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1. Introduction

In 1973, Winograd discussed his dream of an intelligent assistant for pro'grarm'ners [29]. More
recently, artificial intelligence researchers have extended programming languages and
environments (primarily Lisp environments) with knowledge about the relationships among
program units [26] and the rules governing the software development process [3, 1, 22] in an
attemnpt to turn the dream into reality. The resulting systems support ‘exploratory programming’
by an individual programmer very well [21], but they do not provide the assistance necessary to
manage large-scale development and maintenance. However, as Al projects, such as ‘expert
systems’, have become larger and commercially viable, researchers have turned their efforts
towards developing this kind of assistance [11, 18], and we believe they will produce excellent

results.

In the meantime, it is possible to bu'ild production-quality software engineering environments
that provide seemingly intelligent assistance without requiring new breakthroughs in Al
research. There is already (at least) one such system—the Software Management and
Incremental Language Editing system (SMILE)—that provides seemingly intelligent, interactive
support for teams of software developers and maintainers. SMILE does not use artificial
intelligence techniques; it is not even written in Lisp. SMILE was written in C and runs on

Unix™,

Although SMILE is several years old, it has not been discussed in the literature, except in
acknowledgements by researchers who used it to develop their own systems). SMILE was
developed by one of the authors, starting in 1979, originally as a tool for developing research
prototypes for the Gandalf project [16]; it has been used extensively by both authors and by
many others since 1980. SMILE has been relied on by the Gandalf and Gnome [7] projects at
CMU and by the Inscape project [17] at AT&T Bell Labs; it has been distributed to at least forty
sites. SMILE passes the crucial test of supporting its own maintenance. The purpose of this
paper is to present the goals of SMILE and explain how they were achieved.

The original, high-level goals of SMILE were as follows.

¢ To hide the file system and the operating system from the users. SMILE presents a
‘fileless environment’; that is, SMILE exposes its users only to the logical structure
of the target software system. The normal alternative is for users to deal with the
physical storage of the software in terms of directories and files, which often do not
correspond nicely to the logical stucture.

» To shelter the users from the tedious task of maintaining redundant information.




SMILE requires its users to enter each item of information only once; it automatically
ransforms the data as needed by tools. SMILE derives necessary information that
can be calculated from the data supplied by users.

¢ To automate invocation of tools at appropriate points. SMILE assists the users by
automnatically performing trivial software development activities such as calling
grep, lint, cc, make, and other Unix utilities [12] with the appropriate arguments at
appropriate times. In some cases, the tool is invoked as soon as its input is ready; in
other cases, the tool is not called until its results are required, such as to answer a
user query or to provide input to another tool. SMILE hides the particularities of
Unix and presents a uniform programming model different from the model imposed
by Unix.

e To actively participate in the software development and maintenance process.
SMILE is an interactive system, and all programming activities take place within the
environment. In addition to calculating auxiliary information and automatically
invoking tools, SMILE anticipates the consequences of user actions and
automatically presents appropriate warmning messages. '

e To be sufficiently robust and reliable for supporting relatively large academic
development projects. It automatically recovers from inconsistent states after user-
initiated aborts and machine crashes; it also stores information redundandy to
support recovery from disk errors or its own bugs.

All of these goals have been achieved. SMILE maintains source code, object code and other
software development information in a database mapped onto the Unix file system. Knowledge
of software objects and a model of the software development process are hardcoded into SMILE's
commands. SMILE incorporates a large collection of Unix utilities, plus several special tools
developed as part of the Gandalf research. SMILE has supported the simultaneous activities of at
least seven programmers, and the largest software system developed and maintained in SMILE

has approximately 61,000 lines of source code [13].

The following sections present the goals and achievements of SMILE in more detail. Section 2
explains SMILE’s external architecture. Section 3 describes how SMILE assists individual
programmers, while Section 4 describes the facilities oniented towards projects involving many
programmers and long lifetimes. Section S discusses SMILE’s implementation and current status.
Section 6 compares SMILE to other software engineering environments. We conclude by
summarizing the significance of SMILE as an example of intelligent assistance without artificial

intelligence.




2. Architecture

SMILE is intended for use by small teams of programmers (5 to 20) developing and
maintaining medium-size software systems (10,000 to 250,000 lines of source code) written in
C, taking maximum advantage of the Unix file system and utilities.

2.1.GC

GC (Gandalf C) [28] is an enhancement of C that lists the types of formal parameters within
the argument list (as in Pascal) and provides a module interconnection language (MIL). The
MIL defines modules consisting of four types of source code objects (called irems): procedures,
variables, types, and macros. Each module has an import list indicating the items required from
other modules and an export list indicating the items accessible to other modules. GC was
adopted by the Gandalf project for all implementation efforts. SMILE supports GC, but
automatically transforms source and header files from standard C to GC and vice versa as needed
to import existing source code and to take advantage of C-specific programming tools.
Throughout the rest of this paper, we mean "GC" when we say "C".

2.2. Databases

SMILE maintains all information about a software system in a darabase similar to the
‘objectbases’ of more recently developed programming environments (2, 15]. Each object has
several attributes, representing auxiliary information, and is typed, enabling SMILE to provide
object-oriented commands that apply type-specific tools.

A database consists of one or more ‘projects’, each representing a distinct software system.
Most databases contain exactly one project, so we say ‘database’ and ‘project’ interchangeably.
A project contains a number of ‘modules’ corresponding to GC modules. Each module contains
a set of procedures, a set of variables, a set of type definitions, a set of macros, a list of import
items, and a list of export items, as illustrated in Figure 2-1. The source text of procedures,
variables, types, and macros are written in GC. Each module and item is attributed with status
information, such as whether or not it has been compiled since it was last modified. Modules

also contain object code, but this is never explicitly visible to users.
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Figure 2-1: Database of Software Objects

2.3. User Interface
SMILE’s user interface is script-oriented, and does not take advantage of windows or menus.!
However, some tools included in SMILE, e.g., screen-oriented editors, behave differently for

bitmapped screens than for dumb terminals.

The user interface is ‘friendly’ and includes on-line help facilities. It is not necessary to
remember either commands or arguments. The user can type a carriage-return after entering any
part of the command line, and SMILE will prompt, one at a time, for remaining arguments; each
prompt indicates a default value based on the user’s most recent activities, and the user types a
carriage-return to accept this default. If the user types "?" at any point, SMILE lists the currentdy
valid alternatives according to the user’s context. If the user instead enters "help”, then SMILE
explains the selected command and its argument. The user can also hit the interrupt key to any
prompt to abort the current command. SMILE permits the user to abbreviate commands and
arguments of commands to the shortest unambiguous form, and prompts with the possible

choices if an abbreviation is ambiguous.

1The workstation implementations of SMILE do support windows. In particular, a user can modify a database in
one window while browsing through the database in a second, read-only window; see Section §.




3. Programming Assistance

SMILE assists individuals in writing programs. It maintains C source code, object code, and
the status of these objects in its database, and automatically performs menial development
activities. For example, it warns the programmer of the implications of changing the

specifications of source code items, and it automatically recompiles after changes.

3.1. Browsing
SMILE helps the user navigate through a software system. The user selects a particular
module—the user’s focus—which is then indicated in SMILE’s top-level prompt. SMILE assumes

that further commands refer to this module and its contents until a different module is selected.

Browsing is object-oriented, in the sense that SMILE automatically invokes the appropriate
viewing tool according to the type of the selected object. For C source code, this is normally a
screen-oriented text editor; an earlier version of SMILE also provided a syntax-directed editor.
Although SMILE assumes all commands are with respect to the current focus, it can shift focus
automatically as the need arises. For example, if the user asks to visit an item that is not in the
current module but is in some other module, SMILE changes the focus before invoking the

appropriate viewer tool.

SMILE also supports general searches. A query can apply to an individual item, a module, or
the entire database and SMILE can further filter the results of queries to display only items of a
particular type (import item, procedure, variable, erc.) or only items that match some pattern.
Pattern matching can be applied to the name of an item or to its source text, and a search can be
applied to either the definition or usage of items, or SMILE can generate a full cross-reference
table. The results of queries are displayed on the screen in the form of a transcript, which can be
scrolled if SMILE is run from within a text editor that supports user shells. SMILE can also direct
its answers to an external file or a printer. SMILE remembers past activities on a user-by-user
basis; this supports, for example, a special option for the printer to spool only those items that
have changed since last printed by the particular user.




3.2. Editing

SMILE creates and deletes modules and items within modules. If the user asks to remove an
item that is in another module, SMILE requests confirmation before automatically changing focus
to the other module to carry out the command. Thus, SMILE is forgiving of minor user errors.
The add command requires the type of the new item; if this is not given, SMILE prompts for the
missing argument. SMILE invokes the type-specific tool, and the low-level commands provided
by the tool are used to construct the content of the item. If the user enters a command to write,
save, save-and-exit, erc., then the new item is stored in the database; if the user tells the tool to
abort or exit (without saving), erc., SMILE aborts the original add command. SMILE does this by

monitoring the tool; no changes to the tools themselves are required.

Similarly, an existing item can be added or removed from the imports or exports list of the
current module. When a new item is created, SMILE automatically asks the user whether or not it
should be added to the exports list. When an item is removed from the exports, SMILE wams the
user if it is imported by other modules and requests confirmation; if confirmation is given, it
automatically removes these imports as well. When a user tries to delete an existing item, SMILE
reminds the user if it is exported and requests confirmation before removing the corresponding

item from the export list.

The user can make changes to items through the edit and change commands; SMILE invokes
the appropriate editing tool. Edit restricts the user to making local changes to the body of an
item, whereas change allows the user to make changes to both the specification and the body,
which may have side effects on other items. For example, edit invokes the editor tool only on
the body of a C procedure: if the tool supports multiple windows, then the header of the
procedure is displayed for reference in another, read-only window. In the case of a C variable,
edit permits the user to modify the initialization, but not the actual declaration. The edit

command does not apply to types and macros, because any modifications can affect usages.

Sometimes changing the specification of an itern has implications beyond those anticipated by
the user. Therefore, SMILE always informs the user of potential problems before the damage is
done. When the user selects the change command, SMILE queries its database to find all the
other items that may be affected by the proposed change and informs the user of the extent of
this change, in terms of how many other items might subsequently have to be modified to
maintain consistency; it displays the actual dependencies on request. The user can abort or go
ahead with the change with full knowledge of the implications. 7




3.3. Error Detection and Error Reporting

After a user adds, removes, or modifies an item, SMILE supplies rapid feedback regarding
static semantic errors. The semantic analysis is applied only to the changed item rather than to
other items affected by the change. SMILE propagates the change by updating the status
information for dependent items. If the user requests it, SMILE submits these for analysis; this is

explained in the following section.

The analysis is performed in a background process, so that the user does not have to wait for
the tool to complete before continuing other activities. When processing completes, all error or
warning messages are saved as an attribute of the current module (the focus), and the prompt is
changed to indicate the errors. The user can ignore the errors, or ask SMILE to display the
messages; thus, SMILE separates error detection from- error reporting. Both the messages and the
visual cue in the prompt remain until the user edits the offending item, so the user does not need
to remember the particular errors or even the fact that there are errors within the particular
module. It is less intrusive to indicate errors by appending a notice to the prompt than to display
the errors themselves. An earlier version of SMILE dumped all the error messages on the user’s
screen as soon as the tool completed. This behavior was judged unacceptable because it
interrupted the user’s activities; the user was forced to read the messages then and remember

them, because they were not stored.

3.4. Bookkeeping

SMILE maintains status information for each item. For example, each C item has a status field
that indicates whether or not its static semantic analysis is up to date, whether the analysis was
successful, or whether analysis is in progress in the background. SMILE maintains the correct
value for the status field. Furthermore, SMILE automatically propagates changes to items by
updating the status field of other items that might be affected by the change. The user can
examine the status information for any item or display all items with a particular status. A user
might use this information, for example, to request re-analysis of a particular item or all items

affected by a change or to look for items that still have errors and need correction.

SMILE performs code generation by compiling at the granularity of a module. Therefore, it
maintains a status field for each module indicating whether or not its object code is up to date, or
being generated in the background. After compiling a module, SMILE indicates the resulting
status in this status field. SMILE invalidates generated code by setting the status field

accordingly under any one of several conditions:




¢ a new item is added to the module;
e an existing item is moved between modules, removed, edited or changed;

e an item is added to or removed from the importlist, and this item is actually
referenced by an item of the module;

e an exported item is changed, and this item is imported into another module, where it
is actually referenced by an item in the importing module.

3.5. Code Generation and Linking

SMILE recompiles modules and relinks the system as needed. It recognizes several alternative
notions of ‘as needed’. There is a wadeoff between recompiling immediately after a item of a
module changes and delaying untl the user requests system execution: Late recompilation
requires the user to wait, but early recompilation may be wasted due to further changes to the
same module; it also affects response time after each change. An earlier version of SMILE
automatically recompiled as soon as an item changed, but recompiled only the item rather than
the entire module. This was changed because the time and space overhead was unacceptable.
The processing performed by the compilation tool after every modification led to slower
response due to the cycles taken by the background job. Space was a problem because a separate
object code file was generated for each item. SMILE now compiles an entire module rather than

individual items. This optimizaton was done without affecting the interaction with the user.

SMILE automatically generates a makefile, including the appropriate command lines, and
invokes make to construct an executable system. If a file name is given as an argument, the
executable code is placed in this file; otherwise, standard Unix practice is followed and the

output goes to the "a.out” file in the current working directory.

3.6. Modes

Modes permit the user to control and adapt SMILE’s behavior. Users can set modes explicitly
with a2 command or implicitly in their SMILE profiles. Every mode has a type and a default
value. The boolean Autocompilation mode permits the user to indicate to SMILE whether it
should temporarily refrain from automatically carrying out analysis and code generation. This is
a desirable feature when the user starts making major changes to the application. Another
boolean mode related to compilation indicates whether or not the compiler should generate more
elaborate debugging information. The Verbose mode indicates the level of verbosity of SMILE's

warnings and suggestions.




Somes modes are used to tailor SMILE to a particular operating environment. CMU mode
permits SMILE to take advantage of some special CMU utilities. Home mode defines SMILE’s
home directory in the local file system, and Print mode names the local tool for spooling to the
printer. SMILE is also tailored by the search paths and other environment variables defined in the

user’s Unix profile.

4. Development and Maintenance Assistance
SMILE assists software teams with their long-term development and maintenance activities. It
coordinates simultaneous activities by multiple users, encourages reuse of existing code, and

logs source code changes.

4.1. Reservations

SMILE prevents multiple users from modifying the same module at the same time by requiring
the user to reserve a module before making changes to the module. If a user tries to modify a
component of a module that is not reserved, SMILE explains that reservation is necessary. Only
one user can reserve a module at a time. If another user attempts to reserve a previously reserved
module, SMILE informs the user about who has reserved the module; users can also query

reservation status explicitly.

SMILE helps users avoid making incompatible changes. If a user tries to change the
specification of an exported item, SMILE checks to make sure that that all the modules that
import this item are also reserved by the same user. If not, SMILE informs the user of their

reservation status.

4.2. Experimental Databases

Reservations are always made with respect to a private workspace called an experimental
database. Figure 4-1 shows the relationship between experimental databases and the public
database, which contains the baseline version of the software system. The modules in the public
database are available to all members of the software team, while the contents of an experimental
database are private to its owner. An experimental database is a logical copy of the public
database; SMILE employs a copy-on-write strategy to conserve space. Only modules reserved in
the current experimental database can be modified. Additional modules can be reserved at any
time, provided they are not already reserved by another user. SMILE automatically prelinks non-

reserved modules (in a background process) to improve the response time of system generation.
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Figure 4-1: Expen'memzﬁ and Public Databases

When a user completes a set of changes, the user gives either the update or deposit command
to return all the reserved modulés to the public database. Update retains the reservations, so the
user can make further changes, while deposit removes the reservations. In either case, SMILE
makes the changes available to the rest of the software team by replacing the previous versions
in the public database with the changed modules from the experimental database. SMILE permits
users to back out of a proposed change by releasing the current reservations, so other users can

reserve these modules in their original state.

At the beginning of an update or a deposit, SMILE checks the status of all reserved items to
ensure that they have been analyzed and compiled successfully, without any errors. If there are
inconsistencies, SMILE aborts the command; otherwise, SMILE locks the public database while it
copies the modified objects back into the public database. Thus, update and deposit behave as
transactions with respect to the public database.

4.3. Transactions
Every SMILE command is a transacrion, in the sense that it is impossible to apply a second
command within the same database until the first command terminates.? Background processing

1s coordinated in such a way that its results are recorded without conflicting with the transaction

2In the workstation xmplememauons of SMILE, a user can access unaffected parts of a database in a read-only
window during a ransaction; see Section 5.
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model. An earlier version of SMILE saved its internal state on disk after each transaction in order
to record the changes in a fail-safe manner. This led to poor responsiveness when there were
five or more simultaneous users in a time-sharing environment (on a VAX™ 780) and was
discontinued.3 Currently, SMILE saves state after the number of transactions indicated by the
Checkpoint mode, and always saves state before and after commands that cause major changes,
such as change, update, and deposit. A user can select full state saving by setting the
Checkpoint mode to 1; alternatively, the user can explicitly give the chkpoint command after
particularly crucial changes.

SMILE coordinates changes among the experimental databases owned by the members of a
software project. A user can add a new module only within an experimental database, but SMILE
records the addition in the public database to prevent another user from adding ancther new
module with the same name. Similarly, SMILE records addition of import items in the public
database, since another user may attempt to delete the item in a different experimental database.
When the public database is locked during a transaction, other actions that affect the public
database are blocked until completion of the transaction. Since update and deposit often take
several minutes, blocked commands time out after thirty seconds and SMILE advises the user to

try again later. This enables users to perform other development activities while they wait.

4.4, Change Logs

When programming teams are large, it is useful to maintain on-line change logs. Whenever a
user updates or deposits the contents of an experimental database, SMILE prompts for a log entry
for each modified module. SMILE automatically includes the user’s name, the time/date, and the
module name with the text provided by the user. Users can also append log entries for their
reserved modules at any ime. A user can query the entire log for a database or only the log for a
particular module, and request entries since a particular date and/or by a particular user. SMILE
prevents tampering with previous log entries, so a full audit trail of past changes is always

available.

¥This performance problem is reduced when SMILE runs in a distributed workstation environment; see Section 5.




4.5. Maintenance and ‘Old Code’

As software systems become older, the modular structure tends to degenerate. Import and
export lists grow and rarely shrink, even though an imported item is no longer used in the
importing module and an exported item is no longer used outside the module, or even inside the
module. SMILE assists users in restructuring old systems by moving items from one module to
another and adjust the imports and exports accordingly, by adjusting the imports and exports
throughout the database to reflect the actual interconnections determined by cross-references,

and by detecting unused items.

SMILE provides facilities to bring externally developed ‘old code’ into a database, so it can
assist future maintenance and enhancement activities. SMILE can also copy modules from one
database to another. SMILE makes it easy to use software maintained outside of a SMILE
database: Every module and every database may have a prelude, which lists external files and
definitions of outside procedures; the corresponding object code files and Unix libraries are
listed in SMILE library items. The add, remove, and change commands apply to libraries, as do
the browsing facilities. The names of necessary libraries are given as arguments to the build
command to incorporate them in an executable system. SMILE helps users create new Unix
archives and libraries. It can produce a Unix archive from the C items in the database and can

generate a single object code file that can be used as a librz;ry outside SMILE or within other
' SMILE databases.

5. Implementation

SMILE was originally called IPC, for Incremental Program Constructor, but the name was soon
changed to SMILE. A prototype implementation was written in the Unix shell language during
August 1979; it was used in September 1979 to bootstrap to a more advanced implementation in

GC. These two versions ran on a PDP™ 11/70 under Unix Version 7.

SMILE was soon ported to a VAX (both 750 and 780) under Berkeley Unix, where it supported
the intensive Gandalf prototype [10] implementation in 1980 and 1981 and the development and
maintenance of the production-quality Gnome environment starting in 1982. SMILE was ported
to the Sun Workstation™ in 1984 and to the MicroVAX™ workstation in 1985. The
MicroVAX version is distributed by virtue of the Mach variant of Unix 4.3 BSD. The current
implementation consists of 15,000 lines of GC source code, which is available on request from
the Gandalf project at CMU.
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Details

Although the original IPC was implemented in the Unix shell language, neither IPC nor the
later versions of SMILE should be thought of simply as user shells. SMILE maintains its own
database of all information about a software project and provides its own commands for carrying
out development and maintenance activities; in effect, SMILE presents its own model of the

programming process.

SMILE maps its database onto the Unix file system in a hierarchical manner. Each database
corresponds to a directory, which contains a subdirectory for each project, which in turn containé
a subdirectory for each module. Each module directory contains two files listing the imports and
exports, respectively, and’ four subdirectories, one each for procedures, variables, types, and
macros. The text of each item is stored in a separate file. This mapping to the file system is not
visible to users. Cross-referencing information, status, and other derived attributes are
maintained in a graph structure. This graph is dumped in binary form to a file within the
database to persist between invocations of SMILE. A backup copy of the graph is also
maintained, but if both the original and backup are corrupted, the graph can be regenerated from
the database.

SMILE protects its users from operating system crashes, which might leave a database in an
inconsistent state. SMILE automatically checks its database at the beginning of every session: If
derived information such as error messages or object code has been lost, SMILE resets status
information to make sure they are rederived. If the most recent session with this database was
done using a previous version of SMILE itself, SMILE automatically reformats the graph structure
and the database and adds default values for any new kinds of attributes. Approximately 30% of

SMILE’s source code is for disaster recovery and self repairs.

SMILE hides the Unix file system and its tools and utilities from its users, with the exception
that it calls the user’s favorite text editor. The default text editor at CMU is Emacs [9], but a

different default can be substituted at each site. SMILE invokes lint to detect static semantic

errors in source code objects, cc to compile modules, and make to generate executable systems.

The variants of grep support SMILE’s searches through source text and other objects.
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version of Unix to another and to use new tools as they became available (e.g., lint replaced cc
for static semantic analysis in 1982) without these changes being visible to the users. We believe
it would not be difficult to port SMILE to a non-Unix operating system, providing it supplied

similar tools; the only local tools that are mandatory are a text editor, a C compiler, and a linker.*

6. Related Systems

SMILE is similar to knowledge-based programming environments, advanced programming
language environments, language-based editors and software engineering environments. In the
following paragraphs, we describe the advantages and disadvantages of these systems with

respect to SMILE.

Knowledee-Based Environments: The CommonLisp Framework (CLF) [6], Refine™ [22] and

other knowledge-engineering environments can provide SMILE-like automation via
conditior/action rules [5]. However, they cannot recognize the altemar.ive results of actions, e.g.,
the compiler may terminate successfully, producing object code, or unsuccessfully, producing
error messages. None of these environments support multiple simultaneous users. On the other

hand, SMILE is not extensible, so it is not as easy to add new kinds of objects and new tools.

Language Environments: Advanced programming languages such as Interlisp [26), Loops

[23] and Smalltalk-80™ [8] include run-time environments that are indistinguishable from
single-user programming environments. Although they provide SMILE-like facilities, these are
strongly tied to the programming language. The implementation of SMILE is specific to the GC,
but it would not be very difficult to reimplement for another conventional programming
language, provided corresponding tools were available. However, language environments can
integrate debugging facilities with the other tools.

Language-Based Environments:3 Language-based environments add many of the advantages
of language environments to conventional languages such as Pascal. The Synthesizer [25] and

Pecan [19] are examples of specific environments, while the Synthesizer Generator [20] and

Gandalf are systems for generating such environments from formal descriptions. Most language-
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based environments provide advanced user interfaces with menus and pointing devices, and
perform various activities in response to programmer actions, but they are unable to anticipate
the potential results of actions and warn users before the damage is done. The practicality of
these environments is limited, since the entire software system is maintained as a single abstract
syntax twee; further, it is difficult to incorporate existing programming tools into these

environments.

Software Engineering Environments: SMILE is most similar to Cedar [27], DSEE™ (14],

Arcadia [24] and other large-scale environments for software development and maintenance.

Like SMILE, these environments provide an interface between programming tools and the user on
the one hand, and between programming tools and the software database on the other. Such
environments typically provide more advanced version control and project management facilities
than SMILE, but they leave individual programmers to the standard edivcompile/debug cycle
supported by traditional tools.

7. Conclusions
SMILE’s primary contribution is the apparently intelligent assistance that spans both the
activities of individual programmers and the coordination of multiple programmers. SMILE
provides this assistance by
e maintaining all information about a software project in a database;

e integrating Unix tools into a new model of development and maintenance that hides
the particularities of Unix tools;

e actively participating in the development and maintenance processes by deriving
data when possible from previously stored information, automating the invocation of
these tools and anticipating the consequences of tool processing;

e imposing a structure on software development activities that permits it to ‘know’
what the programmers are doing at all times, to ‘infer’ what they are likely to do
next, and to ‘judge’ what it can appropriately do for them;

e recovering from external and internal failures and repairing its databases
automatically, making it sufficiently robust and reliable for production use.

SMILE provides this assistance without a knowledge base of rules describing the software
development process. Instead, certain ‘common sense’ about software development activities
has been programmed directly into the environment, resulting in a production-quality intelligent

assistant that several projects have relied on to develop and maintain their software.
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Abstract

We define an architecture for a software engineering environment that behaves as an intelligent
assistant. Our architecture consists of two key aspects, an objectbase and a model of the
software development process. Our objectbase is adapted from other research, but our model is
unique in that is consists primarily of rules that define the preconditions and multiple
postconditions of software development tools. Metarules define forward and backward chaining
among the rules. Qur most significant contribution is opportunistic processing, whereby the
environment automatically performs software development activities at some time between when
their preconditions are satisfied and when their postconditions are required. Further, our model
defines strategies that guide the assistant in choosing an appropriate point for carrying out each
activity.
Copyright © Peter H. Feiler and Gail E. Kaiser

*The research presented in this paper was conducted while Dr. Kaiser was a Visiting Computer
Scientist at the Software Engineering Institute, Carnegie-Mellon University, Pittsburgh, PA.




1. Introduction

In 1973, Winograd [30] presented his dream of an intelligent assistant for programmers that
would understand what it does: It would be based on an explicit model of the programming
world. Winograd described an imaginary programming environment, A, that would assist
programmers by providing early error checking, by answering questions about the program and

the interactions among program parts, by handling trivial programming problems, and by
automating simple debugging tasks.

Artificial intelligence research has moved closer to achieving this dream by developing a
knowledge-based approach to programming, which includes relationships among program units,
both in the abstract and with respect to a particular target system. The Masterscope package of
Interlisp [27] and the CommonLisp Framework (CLF)[5] maintain cross-referencing
information to answer queries about interactions among program units. Also, CLF’s
knowledgebase understands the abstract relationships among program units. For example, CLF
‘knows’ that a system consists of modules and individual software objects (functions, variables,

erc.) and that object classes have particular properties, such as a maintainer and whether it has
been compiled. ‘

A knowledge-based programming environment also includes the rules governing the software
development process. For example, wide-spectrum languages such as V [23] and Gist [1] have
been augmented with rules that aid the programmer in translating from higher- to lower-level
specifications and from specifications to executable code. CMS [13] provides a formal
representation of the software project model, time (for scheduling), and software development
activities. For example, if a ‘capability’ is a desired feature of the target system, then it must be
realized by a ‘component’ of the system; a ‘task’ must be defined to specify who is in charge of
the component and when it is due. Genesis's Activity Manager [19] provides similar facilities.

While work in Al was progressing, researchers in traditional software were addressing their
version of Winograd’s dream. Tools were developed that automated certain aspects of the
programming process. For example, Make [7] automatically rederives an executable system
when part of the source code changes. SCCS [22] requires programmers to reserve modules for
change, thus ensuring orderly software evolution. RCS [28] supports multiple versions of
software objects and manages separate lines of development.

Collections of tools were integrated into interactive programming environments that support a
particular programming language. The Synthesizer [26] combines language-oriented editing that
prevents syntactic errors with immediate feedback about static semantic errors; it also permits
programmers to interleave execution and debugging with editing. The Gandalf Prototype
[16] added a module interconnection language with incremental, intermodule consistency
checking to a C programming environment similar to the Synthesizer.

Unfortunately, the knowledge-based approach and the tools approach have progressed more-
or-less independently. The individual tools incorporate a small bit of knowledge about a
particular programming problem, but this knowledge cannot be augmented. The programming
environments are hardcoded with a particular view of the software development process that
defines the interaction between the programmers and the target system, but this knowledge is not
available to the users of the environment. The knowledge-based environments are much more
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general, but represent only a fraction of human expertise about software development and
maintenance.

Working within the tools approach, the members of the Gandalf project (including the authors)
developed a distributed, multi-user software engineering environment called SMILE [24, 12],
which is relatively close to achieving intelligent assistance. SMILE presents a ‘fileless
environment’ to its users, answers queries, and automatically invokes various tools. However,
SMILE’s knowledge of software objects and the programming process is hardcoded into the
environment.

Our experience with SMILE provided insights into the development of practical environments
and convinced us that a generalization of SMILE's internal architecture would aid in developing
an intelligent assistant for software development and maintenance. Our architecture for
intelligent assistance combines tools with knowledge. From the tools approach, we gain the
years of experience of other computer scientists building and using particular tools and
environments. From the knowledge-based approach, we gain a suitable structure for choosing
among tools and automating the invocation of tools. Our architecture defines a basis for
intelligent assistance that consists of two key aspects: an objecrbase and a model of the sofrware
development process.

The objectbase maintains all software objects, including tools, and provides the environment
with insight into the various classes of objects and the relationships among objects. For example,

one object is a component of another, and a particular object may be applied to another object to
produce a third.

The model imposes a structure on programming activities. It consists of an extensible
collection of rules that specify the particular conditions that must exist for partcular tools to be
applied to particular software objects. Metarules permit the environment to understand the rules
and support opportunistic processing, where the environment performs activities when it knows
the results of these activities will soon be required by its users. Opportunistic processing is the
primary focus of this paper.

In this paper, we explain our architecture and how it meets certain fundamental requirements
for supporting a software engineering environment that understands what it does. Section 2
presents the basis for intelligent assistance defined by our architecture. Section 3 describes how
an intelligent assistant built on this framework can perform software development activities

automatically to provide intelligent assistance to its users. Section 4 briefly describes our
implementation.

2. A Basis for Intelligent Assistance

An intelligent assistant should understand what it is doing {30]. Most software tools are
“moronic assistants” that know what they are doing, but do not understand the purpose of the
objects they manipulate or how their tasks fit into the software development process. In other
words, they may know the ‘how’ but not the ‘why’.

For example, Make has a simplistic world model consisting of files and command lines. A
‘makefile’ defines dependencies among files and gives the command lines necessary for




restoring consistency among dependent files. Make’s notion of consistency is based on files and
time: If the timestamp of an input file is later than the timestamp of an output file, then the
indicated command line should be passed to the Unix™ shell. Make is used widely for
generating a new executable version of a system after source files have been modified.

However, Make’s ‘knowledge’ is primitive. Its objectbase consists of files that have a single
attribute, their timestamp. Make knows nothing about applying tools to files: it just handles
command lines as indivisible units. Make does not understand source files vs. object files,
modules vs. systems, programmers or programming,.

To give Make this knowledge we could define a notion of an object, which belongs to a class,
such as ‘system’ or ‘module’. Each class would define the arribures, or properties, of its
objects. A ‘module object code’ object might have a ‘history’ attribute describing its generation
and a ‘derivation of” attribute pointing to the object representing the corresponding source code.

We could then define rules that model the part of the software development process relevant to
Make. One rule might be that a ‘programmer’ object can modify a ‘module’ object; another rule
might state that after such a modification, the ‘module’ object is no longer consistent with its
‘derivation’ attribute and there is an obligation to restore this consistency. A third rule might
state that a precondition for a ‘programmer’ to test a ‘system’ is that all ‘module object code’
objects that are components of the corresponding ‘executable system’ must be consistent with
their ‘module’.

Given this knowledge, Make could be considered to be relatively more intelligent. Make
would be easier to integrate with other tools that support configuration management, version
control, task management, erc., assuming these tools had similar knowledge of software objects
and their roles in the development process.

We believe that an objectbase and a model of the development process are prerequisites to
intelligent assistance. An assistant cannot understand why it performs particular activities unless
it knows

e the properties of the objects it manipulates,

o the capabilities of certain objects (programmers and tools) to manipulate other
objects,

o the preconditions required by each activity,

¢ the postconditions of each activity.
Therefore, our architecture specifies a general objectbase and an extensible collection of rules
describing the preconditions and postconditions of activities, as well as hints and strategies that
determine the degree of the environment’s conmibutions. We briefly describe the objectbase
here; the rules, hints and strategies are the topic of the following section.



Objectbase

We considered several possible forms for our objectbase. One possibility was the entity-
relation-attribute model proposed for Genesis [20]. However, weaknesses of relational databases
make them inadequate for software engineering environments [15]. To maximize flexibility, we
chose an objectbase similar to those of object-oriented programming languages, such as Loops
[25]. In particular, we adopted their support for multiple inheritance and active values. Unlike
most such languages, however, we require a ‘persistent’ objectbase, one that retains its state
across invocations of the environment. The same concepts are found in the objectbases
supported by other knowledge-based environments, such as AP3 [2] and Refine™ [23].

In our objectbase, each object is an instance of a class, which defines certain attributes of each
object and inherits other attributes from its superclass(es). Some attributes define the
relationships among objects; others trigger activities when accessed and/or updated. The
activities applicable to a class are defined as methods for the class.

This enables an intelligent assistant to expose its users only to the logical structure of the target
software system. The environment consists of a set of typed, interconnected software objects
representing the system and its history. The interconnections among software objects represent
the logical structure of the system. Object types include module, procedure, type, design
descripuon, user task (or development step), user manual, erc. Typing permits the assistant to
provide an object-oriented user interface similar to the Smalltalk-80™ environment [10], where
the environment makes available to each user only those commands that are relevant to the
object under consideration.

3. Opportunistic Processing

The objectbase also maintains the rules that model the software development process. These
rules provide the meta-knowledge required for an environment to apply tools automatically. We
call this behavior opportunistic processing, which offloads simple activities onto the intelligent
assistant—menial actvities, such as invoking the compiler and recording any errors found during
compilation. This approach contrasts with some intelligent assistance systems, such as the
Programmer’s Apprentice (KBEmacs) [29] and CHI (previously PST) [23], which focus on the
separate problem of automatic programming.

3.1. Rules :

We represent our model as a collection of rules similar to the production rules of Ops5 [4] in
that each rule has a condition and action. When the condition is true, the action may be
executed. Our rules differ from production rules in that the acton is divided into two parts, an

activity and a postcondition. Because our rules have postconditions, we refer to the original
conditions as preconditions.

The acriviry part of a rule represents an integral software development task. For example,
"compile module” is one activity and "change comporent” is another (a ‘component’ is a facility
defined within a module, such as a procedure, a variable, a type, erc.). The specific editing
commands applied during the course of the "change component” activity are not considered




activities. "Fix bug" is not an activity, since it involves many tasks, perhaps involving several
users. Thus our notion of an activity represents a middle-ground granularity.

Each activity is associated in the objectbase with a tool that performs the activity. One
attribute of each tool is whether it can be invoked by the environment without human
intervention. For example, the "compile module" activity is associated with the compiler, which
can be applied by the intelligent assistant; the "edit component” activity is associated with a text
editor (or a syntax-directed editor), which requires human interaction.

The precondition part of a rule — a boolean expression — must be true before an activity can
be performed. The operands of a precondition include software objects and the attributes of
software objects. For example, "notcompiled(module)" might be an appropriate precondition for
the "compile module" activity. Another precondition for "compile module" would be "for all
components ¢ such that in(module, component c): analyzed(component c)"', where "analyzed(c)"
is true only if a static semantic analysis of component ¢ finds no errors. An activity may have
multiple preconditions that must be satisfied.

A postcondition becomes true when an activity is completed. Both preconditdons and
postconditions are written as well-formed formulas (wffs) in the first order predicate calculus.
Our rules are based on Hoare's assertions [11], where a programming language construct is
associated with its preconditions and postconditions; if the preconditions are true before the
language construct is executed, then the postconditions will be true afterwards.

However, a programming activity may have multiple postconditions, exactly one of which is
true after the activity terminates. Which of the various possibilities is true can be determined
only by invoking the corresponding tool. For example, two postconditions for the "compile
module” activity might be "compiled(module)" and "errors(module)’. Here we follow the
extension of Hoare's assertions proposed by Perry [18], where there must be multiple
postconditions to represent the exceptional results of executing a procedure. This notion of
postconditions distinguishes our architecture from CLF, Genesis’ Activity Manager, and other
expert systems that rely on condition/action rules. The most important advantages are that we
can separate an activity from its results and therefore consider several alternative results within
our model.

Two example rules are given in Figure 3.1. The first states the preconditions and the two
postconditions for the "compile module” activity. The preconditions are given first, followed by
the activity (within braces), followed by the postconditions. The alternative postconditions are
separated by semicolons.

3.2. Meta Rules

Our architecture supports the definition of metarules that guide the intelligent assistant’s use of
rules. One metarule states that if the preconditions of an activity are satisfied, and the activity
can be performed by the assistant, then the assistant may perform the activity automatically.
Consider the first rule in Figure 3.1. The metarule interprets this rule to mean that the assistant
may compile any modules M such that all the components of M have been analyzed but M has
not been compiled.




notcompiled (module) and
for all components c such that in(module, component c):
analyzed (component c);

{ compile module }
ccempiled (module) ;
errors (modula) ;
equals (module, focus(userid)) and in(modula, component):’

{ edit component }
notanalyzad (componant) and notcompiled (module)

Figure 3-1: Compile Rule and Edit Rule

In this example, "notcompiled(module)” is one of the preconditions to the "compile module”
activity; "errors(module)” is included as one of the possible postconditions. If the. previous
compilation failed, "errors(module)" will be tue. The "compile module” actvity cannot be
performed when “errors(module)” is true, because its precondidons cannot be satisfied. If a user
then edits a component, perhaps to fix the error, the second rule of Figure 3.1 states that
"notcompiled(module)” will be set to true and the metarule permits compilation.

Importantly, this metarule states that the intelligent assistant may perform an activity when
preconditions are satisfied; it does not state that the assistant must perform the activity as soon as
the preconditions are true, or at any time thereafter. However, the intelligent assistant may apply
the tool and use forward chaining to determine additional activities whose preconditions are
satisfied by the postconditions of the first activity. Therefore, we call this metarule the ‘forward
chaining metarule’. ’

Forward chaining supports behavior similar to language-oriented editors, such as the
Synthesizer and Gnome [8]. When the user makes a subtree replacement in the abstract syntax
tree representing the program, the editor automatcally performs several actions. In the case of
editors generated from attribute grammars [21], the editor automatically re-evaluates the values
of attributes whose values may have changed. These attributes might represent the content of the
symbol table and the object code for the program. Other editor generators automadcally invoke
action routines for type checking or code generation for modified program parts [6].

A second metarule states that if a user invokes a tool with unsatisfied preconditions, the
intelligent assistant should use backward chaining 1o find activities it can perform whose
postconditions might sadsfy the preconditions of the activity requested by the user. In this case,
the metarule states that the intelligent assistant must exhibit this behavior. We call this metarule
the ‘backward chaining metarule’.

Backward chaining supports behavior similar to Make, DSEE™ [14], Toolpack [17] and other
software engineering tools in which a user may request regeneration of an executable system
after changes have been made to its source code. The environment uses dependency information
previously supplied by the software development team to determine which source files to
recompile.




Sometimes our intelligent assistant attempts backwards chaining, but finds that the
preconditions cannot be satisfied; in this case, the user is informed of the problem. The
intelligent assistant is not expected to, for example, correct source code so that it will compile
successfully. For example, our intelligent assistant might support a large team where multiple
users should not change the same module simultaneously. Here, each user must reserve a
module before changing it. The preconditions and postconditions for the "reserve module”
activity are stated in the first rule shown in Figure 3-2 ("saved(module)" is true when the module
has been saved. by the version control tool), and the second rule states that the 'change

component” activity cannot be performed unless the module containing the component is
reserved.

not reserved(module) and saved(modula):;
{ reserva module }
reserved (modula, usearid);

resaerved (module, userid)
{ change component }
notanalyzad (component) and notcompiled (module);

for all components k such that in(module, component k)
and uses (component k, component c¢):
resarved (module, usarid):;
{ change component c }

Figure 3-2: Change Rules and Reserve Rule

The "change component” activity permits the user to modify the specificaton of a component
("edit component” permits the user to modify only the body). The third rule of Figure 3-2 states
that the containing module must be reserved along with any other modules that depend on it (¢
and & distinguish multiple objects of the same type). The backward-chaining metarule enables
our intelligent assistant to automatically reserve modules whose components may have to be
modified to restore consistency with the changed component. The metarule also prevents the

user from modifying the specification of a component when dependent modules cannot be
reserved (according to the first rule).

3.3. Strategies and Hints

We chose the name ‘opportunistic processing’ for these chores because the assistant may
perform an activity as the opportunity arises any time after its preconditions are satisfied and
before another activity whose preconditions depend on its postconditions. Rules may be tagged
so their activities are performed immediately after their preconditions are satisfied (i.e., forward
chaining applies) while other activities are performed only when their postconditions are
required (forward chaining does not apply). Since we need to choose other points on this
spectrum, we have included hints and strategies in our model to aid the intelligent assistant in
making decisions.




A hinz is similar to a rule, but without postconditions. The preconditions of a hint are used to
guide the intelligent assistant in choosing when to apply a tool whose other preconditions are
satisfied. Consider again the first rule from Figure 3.1. Suppose we do not want the assistant to
compile a module, even though the preconditions are satisfied, while a user with modification
rights is browsing through the module: The user may decide to change some components of the
module, and the compilation will have been wasted. So we use a hint, Figure 3-3, giving this
precondition for the “"compile module" activity (angle brackets are used for parentheses). When
the assistant follows a strategy including this hint, compilaton is delayed until the user changes
to another module.

not raserved (module) or
< raservad (modula, userid) and
not equals (modulae, £fccus(userid)) >
[ compile moduls ]

Figure 3-3: Compile Hint

Since we want the human user o be able to invoke the compiler without changing to another-
module, we give this precondition to "compile module” in a hint, rather than as part of a rule.
Hints apply only to the opportunistic processing of the intelligent assistant, not to activities
initiated by a human user. In other words, hints are considered during forward chaining and
ignored during backward chaining.

A strategy consists of a collection of hints and rules, which apply only when the strategy is in
force. The third (and currently final) metarule from our model enables the intelligent assistant to
employ strategies by combining its rules and hints with the rules normally considered. Zero or
more strategies may be employed at the same time. When this results in more than one rule for

the same activity, all their preconditions must be satisfied; only one set of postconditions is
permitted.

Currently, our assistant cannot choose its own strategies; the knowledge to support this
capability requires additional research on user modeling. Instead, each user will select
appropriate strategies by informing the environment that he is, for example, a manager vs. a
programmer, developing a new system vs. maintaining an old system, or making major changes
vs. a minor revision. A strategy whose rules and hints result in automatically performing type
checking immediately after each component is edited would be appropriate for a minor revision,
but not for a large-scale changes involving many interrelated components.

3.4. Activities as Side-Effects

Often a tool performs additional activities as side effects. For example, the analysis tool
invoked for the "analyze component” activity may change the values of several attributes of
components. For the purposes of our rules, setting the value of an attribute is considered an
activity, resulting in a situation where one acton of the intelligent assistant is embedded inside
another rather than being a consequence of forward or backward chaining. This case




demonstrates a limitation of our rules: Secondary actions whose arguments cannot be
determined in the general case cannot be expressed easily as postconditions. Instead, potential
side effects are indicated by attributes of the tool.

In such cases, the secondary activities are often described by their own rules, and these must
be considered for further processing. For example, some rules related to the "uses" attribute of a

component are given in Figure 3-4. The "uses" attribute lists the components that the component
depends on.

notanalyzed (component) ;

{ analyze componant }
analyzed (component) ;
errors (component) ;

in(module, component c¢) and
< in(module, component k) or imports (module, component k) >:
{ component ¢ uses component k }

uses (component ¢, component k);

axports (module N, component) and
not equal (module M, module N);
{ import component }

imports (modula M, component);

in(modula, componaent):;
{ export component }
exports (modula, component);

Figure 3-4: Analyze Rule, Uses Rule and ImportvExport Rules

The first rule gives the obvious preconditions and postconditions for the "analyze component”
activity. The second rule states a component ¢ cannot use another component k unless & is in the
same module or is imported into the module. The third rule means that a component cannot be
imported by a module M unless it is exported by another module N. The fourth rule states that a
component cannot be exported by a module unless it is in that module.

What happens when the analysis tool finds that procedure p (a component) calls procedure ¢
(another component) and tries to set the "uses" attribute of procedure p to include procedure g?
If q is in the same module as p, there is no problem; the attribute is set and the analysis
continues. If q is not in the same module, the intelligent assistant checks whether it is imported.
In the case where g is not already imported, the assistant notes that "imports(module,
component)” is a postcondition of the "“import component" activity (third rule) and realizes it can
perform the "import component' activity without human intervention. It considers the
preconditions of this activity. The assistant queries its objectbase to find the module that
contains q. If ¢ is already exported from that module, the assistant performs the "import
component” activity. If not, the backward-chaining metarule permits the assistant to follow the




10

preconditions of the activity given in the fourth rule of Figure 3-4. The assistant can add q to the
exports of its module, then actually import g into the original module, and then permit the
analysis tool to set the "uses" attribute of p.

In the above scenario, we ignored the possibility that distinct procedures named g might be
found in more than one module. Sometimes language-specific typing information can be used to
narrow down the possibilities, but generally the intelligent assistant must interrupt the human
user to explain its dilemma and to ask which q is intended. The assistant can then proceed as
described in the previous paragraph.

If no component named ¢ is in the objectbase, the assistant considers the "add component q"
activity, whose postc