The OPS Family

of Production System Languages

Alexander Pasik

CUCS-232-36

Department of Computer Science
Columbia University
New York City, New York

The CPS Family of Preduction System Languages

Abstract

Production sysiems are widely used for the deveiopment of expert sysiems. The OPS family of
languages comprise a set of low-level production sysiem interprezers suitable for a large ciass of
prodlem domains. They provide maximum flexibilty at the expense of high-leve! funcdonality such
as explanation and knowledge acquisiton facilities. The languages differ with respect to their
expressive power and efficiency. A description of the evolution of the languages together with an
analysis of their differences provides insight into the current state of the art of production system
language design. While none of the languages is clearly superior to the others, it is conceivable to
combine the best fearures of each language in a future implementation.

Table of Contents

Inroducden

The OPS Languages

OPS: Domain Independence of Production S ystems

OPS2 and OPS4: Efficiency and Flexibility

OPS3: Sets and Auribute/Valye Representation

OPSS: Sacrificing Flexibility for Speed

YAPS: Saucrured Flexibility and Multiple Proa:xctior-t Systems

YES/IOPSS: Making OPSS Suitable for Real Time Applications and Monitoring

OP$383: Combining Procedural and Rule-based Programming Paradigms

Evaluadon of the OPS Languages
Working Memory Stucture
Match Mechanism

Code Flexibility

Leamning Capabiliry

Multiple Production Systems

Conclusion

41

42

42

The OPS Family of Preduction System Languages

. Introduction

In the mid 1970s, many researchers in artificial intelligence were developing knowledge-based programs using
producton systems as a ‘undamental nowledge representaticn. Most of these sciendsts developed their own production
system interpreters as a base for the further development of the intelligent systems. At Camegie-Mellon University,
several interpreters were being developed concurrently when, in 1976, in order to standardize the producdon system
research and provide a stable environment for the insoructable production system project (Rychener and Newell 1978],
the Otficial Producdon System (OPS) was created [Forgy and McDermott 1976]. Since then, the OPS family of
languages has evolved in many ways, responding to both efficiency and semantic consmaints.

Today, several successtul full scale expert systems, XCON at Digital Equipment Corporaden (McDermott 1982],
ACE at AT&T (Vesonder er al. 1983], and YES/MVS at International Business Machines Corporadon (Griesmer er al.
1984], are implemented in OPS languages. Many universides use the OPS languages for expert system research. So
far, the most widely used is OPSS. New producdon sysiem languages are being developed based on the constucts of
OPSS. Two approaches for extending OPSS5's capabilices are demonsoated in YAPS at University of Maryland [Allen
1682] and Herbal at Columbia University [van Biema er al. 1986]. OPSS has also been used for designing higher level
2xpert sysiem development environmene {Pasik e al. 1985, Burns and Pasik 1985].

[n response 0 the industrial accepeance of and enthusiasm for expert sysiems, OPS83 was developed [Forgy 1983].
OPS33 represants a departure from the earlier OPS languages in many ways, the most significant difference being that
it is a Tue compiler. Previously, OPS production systems all ran in interpreted environments, in some instances with
some degree of compilation. -

The evolution of the OPS languages has resulted in languages sufficienty different from each other in their
exgressive power and efficiency. The history of the OPS languages and analysis of their benefits and drawbacks
provides an interesting description from the points of view of both programming language design and expert sysiems

research,

Production systems. Producton systems are divided into three major sections: production memory, working
memory, and in inference engine (of interpreter). The production memory contains a knowledge base of rules that are
martched against the asserdons in working memory. The inference engine performs this match, selects one or more

satsfied rule instandaccns to fire, and executes the actions specified. The execudon of the selected rule(s) alters

(93]

2.1 CPS: Dcmain Independence of Procduction Systems

The increasingly widespread use of producton systems at Camegie-Meilon University led to the development of
OPS in 1976 (Forgy and McDermort 1976]. The definition of OPS set a standard for producton systiem languages.
OPS was designed to be domain-independent. The language is a low-level production system interpreter. [t provides
maximum flexibility at the expense of high-level functionality such as explanation capabilites found in other systems
like EMYCIN [van Melle 1979). This philosophy was mainained through the development of all of the OPS
languages giving them strength through flexibility although providing little or no semantic environment [Hayes-Roth
and Waterman 1983]. OPS programs would consist of two memories: a production memory of rules and a working
memory of assertions. Rules would be known as pro-ducdons, and asserdons as working memory elements (WMEs).

An OPS producdon consists of a LHS and a RHS. LHSs are a collection of condition elements (CEs) each of
which is either positive or negadve. There must be at least one positve CE on the LHS of each producdon. The CEs
represent pauems W be martched against WMESs. A producdon is considered satstied if and only if all positdve CEs
match WMEs and there is no consistent mawch for the negative CEs. RHSs of productons contain actions to be
performed if the production is selected. These actions include those for altering working memory, input and output, and

other procadural conszucs.
The recognize/act cycle and conflict resoludon are built into the OPS interpreter. The cycle is described as

follows.

1. Match. Create a conflict set of all instandations of productons with sads{ied LHSs.
2. Conflict Resolution. Select one instandadon according to a fixed strategy.

3. Act. Perform the actions on the RHS of the selected production.

4. Repeat. Contdnue the cycle undl no LHSs of productdons are sadsfied.

Working Memory Elements. OPS working memory is a set (unordered with no duplicates) of WMESs, each of
which can be an arbitrarily nested list of symbols and numbers or a single symbol or number. There are no variables in

WMEs.

Left-nand Sides. CEs on the LHS of production rules are abstractions of WMEs. In order to create these
abstractions, pattern matching operators are provided. Constants in a pattern must match exactly the corresponding
dawm in the WME. The fundamenul method of abstracton is the variable. The form (variable x) will match any

constant in working memory. The restricton created by variables is that all occurrences of a variable on the LHS of a

Ly

bindings for the b and c clauses consistent with (variable x) equal to 1. On the other hand, the second LHS is not
sausfied because if the (variable x) is bound w0 I, there is a possible match for the b clause, whereas if it is bound to

2. there is a possible mawch for the ¢ clause.

Right-hand Sides. Once a production is selected for firing, its RHS is evaluated by performing sach action. If an
acuon returns a value, it is asserted into working memory. In order to remove elements, the action delete is used,
Delete’s argument should evaluate to a WME present in the current working memory. The RHS actions variable,
segment, and quote are similar to their LHS equivalents. Variable returns the value bound to it on the LHS.
Segment suips off the outer parentheses from its argument leaving a list of the subelements. This definition
preserves the following behavior of producdons: a p;'oduction with identical LHS and RHS does not alter working

= memory if fired because the WMEs matched on the LHS are added on the RHS, but working memory contains no

duplicates. The definition of segment above maintains this feature.

(«->
(a (segment (variable x)))

(a (segment (variable x))))

If working memory contains (a b ¢), the LHS of the above production would be sadstied, binding (variable x)
to (b ¢). The RHS would evaluate t0 (a2 b ¢) because segment removes the outer parentheses from the binding of
(variable x). Thus this producton, with identcal LHS and RHS, would not alter working memory. The quote
aczen allows for the use of function names as constants. Tae opposite of quote is eval. Eval causes its argument
to be evaluated cwice. OPS provides the action bind for binding variables explicitly on the RHS. The action aull is

" used to hide values returned by other actions so that they are not asserted into working memory. [nput and output
ac:ons are read, eread, write, and write&. No provisions for file /O exist which could indicate that the language
was intended to be a prowtype for funire production system interpreters.

Finally, a set of actions are provided for production systems to work on their own productons. The acton (readp
pl) -erurns a copy of the production pl. When this recurn value is asserted as a WME, other productions ¢an match on
it 1nd perform some degree of rule analysis or modificadon. The inverse of readp is build. It adds producdons to the
svstem. Excise takes the name of an exisdng production as an argument and removes that producion from the
system. The facility for moving copies of productions into working memory and building new productions is very
flex:ble in OPS because WMEs are arbirary list structures and productions are lists of thres elements: the first element
1§ -->, then the LHS, and finally the RHS.

~1

The meanings of rules 1, 3, and 4 require further clarification. Before determining whether an instantation has
dezn previously fired. it is necassary to define equality of instantiations. Every tume a WME is added to working
memory, it is assigned a unique time tag. If the same element is added again, working memory is unchanged. but the
ume tag of that slement is updated. An instandation is considered identical to another if it is made of the same
producton matching the same WMEs with the same dme tags. However, if an instantiation leaves the conilict set due
‘0 the addition of an element which contradicts a negated CE, and then returns to the conilict set due to that WME's
removal, the instandaton is not considered identical, even if it is matching the same WMEs.

[n rule 3, the instandadons are sorted according to the following method. The WMEs matched within each
instantiation are ordered by the recency of their time tags. Then the instandations are compared lexographically; the
most recent WMEs mawched by each are compared. then if there is a e, the next most recent, until there is a winner.

"~ Rule 4 determines specificity of instandations by number of CEs. Rule 3 may end in a de if the WMEs of two or
more instandations have the same time tags, and they have equal numbers of WMEs matched. Thus, for in
instandation to have more CEs but the same number of WMEs maiched, it must necessarily have either more nezared
CZs or two or more C=s matching the same WME.

The final ruie of conflict resolution will only be used in the rare case that two instantadons of the same

production match the same set of WMEs. This will only occur if there ars two distinct mappings from the same set of

CZs w the same set of WMEs. [n this case, an arbitrary selection is made.

As the first in the series of languages, OPS served as a test bed for many feamres that would appear in the later
versions. The general syntax and semantics of the productons and WMEs wers defined. The conflict resoluticn

sTategy and recogniza/act cycles were consmuced. Thus, the first of the OPS languages was built.

2.2 OPS2 and OPS4: Efficiency and Flexibility

The problem of efficiency in the mawch phase of production system execution led to the development of the Rete
match algorithm (Forgy 1979a). The naive approach o the match phase compares every CE from each producdon to
each WME on every cycle. This causes the match phase to make O(|Pix|W|?%) comparisons, where |P| is the number of
sroductions, |W] is the number of WMEs, and n is the maximum number of CZs on a LHS. The goal of an efficient
many paterty many cbject matching algorithm is to be independent of both (P! and |W1.

Dependence on size of producticn memory can be reduced by compiling the productons into a nerwork where
similar CZ parts are respresented once and shared berween the producdons. By using this in conjunction with 2

tecanique cailed memory support, dependence on the size of working memary can be reduced as well (McDermoa er at.

b

user-defined predicates, the LHSs of OPS4 productons serve as very powerful pattern matching mechanisms.
Nevertheless, 1 drawback of this flexibility is that problem-solving knowledge becomes hidden from the production
system. [f producdons are to be dynamically modified by other productions, these meta-rules (that is, rules about rules)
wiil not have aczess to the knowledge encoded in the user-defined predicates.

A relaed problem in meta-rule usage is caused by OPS4's format of production rules as arbirrary lists with the
symbol --> within them. It is not sraightforward to write a CE to match a producton binding the LHS and 2HS to

variables. In OPS, the CE (--> =LHS =RHS) serves this purpose.

Right-hand Sides. Variables and segments on the RHS are treated as in the original OPS language. The default
RHS acdon is addition to working memory. Also the acdon <add> is provided as an alternative syntax, Thus the (wo
RHS constaucts (on box table) and (<add> (on box table)) have identical funcdon. There is also a diffsrence in
the implementadon of <add>. When an existing element is added, its dme tag is changed and thus its new recancy can
affect conflict resolution. However, this addition does not acfect the first stage of conilict resolution in which
instantiadons already fired are discarded. The element does not count as a new element and thus previously fired
instantadons involving it will not be selected. OPS4 provides an alternadve RES action <reassert>, which causes -
an 2xisting 2iement to be reasserted and thus allows instandations involving it to be considered.

The following actions behave the same way as in the original OPS language: <delete>, <quote>, <evals>,
<bind>, <null>, <write>, <write& >, <read>, <build>, and <excise>, The acdon <halt> is provided :0
halt 2xecution of the production system. The CPS action readp for asserting copies of producions into working
memory was not included in OPS4. This. in combination with the difficulty in mawching on parts of producticns,
makas using meta-rules impracucal.

Just as LHSs were made more flexible by the additon of user-defined predicates, RHSs in OPS4 can execute

arbigary LISP code with user-defined RHS funcdons. RHS functions should be defined as FEXPRs (see [MIT 1978]

for a descripdcn of MACLISP) and use the OPS4 functon eval-list w0 evaluate the arguments. Eval-list evaluates

argument lists according to OPS4 syntax; it correctly interpress OPS4 variable bindings and RHS use of the segment

operator.

Conflict Resolution. In OPS4, the removal of previously fired instandations from the conflict set is termed
refraction. Itis not considered part of the conflict resoludon srategy in that these instandations are not considered part
of the conrlict set. The rule concerning the eliminadon of old WMEs is dropped from OPS4's conflict resoludon. The
basic srategy of recency followed by specificity is still used though the implementadon is slightly different. OPS4

conrlict resoluton can be described as follows. The additon of rule 3 serves as an altzmative measure of the specificity

of an instandadon.

(defun <notany> (pattern data)

{(not (member pattern data)))

(defun <any> (pattern data)

(member data pattern))

(rhs-function <+>)
(predicate <notanys)

(predicate <anys)

(system

make-attempt-left-right (

(side (piece =pl)
(dir left)
(joined false)
(color =col)
(curve =cur & (<any> concave convex))
(shape =x))

(side (piece =p2 & #pl)
(dir right) -
(joined false) -
(calor =col)
(curve #cur & (<any> coancave convex))
(shape =y))

->

(attempt (=pl left) (=p2 right) (<+#> =x =y)))

clean-unsuccessful-attempts (

(attempt = = (<notany> 0)) & =attempt
- (side = = (joined false) = (curve (<notany> egde)) =)
>

(<delete> =attempt))

OPS+ can be considered the first complete production system tool in the family of OPS languages. It is a flexible
language with provisions for extension through user-defined predicates, variables, and functions. OPS4 runs in a LISP

2nvironment augmented with funcdons for the analysis, execution, and debugging of production systems.

2.3 OPS3: Sets and Attribute/Value Represantation

OPS3 represents a departure from the other OPS languages. Although the recognize/act cycle and conflict
resolution sTategy are maintained, the similarity ends there. OPS3 uses a very different form of pattern matching as its
fundamental semantics. Rather than matching by equality, it is performed by set intersecdon. This also implies that
the fundamental data representation is the set. When matching a set within a CE (known as varunits) against a set in a
WME (or unit), the match succeeds if the intersecton is non-empty.

The underlying representation is sets of attribute/value pairs. The representation is more conswrained in that
arbigary sguctures are disallowed, but is more modular and accessible in that there is 20 ordering imposed on the
components of the sews. [t is also easier to convernt d:lis representadon to natural language for use in an intelligent
interface. This in combination with the widespead use of this representation in other systems supported the selection of

the amridute/valye representadon [Rychener 19801,

Working Memory Elements. OPS3 defines a more squctured representation for its WMEs, referred to as units. A
unit is an anchored set of atribute/value pairs. The anchor is a list of three atomic or vector values which are used for
id2ntifying information of the unit. From the point of view of the mawch algorithm., these values are used to index
which productions are relevant when a unit is added to working memory. After the ancher, an unordered set of
atTibute/value pairs follows. Each atribute is an atom or vector and each value is a set. The set of pairs can be
interpretad as a set of atributes each having a value; there can be no duplicate amributes even with different values.

There is an implicit fourth anchor in each unit which is its ime tag. It can be matched against by referring to the

unit's time auribute,

Acdons, on the other hand, are made of a functon name (the first anchor), a variable indicating the WME being worked
aa (the second ancher), and argumentss of the form of auribute/value pairs.

The acdon (ladd =wme (al v1) (a2 v2) ...) adds the atmibutesvalue pairs to the WME bound to the variable.
if the armbute al exists in the =wme, this modifies the value of al to be the union of its current value and v1. The
opposite fundon, !del, deletes attribute/value pairs from a WME. [n the case of sets, the values of the attributes are
medifed by taking the set difference berween the current value and the value specified in the acdon. In order 10 change
:he values of the anchors of WMESs, the acdon !mark is supplied. The following call to 'mark changes all anchors of

1 unit.

(mark =u (pri =vl) (sec =v2) (mod =v3) (time =v4))

The anchors are named pri, sec, mod, and time, corresponding to the four anchors of a working memory unit.
The f{uncton !rep takes a variable bound to 3 WME and a set of atribute/value/new-value wiples. [t combines the
{uncdonality of 'add and !del in that it removes the values from the atmibutes and adds the new values to them.
!Copy makes a copy of 2 unit. Removal of units from working memory is accomplished with the funcdon !remove
which akes an arbitrarily long list of variables bound to unit names. In order to create a new WME to further work on,
the funcdon !bind is used. The funcdon !keep causes the given WMES to be protected from deledon due t0 their age.
'Rehearse updates the ime tags of the listed WMEs. !Time returns the time tag of the argument WME.

Cn the RHS, it is often desirable o reduce the sets bound to variables to a selected member, either arbimarily or
according (0 certain specifications. Actions which reduce sets to atoms are !choice, !minimal, and !maximal. The
tirst recums an arbimary clement, the seccnd and third return the smallest and largest members respecavely.

Actions for /O include !write, !read, and !dis. The details of these actions depend on the user interface which is

_ considered separate from the producton system language:

Funtions for manipulating production memory are !build, and !readpm. Because of the difference in
representations between units and productions, OPSJ provides a formal definition for a working memory unit
description of a producton. A production can be representad in working memory as a formally described set of units
with common idendfying infarmation. When !readpm is executed with the name of a production as argument, a copy
of the production is ganslated into its working memory representadon and asserted. !Build creates a new rule from the

units referred to in its arguments which should collectively form the descripdon of a production.

Working Memory Representation of Productions. A sample production and its representadon in working memary
follow. The working memory representatdon is crypdc but it is necsssarily so in order to adequately describe a

production within the syntax of unis. The unit with anchors pm rule pm represents an abszact form of the

17

Acron Execurion. On executing the RHS of the selected production, changes are made t0 working memory and
:he new WMEs are gziven their ume rags is increasing order. In addition, the WMEs matched on the [HS have their

ame tags updated according o the following formula.
max(current_time_tag, present_time - 0.25 * (present_time - lowest_time))

This ceeps relevant WMEs current. Also, whenever 3 WME is created, another one must be erased because of the
finite size of working memory (except at the beginning of executon when working memory is not full). The oldest
(by approximation) WME is the one which is deleted. OPS3J keeps track of the approximate cldest WME in the
following manner. When the oldest WME is deleted, the next oldest is found by finding a WME with time tag less

than the formula below.
previous_oldest + 0.15 * (present_time - previous_oldest)

This technique reduces the search dme 10 find the actual oldest WME. An excepdon to this method of finding the
next 2lement to be deleted is that every WME has a reference count (that is, a count of how many other WMEs refer to

‘0. A unit with 2 non-zero reference count will not be selected for deledon unless all units are referenced.

Sample Produciion System. In the OPS3 implementation of the jigsaw puzzle, its set matwching mechanism
liminates the nead for the user-defined predicates any and notany. Nevertheless, due ‘o its lack of provisicn for
usar-defined predicates, the calculadon for fit must still take place on the RHS.

make-attempt-left-right | ;

(side =pl left = (joined false)
(color =col)
(curve (=cur convex concave))
(shape =x))

(side (=p2 #pl) right = (joined false)
(color =col)
{curve (#cur convex coacave))
(shape =y¥))

-->

(attempt =pl*left =p2eright (fit ('plus =x =¥)))]

19

~nich have heen essentially ignored in the further evolution of the OPS family. Cne of its contributions, however.
:hat of auributesvalue pairs, was adopted in OPSS which has become the most widely used of the OPS family of

.anguages.

2.4 OPSS: Sacrificing Flexibility for Speed

OPSS is generally considered one of the most widely used production system languages in both universities and
indusy. After the inidal OPS4 implementation, Digital Equipment Corporation’s R1 was ranslated and further
developed in OPSS. OPSS was considered by the developers to be easier to use and more intelligible than its precursor.
There was, however, another reason underlying the ;eimplemcmadon. The intuidve advantage of using production
sysiems is the incremental nature of the development of such programs. Nevertheless, it was found that in pracdce
writing production systems in OPS4 and OPSS did not reflect this advantage. Production rules are often not
lutonomous, leading to convoluted, difficult to maintain programs. Thus reimplementarion also served to resoucture
the prcgram on the basis of having a clearer picture of the system, regardless of the change in language [McDermou
1981].

OPSS was chosen, however, by the R1 developers as well as by many others for expert system development
{Criesmer er al. 1984, Stansfield 1986]. This acceptance indicates that there is some radonale for the choice. OPSS
crovides a gready needed speed improvement over OPS4 and the adopdon of the artribute/value representaton is
2ncouraging from the standpoint of the soucture’s widespread use in the aruficial intelligence community. OPSS was
ariginally implementad in MACLIS? (MIT 1978], Franz LISP (Foderaro 1980], and BLISS [Digital Equipment
Corporation 1980) making it available w0 a wide audience. Its debugging facilides are more robust than those of
previous OPS languages making it more suitable for the'.‘dcvelopmem of larger systems [Forgy 1981].

Working Memory Elemerts. The underlying structure of a WME in OPSS is a one-dimensional array of atoms
(numbers or symbols). There can be no nested lists or scalar atoms in working memory. However, OPSS’s syntax
provides a mechanism for the use of auribute/value pairs within this framework. Prior to compiling productions, the
atributes of different classes of WMEs are declared using the literalize statament. After processing all literalize

dactaradens, OPSS assigns a unique integer index to each aaribute mentioned.

(literalize goal status type object)
(literalize object type color size)

(literalize location X v)

Right-hand Sides. OPSS provides a more rigid syntax for its RHSs as well as its LHSs. A RHS patern is
defined as a sequence of values or acribute/value pairs where the values are either constants, variables, or funcdon cails.
“here are exacdy 12 RHS acdons provided many of which take RHS pattemns as arguments,

{n order 0 add elements to working memory, the action make is provided. Make takes a RHS pattem as its
wrgument. The OPSS interpreter uses a special array of 127 elements called the result element during RHS evaluations.
[t is not in working memory, rather it is used for intermediate processing in RHS acdons. First. the result slement
index is inidalized o 1. Then the RHS partern is scanned; each value is placed intw the result element at the current
index and 2ach auribute causes a reassignment of the current index. During RHS partern evaluation, constants evaluate
to themselves, variables are replaced by their bindings, and RHS functons (as opposed 0 actdons) can be called. OPS3
provides a set of functons and the facility for users to integrate their own inw the system. After the RHS pattern is
evaluated into the result element, make asserts it into working memory.

The remove acton removes elements from working memory. Iis arguments are either element variables or
aumeric values indicatdng which posidve CZ on the LHS matched the WME to be removed. OPSS’s acdon modify is
2quivalent 10 a remove followed by a make. Its arguments are first an element designatcr (number or variable) and
then 1 RHS pauern. Modify first removes the element indicated, then fills the result element with a copy of i Then
3 RHS pattern evaluation occurs, overwriting slots in the result element as indicated. Finally, the result element is
assered into working memory. The actdons bind and cbind are provided for explicit binding of variables on the RHS.
Actions for VO are write, openfile, closefile, and default. The acdon default allows the user o0 specify which
is the default file for Q. This is initally set to be the user’s terminal. The acdon halt halts the system.

OPS3 provides the build acton for building new productions. Nevertheless, because of the different saructures
used 10 represent WMEs and produczons, and the lack of any formal definidon for translating information between
them, it is impracdcal © use meta-rules in OPSS. ‘

The call action is used to invoke user-defined actio?;s (as opposed to user-defined funcdons which are called within
other actons). A call to this acdon has the form (cal]- name pattern) where the name is that of the user-defined

action and the pauemn is a RHS partern. The pattern is evaluated into the result element and then the functon name is

cailed.

L!SP interface. OPSS provides mechanisms for users to define their own actons and funcgons. Actions are
invoked using the call action, and functions can be called within RHS patterns. [t is important to note that all
interacdon berween the user-defined routines and OPSS must take place via the result slement. Actons must be defined
as EXPRs of no arguments. Upon invocation of a user-defined acdon, the result slement will already contain the

evaluated pattern argument of call. In order to access these values within the routne, OPSS provides the LISP

function Sparameter.

[

the cause of implementing the atmbutesvalue representation on top of the fast underlying array smucture: the

Jtmibutevalue representadon is a syntactc convenience for the user, not the actual representation.

Sample Produc:ion System. The jigsaw puzzle system in OPSS is similar to the OPS3 version. 3cth use the
aunbutesvalue representation but OPSS uses its disjunctdon and conjunction operators where OPS3 relied on its set

operatons.

(literalize side piece dir joined
color curve shape)

(literalize attempt piecel piece2
dirl dir2
fit)

(p make-attempt-left-right

(side “piece <pl> Adir left
Ajoined false
Acolor <col>
Acurve { <cur> << convex concave >> }
Ashape <x>)

(side “piece { <p2> <> <pl> } Adir right
Ajoined false

Acolor <coal>

Acurve { <> <cur> << convex comcave >> }
Ashape <y>)
>
(make attempt Apiecel <pl> “piece <p2>
Adirl left Adir2 right

At (compute <x> - <¥>)))

(p clean-unsuccessful-attempts
(attempt Afit <> 0)
- (side Ajoined false
Acurve <> egde)
>

(remove 1))

OPSS is a relatively high speed production system interpreter. It achieves this speed by combining the fast pattern
matching techniques of the Rete algorithm with fast data structures at the expense of flexibility. LHSs are resmicdve
= by disallowing any user-defined constucts. The LHSs therefore are compiled into an efficient network. The RHSs.

qowever, are sdll interpreted.

2.5 YAPS: Structured Flexibility and Multiple Prccuction Systems

In response two the diminished flexibility of OPSS, YAPS was deveioped in order to provide a producdon system
interpreter with the speed of OPSS yet with substandal increases in expressive power [Allen 1982]. The major
objecdons to OPS5 addressed by YAPS are the flac structure of WMEs, the lack of user-defined LHS predicates, the
interpretation (as opposed to compilation) of the RHS, and the difficulty in running a production system under another
crogram's conaol. YAPS also provides a mechanism for implemendng a set of discrete producdon systems with a

method for communicaton between them.

Working Memory Elements. Y APS abandons the use of the atribute/value representation and reverts (o the
arbitrary list seuctures used in OPS4. However, atomic WMEs are not allowed. In order to handle this representation,
however, it is necessary to re-introduce the segment operator for matching lists of indefinite length. Working memory
as a whole is more similar to OPSS in that duplicate elements are supported with their time tags being the unique

idendfying information.

Left-hand Sides. YAPS separates LHSS into two parts: the first part has patterns to be marched against WMEs,
the second part performs tests on the matched data. Thus the use of predicates, not variables, patern-and, or any other
pattam-matciing funcdons is isolated from the actual match procsss. The match part only contains dcscripu'ons'of

WMESs with constants, variables, and segmentation specified. Variables are distinguished by a leading -. The segment

Multiple Production Systems. YAPS supports the use of multiple production systems. Several independent
svstems of productdon and working memories can co-exist in the 2nvironment [Allen 1983]. They can communicate
using a standard mechanism developed at the University of Maryland which supports object-oriented programming
“Allen er al. 1983]. The construct (<- name funcrion-description) indicates that the funcdon described shouid oe
sent o0 the named producton system for evaluadon. Thus, if the firing of a producdon should cause the WME (a b ¢)
to be asserted in the working memory of another system the name of which is bound to -name, its RHS should
contain the expression (<- -name 'fact ’(a b ¢)). Most of the funcdons provided by YAPS have equivalent forms
using this message passing consmuct. The top-level functions can also be direcied to 2 named system using the same
facility. YAPS has twp-level funcdons for displaying productdons, WMEs, or the conflict set: printp, db, and ¢s

respecdvely. Also, QPSS style tacing is supported with the functions trace, and pbreak.

Conflic: Resolution. YAPS's conflict resoludon swategy is similar to OPSS's MEA. Rather than preferring

instandadons with more recant martches to primary CEs, it prefers instantiations matching more recent goal elements,

Qther than this, the conflict resolution strategy is the same.

Sample Production System. The jigsaw puzzle system implemented in YAPS is different from the other versions

because of its powerful testing mechanism on the LHS. By wridng the appropriate LISP functions, the system is

reduced to a single rule.

(defun opposite (sidel sidel)
(or (and (eq sidel ’left) (eq side2 'right))
(and (eq sidel 'top) (eq side2" 'bottom))))

(defun inverse (x y)

(zerop (+ x 7))

assimilation into oter programming paradigms achieved by the message passing fearures. They allow production
systems to be used in conjunction with object-oriented programs without necessarily imposing a dominance
reladonship berween e methods. Either cype of program can control the other through the general message passing
“acility provided.

2.8 YES/OPS3: Making OPS5 Suitable for Real Time Applications and Manitcring

At [BM’s Thomas I. Watson Research Center, the YES expert system project selected OPSS for the development
of YES/MVS: a producton system designed to mor}iwr an [BM mainframe running the MVS operadng system.
Although most of the needs of the project were satisfied by OPS5’s features, some functions were added to make it

more practical for use in a real time monitoring enivironment [Griesmer er al. 1984].

New Actions. An important part of operatdng a large computer systam is scheduling. This task often requires that
certain funcdons de performed at a later dme. For this purpose, the icdon timed-make was created. Calls to this
acdon take two forms, specified below. The farmer indicates that the described WME whould be asserted at the absolute
ume specified. The laner gives a relative dme at which the WME should be added.

(timed-make RHS-pattern (AT time-description))

(timed-make RHS-pattern (IN time-description))

YES/MVS was built as separate component productdon systems. A method for their communication was provided
with the action remote-make, This acton has the same synuax of make but an additional attribute ARm-to: is
specified with the name of the destinadon producton system supplied as its value.

Finally, the acdon ops-wait suspends the recognize/act cycle undl a timed-make or remote-make affects the

working memory.

RecognizelAct Cycle Change. In order to implement the above new acdons, an extra step is placed in the
recognize/act cycle. After the actions of the selected production ar: processed, the interpreter checks if there are any

timed-make or remote-make actions o be processed in this cycie. If 5o, the new elements are asserted before the

next cycle.

WVoridng Memory Elemems. OPS83 WMEs are record squctures in which the fields are either scalars, arrays. or
records, but not other elements. A given element type is declared in a type declaration statement as in the sxample

selow,

type goal = element (
status : symbol;
type : symbol;
value : real;
loc : array(2:integer);

)s .

Left-nand Sides. LHSs of OPS83 rules are compiled into a Rete network. Thus they are not executable pieces of
code, rather ey are declarative descriptions of possible states of the werking memory. They are referred 0 as simpie
contexts. A simple context is a portion of an OPS83 program which cannot refer to or change global variables,
serform any [/O, or alter working memory. Data comparison, calls o procedures or functions that are also simple
contexis, and pagern macching against WMESs comprise the LHSs of rules.

The LHS is made of a sequence of CEs at least one of which is posidve. Negative CEs are preceeded by a ~ with
10 grovision for conjuncdons of negadons. Any posidve CE can be precesded by a variable name, in which case that
vanable is bound to the mawching WME upon LHS satdsfaction.

CZs have the following form. They are enclosed in parentheses with a symbol indicating the element type at the
head. Then there follows a sequence of terms, each of which is either an expression in parentheses, a function call of
. type logical, or a test on a field of the element. OPSSJ*bmvidm the pseudo-variable @ to refer to the element being
matched. Following the CEs is an opdonal rasring expre_s}ian enclosed in square brackets. The expression can refer 0
the variables bound on the LHS and must evaluate ©0 a real number. The value for a given instantiation can be accessed
during the user’s conilict resoludon strategy or recognize/act cycle. For example, the LHS containing the CZ above

could be followed by the expression (&G.value / 100.0].

Make, Modify, Remove, and On Statements. These working memory altering statements can appear in any
non-simple context. They most often occur in portons of a program that initialize working memory and on RHSs of
rules. The make statement asserts 2 WME into working memory concurrently altering the conflict set to reflec: the

addition. Remove removes a list of WMEs an alters the conflict set accordingly. Modify removes the specified

2lement and assents a copy with the specified fields changed.

function select () : integer

{

local &n : integer, &ch : integer,
&sp : integer, &time : integer,
&w : integer, &u : integer,
&r : real, &1 : integer,
&we : integer, &cc : integer;

&n = cssize(); &ch = -1; &sp = -1; &time = -I;
for &i = (&n downto 1) =
ir (instauce(&i,&w,&u,&r.&wc.&cc) A
&u = 0 A
((&w > &time) V
(&w = &time) N (&ce > &sp))))

{
&ch = &i;
&sp = &cc;
&time = &w;
5
return(&ch);

procedure run (); _

{

h

local &ij : integer;

&i = 1

while (&i > 0)

{
&i = select();
if (&i > 0) fire &i;
if (&haltflag) return;

rule fitpieces

{
&sidel (side

&sidel (side

write () }Joining |,

joined = 0B;

(@.curve = convex V @.curve
joined = 0B;

piece <> &X&sidel.pieces;
opposite(&sidel.dir,@.dir);
color = &sidel.color;
(@.curve <> &sidel.curve);-

(@.curve = convex V/ @.curve

inverse(&sidel.shape,@.shape));

&side2.dir, | side of |, &sidel.piece, ‘\n’;

modify &sidel (joined = 1B);
modify &side2 (joined = 1B);

I

h

OPS83 is a language directed at industries interested in the commercial development of expert systems. [t creates
. fastsystems because it compiles the code fully. Both procedural and rule-based programming paradigms are supported
giving a high degree of flexibility to the language. H;_wever. the language is not suitable for arficial intelligence
research. [t lack the flexible environment associated with interpreted systems. It has no provisions for introspecton

and learning. Nevertheless, OPS33 is an adequate programming tool for producing fast, statc expert systems for

industrial applicadons.

&sidel.dir, | side of |, &sidel.piece, | with |,

Ambrtrary Structures

CPS5

37

YAPS | YES |CPSaZ

WM
Structure

Attribute/Vaiue Scaiar

Attribute/Value Set

8y Eguality

LHS Usar Predicates

Match
3y Set Intarsaction '

Flexibiiity RHS User Actions

of Code ,
Cenjunction of Negs

Usaer Canflict Res

Suild Preductions

Learning

Muitivie Systems

Read Productions

Others Timed Makas

‘ Commun/Interrupt

- Languagse fully implamants this featura.

RIS
PR
~a

- Language has a restricted form of this featurs.

1y <42

OPS3 redres WMEs when they are old. OPS4 provides a facility for this feature (modified from the earlier
versions which automatically deleted old elements). Although this assures the use of working memory as short =rm.

other production system programming (echniques have been sdied which make use of portions of working memcry as
another source of problem-domain knowledge which should thus not be deleted [Pasik and Schor 1984]. These and
other uses of long term WMEs have been analyzed [Brownston er al. 1985].

h

(P2
=]

(p first-rule
(block *size <s>)
ae>

(make temp “*value (f <s>)))

{p second-rule
(temp “value < 100)
.->
(write Found a block with f(size) less than 100)

(remove 1))

Conjunctons of negated CEs is available in all the languages except OPSS5 and OPS83. This is a more serious
drawback in the languages because in order to circumvent the restricdon it is often necessary io change the daca
sauciures used. The only way to negate a conjuncdon of conditions is for those conditons o be part of a singie
WME. Another alternadve is to separate the problem into two rules. For example, a producdon is necessary for the
:mplementaden of round robin scheduling. In this, the following condidon is required of the next user :0 be scheduled.

3 | (number-scheduled(user) = m) A

user
| [(number-scheduled(user) < m) A (job-waiting(user))] }

~ {3 yger
This means that for 3 user to be selected for scheduling with m jobs already scheduled, there must be no other user
with fewer than m jobs scheduled with a job waiting. In OPS3J, which allows conjuncdons of negatcns, this could be

expressed as follows. -

P1 ((job entry =j =cl (statns unscheduled)
(user =u))
(user id =u =c2 (number-scheduled =m))
&- (user id =u2 ¥c2 (number-scheduled (!neg =m)))
(job entry =j2 ¢l (user #u)
(status unscheduled)) -&
>

(lrep =cl (status unscheduled scheduled))

(‘rep =c2 (number-scheduled =m (!plus =m 1)))]

11

jobs pending. An aiternarive approach involving changing the sructures used to represent users. [n addition to keeping
70w many jobs have been scheduled for each user, a count of how many unscheduled jobs is kept as well. Since both

these values are kept within the same WME, a conjunction of conditions on these values can be negated.

(p P1
(job-entry rd <j>
Astatus unscheduled)
(user-id Ad <u>
Anumber-scheduled <m>
Anumber-unscheduled <a>)
- (user-id Aid <> <u>
Anumber-scheduled < <m>
Anumber-unscheduled > 0)
-->
(modify 1 Astatus scheduled)
(modify 2 A‘number-scheduled (compute <m> + 1)

Agumber-unscheduled (compute <n> - 1)))

Another aspect of code flexibility is provided in OPS83. I[n this language, the user can develop a recognize/ac:
cvcle and conrlict resoluton tailored to the specific needs of the system. The problem of procadural control of
production systems is addressed with this flexibility. This contol can take the form of a recognize/act cycle which
performs a step prior o conflict resolution. This step would limit the eligible instandations to those derived from a
prcducton in an active set, as determined by an znalys'u_:)f the current problem state (Georgeff 1982). The inability to
adequately separate conmol knowledge from other domain knowledge has been a hinderance to OPSS users [Ennis 1982].
8v providing this flexibility, OPS83 has the potzndal to be used for a wide range of domains.

3.4 Learning Capability

There are both synactc and semantc requiremens of producdon system languages for leamning o be practcal. By
learning, it is meant that the production system should be able w0 automatdcally create new productons through an

analysis of its existing knowledge struczures. The only syntactc construct necessary is the build acdon; actions 0

in the jigsaw puzzle example, the expressive power of YAPS and OPS33 surpasses that of their predecessors in their
1bility to perform complex tests during pattern matching. OPS4’s support of user-defined LHS predicates is limuted in
that variables cannot be passed as arguments, OPS3J and OPS35 have no provision for the custom pauemn martching
nesded for the problem.

The atribute/value formalism used in OPS3, OPSS, and OPS33 makes productions more concise, readable, and
modular. The combinaton of this representadon and the set matching in OPS3 is a very appealing mechanism.
However, OPS3 falls short by not providing adequate feaaures for extending the language.

OPS&3 provides great flexibility. Its support of LHS predicates and arbitrary RHS bodies is complemented by its
Tlexible mechanism for the implementation of conflict resoluton smategies and recognize/act cycles. Nevertheless,
OPS33’s practicality is diminished because of its lack of environment Debugging OPS83 is exwemely difficult

because custom tace routines must be written for each program. Also, the programs must be recompiled on each

= development iteration.

On analyzing these languages, the importance of certain features in production systems becomes evident. None of
the languages is ciearly superior to the others. A powerful productcn system language can be envisioned providing the

‘ollowing fearures.

« the atgibutesvalue formalism of OPS3, OPSS and OPS33

« the set marching capability of OPS3

» the powerful daw tesdng facility of YAPS and CPS33

+ the nicd, interpreted anvironment of OPS4 and OPSS

+ 2 compiler for greater speed of completed systems as in OPS83

+ the customizable conflict resolution and recognize/act cycle of OPS83

« the self-representadonal capability of OPS3 —

» the communicadon primidves for disaibuted systems of YAPS and YES/OPSS

Clearly, such a language does not exist. Nevertheless, it is not an inconceivable combination. The next
g=2nerauon of ‘pmduction system languages will likely use many of these features in combinadon with consaucts for the

namiral representation of parallel match functions and actions.

References

Allen E. (1983) YAPS: A Production Rule System Meers Objects. AAAI-33, 5-7.

Allen . (1982) YAPS: Yat Another Producton System. Technical Report, Department of Computer Science,
University of Maryland.

Allen E., Trige R., and Wood R. (1983) Maryland Arificial Intelligence Group Franz LISP Eavironment. Technical
Report, Department of Computer Science, University of Maryland.

Srownston L., Farrell R., Kant E., and Martin N. (1985) Programming Expert Systems in OPS5. Reading
Massachusens: Addison Wesley.

Bumns L.M. and Pasik A. (1985) A Generic Framework for Expert Data Analysis Systems. Technical Report.
Department of Computer Science, Columbia University.

Digital Equipment Corporadon. (1980) BLISS Language Guide.
Znnis S.P. (1982) Expert Systems: A User's Perspective of Some Current Tools. AAAI-32, 319-321.

Foderaro J.X. (1980) The Franz LISP Manual. University of California at Berkeley.

Forgy C.L. (19793) On the Efficient Implementation of Production Systems. Ph.D. Thesis, Camegie-Mellon
University.

Forgy C.L. (1979b) OPS4 User’'s Manual. Technical Report, Department of Computer Science, Carnegie-Mellon
Universiry.

Forgv C.L. (1981) OPSS User’s Manual. Technical Report, Deparunent of Computer Science, Camegie-Mellon
Universicy.

Forgy C.L. (1985) OPS83 User’s Manual and Report. Production Systems Technologies.

Forgy C.L. (1982) Rete: A Fast Algorithm for the Many Pauem/Many Object Pattern Match Problem. Artficial
[nielligence 19(1): 17-37. -

Forgy C.L. and McDermot I. (1977) OPS, a Domain-independent Production System Language. UCAI-77, 933-939.

Forgy C.L. and McDermott I. (1976) OPS Reference Manual. Technical Report, Deparument of Computer Science,
Camegie-Mellon University.

Forgy C.L. and McDermott J. (1978) OPS2 Reference Manual. Technical Report, Department of Compu:2r Science,
Camegie-Meilon University,

Georgeff M.P. (1982) Procedural Control in Production Systems. Artificial [ntelligence 18(2): 175-201.

Gnesmer J.H., Hong SJ., Kamaugh M., Kastner J.K., Schor M.I., Eanis R.L., Klein D.A., Milliken K.R.. and
VanWoerkom H.M. (1984) YES/MVS: A Continuous Real Time Expert System. AAAI-84, 130-136.

