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Abstract

This article surveys a portion of the field of natural language
processing. The main areas considered are those dealing with
representation schemes. particularly work on physical object rep-
resentation. and generalization processes driven by natural lan-
guage understanding. The emphasis of this article is on concep-
tual representation of objects based on the semantic interpretatior.
of natural language input. Six programs serve as case studies for
guiding the course of the article. Within the framework of de-
scribing each of these programs. several other programs. ideas.
and theories that are relevant to the program in focus are pre-

sented.

RECENT ADVANCES in natural language processing
INLP] have generated considerable interest within the Ar-
tificial Intelligence [Al] and Cognitive Science communities.

\Vithin NLP. researchers are trying to produce intelligent
computer systems that can read. understand. and respond
to various human-oriented texts. Terrorism stories. airline
fiight schedules. and how to fill ice cube trays are all do-
mains that have been used for NLP programs.

In order 1o understand these texts and others. some way
of representing information is needed. A complete under-
standing of human-oriented prose requires the ability to com-
bine the meanings of many readings in an intelligent manner.
Learning through the process of generalization is one such
mechanism. The integration of representation and general-
ization in the domain of NLP is the subject of this article.

Physical object understanding is an area in which a va-
riety of representation schemes and generalization methods
have been used.
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In past .years. researchers have devised,
various representation systems for objects that range from”

techniques. Many of these syvstems are driven from natural
language input. Thus. physical object undersranding =v--
tems serve as a good focal point for our discussion.

The need to integrare representation with generalization
comes about when one is faced with the problen: of under-
standing how several objects and/or events compare with
euch other. For example. a particular representation sysrem
might be able to encode that a chair has a seat. a back. and
legs. Furthermore. assume that this system has represented
within itzelf several different chairs that all have these three
basic parts. Now suppose that this system finds out (reads! ’
about a bench that has just a seat and legs. In order to
recognize that the bench is just like a chair only without a
back. the representation system uneeds the ability to make
generalizations. Here the generalization would be. ~an ob-
ject to sit on must have a seat and legs.” One could argue
that a complete representation of chairs and benches requires
knowledge of their common parts. Thus. generalization is
intertwined with representation. The generalization process
is. of course. more than just a way of structuring xnowledge.
Generalization is one very important aspect of learning.

Recent work in NLP has recognized the interacrior be-
tween representation and generalization and has stasted to
integrate them into a unified approach o0 understanding.
The need to integrate these heretofore separate areas is par-
ticularly obvious in systems that are intended to read and
process a large number of texts. As a matter of convenience.
this article will refer to representation. generalization. and
their interrelation as representation/generalization.

This article surveys a portion of the fleld of NLP. The
main areas considered are those dealing with representation
schemes. particularly work on physical abject representation
and generalization processes driven by natural language un-
derstanding. A historical account of how research has pro-
ceeded in these areas is given with emphasis on the past few
years. during which the field of NLP has grown tremendousiy.
Somewhat stronger consideration is given to work done in
representation than in learning (generalization). This is sim-
ply due to the overwhelming amount of research that has
been done in conceptual representation. Early work in learn-



ing did not deal with complex representations of events or
objects, so there was little need to integrate generalization
with representation. Therefore, much of the material in this
article will appear to be divided into two distinct groups:
representation and generalization.

We have chosen to present the work in representation/
generalization by following the chronological progression of
computer programs written for NLP. The reasons for doing
so are twofold. Most researchers in cognitive science with
a computer science background at some point embody their
ideas in a program as a vehicle to test them on real-world
problems. Thus, NLP programs written to date gencerally
span the body of research done in this ficld. The second
reason to discuss these programs is that they incorporate
ideas from outside the field of Al. Any single functioning
NLP program must in some way incorporate concepts that
many researchers outside of computer science grapple with.
A focus on programs still allows us to report work done by
cognitive scientists who lack a computer science leaning, as
well as those researchers who are program-oriented. By fol-
lowing the chronological progression of these programs. we
can get a feel for where current NLP research came from and
where it is headed.

The six programs that will guide the course of this article
are: SHRDLU (Winograd, 1972), MARGIE (Schank. 1975).
GUS (Bobrow et al., 1977), OPUS (Lehnert and Burstein.
1979). IPP (Lebowitz. 1980) and RESEARCHER (Lebowitz,
1983a). Within the framework of describing each of these
programs. several other programs. ideas, and theories that
are relevant to the program in focus will be presented.

The first program. SHRDLU, provides a context for dis-
cussing a very important technique used in representation
systems: semantic networks. Some rudimentary learning
techniques were also explored in conjunction with this pro-
gram and they are mentioned in this section.

Conceptual Dependency [CD| (Schank. 1972) forms the
backbone of MARGIE. CD and other similar systems offer

language-independent means for representing knowledge de- .

rived from natural language input. Other related linguistic
theories are also mentioned while describing MARGIE.

GUS was one of the first NLP programs to employ Marvin
Minsky's frame idea (Minsky, 1975) for representing knowl-
edge. KRL (Bobrow and Winograd. 1977a). a language built
concurrently with GUS and designed to provide an environ-
ment for developing frame-based systems, is also treated in
this section.

The next two programs presented, OPUS and IPP, are
recent developments dealing with physical object represen-
tation and generalization-based memory. respectively. OPUS
uses Object Primitives, an extension to CD. to represent real-
world objects. IPP employs Memory Organizational Pack-
ets [MOPs| {Schank. 1980: Schank. 1982) to encode action-
oriented events in a system that makes generalizations about
terrorism stories.

RESEARCHER continues in the vein of IPP and applies
similar concepts of generalization-based memory to the do-

main of understanding physical objects. It integrates a ro-
bust physical object representation scheme with an advanced
generalization method in an NLP system designed to read.
understand. and remember patent abstracts.  As such. it
alz0 demonstrates how hierarchicaily structured objects can
be generalized about as part of understanding.

The OPUS. IPP. and RESEARCHER programs. as well
as several other ones discussed within their contexts. repre-
sent the =tate of the art in NLP. as far as physical object
representation/generalization are concerned.

SHRDLU —Representation Using Semantic Nets

We start by considering a svstem concerned with prob-
lems similar to the ones faced by many researchers working
on representation/gencralization. Representing physical ob-
Jeets and understanding natural language about them is what
SHRDLU {Winograd. 1972) was all about.

In the early 1960°s work in NLP centered on compurta-
tionally intensive programs that applied a small set of gen-
eral, usually =vntactic! rules to some input text. in order
to achieve a desired result. These programs are typified by
those that tried to do machine translation of one natural
language into another. As is well known. these attemnpts
were unsuccessful {Tennanr, 1981). Several years later. as
researchers realized that more specialized rules were needed
and computers became more capable, NLP programs changed
in nature. The result was that programs could employ many
specific rules for processing purposes and/or include large
amounts of data for representational uses. This. of course.
brought about the problem of what kinds of rules to use and
how to control them.

SHRDLU was one of the first of this new wave of NLP
programs. [t was a fully integrated program that dealt with
a very specific domain. the blocks world. As implemented.
the computer created a simple setting containing images of
cubes. pyramids. and the like on a video display. along with
an imaginary arm that could move these objects around.
Within this world. SHRDLU allowed the user to request re-
arrangements of the blocks. ask questions about the state of
the world. and converse about what was possible within this
world.

What made SHRDLU a truly landmark program was
the way it accomplished its goals. Three major compo-
nents made up the system: a syntactic parser based on an
Augmented Transition Network [ATN| (Thorne et al.. 1965:
Woods. 1970). a semantic processor used to interpret word
meanings. and a logical deductive segment that Hgured out
how to perform the user’s requests and answer questions
about what is possible in blocks-world. The functioning of
the various components of SHRDLU proceeded as follows:
The ATN-based syntactic parser would figure out what pos-
sible meanings the input text might have: next the semantic

! Syntactic is used to mean the simple subject, verb. object ordering of
a sentence. Whole or even partial grammars were not used in early
machine translation attempts. Most sentences were translated on a
word-by-word basis.
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procedures would pick one of these meanings based on its
knowledge of the state of the blocks-world: finally the logical
deductive components would create a plan for fulfilling the
user’s request.

Another early program to make use of an ATN parser
was LUNAR (Woods et al., 1972). This program functioned
as 4 question answering front-end to a database about moou
rocks. LUNAR's vocabulary and parsing capabilities far ex-
ceeded SHRDLU's: however its data representation was the
same that the underlying database had. and as such was not
particularly interesting from a cognitive point of view. On
the other hand. SHRDLU's data representation was very in-
teresting and. at the time, was in the forefront of Al research.

SHRDLU maintained its knowledge in both procedural
and declarative formats. The declarative knowledge was rep-
resented in the form of a semantic network. Semantic nets.
as they are commonly called. were first described in (Quil-
lian. 1968). They are arbitrarily complex networks in which
nodes represent actions. ideas or. in the case of SHRDLU.
physical objects. Arcs connecting nodes represent relations
among them. For example. if there is a pyramid on top of
a block. where the pyramid is represented by a single node
and :o is the block. then an arc connecting them would rep-
resent the relation SUPPORTED-BY An 18-A link (arc) is
what is used to represent the concept that one node is an
instance of another. For example. a dog 1S-A mammal. All
the properties that a mammal might have can be inherited
by a dog. Thus, if the network had the fact that a mam-
mal breathes air encoded in it, then it would be assumed
that a dog also breathes air. Any relation the program-
mer chooses can be represented by arcs in semantic nets.
Aside from static physical relations. like SUPPORTED-BY.
and classification relations. like 1S-A. more emphatic rela-
tions. like MUST-BE-SUPPORTED-8Y and CAN-NOT-BE-A,
are possible. Thus. a mammal CAN-NOT-BE-A reptile. The
deductive reasoning procedures in SHRDLU make use of these
relations.

Much has been written about semantic nets (see Woods.
1975 for example}). They have been (and perhaps still are)
the dominant knowledge representation system used in NLP.
if not in all of Al. SHRDLU exemplified the best points about
semantic networks. The simple node-arc formalism provides
for easy representation of associations. They are useful at
encoding static factual knowledge and are versatile in that
they permit a wide range of data to be encrypted. Because
of the limited domain of knowledge needed to understand
the blocks-world, few of the difficulties and limitations of
this scheme surfaced (Wilks, 1974), which is one of the rea-
sons why SHRDLU was so successful. Among the shortcom-
ings of classical semantic nets are: no universally accepted
meanings for links: difficulty in representing time dependent-
knowledge: problems resulting from the need to organize and
manipulate a large network. Nevertheless. semantic nets are
a very useful tool for knowledge representation.

One of the consequences of picking a good representation
system is that some seemingly difficult problems become rel-
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atively easy to solve. By using semantic nets to represent
the physical objects in a blocks-world. learning about simple
object structures can be carried out. Of particular interest
is the work Winston (1977) did with a program [ARCH;} to
learn concepts. such as the form of an arch. An arch can be
represented by a rhree-node :emantic net. Afrer presenting
the ARCH program with a correet example of an arch. subse-
quent three-node nets are inspected by the computer aiong
with external input declaring each example 1o he correer.
nearly correct. or incorrect. From these data. the program
generalizes what it means for a structure (xemantic net rep-
resentation) to be an arch. and updates the semantic ner.
Specifically. the program compares the training examples it
iz given and extracts the information common to the correct
examnples that does not contradict what has been learned
from the incorrect examples. Winston's work demonstrated
the usefulness of generalization. particularly in the context
of NLP. The objects generalized were fairly simple compared
to the type used in later programs. such as RESEARCHER.

In SHRDLU. semantic networks were sufficient to cap-
ture simple relations armong block-like objects. A complex
physical object wirh many sub-parts could be represented *v
a sunple semantic network. but it would become an unwieldy
computational object to manipulate. For example. represent-
ing an automobile would be rather messy using this scheme.
Furthermore. the fact that a car is usuallv thought of as one
object is lost to a conventional semantic net representation
because all nodes have an equal status. Thus. the car's tire
couid seem as important as the whole car.

One way to overcome the inability of mosr semantic net
representation systems to deal effectively with large netwarks
of data is to chunk information into regions within the net-
work and treat these chunks as if they were individual nodes.
Thus. a large semantic net with 10.000 nedes could logically
be reduced to a network of. zay. 200 chunks in which each of
the 200 chunks would contain sub-networks of a small size.
This partitioning of a network was proposed by Gary Hendrix
(Hendrix. 1979).

Several advantages over simple semantic nets are ap-
parent in his scheme. By separating low-level knowiedge
from high-level knowledge. the encoding process can repre-
sent more varied information. For example. the color. shape.
and size of an object could be linked together within a parti-
tion and the partition itself could have iinks to other nodes
or partitions (e.g.. indicating higher-level facts about the ob-
ject’s purpose).

This hierarchical partitioning results in smaller numbers
of objects at any one-level that need to be manipulated.
Furthermore. partitions are useful for grouping object: so
that they can be quaatified. That is. a section of a semantic
net can be designated so that all its members have some
particular property while no objects outside it do. Frames
(Minsky. 1973) are another way of solving many of the same
provlems as partitioned semantic nets.

Summary. The SHRDLU program was a milestone in NLP
research. It made extensive use of semantic networks as a



means of representing knowledge about a blocks-world. By
using a syntactic parser, it could perform the commands re-
quested by users and answer questions posed in English. Few
limitations of the program were apparent because of the very
limited domain in which it dealt.

Semantic networks have proved to be an extremely use-
ful knowledge representation technique. They were used in
SHRDLU to represent simple physical objects. but can be
used to encode practically anything. Although they are very
versatile. they have some important limitations. including
the lack of standardized meanings for links and difficulty in
manipulation of large network structures. The use of parti-
tioned semantic nets generally solves the large network prob-
lem by breaking it into groups of small sections.

The structure of semantic nets allows them to be used
for generalization. Links that allow for inheritance of prop-
erties from higher level nodes in the network. are the key to
carrying out simple learning from examples.
MARGIE—Conceptual Dependency
and Other Linguistic Theories

Syntactic parsing worked well in the blocks-world do-
main. but a deeper understanding of language is called for
when using representation/generalization schemes that en-
code complex data. This section describes one approach to
representing the meanings of components that are presented
via a natural language.

While researchers in psychology. like Quillian, and in
computer science, like Winograd. were working out repre-
sentational issues using semantic nets and the like, linguists
were making great strides forward in a relatively new field
called computational linguistics. This branch of linguistics
is mainly concerned with using computers to simulate NLP.
One way of breaking down computational linguistics is into
syntax. semantics, and pragmatics.

Syntax. in a computational linguistic environment. im-
plies the study of sentence analysis and generation from a
purely structural viewpoint. Noam Chomsky’s theories of
generative grammars (Chomsky. 1965) and his classification
hierarchy of formal languages were the modern starting
points in this subfield. In addition to Chomsky s work. there
has been a fairly large effort in describing and building syn-
tactic parsers. Examples of the research in this area are ATNs
(Augmented Transition Networks) (Thorne et al. 1968:
Woods. 1970), which form the basis of several powerful com-
puter parsers, including the one used in SHRDLU.

Chomsky is credited with revolutionizing linguistic the-
ory. However, he has aroused many critics who point out
his failure to deal with semantic and pragmatic issues in lan-
guage comprehension. Semantics is generally understood to
be the study of language meanings. while pragmatics con-
cerns itself with connecting meaning to real-world experi-
ences. Although these definitions are easy to state. in prac-
tice. the distinctions between semantics. pragmatics. and
syntax are often blurred.

Following the demise of early attempts to do machine
translation among natural languages. many computational

linguists began focusing their attention on problems of se-
mantics. The early NLP programs were strictly syntactic in
nature. Many researchers felt that these programs. were in-
capable of doing an adequate job of understanding. necessary
to perform machine translation or paraphrasing.® Semantics
secined to offer a way to improve greatly upon the perfor-
mance of these programs, Writing programs that could uu-
derstand the meanings of the words that they were reading
became one new theme of NLP research.

Oue such program. MARGIE {Schank. 1973). was created
with several objectives, including the paraphrasing of single
sentences. while serving as a test bed for a new theory of
semantic representation called Conceptual Dependency /CDj
(Schauk. 1972). Roger Schank. the principal desiguer of ¢'D.
set out to synthesize some recent work in linguistics and psyv-
chology into a consistent and useful theory that would lend
itself to computerization. CD iz a language-independent.
primitive-hased representation scheme for NLP. It is primar-
ily based ou the ideas of both semantic primitives and case
grammars which will be discussed below. MARGIE was rhe
first attempt ar testing this theory in a computer environ-
ment.

MARGIE functioned in two similar modes. In paraphrase
mode, MARGIE would read English sentences and parse them
into an internal CD representation. In this form various in-
ferencing systems would produce other CD-forms. The last
stage of this mode would generate an output sentence based
on the CD-forms. The inferencing mode of MARGIE worked
in a similar manner. However. instead of producing a com-
plete paraphrase of the original sentence. MARGIE would
output a series of statements concerning what inferences it
made about the meaning of the inpnt text.

To get an idea of what MARGIE's capabilities were. con-
sider the following examples. taken from (Schank. 1973):

In paraphrase mode the input text “John advised Mary
to drink the wine” would produce the outpur:

John told Mary that drinking the wine would benefit her

This shows that MARGIE must know something about
the meaning of the verb -advise.” In fact. CD provide:
the program with a method for classifving all action-based
verbs [ACTS]. Although verb classification is not directiy
applicable to physical object representation. CD provides a
paradigm for developing primitive-based understanding
schemes. Before a description of CD is presented. consider
how MARGIE worked in the inferencing mode.

The input: ~John gave Mary an aspirin.” would cause
MARGIE to display the following inferences it had made
(among others):

1. John believes that Mary wants an aspirin
2. Mary is sick.

21t should be noted that early NLP programming attempts did rot
do an adequate job of syntactic processing. Since then there have been
major advances in the ability to use syntax as the basis of NLP systems.
Many of today's NLP programs rely on syntax. often mixed with other
processing techniques. and perform quite well.
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3. Mary wants to feel better
4. Mary will ingest the aspirin.

These examples illustrate that CD must also be capable
of representing the meaning of causal connectives. That is.
inference (1) (and other beliefs) causes inferences (2) and {3)
v be made. which explain the stated action of John giving
Mary the aspirin. MARGIE must also have encoded within
.t ~eli the knowledge that aspirin is usually ingested. in order
to make inference (4).

(‘D works on the theory that all actions (verbs) can be
~educed i meaning to combinations of a small group of prim-
itive ACTS. For each ACT represented. there are a fixed num-
her of arguments that accompany it. That is. an actor. re-
“ipient. obiect or other possible case slots must be flled for
each ACT. Thus. for example. “John gave Mary an aspirin”
would have the representation:

(ATRANS)
ACTOR. Jonn
FROM: John
TO: Mary
OBJECT aspirin

ATRANS, one of the primitive ACTS. is used to repre-
sent the meaning of the verb ~gave” and indicates Abstract
TRANSfer (of possession) of an object. Other verbs. such as
~rake.” are also represented by ATRANS. but have their case
slots filled differently.

CD is capable of representing a wide range of actions and
situations. In addition to the basic ACTS. both mental and
physical states of a being or an object can be encoded. The
fact that an event may enable. disable. cause. or generally
arfect a state is also representable within CD. Using these
connectives. it is possible to represent the meaning of a series
of sentences that constitute a story with one complex CD
structure.

Schank’s theory of Conceptual Dependency was not com-
pletelv new to the field of linguistics. Two main areas of re-
search contributed to its synthesis. The first was the devel-
opment and study of case grammars (Fillmore. 1968). Case
srammars were a byproduct of both classical linguistics and
Chomsky's transformational grammar. They reflect classical
linguistics in the sense that they identify the various parts of
a sentence such as the main verb phrase and noun phrases.
However. it is not the surface structure of the sentence that
iz extracted. but rather the meaning. Thus. regardless of the
formal structure of the sentence. the “case frame™ extracted
by using case grammars will be the same for sentences em-
ploying the same main verb. Structurally, the case frame
looks very much like what was presented in thé CD examples
tabove} with actor {or agent). object. instrument. and a few
other slots available. Case grammars classify verbs by what
slots (cases) must accompany a particular verb. Thus. for
example. if the verbs open and throw require the same slots
OBJECT. AGENT, and INSTRUMENT for their case frames
then they would be grouped together. CD goes beyond case
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frames. by defining a system of primitives and rules to manip-
ulate them that captures the meaning of a sentence. rather
than having a case frame [or every verb.

The second building block of CD comes from both lin-
guistic and psychological research. Semantic primitives are
generally defined to be the lowest level of symboiism in a
representation svstetn. In praectice, an understanding/repre-
sentation svstem uses semantic primitives as a way of classi-
fying some group such as acrions or physical objects. CD is
an example of a non-hierarchical classification scheme uszing
semantic primitives.

The use of semantic primitives in a representation scheme
can also be of help in processing. Thart is. inference rules can
he grouped according to which primitive classes they apply
to. This allows a processing svsrew to determine easily what
inference rules zhould be tried. which reduces search tme.
For example. the ATRANS ACT in (D can have the rule if
the FROM :zlot filler is not specified. then fill it with the AC-
TOR slot value, attached to it. Other ACTs may not need
such a rule and they need nor have one since rules can he
specifically bound to a given semantic group.

Some recent peyeiwlogical research (<.g.. Rosch ¢ al.
1976). has investigated the existence of fundamental classes
of physical objects. They give a lair amount of evidence
which shows thar natural categories of objects exist that peo-
ple use while perceiving physical objects in the real world.
Other work by George Miller (Miller. 1973} has given <trong
support to the thesis that verbs can be categorized as well.
In one study he found that English has over 200 words that
have the semantic component "to move.” These studies show
that humans make considerable use of categorization as a
way of perceiving and understanding input from the real
world. Furthermore. they suggest that fundamental mean-
ings in natural language might be ried ro real-world obiects
and/or events.

The concepr of categorization is related to the idea of
semantic primitives. Categorization is a hierarchical way of
grouping entities so that some organization is apparent. Bio-
logical taxonomy is an example of such a categorization =yz-
tem. Semantic primitives strive 1o reduce real-world knowl-
edge into meaningful groups. usually in a non-hierarchical
structure. Thus. categorization and semantic primitives are
both ways of helping people and/or machines perceive data
from the real world.

Yorick Wilks has developed a svstem that he calls pref-
erence semantics (Wilks, 1973). which also uses <emantic
primitives. Preference semantics is a system whereby the
meanings of some words help to disambiguate the meaningz
of other words while parsing input text. Each word that his
system can understand cousists of a dictionary entry thar
classifies the word into one of five major categories. Wirhin
the definitions are data that include how to interpret other
words read in the same context. Thus. for example. the
sentence “John grasped the idea” is understood by using
information encoded in the definitions of each word and in-
ferring that if John is grasping a non physical object then the



meaning of "grasp” must be “understand.” Wilks also built
a program (Wilks, 1973) that nses preference scimantics 1o
do translation of English text into French. This was accom-
plished by making use of the facr that preference semanties
distinguishes different word senses. Thus. when agiven word
sense was detected in the English input. its equivadent imean-
g in French wis stored [or use in ontput generadion.
Other NLP systems that use representation meehanisins
sitnilar to Wilks's program and MARGIE are The Word Ex-
pert Parser (Small, 1980). a system mueh like preference se-
mantics that is totally dictionary-based: =AM (Collingtord.
1978: Schank and Abelson. 1977). a progriun that nses €D
representations built into higher level knowledue stenetires
called seripts: and PAM (Schank and Abelson. 1977 Wilen-
sky. 1978). a lngh-level representation sv<tem that ander-
stands stories in terms of plan-based =schemes. SAM and
*PAM share an English language parser called ELI (Riesheek
and Schank. 1976).
Schank’s work: they are more advanced than MARGIE in
thar they understand stories in terms of real-world events
That is. seripts are used to group events into logical units.
surh as rhe chain of aetivities that occur in a restaurant set-
ting. DPlans are used to sarisfv goals and explain events by
specifying a sequence of actions that are needed to achieve a
desired result.

Summary. MARGIE was basically a way of testing CD.
Later programs like SAM and PAM used CD as the basis
for limited natural language understanding systems. CD has
proved itself as a robust representation schenie that is par-
ticularly well suited to action-oriented events., It has the
CXPTeSSIVeness necessary to capture causality aceurately and
the vonciseness to avoid ambiguity. However. it has several
drawbacks. The use of a small set of primitives results in
the loss of some meaning in certain contexts. Furthermore.
static facrual knowledge (e.g.. physical object descriptions|
i= almost completely neglected by most CD implementations.
The main reason for studying D and similar systems
is that they have demonstrated the usefulness of primitive-
based. semantic representation systems for use in NLP. Case
frames. suitably modified for physical object relations. and
semantic primitives seem to offer powerful tools for formu-
lating a theory of object representation. Furthermore, the
formalism of case frames is quite helpful for performing gen-
eralization. as will be seen when IPP is discussed.

GUS—Frame-based Representation Schemes

Semantic networks offer a plausible formalism for physi-
cal object representation systems. but have several problems.
The solution seems to be the partitioning of a network into
groups of nodes that are logically comparible. Hendrix intro-
duced partitioned semantic networks as one possible scheme:
another scheme was used as the basis of GUS (Bobrow &t al..
1977).

SHRDLU and MARGIE were very useful experimental
programs but they did not have much application to real-
world situations. GUS was designed to provide information

Both programs are a continuation of

on airline flight schedules. Although GUS was still an ex-
perimenta! program. and dealt with only a small number of
airline fAights. it represented a move in the Al community
toward using natural language input /output modules (front-
ends) for databases, (GUS was one of the frst programs ro
make explicit use of Miusky's frame concept.

GUSs domain of discourse was very limited: in facr. it
only knew about airline flights scheduled for eities within
California. It playved the role of a travel agent during a con-
versation with a user. An initial database was extraected
from the Oficial Airline Guide. With this data in a suitable
frame format, and a parsed user requesr. GUS reasoned out
i correct and appropriate response,

Frames are coneeptual objeets that are used as an orga-
nizational mechanisin for grouping pieces of knowledge into
logically consistent blocks. They are most easily thought of
as an extension of semantic networks where each node is a
comparatively large structure that conrains enough informa-
tion to deseribe an item adequarely at some level of derail.
While a node in a semantic net usually is simply the name
of an item. a frame can possess information abour how 1o
classify an item. how to use it. what atrribures it has. and
virtually anything else that might be useful to know about
an event or object. Furthermore. the knowledge encoded in
a frame need not be static (declarative): it may be dvnamic
(procedural). or it can be a combination of these (Winograd.
1975). For example. if an airline reservation system used 4
frame to represent each date a plane reservation was made
on. it might have slots in the frame as follows:

-YEAR:
MONTH:
DAY-OF-MONTH.
DAY-OF-WEEK.

The information flling the YEAR. MONTH. and DAY-
OF-MONTH slots might be filled with static data (probably
single numbers). The DAY-OF-WEEK slot might contain pro-
cedural knowledge as follows:

(IF YEAR and MONTH and DAY-OF-MONTH are filled
THEN [FIGURE-WEEKDAY])

GUS ran by using information encoded within several dif-
ferent frames to guide its operation. For example. at the start
of a conversation. GUS would try to find the data needed to
satisfy the requests of a prototvpical dialog frame. The at-
tempt at filling in slots would lead to the need to fill in lower
level frames before the dialog frame would be complete. Thus
the date frame might have to have its slots filled in before
it could be included as part of the dialog frame. By having
a sequence of prototype frames to follow. GUS achieved its
goal of acting like a travel agent.

The term slots refers to the “important elements” (Wino-
grad. 1973) in a frame. Slot fillers can be thought of as
references to other frames. which is what Minsky originally
proposed. In any particular application of a frame system. a
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considerable amount of thought must be given to how many
slots should be used and what they should contain. A guiding
principle for frame slot selection is. “A frame is a specialist
in a small domain” {Kuipers. 1973).

One very important aspect of the use of frames as a
knowledge representation scheme is the default flling of slot
values for instantiated frames from stereotypical frames. An
instantiated frame is simply one that has its slots filled. at
least partially. Default values for frame slots can be easily ser
up by placing them in a stereotype frame and programuning
a svstem =0 that if no value for a particular slot is specified.
then it is inferred from the stereotype. Generally. this default
processing seems to make sense. For example. if the YEAR
was not explicitly given in the date frame (shown above}
then it would be reasonable to assume that the value of the
slot should be the current vear {as most airline reservations
are not booked too far in advance). However if the DAY-OF-
MONTH was not given. it would obviously be a mistake to
assume some value from a stereotype (assuming that only a
few reservations are made on any given day).

In order 0 use frames effectively as a representation sys-
tem several other operations. aside from default processing.

re essential. These include matching one frame against an-
other. allowing for inheritance of properties from higher level
frames. type checking the values that can fill a siot in order
to ensure that only certain ones are accepted. and general
abilities to manipulate a connected network of frames. KRL
(Bobrow and Winograd, 1977a). a language that was de-
veloped specifically to allow for knowledge representation in
the form of frames. includes facilities for the aforementioned
functions and others. Many of these functions. particularly
matching and inheritance. are of importance for use in sys-
tems that perform some sort of generalization about their
krowledge.

Although GUS was not a particularly intelligent or ro-
bust system. it was a great asset in the refinement of some
of Minsky's ideas about frames. [t also served as a model for
other programs written in KRL. such as COIL (by Lehnert
(Bobrow and Winograd. 1977b)). an NLP program that con-
cerns itzelf with drawing inferences about physical objects.
Orher NLP systems that are also strongly framed based in-
clude: Ms. Malaprop (Charniak. 1977), a program that reads
stories about painting: SAM (Cullingford. 1978) and PAM
{Wilensky. 1978). discussed earlier: PP (Lebowitz. 1980)
and RESEARCHER (Lebowitz. 1983a). described in detail
in later chapters.

Many other very high-level representation languages for
Al exist. KLONE (Brachman. 1979) and FRL (Roberts and
Goldstein. 1977) are two systems similar in purpose to KRL.

KLONE is both a language (embedded in LISP) and a
methodology for organizing partitioned semantic networks.
Objects represented in KLONE are structured rnuch like they
are in a frame-based scheme. However. KLONE's structural
formalism also provides a way of establishing inheritance hi-
erarchies. A distinction is made between stereotypical ob-
jects and instantiated ones. Thus. the properties of an ob-
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ject can be attached either to a stereotype for that object
or to the object itself. Because of the hierarchical nature of
KLONE. complex. but well organized inheritance dependen-
cies can be established. By using a limited ser of possible
links. the semantics of the netwnrk are clearly defined. The
meanings of the allowed links have been chosen =0 that con-
sistency and accuracy prevail in the &ual representation.
FRL is much like KLONE. bur instead of imposing re-
strictions on the semantics of link=. it forees rhe network of
frames to be hierarchically connecred. That is. all frames
must be joined together using INSTANCE and A-KIND-OF
links. Therefore. the representation tree {acrually a net-
work that is treelike) has as itz roor the most general object
(frame). and its leaves are the lowest level instances of what-
ever the network is representing. For cxampie. if one were
representing car models. the root {rame might be all auto-
mobiles: below that. frames encoding General Motors. Ford.
and Toyota cars: and at the bottom of the tree there would be
Celicas. Skvlarks. Mustangs. and so0 forth. The A-KIND-OF
links point backward. o0 that Buicks are A-kIND-OF General
Motors car. Unless otherwise =peciied. Buicks would inherit
all the properties rhat are common to Ceneral Motors cars.
This tvpe of representation iz very helpfnl in forming and
storing generalizations made about objects or events.

Summary. GUS uses frames as a way of representing data
on airline flight schedules. It also makes use of framed knowl-,
edge to guide its goal-oriented processing. Frame represen-
tation schemes are an improvement over those using sim-
ple semantic nets. They allow for grouping data. much like
partitioned semantic networks. Furthermore. most systems
employing frames allow for them to be structured in a hier-
archical manner so that categorization and inheritance de-
pendencies can be established.

KRL. FRL and KLONE are languages that are based on
frame or framelike representations. Thev all ofer wayvs for
describing inheritance. matching one fram:. against another.
and various other functions. KLONE is the newest and most
successful of these. It provides a consistent zet of zeman-
tics for linking together frames. and thus zolves one of the
problems that has plagued semantic network :chemes.

The use of frames linked together into hierarchical struc-
tures is a representation that lends itself to generalization
processing. INSTANCE and A-«KIND-OF links correspond to
specialization and generalization. respectively. Many repre-
sentation/generalization schemes use this basic formalism in
constructing complex network descriptions of physical ob-
jects.

OPUS—Physical Object Representation Schemes

SHRDLU addressed the problem of representing small
numbers of blocklike objects. An obvious extension of this
is to encode information intelligently about large numbers of
arbitrarily complex real-world objects. This secrion describes
several methodologies for doing so.

Physical object representation schemes for NLP seem to
fall into three major groups. The first group consists of those



schemes that are mainly concerned with representing the way
in which objects are used. That is. the functionality of a
physical object or the way humans think of an object while
performing a task involving it (Grosz. 1977). The second
group is formed by those schemes that strive to encode some
fundamental properties (e.g.. melting point or density) of
physical objects. The remaining group includes those sys-
tems that seek to represent physical objects from a visual
perspective, and are therefore useful for describing an ob-
ject’s structure. These groups are not necessarily distinct. in
that some representation schemes can be members of more
than one group. To give a better idea of what these groups
are. one example system from each group will be examined.
Object Primitives (Lehnert. 1978) are an excellent ex-
ample of a physical object representation scheme that is a
member of the first group. This representation scheme was
designed to be an extension of CD. Each of the seven primi-
tives stands for a basic attribute of an object. By combining
several of these attributes together, any object can be de-
scribed. For example. an ice cube tray might have the Object
Primitive representation taken from (Lehnert, 1978):

[lce Cube Tray
(a SOURCE with
(outbut = Ice Cubes))
(a CONSUMER with
{(input = water))]

Here the SOURCE and the CONSUMER are two of the
seven possible Object Primitives. Notice that no attempt
is made to encode the physical form of an ice cube tray.
However, the functional features of an ice cube tray are rep-
resented by this scheme in a manner that is consistent with
other CD-forms. .

The primary purpose of OPUS (Lehnert and Burstein.
1979) was to read sentences about physical objects and con-
vert them into Object Primitive representations. OPUS can
be classified as an expectation-based parser that uses its
knowledge about physical objects to aid in understanding
input text.

The program “understands” physical objects in an every-
day type environment. The representation scheme concen-
trates on how objects are to be used and allows utilitarian
inferences to be made. For example, the sentence:

John opened the bottle and poured the wine
would be represented by a structure that includes such in-
ferenced facts as:
. A cap was removed from the bottie.
e Wine was in the bottle.

. Wine was emptied from the bottie.

This idea fits in well with the original concept in CD
that ACT representation is central to understanding and that
various connectives allow for merging ACTS into complex
events. The work that Wendy Lehnert did to extend CD was
to define seven Object Primitives that function. in object

representation. much like Schank’s ACTS. which deal with
human-oriented events.

An example of a scheme from the second class of phys-
ical object representation schemes is the work Gordon No-
vak (Novak. 1977) did to develop a canonical physical object
representation system for use in a program called ISAAC.
This program reads and solves elementary physics problems
stated in English. Although this is a NLP application pro-
gram. the representation for the objects being described in
the problems is fundamental in the sense that only the phys-
ical properties of the object are encoded. Thus. for example.
a dog standing on an inclined plane might be represented
by a point mass: the fact that the animal is a dog has no
significance in this context,

This scheme is canonical because many different objects
are reduced to the same representation that contains all
the information to classify these objects uniquely. Canon-
ical representation is typical of physical object representa-
tion schemes that fall into this second class. Schemes in this
class are generally very useful in specific domains. but are
not too applicable to everyday type situations. The Object
Primitives scheme is canonical in the sense that an ice cube
tray has only one purpose (and therefore only one represen-
tation). However. it is qualitatively different from [SAAC's
representation scheme because Object Primitives does not
try to capture fundamental physical properties of an object.

An important sub-class of these schemes has received
considerable attention recently. The term qualitative physics
(de Kleer and Brown. 1983: Forbus. 1981: Hayes. 1979}
is used to refer to the notion of understanding real-world
physics for Al purposes. This implies that qualitative physics
is simpler than classical physics and that it can function well
in commonsense reasoning processes. Qualitative physics dif-
fers from other schemes that fall into this second class in that
qualitative physics schemes are intended to be applicabie to
a wide range of situations.

Representations that relate to visual processes constitute
the third class of object encoding systems. A program writ-
ten by Stephen Kosslyn and Steven Shwartz (1977) attempts
to simulate how people use visual data. Their program mod-
els only a few aspects of visual processing. It is able to search
an input image for various sub-parts and identify their posi-
tion relative to other parts. regardless of the scale or. to some
extent. the angle of view. Running in reverse. the program
is also able to construct well proportioned images by using
its knowledge of how parts can interconnect. This type of
ability may be useful in NLP systems that need a structural
description of an object.

There has been a rather large amount of research relat-
ing to physical object perception in recent vears. Both ex-
perimental psychology and robotic vision processing are con-
cerned with how humans recognize real-world objects. Much
of this work is based on the idea that scenes are decomposed
into sets of primitive elements with relational elements hold-
ing an image together. Some strong evidence that this kind of
processing takes place in children has been uncovered (Hayes.
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19721, Vision rescarch spans a wide range of unage repre-
<entation levels (see Cohen and Feigenbaum. 1982, for an
overviewd. At the lowest level, scenes are usually encoded on
A point-hy-point basis. while the higher levels may approach
abestractions characteristie of schemes used for narural lan-
wnage provessing.  Rosslvn and Shwartz’s model of visiou
aroeessing fits somewhere inthe lower to middle range of
thiese sehiemes,

Summary. OPUS is prinarily coneerned with the way ob-
reets are used i evervday-type setrings. It s a fairly simn-
ple wvsremn designed 1o test o physical object representation
< chemne thatt serves as an extension to CD.

Mot phvsical objeet representation schemes for NLP
dave one particular specialty, OPUS offers a system. Ob-
cer Primitives, that mates with €D bat lacks the ability 1e
capiure detail of the structure of objeetz. Other systems
tike Kos=lvn and Shwarrtz's, allow for great detail but miss
unt on the higher level abstraections. such as how physical
nbjects are nsed. Encoding an object’s purpose for use in a
ta~k-oriented environment is also a shortreoming of mnosr enr-
ment ~vatems (OPUS and Barbara Grosz's task domain are
notable exeeprions). To understand complex physieal objects
tilv, s need existz for processing techniques from each of the
three classes visnal, wilitartan, and fundamental physical
properiy,

IPP—Generalization and Memory

Asswmine that the representation problems for a sin-
ale complex physical object have been solved. we are now
faced wirh the problem of organizing many such descriprions
in an intelligent manner. 1PP (Lebowitz. 1980: Lebowitz.
19250 Lebowitz, 1983¢) and similar programs demonstrate
how generalization can be used to achieve this end.

One common feature that most of the preceding pro-
arats dincluding MARGIE. GUS and OPUS) have is their uze
ol trazues as knowledge strucrures. IPP is no exception. The
{ratne ~structures used in IPP are forms of MOPs (Memory Or-
satizational Packets) (Schank. 1980: Schank. 1982). MOPs
are very high-level represeurational structures that organize
~cenes. seripis. and supplemental data into a coherent pic-
tare of an evenr, o this sense. MOPs work much like plans.
bt are more powerful and allow for dynamic script builc-
e That is. the seripts that a MOP emplovs need not be a
permanent part of the MOP. They can be modified. Jelered.
or repositioned wirhin the MOP in order to retlect a berrer
wnderstanding of what the MOP iz encoding. The dynamie
vature of MOPx~ is an important element in a understanding
~v=temn that uses them. This ability to restrucrure memory
dyviianically iz the principal diference between MOP: and
~unpie e~ or partitioned semantic nets. By allowing for
< representation scheme that can reorganize its own dara.

‘The reru fmmes is used here to include any representacion scheme
whah groups data into logieal blocks and provides for individual access
ro the slots within these blocks. It should be noted that the framas
usedd in [PP are equivalent 1o those used in MARGIE or GUS in only

Thao brnadest sense
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MOPs go far beyvond the capabilities of <rarie frame-based
processing techniques.

IPP usex MOPs as long-term memory representations of
stories it reads abour terrorisn. Its approach is to scan =to-
ries from wire services and news=papers and nuderstand them
w rerms of whar information it has garhered from previoos
stories. The uze of MOPs rosiding ininemaory i andersand-
g the current input text i one of the Tuportant fearures

of this prograun. PP recognizes <imiiarities and dferenoes
berween evenrs ztored wirhh MOP- 17 has i tetnory ad then
tses this obzervational Jdara ro biuild other MOP: thar can be
usedd as stereotypical knowledge. This process = 4 form of
generalization.

To exemplifv this rvpe of generalizarion. conzider the
tollowing taken from (Lebowitz, 19a0

UPL 4 April 1Y80. Northern Ireland

“Terrcrists peheved to 2e from the Irisn Repulhcan Army Mmur-
dered a pari-lime polilceman.

UTL 7 June 1950, Northern frefand
"The outiawed Insh RepudhCan Army 5701 2€38 3 Dart-umz

soigiar 10 front of mig 11-4237-010 5Cn 11 3 li3ge T1or2 Surlyy

From these sturies, PP would made the generalizarion:
“Terronst killings «n NOrthern Irgiang are arried Qut
Dy mempers Of tne irish Reoudhc3n Army

This generalization is made possible by a comparizon of
MOP slot fillers. The stereotypical MOP for a rerrori=r killing
event has slors for place and actor. among orhers <uch as
victiin. method. and the like. The prograinassimes that all
facts it knows abour are relevant ro cowpare. After tori-
ing rhis generalization. IPP will use 11 to make nferences
while reading other stories. Thus. if a new story abour a
terrorist act in Northern Ireland came across the UD wire
and no mention of who cowmitted the acr was made. rthen
IPP would assumne rhar rie Irish Republican Army was re-
sponsible Tlus <ort of asstunption = an exatupie of detani
processing mentioned in rhie context of GUs b carried ons
at a higher fevel of representation and dvuanicaily.

To get a berter idea of what MOPs can represenr. con-
sider the MOP skeleton tadapred from o Schank. 19320 -
shown in Table 1,

Here we <ee that the M-AIRPLANE MOP i~ composed of
several =cenes. which in rurn contain <eript~. which are come-
plex CD descriptions of a simple activiry. That (s ~cenes are
at a higher level of representation than are script=. and MOP-
are at a =till higher level. This diagram ~hows only whar rhe
DRIVE-TQ-AIRPORT scene expainds ro. All the other weenes
Liave sowte seript representation as well. Althouah MOPs are
a form of frame. they are far removed frow <omething as
zimple as the date frame exemplified in the GUS deseription.

IPP correctly reads and understands hundred: of zep-
arate stories. The srrong performance of this program is
partially due to the fact rhat it reads only a limired domain



LEVEL OF CONTENT OF
REPRESENTATION REPRESENTATION
MOP M-AIRPLANE
scene (PLAN TRIP)
scene (GET MONEY)
scene (CALL AIRLINE)
scene (GET TICKETS)
scene (DRIVE TO AIRPORT)
sCnpt FIND KEYS
scnpt PLAN ROUTE
script LOAD LUGGAGE
script etc
. L ]
[ ] [ ]
L] L]
[ ] L]

Table 1.

of stories. By using a small number of stereotypical MOP:
that are initiallv input by the programmer. the generaliza-
tion process is made somewhat easier. Ouly a relarively smail
number of similarities and/or differences among MOP= need
be analyzed.

Lebowitz’s work is not the ouly recent research into us-
ing generalization processes in conjunction with natural lan-
guage understanding systems. CYRUS (Kolodner. 1980). a
program developed concurrently with IPP. uses a similar gen-
eralization process in order to understand events concerning
the activities of individuals (Cyrus Vance was the prototype).
They differ in the way that they make use of knowledge
gained through generalization. IPP uses its inferred knowl-
edge in order to help itsell in understanding further input
text. while CYRUS answers user questions by employing this
knowledge to help it reconstruct episodes in memory. These
reconstructed episodes can be thought of as a re-creation of
the mental state that the understanding system had while
reading the original text.

Recent work by Kathleen McCoy. on a program called
ENHANCE (McCoy. 1982) uses generalization as a way to
restructure an existing data base. [t subdivides entity classes
in a data base according to a set of world knowledge axioms.
These sub-classes form a structured hierarchy that is tailored
to a particular use by the information contained within the
axioms. The eunhanced data base is then used by a text-
generation program to provide intelligent responses to user
queries. Thus. the work done by the generation program iz
simplified because most of the inferencing it needs to perform
has already been pre-computed by ENHANCE.

Much work has been done in psychology in human cog-
nitive modeling (see Kintsch. 1977 for an overview). As a
consequence of this work. and others’. many different wavs
of thinking about generalization have emerged. Some re-
searchers prefer to think that all learning is in some way
generalization. while others reserve the term generalization
for a specific cognitive process. such as building stercotypes
from a limited number of examples. Concept building and
rule learning (Stolfo. 1980) are phrases that are often uzed to

deseribe generalization processes { Mitchell. 19282 and Michal-
ski. 1983 provide usefut] classifications of learning rescarch),

Rule learming i= the term that Tom Mitehell applies 1o
his notion of version spaces (Mitehell, 1977). Version ~paces
refers 1o a representation/generalization method for snding
the set of all possible rales that ean acconnt for the o
cote of some partienbir action given the residis of this e
tion. They are used i o progriun called Mera-DENDR AL
(Buchanan and Mirehell, 197%) which leiwrns rnles for ase
the production svstem that DENDRAL (Lindsay «f ai Lo
uses. Although this program does not do matnrad aeige
processing. it uses i dnal form of generalization lueed og
the version space method. It ocan produce production oo
that are as general as possible, b ~till fullv aceone S
the observed data. or it can produce vers specitn 1iaes o
both. This type of multi-level generalization ability e
potentially quite useful in NLP applications. bt s v 1
be implemented.

Generalizations based on high-level representation-. ~niy
as those that MOP< encode. differ from learnine driven in
simple semantic nets. Winston's ARCH program conde: teay
the concept of an arch by analyzing several vorrect and -
roneous examples. [t did rhis by studyving the {orm o rie
semantic net that represented each exanple, 1IPP ke 1-
generalizations by using the coutent of MOP=. This foriu ver-
sus content distinetion ix not clear-cut. Both =emantic ners
and MOP: use links 10 encode knowledge. and botly nse noded
(frames) to hold data. The difference lies in the realization
that MOPs encode their low-level knowledge in frinne <o
and their high-level knowledge as finks, while semantic ners
store all their data ax links.

Knowledge gained through generalization is certicniv of
this high-level rype. IPP uses this knowledge as o wiy ot
structuring its memory. That i< the act of Torming wen-
eralizations actually results iu i different overall wemory
structure (only if 4 new coneept is ereatedt. Furthiermos
the system can use its newly acquired knowleduee o help
it understand additional input during the parsing process,
This type of representation/generalization integrar-on o~ ow-
tremely powerful as the basis for a NLD prograin that gecets
to deal with varied levels of representation.

Summary. [PP. CYRUS, and ENHANCE represent recene
developments in using generalization as an aevive oroaz
tional mechanism for knowledge, IPP can read hnndreds o
stories about terrorism and understand them i reres o she
previous kuowledge it has acquired. The use of NP o
with the ability to structure thew dynamicalty, - the xev s
this learning process.

The MOP form of knowledge represeutation i~ very vir-
satile. Many levels of deseription can be eticoded wiviiz
hierarchy of conceptual frames. Thix ability seets rote -
cessity for a physical object understanding sysrews thay Lhopes
to handle complex objects. Complex physical objects are ot-
ten described by a series of part. sub-part relation-. Thu-.
a representation =cheme would need to encode the wiicle oli-
jeet. its major compouents, the part~ of the major compo-
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nents. and so forth.

The problems that arise in static frame-based represen-
tation schemes, having to do with their inability to reor-
ganize the data that they encode easily. have largely been
solved by dyvnamic MOP-based systems. IPP and CYRUS
have Jdemonstrated the usefulness of integrating generaliza-
rion with representation to form adaptable understanding
programs. This integration is a consequence of the use of
generalization processes as a way of structuring data.

MOPs and generalization offer.a viable approach for
building representation/generalization systems that seek to
nnderstand knowledge in a complex domain.

RESEARCHER—A synthesis

IPP demonstrated how a generalization-based memory
can be used to organize a large number of event representa-
:1ons into a unified structure. The events used were nonstruc-
rured frame (MOP) descriptions of terrorism stories. They
did not have sub-events. sub-sub-events, and the like. Un-
like these events. complex physical object descriptions are
hierarchically structured. RESEARCHER (Lebowitz. 1983d:
Lebowitz. 1983a) integrates representation and generalizas
tion in a similar fashion {as IPP did) to form a robust under-
standing system for complex. hierarchically structured object
descriptions provided by the patent abstracts it reads.

RESEARCHER. which is still under development. func-
tions by parsing patent abstracts into a representation struc-
ture based upon memettes. Memettes are a type of frame
similar to MOPs, Ba®are specifically designed to be used in
building hierarchical structures. Each memette represents a
part of a complex object at some level of detail. That is. a
single memette can represent an entire object (a disc drive,
for example). or it can be used to encode the description
of a unitary object (such as a particular screw in the disc
drive). A memette that represents an object that contains
other objects as parts is called composite.

The physical object representation scheme that RE-

SEARCHER uses is based on two principles: physical objects
can be primarily represented as a hierarchical structure. and
this hierarchical structure is augmented by relations con-
necting arbitrary nodes in the hierarchy. For example. an
automabile can be thought of as a hierarchy of components.
That is. it has a body. a chaszis and an engine: the engine
has a carburetor. a rrankczse. and so forth. Furthermore.
the parts are related by various positional references is.g..
the body i: on top of the chassis).

RESEARCHER uses a canonical. CD-like scheme for spec-
ifving the inter-component physical relations. Each relation
used in the parts hierarchy is described as a combination
of various property-value pairs. Five primitive properties.
used in combinations. suffice to reduce natural language re-
lation phrases into a closed set. Table 2 (see Wasserman and
Lebowitz, 1933. for a full account of this scherne} shows these
properties and some typical words that are strongly associ-
ated with each. Many words and phrases often require two
of these five for an accurate description. For exampir. the
phrase “on top of " would need both the contact and location
properties in its encoding. This scheme is an example of a
combination of all three types of physical object representa-
tion approaches.

Using this component/relation scheme. RESEARCHER
parses patent abstracts into memette structures. The mem-
ette frame slots filled- by the parser include: TYPE—either
unitary or composite: STRUCTURE—a list of relations. if
composite. or a description of the object’s shape. if unitary:
and COMPONENTS—a list of the memette’s parts. The fol-
lowing text is taken from a patent abstract about an en-
closed disc drive. This text and its representation are taken.
in part. from (Lebowitz. 1983a). Disc drive patents form
RESEARCHER's initial domain.

PROPERTY DESCRIPTION

edistance used for relations that refer to

econtact
are in contact with each other.
{e.g.. touching, affixed)

slocation indicates in which direction an

(e.g., above. left)

sorientation

used for relations which describe
objects. where one is either

fully or partially enclosed by
another (e.g., encircled, cornered)

eenclosure

disjoint objects (e.g.. near, remote)

describes the degree to which objects

object is located relative to another.

describes the relative orientation of
two objects. (e.g., parallel. perpendicular)

Table 2.

VALUE(3)

a single integer from 0 to 10. ‘
0—close, 10—far

a single integer from —10 to =~10.

—10 = strongly forced together

+10 = touching, but being forced apart
a 2D or 3D angular identification

along with a reference frame
indication.

a 2D or 3D angular identification.

Jull or partial plus a shape
description of the interface between
the enclosed and the enclosing objects.
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Enclosed Disc Drive Having Combination Filter As-
sembly: A combination filter system for an enclosed disc drive
in which a breather filter is provided in a central position in the
disc drive cover and a recirculating air filter is concentrically po-
sitioned about the breather filter.

A possibie memette structure for this patent is:

{NAME  enclosed-dis¢-drive-witn-filter
TYPE' composite

COMPONENTS: (enclosure disc-drive)
STRUCTURE: ((SURROUNDS enclosure disc-drive)))
(NAME. enclosure

TYPE: composite

COMPONENTS: (cover case)
STRUCTURE: ((ON-TOP-OF cover case)))
(NAME: case

TYPE: unitary

STRUCTURE: (box open-on-top))

(NAME: disc-drive

TYPE. composite

STRUCTURE: unknown)

(NAME: cover

TYPE:. composite

STRUCTURE: ((SURROUNDS|centrally] cover breather-filter)
(SURROUNDS|centraily] recirculating- air-filter
breather-filter)))

(NAME: breather-filter
TYPE: unknown)
{(NAME: recirculating-air-filter

TYPE: unknown)

In order to integrate generalization with representation,
each memette contains an additional slot that allows it to be
connected to other memettes forming a generalization hier-
archy. The VARIANT-OF slot is essentially an 1S-A link that
allows for inheritance of information. The hierarchy created
by the use of this slot allows for generalizations to be made at
all levels in the component hierarchy. Consider the two rep-
resentations of similar enclosed disc drives (also taken from
[Lebowitz, 1983a]) shown in Figure 1.

Note that the generalized enclosure# has a cover# on-
top-of something and that the generalized enclosed-disc-
drive# has both a disc-drive# and an enclosure# . Thus
generalizations have been made at the top level of the com-
ponent hierarchy (i.e., enclosed-disc-drives# ) and at lower
levels (1.e., the enclosure# ). By organizing all its data in
this way, RESEARCHER can act as an intelligent information
system.

The justification for this process of generalizing at all
levels is best explained by Herbert Simon's idea of near-
decomposability (Simon, 1981). A nearly decomposable sys-
tem is one in which the interaction among the components
that make up the system is weaker than the glue the xeeps
any one component intact. The contention is that systems

can evolve in complexity by making use of this property and
that a hierarchy is the natural form into which a complex
system usually develops. Thus. sub-parts of any hierarchy
become stable as the system grows. This indicates that :ta-
ble components are important and should be recognized as
being so by an intelligent understander of such systems. The
understanding of hierarchies is discussed further in { Wasser-
man. 1984},

RESEARCHER is not the ouly svstem that has tried to
represent component hierarchies within a generalization hier-
archy. NETL (Fahlman, 1979) uses both PART-OF and I5-A
links in representing knowledge in a highly parallel conipu-
tation system. Although the interaction between the com-
ponent and generalization hierarchies is apparent in NETL.
it is not used to advantage in the encoding scheme.

Another program (unnamed) (Haves. 1977) emploved a
categorization hierarchy that classified animal body-part hi-
erarchies. Thus. a generalization (15-A) hierarchy was used
to classify PART-OF hierarchies. This work. although sonie-
what similar to RESEARCHER s methods in that it combined
generalization and representation in the same functional way.
required a human expert to implement the knowledge struc-
tures and modify them as needed.

A few observations have become clear while working on
RESEARCHER. A hierarchy understanding system that is to
be used for real-world knowledge acquisition about physi-
cal objects and be truly intelligent needs to have the abil-
ity to automatically build representations (no human inter-
vention); dynamically reorganize memory to better reflect
learned knowledge: make use of the near-decomposability of
hierarchies to store information in a compact form: recog-
nize and exploit the interrelationship of the representation
language with the generalization method use primitives of
human cognition.

Summary. RESEARCHER carries the idea of generalization-
based memory into the domain of physical object under-
standing. Frames are shared in two orthogonal hierarchies:
the components hierarchy and the generalization hierarchy.
This permits objects to be represented concisely and orga-
nized according to what they have in common.

The scheme used to encode relations among objects is
based on semantic primitives that serve to reduce natural
language relation expressions into a closed class. in much
the same way as CD does for actions.

Conclusion

The six programs presented above by no means com-
pletely span all the NLP programs that have contributed to
the progress made in knowledge representation and gener-
alization. They do, however. form a representative set of
programs that demonstrate the kind of research into physi-
cal object understanding and generalization systems that has
taken place in the past ten years or so.

The large number of programs that are intended to in-
vestigate the benefits of some particular knowledge structure
is. of course. necessary. Obviously. one of the first consid-

THE Al MAGAZINE Winter. 1985 39



/

enclosed-cisc-arivel

i —— aisc-Orivel —  enciosurel -———- ‘
| . | /  on-too-of \
motor# |  disc# | coverm —-----= > 5upport-memperz
sginglex r/w-neag=

encloseq-cisc-cri el

/

Figure |.

|

—— qisc-anve2 — enciosurg —=—=—— — — — —— —
| | | | /7 omrooof \ / \
motorz | aiscx | cover= ----> pasex / \
spindlez r/w-neadz /  sure \
. c-hittarse — =~ r-fliters:
| RESEARCHER generalizes what these rwo instances have in counnon to arrive ar the structure:
enclosed-ai1sc-cnives
—— gis¢-gnvest — anclosures — — = — = — —
‘ | [ | / on-roo-0f \
‘ motorz |  discw | coverm-o—————— > < >
|
‘ spinglest r/w-heags
]

erations in any Al system is how to represent information.
Thus. many researchers concentrate on developing a good
representation system. often with the intent of using it in a
full natural language comprehension program at some later
time.

This argument goes a long way in explaining the dearth
of programs that make use of a generalization process. Only
a few svstems. such as IPP. RESEARCHER. CYRUS. NETL.
and ENHANCE. focus attention on the use of generalization
as an understanding mechanism. It seems that using gener-
alizarion as the basis of. instead of as an add-on to. of a NLP
program is a good way to proceed.

The brief history of NLP programs presented here has
demonstrated that in a fairly short time great progress has
been made. The next ten years should see rapid growth.
particularly in the area of applying generalization principles
to natural language processing programs.
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