarchical orga-
nization minimizes the amount of data transfer in both size and number of messages. For
instance, in section 2.4 we show that we only need to piggyback a small amount of infor-
mation on messages already required for distributed commit protocols. Second, hierarchical
algorithms are easy to explain and understand. In section 3 we will introduce the optimiza-

tions to improve performance and concurrency, in addition to distribution for availability.
For hierarchical composition, An element database is composable if it satisfies two require-
ments. The first is on crash recovery: the element database must understand some kind of

agreement protocol, e.g. two-phase commit. As we shall see in section 2.2.1, this requirement



is a necessary consequence of distributed control, not heterogeneity. The second requirement
is on concurrency control: the element database should present an explicit serial ordering
of its local transactions. For concurrency control methods with explicit ordering (e.g. basic
timestamps) this requirement is trivial. In general, the proof of serializability for concurrency
control algorithms usually provides us with a way to explicitly capture the serial order they
impose on the transactions.

For consistent updates, these two are the only requirements we make on the element
databases.! An element database may be centralized, distributed, or another superdata-
base. Since centralized databases do not need agreement protocols nor do they supply the
transaction serial order, superdatabase cannot glue existing databases “as is” together. Nev-
ertheless, we believe that these requirements, mild for distributed databases, can be feasibly
incorporated into current and future database systems. The pay-off is significant: extensibil-
ity and accommodation of heterogeneity.

We have three design goals for the superdatabase that glues the composable element

databases together to support consistent update across heterogeneous element databases:
1. Composition of element databases with different crash recovery methods.
2. Composition of element databases with different concurrency control techniques.
3. Recursive composibility; i.e. the superdatabase should be composable.

The realization that we need only an agreement protocol for crash recovery made the first
goal easy. The simple idea that achieved the second goal is to use the explicit serial ordering
of transactions, the common denominator of best known concurrency control methods. The
third goal was accomplished through careful design of the agreement protocol and explicit

passing of the serial order.

2.2 Hierarchical Recovery
2.2.1 Heterogeneous Hierarchical Commit

The usual model of a distributed transaction contains a coordinator and a set of subtrans-
actions. Each subtransaction maintains its local undo/redo information. At transaction
commit time, the coordinator organizes some kind of agreement with subtransactions to
reach a uniform decision. Without agreement protocols, one subtransaction may commit

while another aborts. Therefore. the need for agreement on the transaction outcome is due

! We should note that the commit protocol adds some complication to the recovery algorithms in centralized
databases.



to distribution, hot heterogeneity. Two-phase commit is the most commonly used protocol
for its low message overhead.

The distributed database system R* [16] provides a tree-structured model of computation
that refines the above flat coordinator/subtransactions model. Subtransactions in R~ are
organized in a hierarchy, and the two-phase commit protocol is extended to the tree structure.
At each level, the parent transaction serves as the coordinator. During phase one, the root
sends the message “prepare to commit” to its children. The message is propagated down the
tree, until a leaf subtransaction is reached, when it responds with its vote. At each level,
the parent collects the votes; if all its own children vote “yes”, then it sends “yes” to the
grand-parent. If every subtransaction voted “yes”, the root decides to commit and sends the
“committed” message, again propagated down the tree. Between the sending of its vote and
the decision by the root, each child subtransaction remains in the prepared state, ready to
both undo the transaction if aborted, and to redo the transaction if the child crashed and
the root decided to commit.

Since heterogeneous databases are distributed by nature, each element database main-
tains the undo/redo information locally. The superdatabase stores only global transaction
management information and relies on element databases for local recovery. In addition, each
element database must understand some kind of agreement protocol, such as the two-phase
commit outlined above, three-phase commit, or the various flavors of Byzantine agreements.?

Given that some form of agreement is necessary due to distribution, the question is
whether it is sufficient for hierarchical commit. R* implements hierarchical two-phase com-
mit. Three-phase commit and Byzantine agreements also have natural extensions to tree-
structured computations. The important fact is that for each element database, the super-
database must understand and use the appropriate protocol. If all element databases use the
same protocol, the superdatabase has the obviousrole in the hierarchical protocol. Interesting
cases arise when element databases support different kinds of agreement protocols.

To simplify the discussion, we divide the distributed agreement protocols into two groups:
symmetric and asymmetric. Symmetric protocols such as Byzantine agreements and decen-
tralized two-phase commit give all participants equal role. In asymmetric protocols. a distin-
guished coordinator decides the outcome based on information supplied by other participants.
For example, in the centralized and linear two-phase commit, as well as the three-phase com-
mit, a coordinator initiates the protocol and decides whether the transaction commits or

aborts.

2In the discussion below, references on the Byzantine agreements can be found in several PODC Proceed-
ings; the other protocols are described in the recent book by Bernstein et al. [3].



If an element database supports an asymmetric agreement protocol, the superdatabase
assumes the role of coordinator with respect to that element database. Notice that the
superdatabase may have to act as the coordinator for different protocols. Since the decision
is made by the coordinator in all asymmetric protocols, the superdabase collects information
and decides.

If some element databases employ symmetric protocols, we have two choices for the super-
database. First, the naive method simulates the symmetric protocol for all element databases
by translating the information received from “asymmetric” element databases and passing
it to the “symmetric” participants. For example. consider three element databases, DB,
and DB, with two phase commit and DBj3 using symmetric two-phase commit. In this naive
method, the superdatabase passes the votes from DB; and DB, to DB3 explicitly, even though
the knowledge of the existence of DB; and DB, does not increase system resiliency to crashes,
since DB; and DB, do not know symmetric two-phase commit to help DBj recover if the
superdatabase crashes, This method makes it easy to prove the correctness of the combined
algorithm, but sends unnecessary messages.

Second, an optimized superdatabase may eliminate the extra messages by serving as a
representative of the “asymmetric” participants, sending the result of the asymmetric pro-
tocols in one round of messages. This second method decreases the number of messages by
combining the extra messages into one. These two choices also exist for the communica-
tion between “symmetric” participants using different protocols. The message savings for m
participants of one protocol and n of the other is (m X n) — (m + n).

Between a superdatabase and its parent, we can use any agreement protocol that both un-
derstand. In this paper and in our implementation, we adopt two-phase commit to minimize
message overhead.

In summary, the superdatabase functions both as a coordinator for the asymmetric agree-
ment protocols and as a translator for the symmetric protocols. It collects sufficient infor-
mation for supertransaction commit. and provides enough information for participants using

symmetric protocols to reach their own conclusion that matches the superdatabase’s.

2.2.2 Superdatabase Recovery

Since the superdatabase is the coordinator for the element databases during commit protocols,
it must record the transaction management information on stable storage. Otherwise. a crash
during the window of vulnerability would hold resources in the element databases indefinitely.

Of the known recovery methods, logging is the best for superdatabase recovery. Since no



before-images or after-images need to be saved, versions are of little utility. Conceptually,
the superdatabase log is separate from the element database logs, just as the superdatabase
itself. In actual implementation, the superdatabase log may be physically interleaved with
an element database log, as long as the recovery algorithms can separate them later.

For each transaction, the superdatabase saves the following information on the log:
¢ Participant subtransactions.

e Parent superdatabase, if any.

o Transaction id and state (active, prepared, committed, or aborted).

The superdatabase should remember the participant subtransactions because the super-
transaction does not necessarily abort when the superdatabase crashes. Suppose that the
superdatabase crashes, but is brought back online quickly, before its subtransactions have
finished. Since the superdatabase performs no computation, the supertransaction may still
commit. To carry out commit agreement after such glitches, the participant subtransactions
should be remembered in the log, which is read at .restart time to reconstruct the superdata-
base state before the crash.

The transaction state is written to the log during the commit agreement. If a transaction
was in the active state when the superdatabase crashed, the superdatabase simply waits for
(re)transmission of two-phase commit from the parent. In case it is the root, it (re)starts
the two-phase commit. If a transaction was in the prepared state when the superdatabase
crashed, the superdatabase inquires the parent about the outcome of the transaction. If the

transaction has been committed, the results are retransmitted to the subtransactions.

2.3 Hierarchical Concurrency Control
2.3.1 Heterogeneous Concurrency Control

To motivate the certification algorithm to serialize hetergeneous transactions, let us consider
the following example. The supertransaction Ty has subtransactions Ty, and T); running

on element databases DB, and DB, respectively:

BeginTransaction(Top-level, tid: T))
cobegin
DB, .BeginTransaction(parentid: T, tid: Ty,)
. actions ... DB,.CommitTransaction(T} ;)

DB;.BeginTransaction(parentid: T;. tid: Ti,)



. actions ... DB;.CommitTransaction(T} )
coend

CommitTransaction

Suppose DB; and DB, use two-phase locking. If T}, starts releasing locks while T 2 has
not reached its lock point, the supertransaction T may lose its two-phase property and be-
come non-serializable. This scenario reveals the crucial problem in hierarchical composition
of concurrency control mechanisms: local serialization does not always guarantee global seri-
alization. Therefore, in the general case the superdatabase should certify that all local serial
orders are compatible in a global serial order. One way to implement the superdatabase certi-
fication is to require that each element database provide the ordering of its local transactions
to the superdatabase. This method is sufficient for composition of heterogeneous databases,
but not necessary, since implicit serialization is possible under certain circumstances (sec-
tion 3.2). The serial order of each local transaction is represented by an order-element, or
O-element for short. Before we describe the composition of O-elements for certification in
section 2.3.2, we first discuss how the concurrency control methods produce the O-elements.

First, we consider element databases with two-phase locking concurrency control. Trans-
actions using two-phase locking acquire all locks in a growing phase, and then release them
during a shrinking phase, in which no additional locks may be acquired. Eswaran et al. (8]
showed that two-phase locking guarantees serializability of transactions because SHRINK (T';),
the timestamp of transaction T;’s lock point, indicates T;'s place in the serialization. We des-
ignate SHRINK (T;) as the O-element for element databases with two-phase locking.

Second, timestamps used for serialization represent an explicit ordering, so they serve well
as O-elements. Timestamp intervals [2] or multidimensional timestamps [15] can be passed
as O-elements as well. The important thing is to capture the serialization order of committed
local transactions.

Third, optimistic concurrency control methods also provide an explicit serialization order.
Kung and Robinson [12] assign a serial transaction number after the write phase, which can
be used directly as O-element. Ceri and Owicki (6] proposed a distributed algorithm in which
a two-phase commit follows a successful validation. Taking a timestamp from a Lamport-
style global clock [13] at that moment will capture the serial order of transactions. Since the
write phase has yet to start, all following transactions will have a later timestamp.

There is no constraint on the format of the O-element. Each element database may
have its own representation. We only require that two O-elements from the same element

database be comparable. and that a comparison recover the serialization order guaranteed
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by local concurrency control methods. More formally, let the serialization produced by the
concurrency control method be represented by the binary relation precede (denoted by <), if

O-element(7;) < O-element(T?2) then Ty < T3 in the local serialization.

2.3.2 Hierarchical Certification with O-vectors

The main problem that the superdatabase has to detect is when subtransactions from different
element databases have been serialized in different ways. In our example, this happens when

a second transaction T, with the same subtransactions produces the ordering:

O-element(T) ;) < O-element(T>;) and
O-element(T,2) < O-element(T} 2).

To detect this kind of disagreement, we define an order-vector (O-vector) as the con-
catenation of all O-elements of the supertransaction. In the example, O-vector(T}) is (O-
element(7},), O-element(7; 2)). The order induced on O-vectors by the O-elements is defined
strictly: O-vector(T;) < O-vector(T?) if and only if for all element database j, O-element(T} ;)
< O-element(73,;). If a supertransaction is not running on all element databases, we use a
wild-card O-element, denoted by * (star), to fill in for the missing element databases. Since
its order does not matter, by definition, O-element(any) < =, and, * < O-element(any).

From this definition, if O-vector(T}) < O-vector(73) then all subtransactions are seri-
alized in the same order, serializing the supertransactions. Therefore, we can serialize the
supertransactions by checking the O-elements of a committing supertransaction against the
history of all committed supertransactions. If the new O-vector can find a place in the total
order, it may commit.

From the composition point of view, the key observation is that the certification based on
O-vectors is independent of particular concurrency control methods used by the element data-
bases. Therefore, a superdatabase can combine heterogeneous concurrency control methods.
As long as we can make the serialization in element databases explicit, the superdatabase
can certify the serializability of supertransactions.

Equally important, the certification gives the superdatabase itself an explicit serial or-
der (the O-vector) allowing it to be recursively composed as an element database. Thus
we have found a way to hierarchically compose database concurrency control, maintaining
serializability at each level.

The certification method is optimistic, in the sense that it allows the element databases
to run to completion and then certifies the global ordering. In particular, the O-vector is

constructed only after the subtransactions have finished. Since some concurrency control



techniques (such as time-interval based and optimistic) decide the transaction ordering only
at the transaction commit time, it is difficult for the superdatabase to impose an ordering
during subtransaction execution. In other words, the superdatabase has to be as optimistic

as its element databases.

2.4 Run-Time Cost

In the element databases, the cost of producing the O-vectors is low. First, with some
concurrency control methods, such as timestamps, this is trivial. Second, for centralized
element databases, taking a timestamp is cheap. Third, only if the element database is a
distributed database with internal concurrency control a global clock will be necessary to
capture the serial order. Fortunately, the maintenance of a global clock is independent of the
number of transactions, and therefore its cost can be amortized.

On the superdatabase side, the certification of an O-vector implies the comparison with
all committed supertransactions, which is potentially expensive both in terms of storage
and processing. Fortunately, it is not necessary to compare the O-vector with all committed
supertransactions. It is sufficient to certify the transaction with a reasonably “recent history”
of committed supertransactions.

The part of the serialization history we have to look at is limited by the oldest active
transaction in each element database. Suppose we are certifying an O-vector whose sub-
transactions are older than the currently oldest active transaction on all element databases.
Comparing this O-vector to the history of all committed supertransactions, we may not be
able to certify this O-vector because of some other older transaction, in which case it must
be aborted. Alternatively, we may find a place in the serialization history for the O-vector.
Once we find such an O-vector(Tp) preceding all active subtransactions, it must precede the
O-vectors of all serializable supertransactions that have yet to commit. This happens because
any subsequent O-vector must have one component preceded by the corresponding compo-
nent in Ty. (The component that was active when Ty was certified.) Consequently, either the
new O-vector cannot be serialzed with respect to Ty and is aborted, or all its components
are preceded by Ty. Therefore, in the certification process we need only to compare the new
O-vector with Ty and O-vectors more recent than Tg. Thus the O-vectors preceding Ty are
not necessary and can be discarded.

For each supertransaction, the only piece of information that the superdatabase needs
from the element databases is the O-element. Since an agreement protocol is necessary for
recovery purposes, at least one round of messages must be exchanged between the superdata-

base and each element database at commit time. The certification occurs only at commit time,



so the subtransaction serial order information can piggyback on the commit vote message.
Therefore, the hierarchical superdatabase does not introduce any extra message overhead for

heterogeneous transaction processing (compared to homogeneous distributed transactions).

3 Optimization and Distribution
3.1 Hierarchy Flattening

Hierarchical algorithms (e.g. hierarchical two-phase commit) have run-time dominated by the
depth of the tree. One standard optimization technique on hierarchical algorithms to reduce
response time is to flatten the hierarchy by coalescing all internal nodes into one root node,
which communicates to all leaf nodes directly. The flattened tree uses the same algorithm
(simplified to one level), with run-time bounded only by the slowest link.

Since flattening occurs at the time a new node joins the tree, its implementation is straight-
forward. The superdatabase maintains a list of element databases attached to it, with their
attributes including the local concurrency control and commit agreement protocol used. In-
stead of creating a hierarchy, we attach all element databases under the same root superda-
tabase. This optimization does not change the internal structure of element databases. A
hierarchical element database like R* will maintain its own tree structure.

Flattening simplifies the structure of the whole system, but also accentuates the central-
ization problem. Only one root superdatabase may become both a bottleneck for performance
and Achilles’ heel for availability. We will take advantage of the simpler structure in section

3.2 to increase transaction concurrency and address the centralization problem in section 3.3.

3.2 Concurrency Control Grouping

O-vectors in hierarchical certification reflect a total ordering guaranteed by serializability.
Since some concurrency control methods (e.g. two-phase locking and optimistic) use partial
orderings, O-vectors do not capture all the ordering information. Consequently, hierarchical
certification may err on the conservative side, aborting some transactions that appear non-
serializable because of the particular total ordering, even though they could be serialized in
the partial ordering. To preserve the degree of concurrency allowed by each concurrency
control method, we apply our knowledge of each particular method.

First, element databases using strict two-phase locking do not have to be certified against
each other. Since their lock points are synchronized by the hierarchical commit protocol,
they are serialized with respect to each other. In contrast, the example in section 2.3.1 shows

that the general two-phase locking requires more care. We need to synchronize the lock
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point of element databases through an agreement protocol. Once all subtransactions agree
they have reached the global lock point, they can start unlocking, but not before. This way,
the superdatabase maintains global two-phase locking and serializability. This conceptual
simplicity hides some implementation complications. Even though each element database
already supports an agreement protocol for transaction commit, to use the protocol for lock
point synchronization requires additional changes on the element databases.

Second, some concurrency control methods such as optimistic certification maintain ex-
plicit transaction serialization information such as dependency graphs. The superdatabase
can also use that information. For example, if each supertransaction commit message from
the element database carries the transaction id of all the subtransactions it depends on. the
superdatabase can construct the global dependency graph and use it to certify optimistic
transactions. Again, the implementation requires potential extra messages for a supertrans-
action with many subtranctions and the maintenance of global dependency graph in the
superdatabase.

Third, timestamp-based element databases could provide the superdatabase with addi-
tional information. For example, time-interval based concurrency control methods would
allow the superdatabase to serialize some transactions that would have been aborted in the
hierarchical superdatabase. In this case, the implementation is a relatively straightforward
transformation of existing timestamp-based concurrency control to time-intervals.

In summary, we can avoid or refine the certification within each group of element databases
using the same concurrency control method. However, a global certification must be carried
out between different groups. In this higer level certification, each group participates with one
O-element. Therefore, supertransations aborted due to non-serializability necessarily come

from different groups.

3.3 Symmetric Distribution

As we have seen in section 2, hierarchical organization of superdatabases results in low mes-
sage overhead. However, the main disadvantage of the hierarchical structure is its centralized
organization. Shutting down any of the internal nodes will isolate parts of the tree. In the
optimized version, the root superdatabase appears to be a single point of failure that can
make the whole heterogeneous system inaccessible.

In reality, the two functions of the root superdatabase, concurrency control and crash
recovery, can be independently distributed for parallelism and availability. For recovery, the
coordinator of two-phase commit protocol for different supertransactions may be located in

different physical nodes. There are two requirements for this distribution scheme. First, the
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coordinator node should know how to translate between different protocols that subtrans-
actions use. Second, the coordinator should know how to communicate with concurrency
control to make sure the supertransaction is serializable before committing it. Since any
superdatabase replica would satisfy these requirements, each can coordinate the commit pro-
tocol.

The situation is more complicated for concurrency control. We could replicate the global
certification information in superdatabase nodes, resulting in higher message overhead to keep
the replicas consistent. Simple replication comes close to being the “brute force” method
to distributed functions in a distributed system. In principle, just about any program or
data can be distributed this way, provided that they are kept consistent. Unfortunately,
consistent replication is expensive and this approach then loses the low-overhead advantage
of hierarchical superdatabase.

Alternatively, we can circulate the concurrency control certification information among
several sites. This approach is similar to the work by Ceri and Owicki [6] in distributing the
optimistic concurrency control certification algorithm. Again, higher message overhead will
be necessary. A reasonable compromise would be a central root superdatabase for normal
certification. Periodic checkpoints will send the global wait-for-graph to backup sites. If the
root node crashes, one of the backups will take over to try to reconstruct the situation before
the crash. The trade-offs between normal processing cost and reocvery time are similar to

other distributed systems.

4 Implementation

In Fall 1987 We have started a prototype implementation of the superdatabase architecture,
called Supernova. Currently, the author, two Ph.D.students and twelve M.S. project students
are involved in the implementation effort.

Under Supernova, we have three element databases to ensure heterogeneity. First, we
are modifying the university version of INGRES by adding two-phase commit protocol and O-
vectors. The university INGRES runs on Berkeley UNIX. For simplicity, we have left the local
recovery algorithm “as is” and therefore incorrect. Since INGRESS/STAR already supports
two-phase commit with appropriate local recovery, we do not have a point to prove.

Second, we are experimenting with CAMELOT [27], a distributed transaction library pack-
age being developed at CMU, which runs on the MACH operating system [1]. We plan to
write a CAMELOT server as an element database. Since MACH is binary-compatible with

Berkeley UNIX, we expect to run both university INGRES and CAMELOT on MACH. Thus,
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the first version of the superdatabase prototype will run on MACH connecting the modified
INGRES element database and the CAMELOT element database.

Third, we are writing a relational database of our own design, called Nova. using the
Synthesis operating system [22]. Nova consists of three parts: an SQL query compiler and
execution manager, a two-phase locking concurrency control manager, and a log-based re-
covery manager. Currently, all modules are being written in C on UNIX with code synthesis

and portability to Synthesis in mind.

The second version of the superdatabase will run on Synthesis. The element databases
will run on a Berkeley UNIX emulator and a MACH emulator under Synthesis. To achieve
real integration, we still need to extend our query compiler to translate supertransactions
into QUEL for the INGRES element database. Another significant technical aspect is the
integration of schemas from different element databases, which is not the focus of our research

but remains an important practical issue.

The final observation on the implementation of the superdatabase is that we do not plan
to modify the code of commercial databases to make them composable element databases.
Today, hardware manufacturers publish machine specifications so people in universities and
independent software houses can write operating systems for them. Analogously we expect
software houses to publish the interface to basic software so we can write higher level software
and applications. This practice is prevalent in the PC market, since the added value of third-
party software justifies the open system approach. Once Supernova is running, we expect to
integrate new element databases through their interface specifications. The implementation

details of commercial element databases can remain proprietary.

5 Related Work

5.1 Crash Recovery

Gligor and Luckenbaugh [10] have discussed the recovery problem in heterogeneous data-
bases, without describing specific algorithms. The hierarchical commit algorithm described
in section 2.2.1 is a direct descendent of distributed commit protocols such as R~ [16] and
commit protocols for nested transactions [23]. Each commit protocol known by the super-
database is exactly the same as in homogeneous distributed databases. The superdatabase

only needs to translate between different protocols.
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5.2 Concurrency Control

Gligor and Popescu-Zeletin [11] studied concurrency control in heterogeneous databases.
They specified five conditions which should be satisfied by concurrency control mechanisms
for heterogeneous databases. First, all local concurrency control (of component databases)
must provide local synchronization atomicity. We also make this assumption. Second, all
local concurrency control must preserve the relative order of execution determined by the
global transaction manager. This corresponds to a pessimistic approach, in contrast to the
superdatabase’s certification after transaction execution. Their third condition says that each
site can run only one subtransaction. The superdatabase makes a similar assumption, that
each element database runs only one subtransaction. Their fourth condition says that the
global transaction manager must be able to identify objects referenced by all subtransactions.
Using explicit serialization order in O-elements, we have eliminated the need to check object
references. Finally, their fifth condition refers to global deadlock detection. Deadlocks remain
a problem for further research.

Another approach in heterogeneous concurrency control assumes existing centralized da-
tabases that cannot be modified. Breitbart el al. [5], and Elmagarmid and Helal [7] have
studied algorithms under this assumption. The main advantage of this approach is that
research results can be applied immediately to existing databases. The main problem of El-
magarmid and Helal’s work is the restriction on the class of serializable global transactions:
transactions that read and write to more than one site, such as typical fund transfer trans-
actions, cannot be allowed. Breitbart et al. propose the notion of site graph to guarantee
global consistency. Site graphs limit transaction concurrency in a different way: their mul-
tidatabase may run one transfer transaction but not two concurrently between the same

databases.

5.3 Partial Integration

In contrast to our “strongly consistent” database composition, significant work has been done
based on weaker consistency constraints. Two examples of this approach are MRDSM [18]
and ADMS+ [26). Being developed at INRIA, the prototype multidatabase system MRDSM
provides a relational interface to independent databases. Instead of global schemas, special
“dependency schemas” define interdatabase relationships. No consistent updates are included
in MRDSM.

ADMS+ takes advantage of current hardware advances to integrate a mainframe database

(ADMS+) with workstation databases (ADMS—) downloaded from the mainframe. Since
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each user typically uses only a portion of the database, local queries on ADMS— data are
very efficient. Updates occur only on ADMS+ and they are incrementally propagated to
ADMS - databases offline. In summary, ADMS+ can be seen as a systematic decomposition

of a centralized database.

5.4 Standardization

Another way to solve the heterogeneity problem is to decree homogeneity through a standard.
However, there are several difficulties in the adoption of a standard. First, political difficulties
may arise from financial and other interests; for example, hardware and software vendors may
disagree on issues such as market share and competitive advantage; another example is that
governments may be unable to agree due to local rules and regulations. Second, standards
necessarily contain compromises and may exhibit the symptoms of “design by committee™.
Third, the difficulties that take a long time to reach agreement may make the standards
technologically obsolete by their publication.

There is a working group drafting an ISO standard on distributed transaction processing
[4]. The most visible result is the informal agreement on a variant of two-phase commit as
the standard commit protocol. One technical reason the superdatabase will be useful both
before and after the adoption of the ISO standard is that concurrency control remains an
open issue, outside of the standard.

In addition, there are several fundamental reasons the superdatabase complements stan-
dards. First, the implementation of the superdatabase depends only on technical information.
not political or marketing compromises. Second, the superdabase can handle concurrency
control and crash recovery that do conform to different standards, or no standard at all; this
is especially important for the integration of new technologies (e.g. long transactions) and
their applications (e.g. CAD/CAM/CASE databases). Third, during the transition period
from one technology to another both the old and the new need to be running side by side:

this requires the degree of integration beyond adherence to a standard.

6 Conclusion

Compared to the traditional computer system heterogeneity problem, heterogeneous updates
across databases is more subtle. At the basic level is the translation between different data
representations, mapping bit patterns into other bit patterns. A more complicated problem
is the translation between different communications protocols, mapping finite state machines

into other finite state machines. Unlike data and protocol translations, which map one state
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representation into another, atomic transactions across heterogeneous databases require the
cooperation between different algorithms, with a specific difficulty in concurrency control.
We call this an instance of the algorithmic helerogeneity problem.

We propose the superdatabase architecture to support atomic transactions across het-
erogeneous databases. Starting with hierarchical composition of heterogeneous concurrency
control and crash recovery methods, followed by step-wise refinements to reduce run-time
overhead and increase transaction concurrency, we have described a family of superdatabase
designs with different trade-offs in terms of flexibility, performance, and simplicity.

Several reasons make the superdatabase an attractive approach to consistent heteroge-
neous databases. First, superdatabase structure is straightforward and we are completing a
prototype implementation. Second, superdatabase performance should be good. No trans-
action concurrency is lost for element databases that share the same concurrency control
method. Run-time overhead in both CPU and messages is low. Third, replication and dis-
tribution of superdatabase for parallelism and availability is easy, although distribution of
concurrency control will carry additional message overhead.

Given the inherent difficulties in the process of agreeing on standards, superdatabases
constitute an attrative technical solution to integrate heterogeneous databases. Instead of
a rigid standard, superdatabases can bridge the gap between different standards. This will
be useful in making the transition from an older standard to an emerging standard due to
new technology. Concretely, to integrate commercial databases, we need only to know the
interface specification to their concurrency control and crash recovery mechanisms. Currently,
the Nova element database and the Supernova superdatabase prototype are being completed

at Columbia University.
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