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Abstract

Computer games have been around for almost as long as comput-
ers. Most of these games, however, have been designed in a rather ad
hoc manner, because many of their basic components have never been
adequately defined. This paper points out some deficiencies in the
standard model of computer games, the minimax model, and outlines
the issues that a general theory must address. Most of the discussion
is done in the context of control strategies, or sets of criteria for move
selection. A survey of control strategies brings together results from
two fields: implementations of real games, and theoretical predictions
derived on simplified game trees. The interplay between these results
suggests a series of open problems that have arisen during the course
of both analytic experimentation and practical experience as the basis
for a formal theory.

1 Introduction: Computer Games, Why and
How?

In 1950, when computer science was still in its infancy and the term “arti-
ficial intelligence” had yet to be coined, Claude Shannon published a paper
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called Programming a Computer for Playing Chess [Sha50]. He justified
the study of chess programming by claiming that, aside from being an
interesting problem in its own right, chess bears a close resemblance to
a wide variety of more significant problems, including translation, logical
deduction, symbolic computation, military decision making, and musical
composition. Skillful performance in any of these fields is generally con-
sidered to require thought !, and satisfactory solutions, although usually
attainable, are rarely trivial. Chess has certain attractive features that
these more complex tasks do not: the available options (moves) and goal
(checkmate) are sharply defined, and the discrete model of chess fits well
into a modern digital computer. He then went on to outline the basics of
this model and describe a method by which chess could be implemented on
a computer.

The discrete model to which Shannon referred is called a game tree,
and it is the general mathematical model on which the theory of two-player
zero-sum games of perfect information is based [NM44]. Chess belongs to
this class of games; it is perfect information because all legal moves are
known to both players at all times, and it is zero~sum because one player’s
loss equals the other’s gain. At the top of the chess tree is a single node
which represents the initial setup of the board. For each legal opening
move, there is an arc leading to another node, corresponding to the board
after that move has been made. There is one arc leaving the root for each
legal opening, and the nodes that they lead to define the setups possible
after one move has been made. More generally, a game tree is a recursively
defined structure which consists of a root node representing the current
state and a finite set of arcs representing legal moves. The arcs point to
the potential next states, each of which, in turn, is a smaller game tree.
The number of arcs leaving a node is referred to as its branching factor,
and the distance of a node from the root is its depth. If b and d are the
average branching factor and depth of a tree, respectively, the tree contains

!Exactly which tasks require thought or intelligence is among the most widely debated
issues of our time, and is clearly beyond the scope of this paper. Because this is primarily
a survey, [ have chosen to accept any author’s claim that his system is intelligent, and
take no responsibility for perceived inconsitencies in the use of the term throughout the
paper.



approximately b nodes. A node with no outgoing arcs is a leaf , or terminal
node, and represents a position from which no legal moves can be made.
When the current state of the game is a leaf, the game terminates. Each
leaf has a value associated with it, corresponding to the payoff of that
particular outcome. Technically, a game can have any payoff, (say a dollar
value associated with each outcome), but for most standard parlor games,
the values are restricted to Win and Loss (and sometimes Draw).

In two-player games, the players take turns moving, or alternate choos-
ing next moves from among the children of the current state. In addition, if
the game is zero-sum, one player attempts to choose the move of maximum
value, and the other that of minimum value. A procedure which tells a
player which move to choose is a strategy for controlling the flow of the
game, or a control strategy. In principle, the decision of which choice to
make is a simple one. Any state one move away from the leaves can be
assigned the value of its best child, where best is either the maximum or
minimum, depending on whose turn it is. States two moves away from
the leaves then take on the value of their best children, and so on, until
each child of the current state is assigned a value. The best move is then
chosen. This method of assigning values and choosing moves is called the
minimaz algorithm, and defines the optimal move to be made from each
state in the game. An example of the minimax algorithm is shown in fig-
ure 1 on the tree of Nim, a simple game which plays an important role
in the mathematical theory of games (BCG82|. Most interesting games,
however, generate trees which are too large to be searched in their entirety,
and thus an alternative control strategy must be adopted. The checkers
tree, for example, contains roughly 10*° moves, and the chess tree in the
neighborhood of 10'%, In these games, the tree is searched to some limit
(generally set by the computational power available), and domain specific
heuristic information is applied to tip nodes at the search frontier to return
an estimated static evaluation function. The control strategy must rely on
these estimates.

When the tip values are exact, the tree is complete. Otherwise, the
tips are internal nodes, and the tree is partial 2. Complete trees are well

3Technically, it is possible to have internal nodes with exact values, as well. However,
once the outcome of a game is known, the game is effectively over. Thus, any node with



understood but rarely applicable. Applications must rely on partial trees,
which are invariably implemented in an ad hoc manner. Partial game trees
have appeared primarily in two subfields of artificial intelligence, game pro-
gramming and the analysis of heuristic search methods. The emphases of
these fields are quite different. Game programming is concerned with the
development of computer programs that play specific games well, hopefully
at or beyond the level of a human expert. Thus, the models that have
been studied are “real” games, (mostly chess), and the metric for success
is performance vs. machine or human opponents. Heuristic analysis, on
the other hand, is concerned with investigating the accuracy of heuristic
techniques, when compared to some ideal. Since the trees generated by
interesting games tend to be both too large for the ideal to be calculated,
and too complex to be dealt with analytically, simplified models and “ar-
tificial” games have been defined. Both fields have contributed interesting
results about control strategies. Nevertheless, the interplay between them
has been minimal; games that have actually been implemented have not
been analyzed, and theoretical predictions have not been considered when
the implementations were designed. Because of this, very little about the
general theory of partial game trees is known.

This paper presents a survey of the various control strategies that have
been used. Some basic game tree search procedures are described in section
2. Section 3 discusses strategies that have been implemented or proposed in
the context of real games, while section 4 outlines some theoretical results
derived on simple models and strategies motivated by these results. Section
5 discusses areas in which interaction between the applied and theoretical
aspects of the field could be beneficial to both, and section 6 suggests some
directions for future research.

a known exact value can be treated like a leaf, and the distinction between complete
and partial trees remains valid.




2 Background: Basic Game Tree Searching
Procedures

Shannon’s analysis included the description of two families of control strate-
gies for the chess tree, type A and type B. A type A strategy behaves as if
the tip nodes are leaves, and applies minimax to the estimates calculated
by the static evaluator. This involves a full-width fixed-depth search (con-
sideration of all possibilities up to a set distance away from the root), and
uses heuristics only in assigning the values to the tips. Because the values it
minimaxes are estimates, this technique does not always make the optimal
move, and thus should be distinguished from minimax on complete trees,
which does. For the sake of clarity, throughout the rest of this paper, mini-
max on partial trees will be referred to as the minimaz procedure; the term
algorithm will be reserved for complete trees. When only the term mini-
max is used, it applies equally to both. The underlying assumption behind
the use of this procedure is that the estimates are reasonably accurate; the
succcess of the strategy depends on the validity of this assumption. Type
B strategies, on the other hand, only consider reasonable moves. Heuristics
are used not only to calculate tip values, but also to decide which moves are
worth considering. Throughout most of the history of chess programming,
the general feeling was that whereas type A is easier to implement, type B
shows greater promise for expert performance.

In the years since 1950, two important observations have led to inno-
vative techniques which are now standard: there is an easily recognizable
class of obviously incorrect moves, and a preset search depth may not fully
exploit the computational resources available. These observations led, re-
spectively, to the development of a — § pruning and sterative deepening
search. The exact origins of a — 8 are disputed, but the first paper to
discuss it in detail was probably [EH63|. a — 8 prunes by recording bound-
aries within which the minimax value of a node may fall. « is a lower
bound on the value that will be assigned to a maximizing node, and 8
an upper bound on the value of a minimizing node. Descendants whose
minimax values fall outside the range are pruned, and their subtrees can
be ignored. To insure that the correct (minimax) choice is not missed, «
and A start at minus and plus infinity, respectively, and are updated as



the tree is traversed. Figure 2 shows an example of « — # pruning. The
sensitivity of @ — § to the order in which nodes are examined was first
pointed out in [SD69]. The procedure’s behavior under several different
orders was analyzed in [FGG73| [KM75|, where it was shown that in the
average case, a — 3 cuts the effective branching factor from & to v, and
allows the search depth to be doubled. The asymptotic optimality of o —
over the class of all game searching algorithms, in terms of the number of
nodes searched, was proved in [Pea82]. Parallel implementations for even
further speedup were surveyed in [MC82). Two more recent pruning tech-
niques, SSS* [Sto79] and SCOUT [Pea80| have been shown to occasionally
prune more branches than a— 4 [RP83] [CMS83]. These instances, however,
are few and far between, and the gain is generally inconsequential. Fur-
thermore, SSS* requires much more space and is harder to implement. For
these reasons, neither SSS* nor SCOUT has ever been used in a successful
performance oriented game program.

Unlike the pruning algorithms, which are unique to two-player games,
iterative deepening is a completely general search paradigm. Iterative deep-
ening allows the search to proceed until a preset time, rather than a preset
depth, is reached. This is accomplished by first performing a full-width (or
a — f3) search to depth 1, then to depth 2, then to depth 3, etc. When the
procedure times out, it makes the move that was singled out as best by the
deepest search completed. The advantage of using iterative deepening in
games was first demonstrated by Chess 4.5 [SA77|, one of the most pow-
erful chess programs of the 1970’s. Although the technique was shown to
be a time (number of nodes expanded) and space (amount of bookkeeping
required) optimal tree search in the context of one-player games [Kor83|,
the analysis is equally applicable to two-player games.

The importance of these algorithms is twofold. In their pure form, they
have become part of the standard implementation of type A strategies, cru-
cial to the development of some very powerful programs to be discussed in
section 3.1. In this context, they are merely enhancements to the mini-
max procedure; they make the same choice faster. Thus, their contribution
to the study of decision quality of control strategies is negligible. Various
modifications to a — 3, however, have formed the basis of many of the type
B strategies discussed in section 3.2. These modifications generally are not




guaranteed to return the minimax value, and raise some interesting issues
related to decision quality.

3 Game Programming

Even partial game trees have their limits — programs that play backgam-
mon [Ber80], Go, Scrabble, and poker, [Bra83| have used significantly differ-
ent models. Their practical applicability seems to be restricted to perfect
information games with “manageable” branching factors, such as chess,
checkers, kalah, and Othello. Although some interesting machine learning
experiments have been run using checkers as the example domain [Sam63]
[Sam67) [GriT4), the game that has generated the most interest, from Shan-
non’s article on, is chess. In 1975, Newborn wrote that “all the chess pro-
grams that have ever been written and that are of any significance today
are based on Shannon’s ideas,” and “improvements in programs are due
primarily to advances in computer hardware, software, and programming
efforts, rather than fundamental breakthroughs in how to program com-
puters to play better” [New75]. To a great extent, this is still true in 1986.
Nearly all control strategies contain an element of the minimax procedure;
the major distinction between them is whether all paths are searched to
the same depth (type A) or not (type B), and if not, what the criterion for
expanding nodes is.

At the heart of every type A strategy lies a fixed-depth, full-width mini-
max search. In addition to a—f and iterative deepening, a secondary search
is frequently used to augment the basic strategy. A secondary search is ex-
actly what it sounds like: a second search started at a point other than
the root. The reasons for using this technique will be discussed in sec-
tion 3.1. Although secondary searches technically violate the fixed-depth
characterization, strategies which use them can still be classified as type
A. Fixed-depth, full-width minimax is comparatively easy to implement
and conceptually simple to justify — as the estimates approach exact, the
procedure approaches optimal performance. Errors occur only in static
evaluation. The major drawback to type A strategies is the amount cf
computation required for a full width search; even with the help of a prun-
ing algorithm, the large branching factor in most games limits the search




to a relatively small portion of the tree. Type B strategies, on the other
hand, constitute a rather large and diverse family. Their common feature
is that they generate all possible next moves, but expand only the most
promising ones. The distinction between generation and expansion may
be a bit subtle. A node is ezpanded when its children are generated. In a
full-width search, first the root is expanded by generating all of its children.
Then all nodes at depth 1 are expanded, generating all depth 2 nodes, etc.
In a selective search, all chidren of the root are generated, but only some
are expanded. A wide variety of heuristics have been suggested as means
for selecting only the most promising nodes for expansion. The major dif-
ficulty encountered is in devising criteria which are good enough to result
accurate play. .

One of the first computer chess matches, designed in part to compare
the performances of the two strategy types, pitted the Kotok-McCarthy
type B program against the ITEP type A program in four games. When
ITEP searched 3 ply, both games were draws. When it searched 5 ply, it
won both [New75]. The problem with the Kotok-McCarthy program was
that it was not sufficiently selective in its choice of nodes to forward prune.
In the words of former world chess champion Mikhail Botvinnink, “The rule
for rejecting moves was so constituted that the machine threw the baby out
with the bath water” [Bot70]. Thus, the domination of a type A program
over a type B program does not necessarily indicate that selective strategies
are inferior to those relying on brute force, it simply highlights the relative
difficulty in implementing them.

3.1 Type A Strategies: Full-Width Minimax Searches

Many of the earliest chess programs used type A strategies and were able
to achieve modest performance [New75| (Ber78|. The major difficulty these
programs faced was that practical computational limits were reached while
search was still shallow. The standard measure of search depth is ply, or the
number of consecutive moves considered. In an average chess game, each
player has between forty and fifty moves. A complete search, then, would
have to exceed 80 to 100 ply. In most of these early programs, only three
or four ply were searched. In addition, artificial termination of search at a




uniform depth implies that anything not detectable at the search frontier
is effectively nonexistent. Thus, these programs generally failed to realize
when they were in the midst of a complex tactical maneuver, such as a
material trade in chess. This problem is known as the horizon effect, and
is a necessary consequence of the decision to terminate search uniformly
[Ber73]. The first method proposed to alleviate the effect was a secondary
search, with the selected tip as root [Gre67]. This approach, however, does
not remove the horizon, it merely extends it.

Positions which are not affected by the horizon are called gquiescent, or
quiet, because there is no imminent threat that will radically shift the game
from what was anticipated at the horizon. The importance of applying the
static evaluator only to quiescent positions was pointed out by Shannon;
the issue of how to determine which positions are quiescent, however, is
still largely open. Some attempts to resolve the problem are discussed in
[Kai83]. Beal proposed consistency as a means for detecting quiescence.
A node is consistent if its static value is the same as its backed up value
from a one ply search [Bea80|. He later modified this consistency search to
locked-value search [Bea82]. A value is locked if it has two children with
the same best value. If this value is not correct, both of the children must
have been evaluated incorrectly. Although there is no guarantee that this
approach helps detect quiescence, it is generally safe to assume that single
errors are more likely to occur than double errors. Thus, a locked value
is less likely to be an anomaly brought about by the horizon effect than a
non-locked value. A more common approach to quiescence detection and
correction is to perform some sort of secondary search beyond the frontier
for positions which include captures, checks, or move promotions, and to
consider all other positions quiescent. Many programs, including Chess 4.5,
used this method.

Despite these difficulties, many successful programs have used type A
strategies. One of the general assumptions underlying them all is that the
deeper the search, the better the performance. Although it was believed
at one point that the limits of brute force search would be reached long
before a computer could play master level chess [Ber73] [Bot84], state of
the art technology has resulted in special purpose architectures that have
done just that. The first such machine, Belle, relied almost totally on



speed to become the first computer to achieve master rating (CT77| [CT82].
Speed allowed Belle to search to a previously unacheivable eight ply, make
more accurate decisions, and apparently avoid the horizon effect [Ber81].
IAGO, an Othello program which plays at about world championship level,
also used a standard full-width, o — 8 search with iterative deepening.
The development of IAGO stressed analysis of positions, and resulted in
a very strong static evaluation function. This function, combined with
the relatively small tree of Othello (relative to chess, that is) accounts
for the program’s success [Ros82]. Chess 4.5, which introduced iterative
deepening, also included a hash table to avoid redundant checks. When
a node is encountered, its value is entered in the table. If it is reached a
second time, the subtree beneath it need not be searched. The avoidance
of redundancy allows deeper searches to be performed without requiring
additional time.

The M 8 N procedure attempts to improve performance by making bet-
ter use of the information gathered at the tips, rather than by speedup.
This is done by finding the minimax value, and adding a bonus function to
it. This bonus is an experimentally derived function of the M maximum or
N minimum values. Thus, the backed up value contains information about
the best several choices, not only the single best. Using the game of kalah
as their example domain, Slagle and Dixon showed that this procedure im-
proves play to about the level that would be achieved by extending minimax
an additional ply. Its major drawback is that pruning techniques become
more complicated and less helpful [SD70]. The notion of saving multiple
nodes was also used by Harris to devise bandwidth search [Har74|. The
idea underlying this search is that making the optimal choice is not always
necessary, as long as one which is not too far from optimal is guaranteed.
If an evaluation function with constant bounded error can be found, any
node whose value is within those bounds of the currently most promising
one may, in fact, be best. The original domain of bandwidth search was
one player games, where the idea of a constant bounded error was consid-
ered a weakening of the admissibility requirement. Whereas an admissi-
ble function never overestimates the true value, a function with constant
bounded error never overestimates by more than e or underestimates by
more than d. This scheme has the advantage of not discarding all moves
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right away, thereby allowing for occasional error recovery. Its disadvantage
is that it does not search for the minimax value, but chooses the first node
found within (e + d) of it. The algorithm fared well in Four Score (a 3-
dimensional, 4-by-4 tic-tac-toe game) competition, but holds little promise
for more complex games because of the difficulty of finding heuristics that
satisfy the bandwidth conditions.

The first intelligent type A strategy is part of a new chess architecture,
SUPREM (Search Using Pattern Recognition as the Evaluation Mecha-
nism). SUPREM links two machines together, one smart but slow (the
oracle), and one very fast (the searcher). The oracle is the source of game
specific analyses, and is responsible for downloading preprocessed pattern
recognition data to the searcher. This includes information about what
representations must be maintained, how to update them incrementally,
and the value of any instance of any representation. The searcher must
then search quickly, update many pieces of information simultaneously,
and combine information rapidly [BE86]. In SUPREM, the searcher actu-
ally performs a parallel search of all legal moves, indicating that the basic
control strategy is type A. Unlike other type A programs, SUPREM is con-
sidered intelligent because it recognizes patterns. Unlike other intelligent
programs, however, the information is used for evaluation, not strategy.
This combination of guided knowledge and rapid search is powerful enough
to form the basis of Hitech, the current North American Computer Cham-
pion, and highest rated chess computer to date (2250 as of early 1986).
According to Berliner, who designed the system, Hitech’s rating is rising
rapidly, and may eventually reach the grandmaster level.

3.2 Type B Strategies: Selective Searches

One of the features common to all type B strategies is the use of domain
specific information to select promising nodes and lines of play. This ap-
proach is believed to be the method used by human experts [Ber73] [Ber77b]
[Bot70] [Bot84], and is thus interesting for two reasons. One, it is a more
accurate model of cognitive processes, and may aid in the understanding of
human decision making [NSS63]. Two, it muffles the combinatorial explo-
sion by drastically reducing the effective branching factor, hopefully leading
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to improved performance. The domain specific knowledge required to make
type B strategies work can be infused in various forms. Michie identified
three types of knowledge that are useful in game programs: rote memory
(dictionary entries of board positions), theorems 3 Hash tables of the type
used by Chess 4.5, the inclusion of standard book openings in Belle and
other programs [CT77] [CT82] [Tho82|, and the endgame library of PIO-
NEER [Bot84], are all examples of successful uses of rote memory. In addi-
tion, large tables have proven very useful in machine learning experiments
that develop better static evaluation functions for checkers [Sam67| [Gri74].
In terms of the design of intelligent search strategies, however, rote memory
is not particularly helpful. Heuristics and pattern recognition, on the other
hand, have each led to the development of some interesting strategies.

3.2.1 Forward Pruning Based Strategies

Heuristics are general guidelines built into the program. Bratko and Michie
[BM80] wrote a program to play the chess endgame of KRKN (King and
Rook vs. King and Knight) which included an advice table, a list of general
heuristics like “avoid mate”. This is a rather nonstandard use of heuristics,
however. Typically, they are included in the evaluation function and the
forward pruning criteria [Ber77a| [Ber77b], not in separate data structures.
Forward pruning is a technique used by many type B strategies. Unlike
a — #, which only prunes nodes that will not be chosen, forward prun-
ing techniques ignore all nodes which don’t look very promising, thereby
running the risk of missing the correct choice.

One heuristic that has been used to define a type B strategy is “only ex-
pand nodes which look at least as good as the current best.” This heuristic
defines a technique called razoring [BK77|. At first glance, this procedure
sounds strikingly similar to @« — 3. In fact, the only difference between them
lies in the criteria used for determining the promise of a node. a—f relies on
backed up minimax values, razoring on the static evaluation.” Thus, while
razoring prunes nodes that don’t look good, a — 3 only prunes nodes that
are not good. Razoring should be used in addition to @ — 3, not instead of

3The term “theorems” is confusing, because the knowledge used is generally not a theorem
in the mathematical sense. In my opinion, “heuristics” or “guidelines” is more accurate.
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it. In the worst case, then, razoring will prune the same nodes as o — £,
with only the added cost of some additional evaluations. In the average
case, however, razoring will prune nodes earlier than a — 3, narrow the
branching factor more rapidly, and deepen search, all in exchange for occa-
sionally missing the best choice. Preliminary experiments showed that in
the exchange, razoring gained, on the average, an order of magnitude over
a— f in a 4-ply tree, in terms of the number of nodes expanded. Razoring
is illustrated in figure 3.

Another heuristic which has been considered is “start the search with an
idea about the true value of the root.” This heuristic leads to a procedure
called aspiration search. Its development was motivated by the observation
that @ — B works best if the node that will eventually be returned by
minimax is among the first nodes examined SlagDix69. The reason for
this is rather straightforward: if the best alternative is considered first,
the o and g values are quickly set to define a narrow range around the
minimax value of the root, thereby resulting in a great deal of pruning.
The predetermined upper and lower bounds, then, can serve the roles of «
and B. If the procedure used to determine these bounds is fairly accurate,
the search tree can be narrowed quickly. However, because the bounds
don't start at plus and minus infinity, it is possible that they are wrong.
Once again, the guarantee of returning the minimax value is lost. The
use of this heuristic as a means of pruning absurd moves was discussed in
[AAD75]. Figure 4 shows how aspiration search can be used to augment
a-—f.

The B* algorithm [Ber79] uses a simple heuristic of a very different
nature, “terminate the search when an intelligent move can be made.”
This algorithm was motivated by the desire to avoid the horizon effect by
defining natural criteria for terminating search. The search proceeds in a
best-first manner, and attempts to prove that one of the potential next
moves is, in fact, the best. By concentrating only on the part of the tree
that appears to be most promising, B* (and best-first searches in general),
avoids wasting time searching the rest of the tree. Berliner’s adaptation of
best-first searches to game trees included the first modification to Shannon’s
original model. Instead of associating a single value with each node, B* uses
two evaluation functions, one to determine an optimistic value, or upper
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bound, and one for a pessimistic value, or lower bound. The search is
conducted with two proof procedures, PROVEBEST, which attempts to
raise the lower bound of the most promising node above the upper bounds
of its siblings, and DISPROVEREST, which tries to lower the upper bounds
of the siblings beneath its lower bound. The search terminates when the
most promising choice has been proven best. Figure 5 illustrates the use
of these procedures. Although B* sounds particularly appealing from both
the speedup and cognitive modeling viewpoints, it does have its dark side.
Like all best-first searches, a good deal of storage space is needed to keep
track of the promise of each node on the generated-not-expanded (open) list,
so that the focus of the search can shift as necessary. More significantly,
though, is that B* is not guaranteed to terminate before time runs out.
If this occurs, it loses the edge of making intelligent decisions, and has
to choose whatever looks best at the time. The success of B* lies, to a
great extent, in its ability to correctly select the most promising node and
most efficient proof procedure. Several variations which focused on proof
procedure selection have been studied [Ber79] [Pal82], and a scheme which
selected them probabilistically was shown to be somewhat stronger than
one which made deterministic choices.

The advantage of ranges, of course, is that they contain more infor-
mation than point probabilities. Palay extended this reasoning one step
further, and devised the idea of passing entire probability distributions. A
distribution contains complete information about the likely location of a
node’s value, and thus retains considerably more information than just a
range. He combined this idea with the control aspects of the B* algorithm
to yield a powerful best-first search strategy, PSVB* [Pal85|, and showed
that by using distributions, an increase in efficiency of 91% over the use of
ranges is possible.

An interesting idea that has recently been suggested as a selection crite-
rion is “attempt to stabilize the value of the root.” This heuristic was used
to develop a procedure called conspiracy search [McA85]. The value of a
node is stable if deeper searches are unlikely to have any major effect on
it. In a conspiracy search, the root’s stability is measured in terms of con-
spiracy numbers, the number of leaves whose values must change to affect
its (the root’s) value. If the number of conspirators required to change the
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root value is below a certain threshold, the value is assumed to be accurate.
At any given point during the search, the possible values of the root are
restricted to the interval {Viuin, Vmu], where V,.;n and V.., are the values of
its minimum and maximum accessible descendants at the search frontier,
respectively. To update the range, either prove that the minimizing player
can avoid V,,,., or that the maximizing player can avoid V,,;,. The decision
of which to prove at each point can be made with the help of the conspiracy
numbers. Unlike B*, there is no need to change the evaluation function (or
to use multiple functions) to derive the interval — a single function will
suffice. An example of conspiracy search is given in figure 6. Alone among
the procedures discussed in this section, conspiracy search has been neither
analyzed nor implemented. This is not due to any fundamental flaws in the
procedure, but rather because it was only recently proposed. However, the
heuristic on which it is based sounds reasonable, and hopefully forthcoming
studies will determine its value as a control strategy.

3.2.2 Plan Based Strategies

Although pattern knowledge has not been used as extensively as heuristic
knowledge in the design of type B strategies, several interesting systems
have used patterns to plan in game domains. For example, Bramer de-
scribed an optimal program for the chess endgame KPK (king and pawn vs,
king) which used pattern knowledge [Bra80]. The PARADISE chess pro-
gram (PAttern Recognition Applied to DIrecting SEarch), [Wil77] [Wil80|
[Wil82], relies almost completely on pattern recognition to direct search.
Like the B* algorithm, PARADISE expresses node values as ranges, at-
tempts to prove that one move is the best, and terminates search based on
knowledge, not parameters (such as depth or time). Unlike B¥*, however,
PARADISE uses a large collection of plans, or sequences of moves to be
made from various positions, to avoid the errors caused by the horizon ef-
fect. To compensate for the expense of maintaining the knowledge base, a
small tree is searched. This is possible because the use of plans drastically
reduces the branching factor. Information is communicated from one part
of the tree to another using a “hodge-podge” collection of cutoffs that con-
trol the search, and indicate when searches along abandoned lines should be
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resumed. Because of the rather ad hoc nature of these criteria, PARADISE
does not make a major contribution to the theory of control strategies; its
major contributions are to the fields of planning and pattern recognition.

One major issue raised by PARADISE, though, is how to generate plans
to store in a data base. PARADISE’s plans generally lead to a goal other
than winning the game. Pitrat devised a general scheme for generating
plans, and showed a few examples of its application to a simplified chess
domain [Pit77] [Pit80]. His program is given a description of the initial
state, and told to find a combination of moves that will lead to a specific
goal. In order to succeed, the program must be given a less ambitious goal
than “win the game.” If the goal cannot be met as given, the program fails.
Thus, it seems that the successful implementation of pattern recognition
knowledge is directly related to the definition of inexact, or approximate
tasks, which hopefully correspond to the ultimate goal of winning. Evi-
dently, guiding plans towards a most promising node is considerably harder
than guiding searches towards one. Whereas many search programs have
performed reasonably well without defining specific goals, plans need them
to succeed.

Botvinnik has identified the development of inexact goals to guide inex-
act search as one of the most important problems in the design of intelligent
systems [Bot70] [Bot84]. This points out a fundamental flaw in the original
definition of partial game trees: there is no clear understanding of what a
static evaluator is attempting to estimate. Ostensibly, it should approxi-
mate the actual value of the node, (the value that would be returned by
the minimax algorithm), although when a multi-valued function is used
to estimate a binary valued one, it is unclear precisely what the estimate
corresponds to. In the domain of chess, Botvinnik identified material ad-
vantage as the inexact goal. This problem was discussed in the context of
the chess master’s method, an ambitious control strategy that made heavy
use of both heuristic and pattern knowledge [Bot82|. The pattern knowl-
edge component appears in the form of a game specific action tree, which
augments and directs the search tree. As the search tree grows, the action
tree records purposeful moves, or goals that can be attained without ex-
hausting resources. Heuristic knowledge is available through three general
limitation principles: (i) if improvement is possible, it is contained in the
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tree, (ii) new possibilities should be considered only if they promise an im-
provement, and (iii) only goals which don’t exhaust the time limits should
be considered. Botvinnik’s scheme incorporates many of the ideas found
in other control strategies. The limitation principles indicate a best-first
approach to node expansion, and the action tree is similar to a dynami-
cally constructed knowledge base of plans. These ideas were implemented
in PIONEER, a system which was originally designed to play chess, but
was most successful in the realm of planning maintenance repair schedules
for power stations in the Soviet Union |Bot84].

The communication between the (game specific) action tree and (gen-
eral) search tree parallels the relationship between the oracle and searcher
in Hitech [BE86|. The difference between them lies in the role of knowledge.
PIONEER uses it for strategic purposes, Hitech for evaluation. In either
case, the lesson is the same: a functioning intelligent system needs both a
general methodology and domain specific knowledge.

4 The Analysis of Heuristic Search

Throughout most of the 1950’s, 60’s, and 70’s, all of the analytic work
done on game trees dealt with determining the efficiency of node ordering
and a — 3. During this period, a near-universal assumption was that the
minimax procedure, although fallible, was the strongest conceivable con-
trol strategy, and its performance would improve directly with the length
of lookahead and accuracy of the static evaluator. Alternative, or modi-
fied strategies, of the type discussed in section 3.2 were motivated by the
desire to either model cognitive activities [NSS63] or improve performance
faster than search depth could be extended [Ber73|. The perception of the
minimax procedure has undergone a radical change in the 1980’s. The ad-
vent of specialized chess architectures allowed lookahead to be lengthened,
the effect of the horizon to be largely overcome, and computers to play
master level chess. By 1985, there were even commercially available chess
machines playing at or near the master level [Kop85|. At about the same
time that these machines were convincing game programmers of the inker-
ent power of full-width o — B minimax search, analyses of the procedure
began questioning its theoretical accuracy.
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One of the reasons that these analyses were so long in the coming is the
complexity of the models. Games like chess were chosen as abstractions
of the real world that were simple enough to allow computer simulation
and experimentation. They were nowhere near simple enough to allow
mathematical analysis. Thus, a new model had to be defined which was
an abstraction of the game tree. The most frequently studied model to
date is the (d,b,F)-tree [Pea80] [Pea84]. A (d,b,F)-tree has a uniform leaf
depth d, a uniform branching factor b, and leaf values assigned by a set of
identically distributed random variables drawn from a common distribution
function, F. With the definition of the model and a family of “artificial”
games which embody the simplifications, studies of (and challenges to)
the accuracy of minimax became possible. In the 80’s, then, the primary
motivation behind defining alternative strategies to minimax has become
the discovery of a procedure which is correct in some theoretical sense. This
section is divided into two parts. The first outlines the results which caused
minimax to fall into disfavor with theoreticians, and the second describes
some control strategies for partial game trees which avoid these theoretical
difficulties.

4.1 The Benefits of Lookahead

The aspect of the minimax procedure that has come under fire in the 80’s is
lookahead. Lookahead is generally assumed to be helpful because it results
in the proper move being chosen more often. Over the years, an impressive
body of empirical evidence has been amassed to support the validity of this
claim, all in the form of successful programs which rely on it. Nevertheless,
recent analyses have uncovered some surprising results.

The potential futility of looking ahead was addressed by Pearl, who
derived the minimaz convergence theorem [Pea80| [Pea84|. This theorem
states that in a deep enough (d,b,F)-tree, the root value is essentially pre-
determined; the value is a function of b, and the variance a function of 4.
Specifically, as d — o0, if F is continuous, the minimax value of the root
converges to the 1—&,-quantile of F, where &, is the solution of zt+z—1 = 0.
If, on the other hand, F is discrete with values v; < v; < -+ < vy, and
1 — & # F(v;) for all 4, the root’s value converges to the smallest 1 sat-
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isfying F(vi—;) < 1 — & < F(v). In a binary (b = 2) tree, for example,
1-&=1-(v5—-1)/2 ~.382. Thus, if F is continuously distributed be-
tween 0 and 1, the root converges to .382. If F is restricted to the integers
between 0 and 100, then F(38) < .382 < F(39), and the root converges to
39. Perhaps the most interesting case occurs when F is a binary function,
in which each leaf is a win (vw = 1) with probability P, and a loss (v = 0)
with probability 1 — P. The convergence theorem for discrete distributions
indicates that if P > &, the root will converge to 1, and if P < ¢, it will
converge to 0. The only condition under which a fair game (one in which
either player may win) is possible, then, is when the root fails to converge,
or P = §. Nau pointed out that the minimax convergence theorem does
not account for a widely observed phenomenon known as biasing (this can
be observed in real games, not only (d,b,F)-trees) — the tendency for the
player searching to perceive himself as winning if the search depth is odd,
and losing if it is even [Nau82b]. He showed that this is due to errors in
the static evaluator, and derived the last player theorem, which states that
the value returned by the minimax procedure on a (d,b,F)-tree approaches
& if one player moved at the bottom level of the search, but 1 — &, if
the last move belonged to the other. This theorem makes an important
statement about the way lookahead values should be interpreted: values
returned from alternating depths form two distinct sequences, and must be
considered separately.

Minimax convergence indicates that there are instances in which looka-
head is not helpful. The theorem can be viewed as an outcome of the
weak law of large numbers: as the number of events in the sample space
increases, the deviation of the observed outcome from the expected out-
come decreases. In the case of (d,b,F)-trees, an event is the assignment of
a leaf value, the observed outcome is the minimax value, and the expected
outcome is 1 — £,. As d — oo the number of leaves grows exponentially,
indicating that the observed minimax value will always converge to the
predicted value. Since the degree to which a node may deviate from 1 — ¢,
depends only on its height, (distance from the leaves), lookahead is more or
less worthless high in the tree — all choices are roughly equivalent because
the children of the root all converged to the same value. When that occurs,
random play is just as effective as lookahead. On the other hand, when
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play approaches the end of the game, there are too few leaves for the weak
law of large numbers to apply, and the values may vary greatly from 1 — &,.
At this stage of the game, lookahead may help determine these values more
accurately.

An even stronger statement about lookahead is made by another recent
discovery, minimaz pathology, a phenomenon whereby the decisions made
by minimax may become less reliable as lookahead length increases. Nau,
(and independently, Beal [Bea80|), performed an error analysis on (d,b,F)-
trees in which F was a uniform random distribution of binary values, and
discovered that for an infinite class of game trees, as search depth increases,
so does the probability that an incorrect move will be made [Nau83al.

Pathology was first demonstrated on a family of board splitting games
developed by Pearl as simple games with all the properties of (d,b,F)-trees
[Pea84|. In board splitting, a square b%-by-6% board is covered with 1's
and 0’s. The first player splits the board vertically into b sections, keeps
one in play, and discards the rest. The second player splits the remaining
portion horizontally, doing the same. After d rounds, (a depth of 2d ply),
only one square remains. If that square contains a 1, the horizontal splitter
wins, Otherwise, the vertical splitter wins. A board splitting game with
a uniform random distribution of terminal values is called a P-game. A
game with a clustering of similar values among neighboring leaves is called
an N-game *. In all of these games, the board shrinks as play proceeds,
making it possible to devise evaluation functions whose accuracy improve
as the tree is descended. Nau used one such function, the percentage of
I’s on a board, to show that P-games are pathological while N-games are
not. This led him to conclude that the cause of pathology lay in the uni-
form random distribution of leaf values; since real games do not have this
property, pathology has never been observed [Nau82a]. Similar conclusions
about trees with clustering among their terminal values were reached in
[Bea82] [(BG82).

Pearl pointed out that minimax pathology is not simply a statistical
aberration [Pea83]. The minimax procedure involves propagating functions

*An N-game board is set up by randomly asaigning 1’s and -1’s to each branch in the
game tree. If the sum of the branches leading from the root to a leaf is positive, a 1 is
placed in the square corresponding to that leaf. Otherwise, the square gets a 0.
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of estimates. In general, this is not the same as calculating the estimate of
a function. The anomaly is not that P-games are pathological, but rather
that chess is not! He performed an in depth error analysis of minimax, and
discovered that if, as is frequently claimed, the power of lookahead lies in
increased visibility, (more accurate static evaluations deeper in the tree),
this increase must be at least 50% for each additional ply. Since this is
almost never true in real games, he concluded that the 50% must be taken
over all nodes found at the deeper level. In most games, certain positions
qualify as traps, terminal positions that are located high in the tree, (thus
called because they trap one player into an early loss). The presence of
terminal nodes in the vicinity of the search frontier drastically increases
the accuracy of their ancestors, and results in the necessary improvement.
If the (d,b,F)-tree is modified by making every internal node a trap with
probability ¢ exceeding a certain threshold, ¢ > I—M;;—W—al, this im-
provement is reached, and pathology should be avoided [Pea84]. Abramson
extended the idea of traps to any node whose W/L value could be deter-
mined exactly, or f-wins [Abr86|. He demonstrated experimentally that if
f-wins occur with increasing densities at deeper levels in the tree, pathol-
ogy can be avoided with an overall density considerably below the predicted
threshold.

Michon suggested a more realistic model than the (d,b,F)-tree, the re-
cursive random game (RRG) [Mic83]. From every position in an RRG,
there are n legal moves, (n = 0,1,2,...), with probability f.. The value
fo indicates the probability that a node is a leaf, in which case it is ran-
domly assigned either W or L. He used RRG’s to analyze both pathology
and quiescence. In terms of quiescence, non-quiescent positions in most
games were shown to correspond to positions with relatively few options,
or small branching factors. In terms of pathology, he showed that games
with uniform branching factors are bound to be pathological, while games
whose branching factors follow a geometric distribution are not. The vari-
ous remedies to pathological behavior combine to give a solid explanation
of the phenomenon: pathology occured because of oversimplifications in
the original (d,b,F)-tree model. The removal of any single uniformity as-
sumption resulted in a nonpathological tree: N-games targeted the uniform
distribution, traps the uniform depth, and RRG’s the uniform branching
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factor. When f-wins removed the uniform terminal density as well, pathol-
ogy became even easier to avoid.

Pathology, minimax convergence, and the last player theorem all con-
tribute to the understanding of the minimax procedure in general, and
lookahead in specific. Because these results were all derived on simplified
models, it's unclear exactly how applicable their direct mathematical im-
plications are to real games. Nevertheless, they do reveal some important
points that should be as true for chess and checkers as they are for board
splitting:

o Lookahead is not always beneficial.

o Improved visibility, in and of itself, is not a sufficient explanation of
why lookahead is helpful (when it is).

e Values returned by lookahead to different depths should only be com-
pared if the same player moved last in both cases.

¢ The more uniform the tree, the more likely it is that minimax is not
the proper control strategy to be using.

4.2 Alternatives to Minimax

Perhaps the most significant outcome of the phenomena discussed in the
previous section is that for the first time, the sanctity of minimax was
taken to task. These challenges to the accepted standard have motivated
the design of several non-minimax control strategies. To understand these
strategies, it is important to recall two of the basic assumptions underlying
the optimality of minimax: perfect play by both players, and accurate
information (e.g. accurately evaluated tips). Since, for the most part,
neither of these conditions ever holds, alternative control strategies may
lead to better performance.

Pearl suggested the method of product propagation. This strategy as-
sumes that the static evaluator returns the probability that a node is a
forced win. If an internal node is a forced win for player I, all of it’s chil-
dren must be forced losses for player II, and vice versa. In other words,
Pr[h is a win node] = II(1—Pr[h’ is a win node | h’ is a child of h]). These
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alternating products propagate the probabilities back up the tree [Pea81].
Nau showed that when this control strategy is used instead of minimax,
pathology disappears [Nau83b]. Tzeng proved that given a (d,b,F)-tree
with independent sibling values and an evaluation function that does, in
fact, return the probability of forcing a win, product propagation will out-
perform any equally informed algorithm. Among the assumptions inherent
to product propagation, however, is the independence of sibling nodes.
Since this is clearly not true in real games, there is no reason to assume
that this strategy is even reasonable in most interesting domains. Never-
theless, Nau, Purdom, and Tzeng ran some Monte Carlo experiments that
demonstrated that even on N-games, (which have interdependent sibling
values), product propagation played well against minimax. A strategy that
averaged the values returned by product propagation and minimax (by
simply adding them and dividing by 2), outperformed either strategy alone
[NPT83] [TP83]. The outcomes of these experiments, however, were fre-
quently not significant enough (statistically) to reveal anything conclusive.

Ballard developed a control strategy for searching game trees with
chance nodes, *-minimaz, which assigns each chance node the average of
its children’s values (Bal83]. He and Reibman contended that the problem
with minimax is that it erroneously assumes perfect play on the part of
the opponent. They modified *-minimax to minimaz in the presence of er-
ror. In this system, each player assigns his opponent an expected strength.
This strength is used to determine subjective probabilities indicating the
likelihood that a given move will be chosen. Minimax corresponds to a
strength of 1 (perfect play), and *-minimax chance nodes to a strength of 0
(random play). Imperfect play should lie somewhere between the two, and
can be modeled by calculating a weighted sum of the subjective probabili-
ties [RB83]. Empirical studies performed on (d,b,F)-trees with correlated
sibling values showed that this strategy outperformed the addition of a ply
to minimax. Another alternative strategy is minimum variance pruning
[Tru79]. In this strategy, nodes are assigned probability density functions
(pdf’s) describing the likely location of the minimax value, and the subtree
with the minimum variance is expanded first. The motivation underlying
this procedure is similar to that behind conspiracy search and locked value
search: stable values are likely to be accurate, and small variances indicate
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stable values. Although this strategy was proposed by Truscott in 1979, it
has been neither fully developed nor tested, and is thus of unkown value.

5 Discussion: Relating Theory to Practice

To date, none of the strategies described in the previous section have been
successfully implemented in real games. At the same time, none of the
heuristics used to design type B strategies have been successfully analyzed.
There are good reasons for both of these; the theoretical strategies tend to
require a full-width search (pruning techniques have yet to be devised), and
have generally been developed using assumptions which are not valid in real
games. Determining the accuracy of a type B strategy, on the other hand,
would probably require a model too complex to be analyzed. Because of
their different orientations, there has been minimal interplay between the
results of heuristic analysts and game designers. This isolationist tendency
has, in turn, allowed game programming to flourish without ever developing
a firm theoretical groundwork. There is overwhelming evidence that the
minimax procedure is a reasonable control strategy, that its performance
will improve with greater programming innovations, and that it will play
excellent chess on fast enough machines. There is no evidence that it is
in any sense correct. The discovery of pathology indicates that there are
instances, albeit specialized ones, in which the traditional assumptions of
minimax are false. The subsequent resolution of the phenomenon through
the imposition of nonuniformity implies very definite strengths and weak-
nesses of the procedure; the fewer distinguishing characteristics among the
nodes, the worse the performance of minimax. Viewed in this way, pathol-
ogy suggests a point which should be directly applicable to real games: use
minimax when there is a clear choice. Otherwise, if all values are clustered
around some intermediate range, use another strategy, perhaps a weighted
sum or modified M & N.

This split between theory and practice, although understandable, is
somewhat disturbing. Txpercience dictates that the dismissal of unobserved
theoretical predictions as irrelevant is unwise. In operations research, for
example, the simplex method has long been used to efficiently solve linear
programming applications. The proof of a worst case exponential run-
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ning time, and the artificial construction of examples that caused it to run
poorly, motivated other models and approaches, to the point where one
has been developed which not only appears to be theoretically correct, but
promises to have serious commercial potential as well [Kar84].

The incorporation of probability distributions into B*-like algorithms
in [Pal85] is encouraging. Although probabilities were used in almost all
the analytic studies, prior to this work they played a more or less inconse-
quential role in the implementations. The original motivation for Palay’s
use of distributions was to more accurately assess the probable location of
a node’s true (minimax) value than could be done with either single num-
bers or ranges. However, a radically different interpretation of probability
distributions is possible. Point values imply the existence of a true value
which is being estimated. A range implies an unknown exact value, but
one that can be bounded. In sharp contrast, the use of probability distri-
butions implies that there is no true value. Instead, the nodes are random
variables which will be instantiated at different values with varying prob-
abilities. The resultant model of partial game trees is probabilistic, rather
than deterministic, in nature. In a probabilistic context, minimax is al-
most certainly non-optimal. The assumptions that should go into devising
a control strategy for probabilistic trees include imperfect play and an un-
willingness to commit to anything beyond the next move. Implicit in the
minimax procedure is the statement that if play reaches node X, node Y
(the best of X’s children) will be chosen. If node X is not the current node,
this represents a premature commitment which may or may not make sense
in a deterministic domain, but certainly does not in a probabilistic one.

6 Areas for Future Investigation

Every component of partial game trees leaves many problems open. The
trees represent a mathematical model that has been extensively used, but
rarely studied. Throughout the course of this survey, virtually every def-
inition in the model was shown to be vague, and every assumption was
questioned at least once. The areas of difficulty that relate most directly
to the design of control strategies (in no particular order) are:
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e The static evaluator; Is an inexact goal necessary, or can search truly
be guided effectively toward a number whose meaning is vague? Are
there features of the tree which can serve as inexact goals, or must
the information be game specific?

e The role of knowledge: How much game specific information is really
required to design a successful program? Should control strategies
be defined for trees (the general model) or for games (the specific)?
Can planning be used effectively to play games at expert levels, or
only to augment more standard search techniques? Could the idea
of an advice table be extended to include human interaction? Would
a domain like chess lend itself to a knowledge-based expert system,
in which strategy decisions were based on responses learned from
experts?

e The limitations of minimax: Does the leap of type A systems beyond
the master level indicate that there are no limits? Can the technology
be developed to push these systems to grandmaster level?

e The mathematical model: What is the correct model for two-player
zero-sum games of perfect information? Is it probabilistic or deter-
ministic in nature? What is the optimal control strategy for making
decisions in this model? How closely does this model approximate
real games? What is the relationship between partial and complete
game trees?

o The role of lookahead: Why is lookahead advantageous? Under what
conditions will it not help? What is the correct criterion for the
termination of search? How can quiescent nodes on the search frontier
be recognized? Can the horizon effect be avoided completely, and if
so, how?

Hopefully, within the next few years, a new general theory of partial
game trees will begin to answer some of these questions. This type of the-
oretical groundwork will have profound ramifications in both the analvsis
of heuristics and the design of games, and should be actively pursued by
practitioners of both fields.
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Figure I: The game of Nim is played with S stones. The players take turns removing
1,2, or 3 stones from play. The player removing the last stone loses. Thus, acircle
containing a 0 is a win for circle (Max), and a square with a O is a win for square (Min).
Max wins are denoted by +1, Min wins by -1, and the minimax value of *¥3Ch node is
dgrawn to the right of the node. Since the root has a minimax value of -1, Nim is a
forced win for the player moving second (Min).
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Figure 2 - Minimax Search with &-#& pruning: Static values are
drawn inside the nodes, minimax values outside and to the right.

Branches with X's through them have been pruned. To understand
how a branch is pruned, consider nodes A,B,C, and D. D is a leaf,
statically evaluated at 4. Since D is the only child of C, C gets

2 minimax value of 4 This means that B, (a2 Min node) , must have
avalue no greater than 4. Since A, (a Max node) already has a child

valued at 5, B will not be chosen, and its remaining children can
be pruned.
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Figure 3. This is what happens when razoring is add= "> the
pruning in example 2. Node E's static evaluation wa . vivte o
worse than node F's backed up value of 5. Thus, it wa. i ured
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Figure 4 Thex-8 pruning of figure 2 is now augmented with an
aspiration search. The precomputed range of possible values
for the root is [7,10]. When node G is expanded, it becomes clear
that the value of node E will not exceed 6. Since this falls
outside the range of possible values, nodes H and | can be prurisd.
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Figure 5 - The proof procedures of B*: Node A has the highest upper
bound, and is thus the most promising node. In Sa, A is expani-d
until its lower bound is greater than the upper bounds of ncdes Foi7,

and D. In 5b, the upper bounds of B,C, and D are pushed belo:.
the lower bound of A,
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Figure 6 - Conspiracy search. In this example, a node 1S
considered stable if 3 leaves must change to affect 1t. when
the tree is built out to depth 1, the range of possible values

is [S,10]. When built out another level, all three of the root's
children get backed up values of 10. In order for the roct valus
not to be 10, then, 3 leaves must change (1 grandchild irom
each child). Thus, the root is considered stable at 10




