Thesis Proposal:
The Expected-Outcome Model of

Two-Player Games
CUCS - 230~ 8¢
Bruce Abramson
Department of Computer Science, Columbia University
Computer Science Department, University of California
at Los Angeles *

November 2, 1986

Abstract

This paper introduces a new, crisp definition of two-player evalu-
ation functions. These functions calculate a node’s ezpected-outcome
value. or the probability that a randomly chosen leaf beneath it will
represent a win. The utility of these values to game programs will
be assessed by a series of experiments that compare the performance
of expected-outcome functions with that of some popular, previously
studied evaluators. To help demonstrate the domain-independence of
these new functions, the experiments will be run on variants of sev-
eral games, including tic-tac-toe, Othello, and chess. In addition, the
paper outlines a new probabilistic model of game-trees which involves
rethinking many long-accepted assumptions in light of the newly de-
fined expected-outcome functions.

*Current address:
Computer Science Department
University of California at Los Angeles
Los Angeles, California 90024

Contents

1 Introduction 1
2 Background: The Problem 2
3 Expected-Outcome: The Proposed Model 7
3.1 BenefitsoftheModel 8

4 Supporting Evidence 11
4.1 Completed Work 12
4.1.1 Decision Quality 12

4.1.2 Estimating Expected-Outcome Values. 15

42 WorkinProgress 18
4.2.1 Learning Expected-Outcome Functions 18

4.2.2 New Backup Strategies 19

4.2.3 Expected-OutcomeinChess 21

5 Contribu’.ons 22

1 Introduction

This document is a proposal for my doctoral dissertation. The thesis under-
lying this work is that the proper model for the study of two-player games
1s probabilistic in nature, not deterministic. The standard model of mini-
maxing statically estimated values in game-trees dates back to 1950 [Sha50],
and has served as the basis of nearly all game programs. One of the most
conspicuous flaws of this model is the absence of a precise definition of what
these static values estimate. Several attempts have been made to deal with
this shortcoming, including the replacement of point-valued estimates with
ranges [Ber79] or probability distributions [Pal85] that describe the likely lo-
cations of “actual” values, and the introduction of easily recognizable inexact
goals that frequently correspond to the ultimate goal of winning the game
[Bot84]. These approaches represent steps in the right direction in that they
acknowledge the impossibility of estimating unspecified values, and concen-
trate instead on describing parameters of those values that are likely to be

useful. Even the suggestion of distribution-based evaluators falls short of the
mark, however, because it, too, fails to provide the necessary useful definition
!. This is a universal failure of two-player game models — the quantity being
estimated by the static evaluator is vaguely defined, and there are no general
guidelines as to how it should be estimated. Nevertheless, all of these mod-
els rely heavily on the face-value principle, the assumption that statically
determined values precisely correspond to actual payoffs [Pea84].

Unlike the standard model, which starts by specifying a backup strategy
and leaves the role of the evaluator undetermined, the model introduced here
starts by defining the ezpected-outcome value of a node as the probability that
random play from that node will result in victory. In addition to providing a
precise role for the evaluator, the probabilistic nature of these values makes
them fairly simple to estimate. Furthermore, this definition makes it possible
to reassess virtually every component of two-player game theory; its impli-
cations and variants include new backup strategies and the development of
an evaluation function that calculates the probability of victory assuming
reasonable (not strictly random) play. Clearly, a complete analysis of all of
its potential ramificationr is beyond the scope of a single dissertation. The
thrust of my research is to develop the basic model and some of its most
immediate extensions, and lay the groundwork for future analyses. I hope
to show that the expected-outcome model is elegant, general, useful, and
powerful, that it constitutes a significant contribution to the fields of game
design and heuristic analysis, and that it warrants serious further study.

The rest of the proposal proceeds as follows: Section 2 elaborates on
some of the problems with standard approaches to two-player games and
demonstrates the need for a new model. The basic expected-outcome model
is described in section 3. In addition, a few of its implications are out-
lined. Section 4 contains a description of experimental work, some already
completed and some still in progress, that will determine the strength of
expected-outcome functions and their usefulness to actual game programs.
Section 5 describes the anticipated contributions of this research. The two

' To resolve this problem, Palay introduced the concept of the delphic value, or “the
value returned by an oracle when viewing the state in question using the same scale as
used by the evaluation function”. He admits, however, that no computational method
is envisioned, and recommends extended minimax and expert consultation as methods of
approximating delphic values.

appendices include a description of the standard evaluators studied and a
brief outline of the experimental work, respectively.

2 Background: The Problem

One of the most widely applied problem-solving techniques in artificial in-
telligence is the heuristic search of state-space graphs. Many interesting
problems can be represented as path-finding problems on large graphs, that
is graphs with more nodes than can be examined in a reasonable amount of
time [Poh70). To find appropriate paths from an initial state to a goal state,
then, some nodes must be ignored. Guidelines that indicate which nodes
should be ignored and which should be examined are called heuristics, and
the resulting systematic search of the graph is known as an heuristic search.
The most desirable heuristics are easy to calculate, highly accurate, lead to
good solutions, and are applicable to many problems. Heuristic search theory
is, in large part, the study of necessary tradeoffs among these features and
the design of heuristics that combine them in the desired proportions. One
type of heuristic that has received a great deal of attention is static evalua-
tion, or the estimation of a node’s merits based solely on directly detectable
features. In many domains, such as puzzles, an adversary (frequently nature)
plays its hand before the game begins. The problem-solving agent controls
the search and concentrates on finding the cheapest path to a goal state. The
intuitive evaluation function in these systems is an estimate of the cost of
that cheapest path. This type of evaluator has been successfully applied to
numerous single-agent domains. In addition, the rigorous definition it pro-
vides has led to many analytic studies which compare the strength of any
two such functions, relate a function's accuracy to the quality of the solution
it generates, and determine the complexity of various algorithms [Pea84].
Most problems, however, can not be modeled effectively as single-agent
searches. In particular, there is a fairly simple class of problems known as
two-player zero-sum games of perfect information, (this class includes many
popular parlor games such as chess, checkers, Othello, and Go), in which the
two players are perfect adversaries and decisions made by one player must
take the opposing player’s possible responses into account. The goal in these
domains is to win the game, and thus the intuitive definition of a two-player

evaluator is an estimate of whether a given node will result in a winning
state. Unfortunately, no firm understanding of what this means has ever been
developed, and few analytic studies have been performed to either define or
investigate a function’s accuracy. The remainder of this section illustrates
how the failure to rigorously define the aim of two-player evaluators has led
to an abundance of difficulties in two-player search systems and caused the
majority of work done in the field to be rather ad hoc.

Static evaluators come into play in two-player domains via a modification
of the strategy that would be optimal if all of a tree's nodes could be exam-
ined, the minimaz algorithm [NM44). In cases where information about all
possible eventual outcomes of an action is available, leaf values, (usually win,
loss, and draw), are minimaxed up the complete tree, and optimal decisions
are based on this backed-up information. Most interesting games, however,
generate trees that are too large to be searched exhaustively 2. Thus, the tree
is searched as deeply as possible, domain-specific static evaluators are applied
to tip nodes at the search frontier, and the estimated values are minimaxed
up the partial tree. Decisions are then made as if the backed-up information
were exactly correct [Sha50). This face-value principle of perfect estimates is
generally taken for granted, not because it is believed to be true, but rather
because no better assumptions present themselves [Pea84]. Given the re-
liance on accurate estimates, then, the importance of determining a precise,
useful aim for the evaluator should be obvious. Nevertheless, no such defini-
tion has ever been developed. In general, two-player evaluators are described
as either indications of a position’s “worth” [Nil80] or estimates of the value
that would be returned by a complete minimax search from that position all
the way to the leaves [Pea84|. Neither of these definitions provides useful
information. The major difficulty with the first lies in its vagueness, while
the second offers no helpful instructions as to how an evaluator should be
designed — the complete minimax value of a node is as hard to estimate as
it i3 to calculate. For this reason, all standard-model evaluators have been
based on game-specific features identified by experts.

The definitions given above pose several other difficulties, as well. First,
the range of exact node values is limited to the range of possible leaf values.

*As an example of tree size, some complete game-trees have been estimated at 7°°
nodes for Othello, 10%° for checkers, 10'?° for chess, and 361! (> 10%%°) for GO.

All useful evaluation functions, however, return much larger ranges. The
common resolution offered for this discrepancy that the larger ranges not
only determine the eventual winner, but account for the ease of victory as
well (Sha50)]. Second, evaluation functions that attempt to estimate a node’s
complete-minimax value implicitly assume that play will be perfect beyond
the search frontier despite a complete lack of knowledge about that portion
of the tree. This difficulty has been almost universally overlooked in the past
because the perfect-play assumption is useful as a defense mechanism. After
all, defense against a perfect opponent should work against an imperfect one
as well. Nevertherless, this approach does have its drawbacks — although
it defends against perfect play, it may make defense against imperfect play
considerably more difficult than necessary [Bra80).

More significantly, the use of partial-minimax to back up information has
never been justified; it has been adopted because it would be optimal if the
information were accurate. There is no reason to assume that it is proper
when the values being backed up are estimates. One of the most obvious
drawbacks to the strategy is its absolute reliance on the single best child of
each parent. If that one crucial estimate is wrong, the entize strategy falls
apart. [t has been fairly well established that strategies that account for
multiple children outperform minimax. Studies done on the M&N algorithm
demonstrated that adding “some (experimentally determined) function of
the M maximum or N minimum values” to the minimax value increases the
accuracy of the decisions made [SD70]. In addition, the discovery of a phe-
nomenon known as minimaz pathology [Nau83] has led to the investigation
of product propagation [Pea8l], a strategy that backs up the product of the
children’s values. Despite the clearly inaccurate assumption of independence
among sibling nodes required to justify this strategy, some surprising exper-
iments have been run in which product propagation outperformed minimax
[NPT83] [CN86]. This result alone should be enough to indicate that mini-
max is not always the strongest possible strategy.

Other difficulties with the standard model are somewhat subtler. The lack
of a general guideline for evaluator design points to one such shortcoming:
there is no known a priori method for determining the accuracy of a function.
In a game whose leaf values are restricted to win, loss, and draw, (true for
all games considered), a perfect evaluator returns the appropriate value of
the three. Thus, the implicit task of an evaluator is classification, and a

function’s strength is directly proportional to its ability to correctly identify
wins. losses, and draws. The obvious way to determine strength, then, is
to divide the range of returned values into three classes and calculate the
percentage of actual values that were classified correctly. The problem with
this approach is that it completely ignores the issue of decision quality, or the
frequency with which the best move is made. Under this system, a function
that incorrectly classifies a few nodes, albeit badly, receives a high rating,
while one which makes many inconsequential misclassifications gets a low
one. For example, consider two evaluation functions, A and B. Function
A classifies 90% of the nodes correctly, but most of the erroneous 10% are
losses which are given very high values (or wins given very low values). Any
time one of these losses is available it will be selected despite the existence of
many wins, which were correctly classified but given lower values. Function
B, on the other hand, only classifies 60% of the nodes accurately, but most
of its errors occur with values near the boundaries. Thus, B’s errors rarely
affect play, and when they do, the results tend to be far from disastrous, say
the selection of an easy draw over a difficult win. If two such functions were
pitted against each other, B would probably win more games. Thus, only
a posteriori comparisons are possible. This, in turn, leads to a great many
problems, most notably the inadequate testing of functions before they are
actually used.

Although the above scenario may appear somewhat contrived, it is actu-
ally related to a well known game-tree phenomenon, the horizon effect, or
the difficulty of knowing what lies just beyond the search frontier [Ber73).
Errors of the type made by function A frequently arise from the evaluation
of board positions that occur in the middle of a combination of moves or a
series of exchanges. These nodes are not quiescent, and they should not be
evaluated statically. Evaluations that are made on non-quiescent nodes are
highly unreliable because the static information is likely to change rapidly as
soon as the horizon is extended [Sha30]. Unfortunately, non-quiescent nodes
are not always easily recognizable, and are thus frequently unavoidable. The
problem of quiescence can be viewed as a necessary outcome of the standard
definition of the evaluator. Since the evaluator is designed to estimate the
value of a node as it relates to the goal, there is no logical point for terminat-
ing search other than reaching a goal node [Bot84| [Ber79). Thus, the search
frontier must be set arbitrarily, and anomalies of the horizon abound.

In short, the absence of a precise definition of what an evaluation func-
tion is estimating sends a ripple of problems throughout the search system:
backup algorithms can’t be justified, functions can’t be compared, and fron-
tiers can’t be set intelligently. Although each of these shortcomings has been
discussed in the past, the effects that they have on the design and perfor-
mance of game-playing programs is not always identifiable. Most previous
work has concentrated on one (occasionally two) of these difficulties; never
have all three been addressed simultaneously. I have presented a survey of
this work in [Abr86]. The point of departure of my research from previous
work is my interest in the general structure of game-trees. The next section
outlines the expected-outcome model, an evaluator that considers the rela-
tive merit of nodes in a game-tree, rather than that of features on a board.
Although the information contained in the two representations is equivalent,
existing board-based evaluators are useful only in the games for which they
were designed, while the new tree-based model should be applicable to any
problem that can be represented as a game-tree, (or at the very least a large
class of them).

3 Expected-Outcome: The Proposed Model

The purpose of an evaluation function in a two-player domain is to estimate
whether a given node on the search frontier will result in a win. The proposed
model contends that this corresponds to the probability that a randomly
chosen leaf beneath the node in question will be a win. To determine this
probability, consider the leaves’ numeric values, (say one, zero, and one-half,
for win, loss, and draw, respectively ?), add the values of all leaves in the
subtree beneath the given node, and divide by the number of leaves. The
proper interpretation of this function is the expected value of the subtree, or
an ezpected-outcome function.

At first glance, the assumption of random play may appear unreasonable.

3There are several equally reasonable methods for assigning numeric values to leaves.
One other formulation that has been studied regards a draw as noise unless it is the only
value possible. In this system, wins are one, losses zero, and draws don’t count as leaves.
For games with relatively few draws, the assignments are essentially equivalent. Only
in games with a high density of draw leaves, such as chess, does the distinction become
interesting. This is discussed in more detail later.

It is important to recall, however. that evaluation functions in two-player
games are normally applied only at the frontier of the search. By definition.
the frontier is the limit beyond which a program cannot search deeper in
the game-tree, rendering information from the subtrees beneath it highly
unreliable. The expected-outcome model effectively divides the tree into
two sections. The lower part, which extends from the tips to the leaves,
is too large to be understood completely. The sole available information
1s static, a description of what the subtree looks like (at least in terms of
leaf composition). Only the upper part is well understood; various backup
strategies can be applied to determine not only its configuration, but the
dynamic flow of control through it as well. The absence of reliable control
information from the tree’s lower portion indicates that although play there
will not actually be random, the assumption of random play is, in fact,
credible, and certainly more realistic than the common assumption of perfect
play.

Under this new model, the vaguely defined problem of devising evalua-
tion functions for games is reduced to the precise problem of approximating
the percentage of win leaves beneath a given node. Since this percentage
corresponds to a statistical mean, it can be approximated by using the well-
understood technique of random sampling. The remainder of this section will
outline some of the open problems that can be addressed by the adoption
of expected-outcome as the model for two-player static evaluators. They are
not all issues that I expect to resolve as part of my dissertation, but they
should help illustrate the model’s widespread potential.

3.1 Benefits of the Model

In its purest form, calculating expected-outcome values involves knowing all
leaf values in a tree. Since this is as impractical as performing complete min-
imax searches, some approximation technique must be adopted. Random
sampling can fill this need in one of two ways: by replacing static evaluators
or by designing evaluation functions. If a random sample is taken beneath
every node on the search frontier, expected-outcome values can be assigned
across the frontier and backed up the tree, and the need for static evaluation
is completely eliminated. The idea of guiding search based on randomly sam-
pled leaves has a certain aesthetic appeal. The standard approach performs

full-width searches as deeply as time permits. Sampling strategies augment
this with full-depth searches to as wide a group of leaves as possible. Play
can then be directed towards the subtree that has the most overall promise,
rather than towards a single data point on the frontier (whose value may
or may not be an anomaly of the horizon). One major advantage of this
approach is that random sampling is a well understood statistical technique
that estimates distribution means to within the limits of a known confidence
interval, rendering the a priori comparison of two functions elementary. The
drawback to sampling during play is, of course, the cost of preparing the
sample. Leaves in a subtree can ounly be found by traversing entire paths.
The computational effort expended on the full-depth portion of the search
cuts down on the depth of the full-width portion. In many cases this sacrifice
may be too costly to be acceptable.

The increased costs can be avoided if, rather than using the samples in
the place of static evaluators, they are used to design new evaluators. If
appropriate statically available domain features can be identified, random
sampling can be combined with a variation-of-parameters learning technique
[Sam63] [Sam67] [Gri74] [CK86] to determine coefficients that approximate
expected-outcome values. Although a certain amount of expertise is needed
to find the most appropriate features, all games have characteristics that can
be distinguished even by a novice, (such as the different pieces in chess or
different squares in Othello), and if necessary, modified using factor analysis
or some other statistical method. Since these experiments are run only once
and never during actual play, a great many points can be sampled at no
extra cost to the player. This approach allows the full-width component to
retain its maximum depth and the confidence interval to retain most of its
significance as a function comparator. Its disadvantages, on the other hand,
include the reliance on expertise to identify domain features and the use of
an estimated estimate to guide search.

In addition to offering a means of comparing functions, the new model
suggests an approach to developing reasonable, justifiable backup strategies.
Rather than being viewed as point probabilities, the expected-outcome values
on the search frontier actually represent the means of probability distribu-
tions. Unlike discrete point values, which are distinct, distributions tend to
overlap. Thus, the face-value principle, which always recommends the node
of best static value, (thereby justifying minimax), is no longer applicable.

Consider a simple illustration of the problem with minimax: some node in
the tree has children valued at .8,.1,.72,.65, and .25. A standard max op-
eration would return the value .8 and recommend moving in the direction
of the corresponding child. If the parent is the current state, this clearly
represents the best move. If, on the other hand, the move being considered
actually lies somewhere in the future, (between the current move and the
search frontier), the assumption that the .8 node will be chosen represents a
premature commitment. The minimax model, in making this commitment,
implies that if this position is reached, the .8 node will be chosen. A more
accurate assessment of the situation is that if this position is reached, de-
cisions that will be based on information found several levels down the tree
are most likely to select the .8 node. The premature committment of mini-
max comes from the assumption that the estimates are entirely accurate. If
Problerror = 0] = 1.0 and the values being estimated are precise and deter-
ministic, the distributions collapse to points, and the .8 is clearly optimal.
In the absence of information about the accuracy of the evaluator, perfection
may be the safest assumption. The notion of confidence intervals, on the
other hand, allows the face-value principle to be dropped, and, coupled with
the probabilistic interpretation of the evaluator, should lead to a family of
new backup strategies.

The proper method for backing up distributions is not immediately ob-
vious. Palay has analysed some distribution-based variants of the B* al-
gorithm in which products of polynomial representations of the probability
distribution functions (PDF’s) are backed up [Pal85]. Although this method
yields improved results over the originally proposed B* ranges [Ber79), PDF
multiplication creates many problems: the independence and continuity of
the distributions must be assumed, and a class of reasonable distributions
that is closed under multiplication must be found. The success of the M&N
algorithm [SD70], however, suggests a simpler approach. Recall that this
algorithm added some experimentally determined function of the M or N
best values to the minimax value. This immediately suggests backing up a
weighted sum of a node’s children, an operation with several advantages: it is
easy to calculate, easy to justify, requires no independence assumptions, and
keeps all distribution classes closed. Furthermore, knowledge of the mean
and confidence interval and access to other distribution parameters should
make the determination of the proper coefficients for each node a tractable

10

analytic task, rather than an experimental one. As part of my research, I
plan to develop a method for calculating these coefficients. I am also opti-
mistic that knowledge of the confidence interval will help overcome the major
obstacle that has been faced by previous attempts to devise such backup algo-
rithms: the lack of a-3 pruning analogs. Although strategies more accurate
than minimax have been devised, the increased accuracy has never sufficed
to offset the lost efficiency. It may, in fact, turn out that minimax with a-3
is optimal because of efficiency considerations. If so, this will constitute the
first analytic justification for minimaxing estimated values.

The third area of difficulty, the determination of intelligent criteria for
terminating search, can be addressed by considering a possible extension of
the basic model, expected-reasonable-outcome. As it stands, the decision
criterion of an expected-outcome function is rather simple: choose the sub-
tree with the largest percentage of win leaves. The immediate objection to
this strategy takes the form of an adversary argument, or the description
of a case in which the percentage of wins is deceptive. Any instance of the
horizon effect (Ber73], (originally presented to highlight the difficulty of qui-
escence), should also cause expected-outcome to select the wrong move. For
example, a large percentage of the descendants sired by a chess node halfway
through a queen trade will lead to victories. Upon completion of the trade,
however, the queen will have been sacrificed to protect the king, and many
of her stoutest offspring will have been summarily executed in their prime
(i.e. most of the win leaves will be pruned immediately upon completion of
the trade). In particular, expected-outcome will suffer in instances in which
random play is blatantly inaccurate, or when there is an “obvious” next
move available just beyond the frontier. It should be possible, however, to
extend the model to sample non-random paths below the frontier. An iter-
ated sampling procedure, using reasoning similar to that incorporated into
the backup algorithms, could rely on the evaluation function derived on the
previous iteration to determine the relative probabilities with which succes-
sor nodes will be chosen. Sampling paths with the appropriate probabilities
would lead to an expected-reasonable-outcome function, which would indi-
cate the expected value of the outcomes lying along reasonable lines of play,
and thereby avoid the negative effects of an horizon.

By way of summary, then, the expected-outcome model allows all three
major problems to be addressed. The most basic difficulty, the absence of

11

a definition of the evaluation function, is resolved by the basic statement of
the model. The secondary problems, brought about by the lack of a defini-
tion, should be resolvable through the model’s implications and extensions.
Backup algorithms become justifiable when statistical confidence intervals
are known, and an intelligent criterion for setting the search frontier can be
developed through a simple iteration process. These features help make the
new model desirable. The next section presents some experimental evidence
that shows that it is reasonable, as well.

4 Supporting Evidence

The appeal of the expected-outcome model lies in its elegance, its crisp def-
inition, and its domain-independence. In addition, it offers straightforward
solutions to some long-standing open problems. The ultimate criterion by
which an evaluator is judged, however, is performance in actual competition,
not aesthetic appeal. Unfortunately, the general absence of both actual com-
petitors and absolute standards make performance rather difficult to test
thoroughly in a laboratory. Determining the utility of expected-outcome
to game programming, then, must follow a somewhat different track. This
section describes experiments that address some key questions: Do expected-
outcome functions make good decisions? Are they useful in real games? Can
they be automatically learned? Do they imply powerful backup strategies?
and How do they relate to the ad hoc evaluators that have been studied in
the past?

4.1 Completed Work

4.1.1 Decision Quality

The first step in determining whether a model is of practical use is investigat-
ing how often it recommends good decisions. If moving in the direction of the
maximum win percentage generally leads to good moves, expected-outcome
functions are powerful heuristics. Of course, “generally” and “good moves”
are both subjective terms. In order to test the decision quality of a function,

12

(the frequency with which it makes correct decisions *), these terms must be
defined. Perhaps the simplest definition of a “good move” is one which is
as good as the optimal move, or one with the best complete-minimax value.
(In other words, a minimax search to the leaves would either choose the
move in question or one with the same value). Although other definitions
are possible, the complete minimax procedure does offer a useful absolute
standard for judging a move’s quality — an incorrect move involves choosing
a draw over a win or a loss over a draw. Unfortunately, no such standard
exists for the term “generally”. One datum that should be enlightening,
however, is how the expected-outcome functions compare with previously
studied expert-designed game-specific evaluators.

The first issue to be addressed, then, is how often the move with the
largest (or smallest, as appropriate) percentage of win leaves beneath it is,
in fact, optimal. In addition to testing the strength of the decision crite-
rion, the comparison of expected-outcome with complete minimax will indi-
cate how often the assumptions of random play and perfect play beyond the
search frontier recommend different moves. Calculating either the complete-
minimax value or the expected-outcome value, however, requires knowledge
of the entire tree. Thus, for this first set of experiments, fairly small games
had to be chosen. Moreover, in order to compare the decision quality of
expected-outcome with that of a more standard function, popular games (or
variations thereof) were needed. Four games that met both requirements
were studied, although only two of them, 3-by-3 tic-tac-toe and 4-by-4 Oth-
ello, have game-trees that are small enough to generate entirely. The other
two, 4-by-4 tic-tac-toe and 6-by-6 Othello, were chosen because they are
small enough for large portions of their trees to be studied, yet large enough
to ofter more interesting testbeds than their smaller cousins. In the case
of 4-by-4 tic-tac-toe, select patterns were frozen in place to generate eleven
initial configurations. The patterns were chosen so that nearly all leaves
would be considered at least once. As the complete tree is ascended, the
density of examined nodes decreases. For 6-by-6 Othello, ten initial configu-
rations were generated by moving randomly for the first twenty moves — only

iTechnically speaking, decisions are made by control strategies, which are sets of rules
for move selection that combine a static evaluation function with a dynamic lookahead
procedure. If, however, the dynamic component of a strategy is ignored and the move
with the best static value is chosen, the decisions may be attributed to the evaluators.

13

the last twelve were made with the help of evaluation functions. Although
neither of these methods of generating initial configurations guarantees im-
partiality, the consistency of the results indicates that the techniques used
probably did not have a major effect on the outcome. For each game, every
node in the tree (beneath the initial configuration) was considered by four
evaluation functions: minimax, expected-outcome, a popular standard, and
worst-possible-choice, and a record was kept of each function’s performance.
Minimax, by definition, never made an error, and the worst-possible-choice
function erred whenever possible.

In all four cases, the result was the same: expected-outcome made rela-
tively few errors and outperformed the standard evaluators. Not surprisingly,
the percentage of errors made by both evaluators increased as the tree was
descended. Whereas most evaluators explain degraded performance by claim-
ing that they were not tailored to end-game play, the new model offers a more
precise explanation: statistical parameters like the mean of a distribution are
only useful for large populations, and end-game nodes have relatively few de-
scendants. These results are summarized in Tables 1 and 2 and Graphs 1
through 3. For each tree considered, the number of decision nodes, possible
errors, and errors made by each function are shown. A node is considered a
decision node if its best successor (as chosen by minimax) is not a leaf. The
reason for this definition is that most evaluators recognize leaves as special
cases. Thus, performance when leaves are available is not truly indicative of
a function’s accuracy. It is important to note that although the expected-
outcome value, like the complete-minimax value, was calculated exactly by
searching ahead to the bottom of the tree, expected-outcome did not back
up any values; decisions were based strictly on evaluations of a node’s suc-
cessors. The standard evaluators were taken from published literature and
calculated using only static information: the open-lines-advantage for tic-tac-
toe [Nil80], and a weighted-squares function for Othello [Mag79]. Appendix
1 contains a detailed description of these functions.

The relative number of incorrect decisions in a search space is a fair basis
for comparing two evaluation functions. The percentage of possible errors
that they make, on the other hand, provides some insight into the absolute
accuracy of the functions. With the exception of 4-by-4 Othello, expected-

14

outcome made only a small percentage of the possible errors *. The ex-
tremely small percentage of decisions in which errors were possible in that
game, however, indicates that it may not be a fair gauge of decision quality
— the worst-possible-choice selector was still better than 90% accurate. In
terms of the standard evaluators, the results are consistent with observed per-
formance. The open-lines-advantage function for tic-tac-toe is known to be
fairly strong. When implemented with sufficient lookahead, it can both force
a draw and take advantage of its opponent’s errors. (In the 3-by-3 case, a
one-ply lookahead is generally sufficient). Weighted-squares, with a mean ac-
curacy of roughly 57% on trees with an average branching factor around seven
is reasonable, but not overwhelmingly effective as an Othello evaluator. This
is not surprising. A thorough analysis of the game showed that weighted-
squares strategies were overly simplistic, unable to account for issues like
mobility and stability, and not sensitive to the differences between opening,
mid-game, and end-game strategies. An evaluator that took these items into
consideration was able to play at world-championship level [Ros82). Never-
theless, the study of weighted-squares does have scientific merit. The purpose
of these experiments was not to develop the best performance-oriented Oth-
ello program, but rather to test the validity of a new model of evaluation
functions. For this task, any well thought out, game-specific function offers
a useful comparison, even if it is not the strongest known evaluator for the
game in question. The basic result of these experiments is that in all cases
tested, expected-outcome made fewer errors than the standard functions.
This indicates that guiding play in the direction of maximum win percentage
constitutes a reasonable heuristic. Thus, the expected-outcome model has
passed the first test: it generally leads to good moves.

4.1.2 Estimating Expected-Outcome Values

The results of the decision quality experiments are rather encouraging. They
indicate that in instances where complete information is available, moving

$Small is, of course, relative. In some of the tests runs on 6-by-6 Othello, the error
percentage was as high as one-quarter. Nevertheless, this is still small enough to indicate
that for the overwhelming majority of nodes, the proper successor lay in the direction of
maximum win percentage. Even in the case of 4-by-4 Othello, for that matter, the error
percentage was less than one-half.

15

in the direction of maximum win percentage is frequently beneficial. Un-
fortunately, these are precisely the cases where complete-minimax searches
are possible and optimal moves can always be made. Since probabilistic
(and for that matter, heuristic) models are only interesting when predictions
are based on incomplete information, some means of estimating expected-
outcome values based on partial information is needed. The obvious tech-
nique for deriving these estimates is random sampling. The next issue that
must be investigated, then, is whether estimated expected-outcome func-
tions are of any use in real games. The second set of experiments is designed
to address two questions: Do estimated expected-outcome functions make
good decisions in interesting games? and Is random sampling useful as an
expected-outcome estimator?

Expected-outcome values, by their very definition, represent the means
of leaf-value distributions. Any sampler that wishes to estimate these values
must make certain assumptions about the distributions. One assumption
that is both reasonable and useful is that a path leading to a draw contributes
no real information, and is thus nothing more than noise. This is useful
because binary random variables are easier to deal with than ternary ones,
and reasonable due to gaming intuition and experience — players rarely (if
ever) play to draw while the possibility of victory remains. Thus, draw leaves
found by a sampler rooted at a mid-game node are not attractive to either
player. Draws become significant only when one of the other outcomes is
unattainable, in which case they are valued at .5 (this rarely occurs, and then
only in the end-game, where populations are small and expected-outcome
functions of dubious accuracy, anyway). Otherwise, win leaves are valued
at 1, loss leaves at 0, and draw leaves ignored. With draws disregarded as
noise, the leaf-value distribution describes a binary-valued random variable,
with Pr(WIN|%¥p and Pr[LOSS|q = (1 - p). A random sampler that
tallies leaves sampled (excluding draws) and wins found develops the estimate
p= L—g—}gzsg By the law of large numbers, p should converge to p as the
number of points sampled (LEAV ES) increases.

Determining p through random sampling is not difficult. As is the case
with most statistical estimates, perfection is not expected; two confidence
parameters, a and ¢, define the probability (1 — a) with which |p—p| < e
Using the normal approximation to the binomial distribution, the number of

16

sample points needed for this degree of certainty is S = iﬁﬁ, where z4/; is
the z-score of a/2, or the number of standard deviations from the mean such
that the area under the distribution curve from u — (24/2)0 to p + (24p2)0 is
(1 —a). For example, to achieve 95% certainty that |p— p| < .05, set a = .05,
€ = .03, 2472 = 1.96, and § =~ 1537pq. Since the term pq reaches a maximum
of 25 at p=¢ = .5, S < 385. If the confidence is relaxed somewhat and only
90% certainty is required, the formula indicates that S < 271. Sampling
this many points is expensive and frequently unneccessary. In general, pq
will be considerably smaller than .25 and good estimates for p will be found
fairly quickly. The sample sizes given by the formula are actually worst case
scenarios — the only reasonable assumption if the number of samples is set
in advance. If convergence is checked for intermittently during the course
of sampling, on the other hand, the sampler may stop when a reasonable
estimate has been found. One approach to on-the-fly convergence detection

is to sample IV leaves, count the wins, and set pp = W{VN 2. Keeping a running
tally of wins, sample another N points, and set p, = W—zlgﬁ Continue this

procedure, with p; = wzf}:,/s’ until |p; — pi-1] < e If this is‘true, the first 2°~!

leaves and the second 2'~! leaves sampled contain nearly identical proportions
of wins. Thus, it is reasonable to assume that the overall win ratio, or p, is
fairly close to the estimate given by p;.

This technique was used in the second set of experiments, which pitted
an estimated expected-outcome function vs. a weighted-squares function
(see Figure 2a) in four 100-game matches of (8-by-8) Othello. The expected-
outcome function’s sampler set ¢ = .05 and N = 8, but stopped checking
for convergence if none had been found by the time 256 samples were taken.
[t is important to note that these estimates of p are far fom perfect — if
they were completely accurate, the moves would be deterministic, (as they
are for weighted-squares or any other standard evaluator), and all games
would be identical. Arbitrary tie-breaking rules account for minor variations
in play, but even so, the number of different games should be fairly small.
The proof of imperfection, then, is that in the first match, all 100 games
were distinct. An investigation of the remaining two matches is unnecessary;
it is clear that the values used are estimates, not exact expected-outcome
values. Thus, tighter estimation procedures should lead to stronger expected-
outcome functions, just as more careful game-specific analyses led to stronger

17

standard functions. This analogy helps justify the adoption of weighted-
squares as the benchmark against which the initial sampler-based function is
judged: weighted-squares were the first reasonable expert-designed Othello
functions, and stronger evaluators became possible in large part due to the
feedback provided by their performance [Ros82].

These experiments, like those run on decision quality, were designed as
pure tests of evaluator strength — neither player used any lookahead. Un-
like decision quality, however, these matches have no absolute standard to be
judged against. This immediately decreases the precision possible in inter-
preting their outcome. Fortunately, the relation of the experiments’ results
to their intent should not cause much controversy. To be of any use, sampler-
based functions must compete favorably with those designed by experts. In
each of the matches, the competition was about even; in no case did either
evaluator win enough games to make a viable claim of superiority. From
the sampler’s viewpoint, the win-loss-draw scores of the four matches were
46-48-6, 41-53-6, 48-49-3, and 54-41-5, for an overall total of 189-191-20. It is
important to keep these results in their proper perspective. As a demonstra-
tion that estimated expected-outcome yields the world’s best Othello evalu-
ator, the experiments are woefully inadequate — the absence of lookahead
makes the games unrealistic, the difference in computation times & skews the
results, and the competition is not as strong as it could be. Their sole pur-
pose was to establish estimated expected-outcome as a function on par with
those designed by experts, and the data clearly substantiates the claim.

Expected-outcome functions, then, do appear to be useful in real settings.
Given no expert information, the ability to evaluate only leaves, and a good
deal of computation time, they were able to perform on par with a function
that had been hand-crafted by an expert. Thus, both questions have been
answered in the affirmative: expected-outcome functions can be estimated
by a sampler, and the estimates do lead to good moves.

®For most of the cases tested, the sampler needed between one and ten minutes per
move. By contrast, the weighted-squares function rarely took more than two seconds to
statically evaluate all possibilities and select a move.

18

4.2 Work in Progress
4.2.1 Learning Expected-Outcome Functions

Given that estimated expected-outcome functions make reasonable moves in
real games, attention can now be focused on the next question: Is the model
of practical use to real game programs? The major drawback to sampling
strategies is the cost of preparing the sample. The time discrepancy between
the sampler and the weighted-squares player of the estimation experiments
is clearly unacceptable. If lookahead were introduced, the time required to
sample would rapidly mushroom beyond reasonable limits. In section 3, it
was pointed out that the time spent sampling detracts from time spent ex-
tending the frontier. This added cost can be avoided if a static evaluator that
recognizes a node’s expected-outcome value can be devised. If this is possible,
the costs can all be attributed to a learning preprocessor and have no effect
on the actual game. Perhaps the simplest way of learning such a function
for Othello is to start with significant board features that have already been
identified by an expert. The equivalence classes of squares defined by the
weighted-squares function should be able to serve this purpose. A parameter
learning technique, such as learning by regression analysis [CK86], can be
used to develop coefficients for the features.

The third set of experiments will start by using this technique to learn
an evaluation function. This learned function, which is a static estimator of
the expected-outcome value, will play a series of games against the original
weighted-squares function. In these matches, lookahead length will be varied
to see what effect, if any, this has on the relative strength of the functions.
If the learned function plays on par with the original, this furthers the claim
that the expected-outcome model is, in fact, a reasonable one. The possible
supremacy of the original function, on the other hand, should not be taken as
an immediate condemnation of the new model. There are several factors that
could contribute to uneven play, and they must all be investigated before
the model may be rejected. First, it is possible that the significance of
some squares change frequently and radically throughout the game. This
problem can be alleviated by using a slightly more complex function, one
that uses different coeflicients for different stages of the game. Second, the
equivalence classes of squares may be completely irrelevant to the expected-
outcome value. The way around this problem is to use a statistical procedure

19

that learns features as well as coefficients, such as factor analysis. In fact, a
strong case could be made for starting with this type of experiment and never
relying on features identified by an expert at all. | have chosen to save it for a
fallback, however, so that the model itself can be studied, and not be confused
with the statistical techniques used in its implementation. Third, there may
be something to the backup procedure, minimax, that favors the standard
function. The simplest way to test this, of course, is to play a match with
no lookahead. If this turns out to be the case, it should offer some insight
into the relationship between minimax and various evaluation functions, and
suggest some methods for tailoring new functions to the backup strategy.

These experiments have not been started, and there are, of course, a
myrtiad of unforseeable circumstances that could arise. I believe that the
three problems mentioned above are the most likely, and that the resolutions
given for them should lead to experiments that convey useful information
about the model’s strengths, as well as a few allusions to its relationship
with previously proposed evaluators.

4.2.2 New Backup Strategies

The major purpose of the learning experiments is to demonstrate that expected-
outcome information can be efficiently incorporated into real games. One of
the potential difficulties suggested in the context of these experiments was
that standard weighted-squares functions may somehow be able to exploit
the quirks of minimax better than their expected-outcome counterparts. Al-
though this is rather unlikely, it should be possible to design a backup strat-
egy that avails itself of the information provided by expected-outcome values.
In section 3, the potential for developing a new family of backup strategies,
based on the definition of evaluation functions as probability distributions,
was mentioned. Using this interpretation, it becomes evident that the “qual-
ity” of nodes frequently overlap. Under the minimax model, given a choice
between two nodes of values v; and w, v; > v,, the v; node is always recom-
mended to the maximizer and the v; node to the minimizer. If the evaluator
is reasonable, these moves will be correct more often than not. If, however,
the values are viewed as the means of two random variables, X, and X,
respectively, a mixed strategy is likely to be stronger than a pure one. For
example, if there are V choices to be made between nodes of values v, and

20

vz, the maximizer could expect to note improved performance by selecting
the v; node aN times and the v, node bN times, where a + b = 1 and
1.0 > a > b > 0.0. The parent of these nodes, then, is a random variable
defined by Xparent = a X1 +5X3, with a mean evaluated at vparen: = avy +bu,.
The appropriate values for a and b depend on the distributions of X; and
.}(2.

Once again, the relegation of draws to noise status is useful. This assump-
tion, first introduced in the estimation experiments, reduces all X; to binary
valued random variables, with p;% Pr[node i will lead to a win leaf] = v; ”.
Since p; is known, so is ¢; = (1—p;). This is enough information to specify all
moments of the distribution, and should ease the development of an analytic
technique for determining appropriate weights. In addition to everything
else, this approach is intuitively appealing. In binomial distributions, means
are dependant on p, while variances depend on the product pq. Thus, ran-
dom variables for which p = 0.0 or p & 1.0 will have very small variances,
and the largest possible variance occurs at p = ¢ = .5. Nodes with large
and small values of p, then, will stand out as clear choices; the overlap with
distributions defined by other nodes will be minimal. Intermediate-valued
nodes, on the other hand, will have large variances and overlap greatly. This
is as it should be: oustanding moves should be given values near 0 and 1,
moves of dubious quality should not.

The new backup strategy, once derived, suggests two interesting areas of
study: experimental testing and accuracy vs. efficiency analysis. Testing can
be accorr ~lished by taking the learning experiments one step further. With
lookaheaa depth fixed, a program using the new strategy and the learned
function can be matched against a program minimaxing either evaluator.
The outcome of these matches should indicate the relative utility of the
backup strategies. Even if the new technique makes more accurate decisions
than minimax given equivalent information, its use may not be preferable
in actual game situations. One of the most salient features of minimax is
its companion algorithm, a-#-pruning. When implemented together, these
algorithms can deepen search greatly, and effectively increase the amount of
useful information available to the decision maker. It is possible that the

“The meaning of this probability actually changes as the tree is ascended. On tip nodes,
it corresponds to the probability of a random path leading to a win. Otherwise, the path
is weighted (in the example above by a and 5) until the tips, and random from then on.

21

confidence in the estimates of p, (the tolerable error), combined with the
variance and higher moments, may define an a-3 analog for the new backup
strategy. In any case, the tradeoffs of accuracy for efficiency should offer
some insight into the propriety (or lack thereof) of perpetuating minimax
usage.

4.2.3 Expected-Outcome in Chess

Backup strategies aside, if the learning experiments work as anticipated, the
expected-outcome model will have been shown to be reasonable for at least
one class of games, those with relatively few draws. Not all games belong
to this class. In chess, for example, most games end in a draw. This could
cause serious problems for the random sampling procedure. It is conceivable
that these draws introduce so much noise into the system that the number of
samples needed to differentiate between moves that are likely to lead to wins
and those likely to lead to losses is prohibitive. The fourth set of experiments
involves the learning of coefficients for the chess pieces to develop a static
estimator of the expected-outcome value. This is completely analogous to the
experiments described above for Othello, and faces the same set of problems.
Feedback from the Othello experiments may be helpful in deciding exactly
how to implement the tests on chess.

Regardless of the outcome of this experiment, the result will be interest-
ing. If the learned coefficients approximate the generally accepted values, a
strong case can be made for the claim that previous evaluators have unwit-
tingly been estimating the percentage of wins beneath a node. If the learned
coefficients are significantly different from the accepted ones, but compete fa-
vorably with them in a series of games, it may represent a contribution to our
understanding of chess, as well as our understanding of heuristics. Finally, if
the learned coefficients perform poorly, it will highlight some of the differences
between chess and Othello. Even in this case, however, expected-outcome
should not be dismissed out of hand for chess. The model outlined here
is the simplest possible application of the underlying ideas. Many involved
extensions and refinements are possible. The expected-reasonable-outcome
model mentioned in section 3, for example, may be necessary for a game as
complex as chess. In any event, the learning of chess coefficients that approx-
imate expected-outcome values should provide some insight into the power

22

and applicability of the new model.

5 Contributions

The focal point of my dissertation is the introduction and development of
a new probabilistic model of evaluation functions for two-player games, the
expected-outcome model. The thesis underlying this model is that knowl-
edge of the percentage of wins beneath a given node in a game tree is general.
powerful, and leads to good moves. The work described in this proposal de-
velops the basic model and takes it through a series of experiments that will
determine whether it is a useful technique for designing game programs. Ex-
periments that have already been concluded are strong enough to show that
expected-outcome functions make good moves. Furthermore, [am rather op-
timistic that the model will also prove to be useful in the design of efficiently
calculable static evaluators. In its strictest sense, this alone should constitute
a significant contribution to the fields of game programming and heuristic
analysis, as the first general-purpose, domain-independent technique for the
design of two-player evaluation functions. In a broader sense, however, the
contributions of the model and its possible extensions are profound.

The scheme for devising backup strategies could either justify the use of
minimax or propose a superior alternative. Although this idea has yet to
be developed fully, it is significant as the first illustration of the potential
benefits of a well defined aim for static evaluators. Further benefits abound,
but rely, for the most part, on extensions of the basic model that are be-
vond the scope of the current work. Perhaps the simplest variant removes
the assumption of random play beyond the search frontier, which, although
justifiable, is incorrect. A more powerful evaluator, (mentioned in section 3),
assumes that reasonable moves will always be made, and sums the values of
all moves deemed reasonable. Evaluators of this nature define an entire spec-
trum of reasonable-play assumptions bridging the gap between randomness
and perfection. This approach retains much of the defensive power of the
perfect-play assumption without falling prey to its weaknesses, and involves
only a simple iteration of the learning procedure. At least in principle, the
learned function should be strengthened with every iteration, to the point
where it may even asymptotically approach the value returned by a complete

23

minimax search.

Other extensions of the model are interesting, as well. As things stand,
the only statistical parameter being used is the mean of the leaf distribu-
tion. One variant would use additional statistical information to make even
stronger decisions. In particular, knowledge of a distribution’s variance and
skew should be helpful in detecting quiescence and predicting what lies be-
yond the search frontier. A second variant would consider games in which
paths to the leaves are too long to be searched entirely. Instead, random deep
searches could be applied beyond the frontier and expert-designed functions
used to estimate the value of nodes at that depth. Although this proce-
dure loses much of the elegance of the original model and resurrects many of
the problems inherent in standard approaches, it may yield improved perfor-
mance without encountering cumbersome calculations.

Unless they are accompanied by other advances in the field, however,
even functions derived through some of these extended models may not be
sufficient to achieve two long-standing goals in game design, grandmaster
level in chess and competence in Go. Nevertheless, the adoption of a useful
definition for two-player evaluation functions should serve as an important
point of departure for future game designers, lead to the development of
probabilistic analyses of the general structure of games and game-trees, and
perhaps even suggest an approach towards the unification of the theories of
one- and two-player games.

Acknowledgements

A lot of work has gone into developing the ideas outlined in this proposal,
and many people have pointed me in useful directions. Virtually every issue
outlined has been discussed (or debated) with my advisor, Richard Korf.
Other people who have been particularly helpful include Peter Allen, Michael
Foster, Jonathan Gross, John Kender, Michael Lebowitz, Andrew Mayer,
Judea Pearl, and Igor Roizen.

This document is not a discussion of completed work. It was prepared as
a written form of a proposal for my doctoral dissertation. This proposal was
presented at Columbia University on August 18, 1986 in an open colloquium
to a faculty committee consisting of Richard Korf, Jonathan Gross, and
Michael Foster, and approximately twenty attendees. This research has been

24

sponsored in part by the National Science Foundation under grant IST-85-

15302.

References

[Abr86] Bruce Abramson. Control Strategies for Two-Player Games. Tech-
nical Report, Columbia University, May 1986.

[Ber73] Hans J. Berliner. Some necessary conditions for a master chess
program. In Proceedings of the Srd International Joint Conference
on Artificial Intelligence, pages 77-85, 1973.

[Ber79] Hans Berliner. The b* tree search algorithm: a best-first proof
procedure. Artificial Intelligence, 21:23-40, 1979.

[Bot84] M.M. Botvinnik. Computers in Chess: Solving Inezact Search
Problems. Springer-Verlag, 1984. trans. A. Brown.

[Bra80] M.A. Bramer. Correct and optimal strategies in game playing pro-
grams. The Computer Journal, 23:347-352, 1980.

[CK86] Jens Christensen and Richard Korf. A unified theory of heuristic
evaluation functions and its application to learning. In Proceedings
of the fifth National Conference on Artificial Intelligence, 1986.

[CN86] Ping-Chung Chi and Dana S. Nau. Predicting the performance of
minimax and product in game-tree searching. In Proceedings of the
2nd Workshop of Uncertainty in Artificial Intelligence, pages 49-
55, 1986.

(Grit4] A.K. Griffith. A comparison and evaluation of three machine learn-
ing procedures as applied to the game of checkers. Artificial Intel-
ligence, 5:137-148, 1974.

(Mag79] Peter B. Maggs. Programming strategies in the game of reversi.
BYTE, 4:66-79, 1979.

[Nau83] Dana S. Nau. Decision quality as a function of search depth on

game trees. JACM, 30:687-708, 1983.

25

[Nils0]
[NMd44]

[NPT83]

[Pal8s)
(Pea8l]

[Pea84]
[Poh70]
[Ros82]

[Sam63|

[Sam67]

(SD70]

(Shas0]

[Ste83]

Nils J. Nilsson. Principles of Artificial Intelligence. Tioga Publish-
ing Company, 1980.

John Von Neumann and Oskar Morgenstern. Theory of Games and
Economic Behavior. Princeton University Press, 1944,

Dana S. Nau, Paul Purdom, and Chun-Hung Tzeng. Ezperiments
on Alternatives to Minimaz. Technical Report, University of Mary-
land, October 1983.

Andrew J. Palay. Searching With Probabilities. Pitman, 1985.

Judea Pearl. Heuristic search theory: a survey of recent results. In
Proceedings of the 7th International Joint Conference on Artificial
Intelligence, pages 24-28, 1981.

Judea Pearl. Heuristics: Intelligent Search Strategies for Computer
Problem Solving. Addison Wesley, 1984.

Ira Pohl. Heuristic search viewed as path finding in a graph. Arti-
ficial Intelligence, 1:193-204, 1970. '

Paul S. Rosenbloom. A world-championship-level othello program.
Artificial Intelligence, 19:279-320, 1982.

A.L. Samuel. Some studies in machine learning using the game of
checkers. In E. Feigenbaum and J. Feldman, editors, Computers
and Thought, McGraw-Hill, 1963.

A.L. Samuel. Some studies in machine learning using the game of
checkers ii — recent progress. IBM J. Res. Dev., 11:601-617, 1967.

James R. Slagle and John K. Dixon. Experiments with them & n
tree-searching procedure. CACM, 13:147-154, 1970.

Claude E. Shannon. Programming a computer for playing chess.
Philosophical Magazine, 41:256-275, 1950.

Stephen L. Stepoway. Reversi: an experiment in game-playing pro-
grams. In M.A. Bramer, editor, Computer Game Playing: Theory
and Practice, Ellis Horwood Limited, 1983.

26

Appendix 1: Standard Evaluation Functions

The evaluation function used for tic-tac-toe is rather simple. Each line
(row, column, and diagonal) on the board represents a potential win. A line s
open to a player if his opponent has no marks in it. The open-lines-advantage
evaluation function for position p, E,.(p), is

0 if p is a win for X
Ew(p) = ¢ — if pis a win for O
OPEN,(X) - OPEN,(O) otherwise

where OPEN,(Player) = the number of lines open to Player in p.

This function was used in [Nil80] to demonstrate issues related to minimax
search and static evaluation. It has an intuitive appeal, and works rather well
when combined with lookahead. On 3-by-3 tic-tac-toe, a one ply lookahead
is sufficient to force a draw, which is, in fact, the outcome of the game when
both players are perfect. Examples of this function on 3-by-3 and 4-by-4
boards can be found in Figure 1. .

The function used for Othello is a bit more complex. The basis of a
weighted-squares strategy is the realization that not all squares on the board
are of equal value; edge squares are less likely to be flipped than squares in the
center, and corner squares will never be flipped at all. Squares immediately
adjacent to the corner, on the other hand, are frequently detrimental to the
player moving there first, because they allow the other player to take the
corner. Once the corner has been taken, however, they lose that special
status. Weighted-squares strategies have been discussed in the literature
and implemented in many programs [Mag79] [Ste83]. The function used for
8-by-8 Othello is a weighted-squares strategy, based on the one presented in
[Mag79), and modified to account for the author's personal experience with
the game. Although it is not immediately clear how the 8-by-8 function
should be applied to smaller boards, the convention chosen was to consider
squares based on their locations with respect to the corners. The values
for each square are shown in Figure 2. Note that the large numbers were
retained because they were not derived scientifically in the first place. Thus,
although the 64 in the corners clearly came from the number of squares on
an 8-by-8 board, there is no reason to believe that it is not a reasonable value

27

for a corner on a smaller board as well. Leaves were recognized when neither
player was able to move, (this occurs trivially when the board is full), and
classified as wins, losses, or draws as dictated by the final score.

28

Appendix 2: Summary of Experiments

This is a brief list of the experiments discussed in section 4. It is included
as a quick reference guide to the goals of my research and how I plan to meet
them.

1. Decision Quality: Do expected-outcome functions make good deci-
sions?
Four small games were tested. In all cases, expected-outcome usually
chose the optimal move. By way of comparison, some well known eval-
uators erred more frequently.
Conclusion: Yes, at least for the games tested.

2. Estimation: Do estimated expected-outcome functions make good
moves in actual games?
A random sample of leaves beneath each node was taken to estimate the
expected-outcome value (with draws regarded as noise). The sampler
stopped when it either converged to a reasonable value or had exam-
ined 256 leaves. This function was pitted against a standard weighted-
squares function in 100-game matches of Othello, with no lookahead
used by either player.
Conclusion: In at least one implementation, they play as well as a
reasonable, expert-designed function. Thus, it is fair to assume that the
decisions made by the two functions are of roughly the same quality.

3. Learning: Is it possible to devise a static evaluation function that
approximates the expected-outcome value?
A variation-of-parameters technique, (specifically, learning through re-
gression analysis), will be applied to a large set of Othello configurations
to learn coefficients for a set of board features. The features have been
identified by the designer of the weighted-squares function studied in
the previous experiments, and the coefficients will be learned to ap-
proximate the expected-outcome value. The learned function will be
pitted against the original function in a series of games played with
varying lookahead.
Status: Not yet begun.
Projected Conclusions: The coeflicients learned through a purely

29

w

mechanized process are as good as or better than those determined by
an expert.

Possible Problems: First, reliance on an estimated estimate may be
insufficient to exploit the power of expected-outcome. Second, the fea-
tures identified may either be inadequately correlated to the expected
outcome, or be unstable throughout the course of the game.
Resolutions: If the features are irrelevant to what is being learned,
more complicated statistical procedures, such as factor analysis, may
help find better board features. If the problem is instability, learning
different coeflicients for different phases of the game should solve the
problem.

Backup Strategies: Devise a strategy that backs up weighted sums
of random variables, rather than minimum and maximum point val-
ues.

Comment: Unlike the other areas outlined, this is esseutially an an-
alytic task, not an experimental one. A variety of weighted-sum tech-
niques are possible, and it is diffcult to project a priori which one will
turn out to be correct.

Status: Under consideration.

Demonstrative Tests: Continue the experiments run on the learned
evaluation functions, playing a minimax strategy vs. the weighted-sum
strategy.

Analytic Issues: Explore the possibility of developing an a-3 analog,
and consider tradeoffs between accuracy and efficiency.

Chess: Can the learning experiments be applied to a more complex
game, such as chess?

A similar regression analysis learning technique will be used to learn
coefficients for the different chess pieces.

Status: Not yet begun.

Possible Outcomes:

o The values learned approximate the generally accepted ones: this
outcome strengthens the claim that two-player evaluators should,
in fact, be estimating the expected-outcome value.

30

o The learned values differ from the standards ones, but compete
favorably with them: this outcome also strengthens the claim that
expected-outcome is a reasonable model, and may offer some in-
sight into the design of better chess evaluators.

o The learned values differ from the standards, and do not compete
favorably with them: this indicates a fundamental difference be-
tween the games of chess and Othello, and points to the boundaries
of usefulness of the expected-outcome model in its pure form. It
may also suggest which extension of the model is useful to games
like chess.

31

Decision Quality
Game Decisions Errors Made [nitial Configuration
Standard | Expected-Outcome | All Possible
3x3 Tic-tac-loe 2474 534 236 1180 Empty Board
4x4 Tic-tac-toe 82293 5612 1112 25030 X00X in 5-6-9-10
81551 5734 476 26105 XX0O in 5-6-9-10
89764 9488 1908 32226 X00X in 8-9-10-11
88544 8791 1483 27619 X0X0 in 8-9-10-11
88687 9415 1566 30655 XXO0O in 8-9-10-11
87301 10302 1050 28920 XOO0X in 12-13-14-15
88654 9301 1549 30544 X0OXO0 in 12-13-14-15
88687 9447 1572 30775 XX00 in 12-13-14-15
82509 8988 1508 30264 X00X in 0-5-10-15
82363 8680 1620 28439 X0XO in 0-5-10-15
82152 8350 1632 27032 XX0O0 in 0-5-10-15
4x4 Othello 69308 3396 3112 6632 4 center squares filled
6x6 Othello 193877 6024 2994 11537 20 random moves made
362356 8002 2394 16113 20 random moves made
415792 20705 10194 44054 20 random moves made
336338 4845 928 11176 20 random moves made
907095 44815 17948 104835 20 random moves made
482945 14586 4380 33277 20 random moves made
813139 72121 24825 146675 20 random moves made
523215 31027 8762 63791 20 random moves made
104260 10077 3241 19082 20 random moves made
899214 58215 16418 139201 20 random moves made

Table 1: This table conuwins the output of the decision quality experiments. The decisions column records the
number of nodes whose best successor, as selected by minimax, was not a leaf. The number of possible errors was
determined by an - duation function that always chose the successor with the worst minimax value; if it did not err,
no error was poss'~le. For the other two functions, a choice was considered an error if the minimax value of the
selected successor was not the correct minimax value. [n all Othello games, the game starts with the four center
squares filled with two black discs occupying one diagonal, and (wo white discs the other. In addition, for the tests
run on 6-by-6, the inital configurations were generated by making the first twenty moves randomly. For 4-by-4
tic-tac-toe, the initial configurations were generated by freezing the specified pattemns in the squares indicated (the
numbering scheme can be found in Figure 1). Graph | displays the errors made by expected-outcome and open-
lines-advantage on 4-by-4 tic-tac-toe, and Graph 2 those made by expected-ouicome and weighted-squares on 6-
by-6 Othello. The data points on these graphs are arranged in the order of the trials, as indicated above. The shape

of the curves is not particularly significant; the major point of interest should be the errors made by each of the
evaluators on identical subtrees.

4-by-4 Tic-tac-toe (11 trials)

T

Maximum | Minimum Mean
Decision Nodes 89764 81551 85682.27
Possible Errors 32226 25030 28873.54
Errors by Open-Lines-Advantage 10302 5612 8555.27
Erors made by Expected-Outcome 1908 476 1410.55
Possible Errors/Decision Nodes 0.366796 | 0.304157 0.336799
Errors by Open-Lines/Decision Nodes 0.118006 | 0.068195 0.099550
Errors by Expected-Outcome/Decision Nodes | 0.021256 | 0.005837 0.016410
Errors by Open-Lines/Possible Errors 0.356224 0.219651 0.294773

Errors by Expected-Outcome/Possible Errors | 0.060373 | 0.018234 0.048482
6-by-6 Othello (10 trials)

Maximum | Minimum Mean
Decision Nodes 907095 104260 503823.09
Possible Errors 146675 11176 58974.10
Errors made by Weighted-Squares 72121 4845 27041.70
Errors made by Expected-Outcome 24825 928 9208.40
Possible Errors/Decision Nodes 0.183023 | 0.033228 0.106776
Errors by Weighted-Squares/Decision Nodes 0.096653 | 0.014405 0.050635
Errors by Expected-Outcome/Decision Nodes | 0.031086 | 0.002759 0.017480
Errors by Weighted-Squares/Possible Errors 0.528089 | 0.418208 0.471246

Errors by Expected-Outcome/Possible Errors | 0.259513 0.083035 0.161974

Table 2: This table contains some statistical information about the raw daw: presented in Table 1. For the two games
with more than one trial run, the maximum, minimum, and mean of several points of interest are shown. The
number of tests run is insufficient for any additional statistical parameters (e.g. standard deviation) (o be significant.
The percentage of decisions in which errors were possible is indicated by the number of possible errors divided by
the number of decision nodes. The percentages of erroneous decisions and possible errors made by each of the
funcuons are shown above and displayed graphically in Graph 3. Once again, the shapes of the curves are essential-
ly meaningless; the important feature is the relative error-percentages made by two evaluators on the same tree.

S N

10 00gf—
4000~ -
L
‘ * Open-Lines-Advantage
Y000 I— =
3000 - -
Goop — <
"
S000 — —
4000~ -
= —
3000 —
2000 I~ -
I * Zxpected-QOutcome
1909 —
!
f— —
o — i | | ! ! : ' ! ! | |

Grapnh l: Errors on 4-by-4 TTT. “he 3 :s -ne mean, and tne y-axis is macked in 300‘s.

f ‘
+x |0H — i ~
i . |
- . -
| N
¢ x0" "— ’! \ —
[l_ I /' Weighted-Squares !
L '] \l‘ i -
| t J
5 X 0" f' \ [4
] a |
ll r‘i . ' ’I
4 510" - A ’ f B
|

Pl r
3¢ 1% = Fo \ |

——
e
—
TTe———
—_—
|

Lo
| ! \ i
Y \ f
{ s ! // \\" \ ! * Expected-Outcome
— ‘ [{ i -
| | / / \ \\f2
| \
109 =~ R " n
l : /\ \ \ ‘
I L] \ !
/ / ‘\\I '; /
— L \J' / -
o)] | | i 1 . 1)i | |
Graph 2: Errors on 6-by~6 Othella. The 2 :s the mean, and the y-axis ls marked in 5000‘s.

o~
B R R A
|

el
«©
»
ia)
[]
[7.]

* 4-py-4 HWeighted-
5
\ ‘
— * 4-by-4 Cthello EXpeczed-2:zz1-2

!

l* 1-by-3 Open~-Lires-Advantage

—
6-by-6 Weighted-3Squares
i

|
_*

* 4-pby-4 Open-Lines-Advantage

* g-by-6 Othello Expézrec-Ou:c::e

« 4-py-4 TTT Ixsected-Qutcome

1

i
L.

' N T T T N NN N A G UGS SN SIS S N S S S VN Y N A N |
Graph 3: Percent of possible errors. ~ne 3's are means, adn the y-axis is marked :

0

[o JL epm—

.025's

(3)

(D)
0 o)
X X
X X 0
OPENKX) = S
OPEN,(0) = 2
OPEN,(Q) = 5
() E,(P) =0
(d)

Figure 1 - Figures (a) and (D) show the numbering of the squares for
3-by-3 and 4-by-4 tic-tac-toe, respectively For the tests run on
3-by-3. the initial conf:Juration was the empty board. The initial
configurations for the 4-by-4 tests were as specified in Table 1.
Figures (c) and (d) 1!'ustirate the use of the open-lines-advantage
function

64 [5,-300 10| 5 | S 10 [5,-30 64
_2 _2

-30 -3 -3 -3 -3 3,-30

REL o

10| -3 | 2 I I 2| -3 10

S -3]| I ! | -3 S

S -3 ! I 1 | -3 S

10 -3 2 ! 1 2| -3 10
-2 =

-3.30 -3 -3 | -3 | -3 S,-30
-40 -40

64 |5.-3¢ 10 3 S| 10 [5,-30 64

(a)

64 [5,-30 10 | 10 |5,-30 64 64 |3,—305,-30 64
-2 2 =2 | -2
P ¢ - - - - -
5-30 | 33| L, P 5,530 ol _4ol5730
ol -3l o2 20 -3 L0 s.-1 2| 2 ks -39
| | -40! -40}
(D!)
10 | -3 | 2 21 -3 10 64 |5.-305,-30| 64
-2 i)
S -3y - - -3
39 ol 3| -3 30739
64 15.-30 10 | 10 IS.-IO‘ 4 |
L

Figure 2 - A weighted-squares firct:on for (2)3-by -8, (016-by-5, and
‘c1d-by-20thello Squares with twz values take on the smaller one
~hen the adjacent corner 13 empty

