The Do-loop Considered Harmful
in Production System Programming

Michael van Biema
Daniel P. Miranker
and
Salvatore J. Stolfo
CLrCcs-228-86

In this paper we focus on some aspects of Expert System programming. In pardcular we consider
some of the language constructs which form part of a new producdon system language known as Herbal
hat we are developing at Columbia University. These language constructs grsady increase the
2xoressiveness of a rypical producZon system language and can be efficiently exscuted on a parzallel
machine. We briefly describe the DADO machine under development at Columbia University and a dasic
algorithm for producdon system execudon for that machine. We conclude with a discussicn of some
cerformance swadstcs recently calculated from an _analysis of producdon systems simuladons and

describe the expected effects of our added language conszucts on these stagsdcs.

M4

This research has been supported by the Defense Advanced Research Projects Ag=ncy through contrz ¢
NC0039-34-0163, as well as grants from Intel, Digital Equipment, Hewlea-Packard, Valid Logic Sysiems,
and IBM Corporations and the New York State Foundadon for Advanced Technology. We gratzfuily

acknowledge their support

1. Introduction

Due to the dramatic increase in computng power and the concomitant decrease in compunng cost
occurring over the last decade, many researchers are attempting to design computer sysiems o solve
complicated problems or execute tasks which have in the past been performed by human experts. The
focus of Knowledge Engineering is the construction of such complex, knowledge-based sxpert compudng

systems.

In general, knowledge-based expert systems are Ardficial Intelligence (AI) problem-solving programs
designed to operate in narrow ‘‘real-world”’ domains, performing tasks with the same competence as a
skilled human expert. Elucidation of unknown chemical compoundé [Buchanan and Feigenbaum 1978],
medical diagnosis {Davis 1976], mineral exploradcn [Duda et al. 1979] and telephone cable maintenance

{Swlfo and Vesonder 1982] are just a few examples.

The heart of these systems is a knowledge base, a large collecdon of facs, definitons, procedures and
heuristc ‘‘rules of thumb’’, acquired directly from a human expert. The knowledge enginezr is an
intermediary betwesn the expert and the system who exwmacts, formalizes, represents, and tests the
relevant knowledge within a computer program.

Just as robodcs and CAD/CAM technologies offer the potentdal for higher producdvity in the *‘blue-
coilar’” work force, it appears that Al expert systems will offer the same productvity incrsase in the
“‘white-collar’’ work force. As a result, Knowledge Engineering has armacted considerable amention
from government ard industry for research and development of this emerging technology. However, as
knowledge-based sysiems continue to grow in size and scope, they will begin to push convendonal
computing sysiems (0 their limits of operadon. Even for experimental systems, many researchers
reportedly experieace frustradon based on the leagrh of dme required for their operadon. Much of the
research in Al has focused on the problem of representng and organizing knowledge, but lirtle aggenton
has been paid to parallel machine architectures and languages suppordng problem-solving programs.

In this paper we first present a brief overview of the current state of expert system technology and then
outline the basic production system formalism. After this background material, we then present some the
limitadons of current producton system programming languages and suggest a set of addidons tha:
greatly increase the expressiveness of current languages and which can efficiendy be executed in a
parailel environmeat. We then describe some of the hardware and software work that is going on at
Columbia which we hope will supply empirical support for our claims. We conclude with a presentation
of performance s:arstcs recently caiculated from simulations of producdon systems and describe the

expected effect of our language constucts on these stadsucs.

2. Expert Systems

2.1. Current Technology
Knowledge-based expert systems have been constructed, typically, from two loosely coupled modules,

cllecdvely forming the problem-solving engine (see Figure 2-1). The knowledge base contains all of the
relevant domain-specific informadon permitting the program to behave as a specialized, intelligent
problem-solver. Expert systems conmast greatly with the earlier general-purpose Al problem-solvers
which were typically implemented without a specific application in mind. One of the key differences is
12 large amounts of problem-specific knowledge encoded within present-day systems.

Much of the research in Al has concentrated on effecdve methods for representing and operationalizing
human experiendal domain knowledge. The represeatadons that have been proposed have taken a variety
of forms including purely declaradve-based logical formalisms, ‘‘highly-stylized'’ rules or producdons,
ard stuctured generalizadoa hierarchies commoanly referred to as semandc nets and frames. Many
xnowledgs bases have been implemented in rule form. to be detailed shortly.

Figure 2-1: Organizadon of a Problem-Solving Engine.

The inference engine is that component of the system which consrols the deductve process: it

implements the most appropriate strategy, or reasoning process for the problem at hand.

Txe eariiest Al problem-solvers wers implemented with an iteradve branching technique searching a
largz combinatorial space of problem states. Heuristc knowledge, applied within a sttic conmol
structure, was inteduced to limit the search process while atempdng to guarantee the successiul
formation of soludons. In coatrast, current expert systems 2ncode the control saategy and deposit it in
the knowledge base along with the rest of the domain-specific knowledgs. Thus, the problem-solving
siraregy becomes demain-dependent, and contributes to the good performance exhibited by today’s
sysiems. However, a great deal of this kind of knowledge is necessary to achieve highly competent

p2riormance.

Withi: - qumber of existng expert system programs, the corpus of xnowledge about the problem
ded by a Producaon System program. As nas been reported by several researchers

domain .

[Rycheze , producton system represeatadon schemes appear well suited to the organizaton and
implemex: of knowledge-based sortware. Rule-based systems provide a convenient means ror
f.man ex. 0 exziicate their knowledge, and are easily implemented and readily modified and
er =% 1s. . the ease with which rules can be acquired and explained that makes producdon
Sysil.no O amra.

2 duc: jn Systems

s2neral, a Producrion System [Newell 1973, Rychener 1976, McDermou and Forgy 1978] is defined
a set of rules .7 sroducrions, which form the Production Memory(PM), together with a database of
.ssertons. called the Working Memory(WM). Each producdon consists of a conjuncdon of partern
elements, called the lefr-hand side (LHS) of the rule, along with a set of acdons called the righr-nand side
(RHS). The RHS specifies informadon that is to be added to (asserted) or removed from WM when the
LHS successfully matches against the contznts of WM. An 2xample producdon, borrowed from the
diocks world, is illusoated in figure 2-2. In this paper we have chosen to give our examples using OPSS
synux [Forgy 81]. For no other reason than that it is probably the most widely used. .

Figure 2-2: An Example Producdon.

(p Blockhead
(Goal *value Clear-wop-of-Block)
(Object Md <x> *type Block)
{Oo-1op-of “objectl <y> "object? <x>)
{Object Md <y> “type Block) —>
(reove 3)
(make Co-lop-of “objectl <y> “object2 Table)

If the goal is to clear the 'op of a block, -~
acd there is a block (x)
covered by scmething (y)
which is also 1 bleck,
thea
rezove the fact that y is oo x from WM

and assert that y is ou top of the table,

In operadon, the production system repeatedly executes the following cycle of operadons:
1. March: For each rule, determine whether the LHS matches the current environment of WM.
All marching instances of the rules are coilected in the conylics set of rules.

2. Selecr: Choose exactly one of the marching rules according to some predefined criterion.

3. Acst Add to or delete from WM all assertions specified in the RHS of the selected rule or
periorm some operagon.

During the selecton phase of producton system execudon, a typical interpreter provides conylic:
on sirczegies based on the recency of matched daw in WM, as well as syntactc discriminadon.

rz sl

Sowrie

Rules matching data elements that were more recently inserted in WM are preferred, with des decided in

favor of rules thar are more specific (i.2., have more constants) than others.

On conventonal von Neuman machines the rules of a typical producdon system interpreter are often
compiled inzo a data-ilow network through which WM zlemeats flow. State of the previously computed
pardal marches is normally maintaired in this network in order to speed the matching process of newly
=serted data. See [Forgy 1980] and [Forgy 1982] for details of his Rete march algorithm.

3. What is wrong with Do-Loops

As noted above the LHS of producdon system rules can be characterized as the conjuncdon of a series
of existendally quandfied terms. This causes cerain difficuldes when for example we wish to express
such well defined semantcs as: For all objects of rype X do functon Y. For example, suppose we were
writing a farming expert system and we wanted to wrn all of our rotten melons into melon balls. The

standard OPS type rule would look something like:

(p make-melon-bails
(curreat-iask “taskname melon-balls)
(producs “type melon “used no “starus roten)
->
(modify 2 “type melon-ball *used yes)
(medify 1))

Here the last RHS acdon serves only to make the current task the most recently added working memory
slement (note no modificadon is made to the element, but rather it is just reassaried in order to be chosen
by the next round of conflict resolution). In other words we must force the rule interpreter to iterate over
the set of rozen melons. Another perhaps more common way to write this would be in terms of the

following three rules:

(p make-task-melon-balls Jnitialization —
(produce “type melon “used g0 Astatus rogen)
-2

(make currsat-task “taskname melon-balls))

(p make-melon-balls ;Body
(currest-task “taskname melon-balls)
(produce “type melon *used go “status rotza)

-_>

(zmodify 2 “type melon-bail *used yes))

(»)

finish-task-make-melcn-balls ;Termination
(curreat-task “taskname melon-balls)
- (produce “type melon *used no “status rottea)

->
(remove 1))

These rules, of course, being the expression of a standard do-loop statement. What of course we really

wish o write is:

p make-melicn-balls
(current-iask “taskname melon-balls)
FCR ALL (produce Atype meion “used 1o Astaws rotten)

-2
(modify 2 *type melon-ball *used yes))
Here we nave added universal quantificadon 0 our language. The secord term no longer represents
the single instance of a working memory element sadsiying the term, but rather the universal set of ail
working memory elements satisfying the term. Therefore our RHS modify acdon also refers wo this

universal set rather than a single element of ir.

Le: us examine what we have gained here. We have certainly made it asier to express what we really
wanted to do. We have also avoided having to update the conflict set by medifying over and over the
working memory element that describes the task we currently wish to do (modify 1 in the first
producdon). On a sequential machine, however, we have a problem. Assuming that the productions have
beesn compiled into a Rete-Match network we have no efficient way of implementing the semantics of this
rule. Which is in fact probably the reason this construct is missing from the OPS class of languages.

Now assume we have at our disposal some form of associative memory. It is clear that the semantcs
presents no problem in this simmaton. Furthermore, if our associadve memory has some processing power
artached to it we can execute this global change w0 working memory in one cycle time.

Now that we have universal quandficadon in cur language another addidonal constuct that follows
naturally is to allow predicates on the sets formed by our universal quantifier. For example, recurning to
our farm, suppose we know that if we have more than 10 pregnant cows we had better put the bull out to
pasture. A set of OPS type rules for this would look something like:

(p count<ows

(curreat-task “name count-cows)

(coupter *value <a>)

(*anima] cow “counted no) _
—->

(modify 2 Avalue (plus] <m>))

(modify 3 Acounted yes)

(medify 1))

(p bull-out-to~pasture
(coucter *value >10)
(*animal bull Alocation barn)
->
(modify 2 Alocation pasture))

What we really wanted to write was the following:

(p bull-out-to-pasture
(cardinality (FOR ALL (“animal cow “counted no)) > 10)
(“ani tull “location barn)

->
(modify 2 *location pasture))

Hers we have once again increased the 2ase of expression in our language. In addition, this increased

-~

2xpressiveness has allowed us to reduce the number of rules as well as the aumber of rule firings. What
is needed in order to achieve this? We ailow user wrirten predicates to operate over sets. Once again
there is no simple way w implemeat this on a sequentdal machine using the Rete-Match type of algorithm.
On a parallel machine capable of mimicking an associative memory with some local processing power it
is quite easy to visualize how these predicates might be implemented. Later we will describe how they
can be implemented with performance C(log n) where n is the size of the set. The issue of side effects of
these predicates is an important one, but not within the scope of this paper. Note also that we use the term
predicate here in a weak sense in that other than boolean values may be remurned. To ses why we want
this, consider the producdon:

(p apple-saucs

(more-than-ten (FOR ALL (fruit “type apple)))
-D>

(remove 1)
(make (confinement ~type applesaucs “amount (cardinality-of 1))))

This production says that if we have more than ten apples we want to make applesauces and the final
amount of apple sauce made is the cardinality of the set of apples.

We note that it is now very easy to express semantcs corresponding to both set unmion and set
intersecdon in our language and that this was not in general possible tefore our addidons.

By the addidon of universal quandficadon to our producdon sysiem language we have shown that we
can greatly increase the expressibility of our language and we claim that we also increase the efficiency of
language on a paraiiei machine. We will have more 0 say on the issue of efficieacy later, but first we
describe the actual machine on which we plan to implement the language.

4. The DADO Machine

DADO is a medium-grain, parallel machine where processing and memory are exiensively
intermingled. A full-scale productdon version of the DADO machine would comprise a very large set of
processing elemenzs (PEs) (on the order of thousands), each containing its own processor, a small amount
(16K bytes, in thecurrent design of the prototype version) of local randem access memory (RAM), and a
specialized /O switch. The PEs are interconnected to form a compleze binary tree (see figure 4-1).

Within the DADO machire, each PE is capable of executing in either of two modes under the control
of run-time software. In the first, which we will call SIMD mode (for Single Instrucdon Stream, Muldple
Data stream [Flynn 1972)), the PE executes instrucdons broadcast by some ancestor PE within the tres.

In the second, which will be referred to as M/MD mode (for Muldple [nszucdon Stream, Mulaple Data
stream), each PE executes insqucdons stored in its own local RAM, indzpendeaty of the other PEs. A
single convendonal co-processor, adjacent o the root of the DADO wee, contols the operadon of the

2ntire 2nsemble of PEs.

Figure 4-1: Funcdonal Division of the DADQO Tres.

|

Uccer Tree:
Syncoronize,
ssiect & aCT

- — P\ Lsvel:
TICN, Catermne rsievance

& instartiate

A a 1

\ > ‘WM Subtries:
STTTINt - ACCTIs3A0Ie
J memcries
Q = > S Q a4 3 = le Q Q mmmns

When a DADQ PE enters MIMD mode, its logical statz is changed in such a way as to erfecdvely
““disconnect’’ it and ity descendants from all higher-level PEs in the tres. In particular, a PE in MIMD
mode does not recziva any instructions that might be placed on the mee-stuctured communicaton bus by
one of irs ancestors. Such a PE may, however, broadcast instuctions to be executed by its own
dsscendants, providing all of these descendants have themselves been switched to SIMD mode. The
DALO machine can thus be configured in such a way that an arbitrary internal node in the tree acts as the
root of a tree-squctured SIMD device in which all PEs execute a single instructdon (on difierent data) at a
given point in ime. This flexible architectural design supports mulsiple-SIMD executon (MSIMD) as for
example [Siegel et al. 1981] but on a much larger scale. Thus, the machine may be logically divided into
distinct parttions, each executing a distinct task. This is the primary source of DADO’s spead in
executing a large oumber of primitive pattern matching operations concurrently.

The DADO VO switgh, has been implemented in semi-custom gate array technology and incorporated
within the 1023 precessing element version of the machine, has besn designed to support rapid global
communicaton. In addidon, a specialized combinadonal circuit incorporated within the VO switch
allows very rapid selection of a single distinguished PE from a set of candidate PEs in the tres, a process

N

called resolving.

The many advantages of the binary tree architectures such as scalablity have been pointed out
slsewhere{Stolfo, 1983] and we will not reiterate them hers. What is important from the language point
of view is that the T=e architecture allows the implementation of O(log n) e associative operatons.

4.1. Production System execution on DADO

-

In this secdon we outline an abstract algorithm for production system execution on DADO. Although
we have acmally developed 6 different algorithms which cater to different classes of producdon systems
we present only the simplest ooe here as it is sufficient for a discussion of the language issues in which
we are interested. As one might well imagine the dismibution of producdons and working memory to the

-tree has very imporant effects on performance [Isfida 1984]. A detailed treatment of these algorithms
has appeared elsewhere {Stolfo 1984] [Miranker 1984b].

4.2. Original DADO Algorithm

The original DADQO algorithm detailed in [Stwolfo 1983] makes direct use of the machine’s ability o
2xzcute in both MIMD and SIMD modes of operation at the same point in drme. The machine is logically
divided into three conceptually distnct components: a PM-leve!, an upper ree and 3 number of
WM-subrrees (ses figure 4-1). The PM-level consists of MIMD-mode PEs executng the match phase at
one approprately chosen level of the ee. A number of disdnc: rules are stored in each PM-level PE.
The WM-subtress rooted by the PM-level PEs consist of a number of SIMD mode PEs collecdvely
operating as a content-addressable memory. WM elements relevant to the rules stored at the PM-level
root PE are fully distributed throughdut the WM-subtree. The upper tee consists of SIMD mode PEs
lving above the PM-level, which implement synchronizadon and selecdon operadons.

[t is probably best to view WM as a distributed reiarion. Each WM-subtres PE thus stores reladonal
tuples. The PM-level PEs match the LHS's of rules in a manner similar to processing reladonal queries.
In terms of the Rete match, intracondirion tests of patem elements in the LHS of a rule are executed as
reladonal selecrion, while intercondition tests correspond to equi-join operatons. Each PM-level PE thus
stores a set of relational tests compiled from the LHS of a rule set assigned to it. Concurrency is achieved
berween PM-level PEs as well as in accessing PEs of the WM-suberees. The algorithm is illustrated in

figure 4-1.

It is quite easy to ses how to map the language constructs we described in Secdon 2 on top of this
algorithm. The FOR ALL constucts merely enables all PEs with WM elements sadsfying the term the
FOR ALL modifies and disables any PEs not containing such elements. This is basically just using the
tree as an associative memory. The set predicates can be mapped into tree associative operatons on the
enabled set of PEs. As we have already stated these operations can be performed in O(log n) tme,
assuming that WM is fully distributed and that the size of the set is large.

S8

Figure 4-2: Original DADO Algorithm.

. Inidalize: Disuibute a match routine and a parddoned subsert of rules to each PM-level PE.

Set CHANGES to the inifal WM elements.

. Repeat the following:
. Act: For each WM-change in CHANGES do:

a. Broadcast WM-change to the PM-level PEs and an instucdon to match,

b. The match phase is initiated in sach PM-level PE:
i. Each PM-level PE determines if WM-change is relevant to its local set of

iii.

¢. 2nd do;
. Upon termination of the match aperation, the PM-level PEs synchronize with the upper tree.

5. Select: The max-RESOLVE circuit is used to idendfy the maximally rated conflict set

instance,

8. end Repeag

rules by a pardal match roudme. If so, is WM-subtree is updated
accordingly. (If this is a deledon, an associadve probe is performed on the
slement (reladonal selection) and any matching instances are deleted. If this
is an addition, a free WM-subtres PE is idenrified, and the element is added.]

. Each panem element of the rules stored at a PM-level PE is broadcast to the

WM-subtree below for martching. Any variable bindings that occur are
reported sequendally to the PM-level PE for matching of subsequent panern
elements (reladonal equi-join).

A local conrlict set of rules is formed and stored along with a priority rating
in a disoibuted manner within the WM-subtrez.

. Report the instandared RHS of the winning instance to the rcot of DADO.

. Set CHANGES to the reported action specifications.

3. Parallelism in Production Systems

A nice smdy of parallelism in OPS style producdon systems has receatly been completed {Gupta
1984]. The somewhat surprising result of this stdy is that potendal parallelism in OPS style producdon
systems is very low. Although surprsing at first, on closer examinadon this finding is got in fac: so
surprising, The OPS languages have beea specifically designed o enable their erficient implementaden
on sequeatal machines. These languages therefore encourage users to serialize their algorithms. The
most blatant example of this is, in fact, the absence of universal quantificadon from OPS sr)"1e languages.
The result of this is that the programmer is forced o write rules to explicitly iterate over sets of working

memory elemeants.

There are three possible major sources of producdon system parallelism. They are not surprisingly:
producdon parallelism, acdon parallelism and conflict parallelism. Most current esimates place 30-90%
of production system execution time in the match phase. Hence a significant speedup must be obtained
by matching in parallel if the producdon system is to be efficiendy executed. The arfect-set, the number
of producdons arfected by a single WM change, and therefore the number of preductions for which
matching maybe done in parallel is therefore cridcal. Gupta has found the average sizs of the arfect-set to
ce quite low (around 32). We, however, hypothesize that this may be in part due to the sequenagal
2numeradon of various WM sets, Sincs the affect-set size for such an enumeradon is 1 and these
erumerations may consttute a significant propordon of the rule firings this may well account for the
small average affect-set size. Unfortunately Gupta does not report the standard deviations of his averages
which would aid in the evaluadon of the validity of this hypothesis.

We note that our construcs increase not only the potendal producton parallelism, but also the acton
parailelism and conflict parallelism. These do account for a2 much smaller percentage of the cycle dme
and we therefore expect their overall effect to be less significant. Finally the total number of produczon
cvcles may be significantly reduced by the addidon of these constucts since we replace itsradon over a
set of WM elemenss by a single paralle! operation on the set. In the ACE system it is estimated that a
large percentage cf its dme is spent executing precisely such rules!. Our own smdies at Columbia on a
simple expert system that does Waltz labeling has shown that we can reduce the statc number of rules by
a factor of 4 and the number of execudon cycles by a factor of 10. We are not claiming that such good
results may be obtained for all classes of expert systems, but that there does exist a large group of expert
systems where such results may be easily obtained. Guta has also pointed out that for a version of XSEL
system [McDermou 1981] that directly accesses an external database such behavior is observed as well as

a much larger average affect-set size.

‘Private communicaticn with Greg T. Vesorder of AT&T Bell Labs.

6. Conclusions and the Future

We have described the addidon of several constmucs involving universal quantificadon to OPS style
producdon systems. These construcss have been shown to add significantly to the expressiveness of the
language and, unlike most such constructs, have also been shown to increase the efficiency of execudon
in a parallei zavironment. What remains s to provide the further empirical support for our conclusions by
analyzing existng production systems and possibly recoding them using these new constructs,

The constructs we have suggested are in some sease the easy ones. They immediately came to mind in
the contexr of thinking about producdon systems and parallelism. What remains to be done is to search
for other, less obvious constructs that will increase either the expressiveness or the parallelism of
producdon system languages, or betrer yet which increase both. Finally, a model should be developed so
that new conswructs can be evaluated o the degree of parallelism they provide and how they interact. This

-search forms a major part of the current research being conducied by the DADO parallel computer

oroject.

REFERENCES

Buchanan, B. G. and Feigeabaum, E. A.
"*DENDRAL and Meta-DENDRAL: Their applications dimension'’,
Artncial Inteiligence, 11:5-24, 1978.

Davis, R. ‘‘Applications of meta-level knowledge to the
consoucdon, maintenancs and use of large knowledge bases’’,
Ccmputer Science Deparmment, Stanford University,

Rep. No. STAN-CS-76-552, 1976.

Duda, R., Gashnig, J. and Hart, P.E.

‘“Model design in the PROSPECTOR consultant system for mineral exploradon’’,

In D. Michie (Ed.), Expert systems in the micro-elecronic age,
Edinburgh University Press, 153-167, 1979.

McDermott, J. and C. Forgy, *'Pattern-directed Inference Systems’’
Academic Press, 1978. -

Forgy, C. L., ‘A Note on Producdon Systems and /LLIAC V",
Technical Report 130, Department of Computer Science,
Camegie-Mellon University, 1980.

Forgy, C. L., "*OPSS User’s Manual’’, Technical Report,
Carnegie-Mellon Urniversity, Order Numbter CMU-CS-31-135, 1981.

Forgy, C. L., "‘Rewe: A Fast Algorithm for the Many Partert/ Many Object
Pattern Match Problem’’, Amdficial Intelligence 19, 1982.

Gupta, A., ‘‘Parallelism in Producdon Systems:
The Sources and the Expected Speed-up’’, Technical Report,
Carnegie-Mellon University, Order Number CMU-CS-84-169, 1984.

Ishida T., and S. J. Stolfo,"‘ Simultaneous Firing of Producton Rules on
Tree-stucrured Machines’’, Technical Report, Deparmment of Computer
Sciencs, Columbia University, 1984.

McDermott, J., *‘RI: The Formadve Years’’, Al Magazine
2:21-29, 1981.

Newell, A., ‘'Producton Systems: Models of Control Structures’,
In W. Chase (editor), Yisual Informarion Processing,
Academic Press, 1973.

Rychener, M., *‘Production Systems as a Programming Language for
Artificial Intelligence Research.’’, Ph.D. thesis, Deparmment of Computer
Sciencs, Carnegie-Mellon University, 1976.

Siegel. H. 1., L. J. Siegel, F. C. Kemmerer, P. T. Mueller, H. E.
Smolky and D. S. Smith, ‘'‘PASM: A Pariddonable SIMD/MIMD System for

[mage Proc.,ssmo and Pacern Recogniton™
{EEE Tran. on Computzrs, 1981.

Stolfo, S. 1., **The DADO Parallel Computer’’, Technical Rapor,

Departnent of Computer Science, Columbia University, 1983.

Stolfo, S. J., and G. T. Vesonder, *‘ACE: An Expert System Supporting
Analysis and Managemenr Decision Making’’,
Bell System Technical Journal, 1982,

| SN ¥%Y [

[= V]

Table of Contents

. Introduction
. Expert Systems
2.1. Current Technology
2.2. Production Systems
- What is wrong with Do-Loops
. The DADO Machine
4.1. Production System execution on DADO
4.2. Originai DADO Algorithm
. Parallelism in Production Systems
- Conclusions and the Future

=t

HOQOOQQ\J—M(J\QP—‘

Figure 2-1:
Figure 2-2:
Figure 4-1;
Figure 4.2:

List of Figures
Organization of a Problem-Solving Engine.
An Exampie Production.
Functional Division of the DADO Tree.
Original DADO Algorithm.

O W

