MELD/Features: An Object-Oriented Approach
to Reusable Software

Gail E, Kaiser
David Garlan®

October 1986

CUCS-226-86

Abstract

This technical report consists of three related papers in the area of reusable software. Synthesis
of Programming Environments from Reusable Building Blocks presents the notion of ‘features’
as an approach to reusable descriptions for the generation of programming environments.
Composing Software Systems from Reusable Building Blocks presents MELD, a declarative lan-
guage based on features, and generalizes features to the description of reusable software for
general applications. MELD: A Declarative Language for Writing Methods focuses on MELD’s
capabilities for describing the behavior of software systems.

Part of this research was conducted while Dr. Kaiser was a Visiting Computer Scientist at the
Software Engineering Institute, Carnegie-Mellon University, Pittsburgh, PA. “Mr. Garlan is sup-
ported in part by the United States Army, Software Technology Development Division of
CECOM COMM/ADP, Fort Monmouth, NJ and in part by ZTI-SOF of Siemens Corporation,
Munich, Germany. Mr. Garlan’s address is Department of Computer Science, Carnegie-Mellon
University, Schenley Park, Pittsburgh, PA 15213,

Synthesis of Programming Environments
from Reusable Building Blocks

Gail E. Kaiser*
Columbia University
Department of Computer Science
New York, NY 10027

David Garlan
Camegie-Mellon University
Department of Computer Science
Pittsburgh, PA 15213

29 August 1986

Abstract

Generation of programming environments has proven to be a practcal application of software
reusability. The generator cqmbines the language-independent kernel with a formal description
of the desired programming language to produce a language-specific programming environment.
Unfortunately, such reusability has been limited to the facilities provided by the kernel and it has
not been practical to reuse the behavior specified in a language description. This has led to
pushing more and more functionality into the kemel. We argue that this is unnecessary. We
describe a unit of modularity, called a fearure, that can be added to notations for language
description. Features provide a means for dividing language descriptions into reusable pieces of
functionality that can be mixed and matched to obtain the facilities desired for a particular
programming environment. Further, features contribute to synthesis of reusable software for

other applications. Copyright © David Garlan and Gail E. Kaiser

This research was supported in part by the United States Army, Software Technology
Development Division of CECOM COMM/ADP, Fort Monmouth, NJ and in part by ZTI-SOF of
Siemens Corporation, Munich, Germany. *Part of this research was conducted while Dr. Kaiser
was a Visiting Computer Scientist at the Software Engineering Institute, Carnegie-Mellon
University, Pittsburgh, PA.

1. Introduction .

The generation of programming environments is one of the more promising areas of software
reusability research. The dominant theme is to combine a language-independent kemnel with a
formal language description to produce a programming environment for the desire
programming language. The kernel provides the common facilities, including the user interface,
invocation of programming tools, the file system interface, and manipulation of the internal

representation of programs and auxiliary structures. Representative examples are
[33, 30, 6, 31, 20].

Unfortunately, such reusability is severely limited since only the language-independent kemnel
can be reused. The language-specific descriptions are invariably bound to linguistic and
functional context — it is rare that parts of the descriptions can be reused for different tools or
for environments for different programming languages. In response to this problem. more and
more functionality has been pushed into the kernel itself, adding support for symbol tables,
memory management, debugging, erc. But this doesn’t really solve the problem: it is unrealistic
to expect any set of basic facilities to satisfy all needs for reusability; further, the kernel cannot
be tailored to specific needs, except through the language description.

We extend the generation of programming environments to support much wider reusability.
We compose an environment from a collection of formal descriptions that each implement a
basic unit of functionality, called a fearure. An implementor can encapsulate a set of facilities as
a feature, reuse features across multiple environments, integrate features with other features, and
tailor features to specific environments. The benefits of this approach are:

e an environment can be built from manageable, interacting, functional units;
e these language-independent units support libraries of reusable building blocks:

e these units provide appropriate boundaries of abstraction without overly limiting
data sharing.

Section 2 describes features as an extension of current notations for language description. An
example of a small environment for programming-in-the-large illustrates the use of features in
the synthesis of programming environments. Section 3 describes the implementation and
Section 4 discusses related work. Although motivated by programming environments, our
notation and algorithms extend well beyond these bounds. Indeed, we believe that features are
an appropriate paradigm for reusable building blocks for any software system. The concluding
section supports this claim.

2. Features: An Example

We start with the automatic generation of programming environments from formal
descriptions. A generation system typically consists of two parts, the kernel and a translator
from the formal notation into an internal representation understood by the kernel. The
description also consists of two parts, describing the syntax and semantics, respectively, of the
desired programming language. The first, an extended form of BNF [2], specifies the objects to
be manipulated by the environment (procedures, statements, expressions, erc.). The second
defines the tools provided by the environment (symbol resolution, type checking, code

generation, and so on). The tools are usually written as attribute equations (32, 21] or action
routines {26, 1]; in both cases, the tools manipulate auxiliary data structures called attributes that
represent symbol tables, object code. etc.

We diverge from previous approaches in that we speciiy a programming environment rot by
one, but by a collection of formal descriptions, called fearures. Each feature defines both syntax
and semantics of a unit of functionality that can be incorporated into a variety of environments.
Some other systems, such as ALOE [8] and Mentor (7], also allow multiple descriptions, but
these additional descriptions are strictly auxiliary — for describing the structure of attributes —
and are independent of the 'primary’ language description. In contrast, our primary description
is obtained by automatically synthesizing the features that collectively define the facilities of the
programming environment. Features extend our previous work on views [14] — a paradigm for
generating environments from multiple descriptions — by adding interfaces, inheritance of
facilities, and notation for specifying behavior; together, these extensions support reusability of
functional units. We illustrate the approach by integrating a feature implementing system
generation facilities into an environment for programming-in-the-large.

2.1. A Simple Environment for Programming-in-the-Large

Feature Module Interconnection Languaga
Interface:

Exports all

Imports Programming Language

‘Implementation:

Use Programming Language

MODULE ::= mod-name: identifier
imports: seqg of identifier
exports: seqg of SIGNATURE
components: geqg of COMPONENT

COMPONENT ::= MODULE | IMPLEMENTATION

End Feature Module Interconnection Language

This feature exports all the named types, including MODULE,
COMPONENT, SIGNATURE and IMPLEMENTATION, Tha latter two are
imported from the Programming Language feature, whose scope is
opened by the Uses clausse.

Figure 2-1: Specification of a Module [nterconnection Language

Figure 2-1 shows a feature that defines a simple module interconnection language. It consists
of a collection of productions and unions that define the data structures to be manipulated by that
feature. A production has a list of named and typed components. The type is a primitive

("identifier", "integer”, "text", and so on), another production, a union, or a collection such as
“sequence” (an ordered list). A union gives a list of alternative productions and subunions. In

this case, the syntax description consists of one production (MODULE) and one union
(COMPONENT).

The MODULE production defines four components. The first, ‘mod-name’, gives the name of
the module. The other three components are sequences. The ‘imports’ component lists the
names of imported modules and ‘exports’" lists the signatures of exported facilities.
SIGNATURE is imported from the Programming Language feature, and the Module
Interconnection Language is not concerned whether it is a production or a union; a union is most
likely, to indicate alternatives such as procedure, variable, type, erc. The ‘components’
component lists the subparts of the module, either other modules or IMPLEMENTATIONS (also
imported from Programming Language). In addition to this syntax description, the full
description of the environment would contain an associated operational component (for example,
to check interfaces between modules), not shown here.

The most significant differences between the notation of features and classical syntax
descriptions are (a) we group productions and unions together into modular units, i.e., features,
and (b) an interface defines the abstraction implemented by those productions and unions. In
this case the interface exports all of the data structures defined within the feature. It imports
another feature that defines the desired programming language, including the language-specific
SIGNATURE and IMPLEMENTATION. As we will see, the Module Interconnection Language
feature can be combined easily with additional features that augment its functionality.

2.2. Make

Suppose we would like to integrate our simple environment for programming-in-the-large with
a facility, based on the Unix™ Make utility {11], for automatically regenerating an executable
system after source code changes. Traditionally, we might embed this capability directly in the
language description, but then we could not reuse it. Alternatively, we might add Make to the
common kernel, allowing it to be reused across all environments, but without means to tailor or
extend the facility for specific environments. Using features, however, we take a modular
approach: we define an independent formal description that can be incorporated into and
tailored for any environment requiring Make-like facilities.

Figure 2-2 describes the world from Make’s point of view. That world consists of a collection
of dependency units (DUs), each indicating a command that defines the relationship between
input objects and output objects. Each object indicates the originating dependency unit and the
time when it was produced. Certain objects are primitive, meaning they are generated outside
Make. When the Make command is issued by some external agent, such as the human user of
the programming environment, Make backtracks through the chain of outputs and inputs to
determine whether each output object is up to date with respect to its input objects. If not, Make
applies the corresponding command to rederive the object. We present the equations that
implement this behavior in Section 2.4, but first we explain how to integrate the Make feature
with the programming-in-the-large environment described earlier.

Feature Make

Interface:
Zxports all
Imports Tima

Implementation:

Uses Tima

DU ::= inputs: seqg of CBJECT
outputs: seg of OBJECT
ccmmand: Siring

OBJECT ::= time: TIMESTAMP
origin: QRIGIN
content: any

ORIGIN ::= DU | PRIMITIV=

PRIMITIVE =

End Feature Maksas

TIMESTAMP is imported from the Time feature. siring and any are
built-in types. PRIMITIVE is an atcmic wvalue.

Figure 2-2: Feature Description for Make

2.3. Merging Make and the Module Interconnection Language

Programming environments are synthesized by merging features with other features. The
implementation part of a feature may include a Merges clause, which combines external object
definitions imported from other features into a synthesized definition. Further, it may give each
svnthesized object an internal name and it can extend and/or export the synthesized object.

In Figure 2-3, the System Modeller feature merges (1) the DU and MODULE productions and
(2) the OBJECT production and the IMPLEMENTATION production, retaining the latter name
in each case. This means that the System Modeller includes a MODULE production and an
IMPLEMENTATION production that inherit from the merged features. The local MODULE
production has all the functonality of the DU production defined in the Make feature, as well as
the facilities defined in Module Interconnection Language; additional facilities, in this case the
‘objcode’ and ‘symtab’ components, can be added by the merging feature. Similarly,
IMPLEMENTATION inherits all the capabilities of OBJECT. This merge clause further defines
OBJECTCODE as a new instantiation of OBJECT:; it inherits all the capabilities of OBJECT as
defined by the Make feature. Thus a module becomes a dependency unit, an implementation
becomes an object, and object code is defined as an object.

A more realistic system would merge a large number of such features resembling, for example,
Figure 2-4. The larger system includes all the data structures and incorporates all the
functionality defined by all the synthesized features.

wn

Feature System Modeller

Interface:
Exports: ...
Imports: Module Interconnection Language
Makae :
Implementation?

Merges:

Feature Module Interconnection Language
Feature Make

DU and MODULE as MODULE

OBJECT and IMPLEMENTATION as IMPLEMENTATION
OBJECT as OBJECTCODE

MODULE ::= objcode: OBJECTCQDE
symtab: SYMBOLTARBLE

SYMBOLTABLE ::=
End Feature System Modeller

Figure 2-3: Merging Make and Module Interconnection Language

Feature A Larger System

Interface:

Exports: .
Imports: ...

Implementation:

Merges:
Feature System Modeller

Featﬁre Compilation Unit
Featﬁée Documentation Facility

Feature My Error Handler

End Feature A Larger System

Figure 2-4: Description of a More Realistic, Larger System

2.4. Equations for Make

Figures 2-5 and 2-6 contain the semantic equations needed to implement Make-like facilities.
The details of these equations are not important to our argument. [t suffices to understand that
these equations are automatically evaluated as needed. and other features synthesized with the
Make feature do not have to be concerned with these equations or their operation. This is
because the semantics are written as equations rather than as routines. If routines were used, it
would be necessary for the implementor to understand the details of the semantic routines
provided by all the merged features in order to correctly order their invocations. In conmast,
equations permit automatic ordering of evaluation according to the dependencies among the
inputs and outputs of equations. In particular, each equaton whose output appears as an input to
another equation is automatcally evaluated before the other equation. The algorithms for
implementing this are briefly explained in Section 3.

The rest of this section explains how our equations implement system regeneration after source
code changes, while the following section shows how behavior can be tailored to the particular
environment by augmenting the set of equations and overriding default equations. The reader
can skip to Section 3 without loss of continuity.

Our notatdon for equations is called action equations [23]. Action equations are an extension
of atmbute grammars [24], which have been applied previously to compiler-compilers
[9.12] and generation of programming environments (33, 20]. While attribute grammars
support type checking, code generation, and other programming tools that inspect the source
code, action equations can also define dynamic, interactive tools such as interpreters, debuggers,
run-time support, erc. See [22] for a full reatment of action equations.

DU = L.,
Ecquations:
MAXE -->

Propagate MAXE To inputs(all]

Agsert Min(outputs{all] .time) > Max(inputs(all].tima)
Exception Propagate APPLY To self

APPLY -->
outputs(all] .origin := self

default outputs := Apply(command, inputs)

Figure 2-5: Equations for Dependency Units

Figure 2-5 associates four equations with the DU production. All four are attached to evenss,
two each to MAKE and APPLY. An event is a named signal that can be sent to objects by the
kemmel or by other objects. Events are essentially parameterless messages. The kemel
automatically sends the corresponding signal whenever a primitive operation (such as CREATE,
DELETE, or ACCESS) is performed on an object. Further, one object can send an event to

another using the propagarion equation. The attribute equations attached to a particular event
are recalculated when the object receives the matching signal.

The first equation is a propagation equation; a propagation equation sends a named event to
one or more destination objects. This equation sends the MAKE event to every member of the
sequence of inputs. This implements backtracking by propagating the signal to every input that
transitively contributes to the desired output. The second equaticn is an asserrion. An assertion
causes the kernel to check that a certain condition is true; if the condition is false, an equation is
activated to display an error, correct the situation, erc. This assertion detects when an input

object is more recent than an output object, and propagates the APPLY event to rederive the
output objects.

The next two equations are constraints; a constraint is essentially an assignment. The left hand
side of a constraint addresses an object or a component of an object, while the right hand side is
an arbitrary expression. The first equation sets the ‘origin’ component of each of the resulting
outputs to the corresponding DU object. The second sets the value of the ‘outputs’ component to
the result of calling the Apply function with the command string and its argument$. Equations
attached to events are re-evaluated exactly once when the event is received. However, the inputs
to each equation must be calculated before the equation can be re-evaluated. In this case, the
second equation depends on the first, because the ‘origin’ component of an output object cannot
be set until the output itself is available; thus, the kernel automatically evaluates the second
equation before the first when the APPLY event is received by a DU object. Notice that the first
constraint is qualified with the keyword "default". This means that the equation can be
overridden by another equation with the same left hand side; we will explain this in the next
section.

OBJECT = oL,
Equations:
MAKE -->

Assert TypeOf(origin) = "PRIMITIVE"
Exception Propagate MAKE To origin

tima := content Return Now()

Figure 2-6: Equation for Objects

The OBJECT production has two equations, shown in Figure 2-6. The assertion is activated
by the MAKE event. It checks whether or not the OBJECT is primitive. If not, it propagates
MAKE to the originating dependency unit to rederive the object. The second equation, a
constraint, is not attached to an event. Therefore, it constrains its left hand side to always denote
the value represented by its right hand side; in particular, the kernel automatically re-evaluates
the equation whenever an argument to the right hand side changes in order to update the left
hand side. In this case, the ‘time’ component is updated to the current time whenever the
‘content’ component changes in value.

A programming environment synthesized from the Make feature and the Module
Interconnection Language feature would work as follows when the user gives the Make
command. The kernel sends the MAKE event to the module, activating any attached equations.
In this example, the only relevant equations come from the DU production, which is merged with
the MODULE production in the System Modeller feature. These equations propagate MAKE
through the chain of outputs and inputs until arriving at primitive source objects, that is,
implementations. In each case where an implementation is more recent than its module’s object
code, the object code is rederived.

Note that the Make feature is completely generic; in particular, it does not know anything
about files. In this example, the input objects were merged with modules and implementations
and the output objects with object code, all of which are equivalent to files. However, the Make
feature could be merged with other features that define completely different input and output
objects. For example, we could merge input objects with some internal representation of
arbitrary data structures and the output objects with the windows that display these data
structures. Then the same behavior provided by the Make feature would update the windows
whenever the data structures changed.

2.5. Tailoring Behavior

In Figure 2-3, the System Modeller feature adds the ‘objcode’ and "symtab’ attributes to the
MODULE production, as places to save the corresponding object code and symbol table,
respectively. It is necessary to also add equations that implement this behavior. The System
Modeller feature associates three new equations with the MODULE production, as shown in
Figure 2.5. All three are constraints. The first equation maintains the new "objcode’ component
of the module to be the same as the first element of its ‘outputs’ component: that is, the object
code for the module is the first of the output objects produced by applying the Make command

to the medule. Simularly, the second equaticn consirains the new ‘symtab’ component to be the
second output.

MODULE ::= ...
Equations:
objcoda := outputs[l]
symtab := outputs[2]
APPLY -->

outputs := Smart (command, inputs)

Figure 2-7: Augmentng and Overriding Behavior

Suppose we would like to tailor, rather than augment, the behavior defined by the Make
feature to the context of the System Modeller. Our goal is to modify Make's processing to
implement ‘smart recompilation’ (37). Smart recompilation refines the granularity of

dependency from the dependencies among inputs defined by dependency units to the
dependencies among the source code symbols defined within the input modules. This change
applies only to the System Modeller feature, and thus to any programming environments that
incorporate this feature, not to all potential applications of Make facilities.

The System Modeller feature implements this change by overriding the default equation
defined by the Make feature. The third constraint shown in Figure 2.5 is attached to the APPLY
event. It has the same left hand side, the “outputs’ component, as the default equation defined
for the DU production by the Make feature (Figure 2-5). Since MODULE has been merged with
DU, it inherits all the equations defined for DU in the Make feature, including the default
constraint. However, this new equation overrides the default equation, removing it from
consideration during the kernel’s ordering of equation evaluation. The difference is that the new
equation calls the Smart function, whereas the default equation calls Apply. Smart is defined by
a set of equations, not shown, that apply the compilation command only if the symbol tables for
the input objects actually reference those source code symbols that have changed since the
previous compilation. This is why we needed to add the ‘symtab’ component to save the
module’s symbol table.

3. Implementation

An earlier version of features was implemented for a Macintosh™ Pascal environment to be
marketed commercially within the next year [5]. Routines rather than equations describe
behavior and merging of data structures is not supported. This implementation demonstrates the
practicality of merging alternative display descriptions [13]. A full implementation is being
developed in CommonLoops [3].

This implementation requires translation of structural descriptions and action equations, plus
run-time support. Each synthesized data structure combines productions from different features
that have been merged together as facets, each facet corresponding to one production. Only
some facets of an object need be active. Structural descriptions translate easily into
corresponding data types. For example, each object could be represented by a record, where
each field is a component or a pointer to a component (depending on the type of the component).
The difficulty arises in maintaining connections and consistency among the various facets of an
object: Auxiliary equations are generated to update certain facets in response to changes in other
facets.

The equations for a synthesized data structure are combined and a local dependency graph
represents all the equations attached to the same event. The vertices represent equations and the
edges represent dependencies among the inputs and outputs of equations. Another graph
represents all equations (for the same synthesized type) that are not attached to any event. The
kernel orders the evaluation of active equations according to these graphs. Each individual
equation is translated into an evaluation procedure that takes advantage of the implementation
language facilities as well as the kernel primitives.

The kernel provides primitives for creating, destroying and moving among objects. It sends
standard events as necessary. It also sends the new events defined in the features by selecting
the corresponding local dependency graphs. The kernel’s most important job. is ordering

10

evaluation of active equations. It uses an acaptation of Reps’ incremental attribute evaluation
algorithm [32], which generates language-baszd editors from attribute grammars [33]. The local
dependency graphs are combined into a composite dependency graph at run-time to reflect the
actual connections among objects and facets of objects. The composition considers only the
graphs for the current event(s) and those not specific to any event. The graph is sorted
topologically to order the evaluation of equations. This algorithm is asymptotically optimal, i.e.,
linear in the number of affected objects. See [15] and [22] for algorithm details and further
complexity results.

4. Related Work .

Our approach both extends and unifies work from five major areas: structure-oriented
eavironments, interface description languages, object-oriented programming, abstract data types,
and specification languages.

Structure-Oriented Environments:! Qur work extends current research by synthesizing the
language description used to generate an environment from reusable building blocks. In our
examples, features extend the notation used for the Display Oriented Structure Editor (DOSE)
system [10]. Generation of structure-oriented environments in turns builds on compiler-
compilers {19, 9]. Our results apply directly to these areas, since features are not specific to any
particular formal notation for syntax description. However, in order to correctly merge
semantics processing, the behavior must be described using equations or some similar
declarative notation rather than routines: otherwise, the implementor of the structure-oriented
environment is forced to combine the semantic routines by hand.

Interface Description Languages: IDL [28] is a formal notation for defining the data structures
passed among tools; it grew out of research in compiler-compilers {25]. IDL has been extended
to support tight integration among tools while still supperting reuse of tools [35]. Tool behavior
is implemented by separately defined routines, permitting only sequential processing of data by
tools. In contrast, features support interleaved operation by defining tool procassing by
equations, where equations for different tools are automatically interleaved, for example, if an
equation for one tool depends on an equation for another tool which in turn depends on another
equation for the first tool.

Object-Oriented Programming: Other than structure-oriented environments and IDL, our
results are closest to object-oriented programming. Our merge clause, the glue that binds
features together, is similar to the multiple inheritance of some object-oriented programming
languages (36, 3, 27]. There are two important differences between merging and multiple
inheritance. First, components with the same name are shared between separately inherited
facilities, provided the types are ‘compatible’ [15]. Second, the behavior is merged without
requiring the implementor to deal with the interactions among separately defined behavior; this
is possible because the ‘methods’ are described by equations that are evaluated in the order

implied by their dependencies, rather than by procedures that must be invoked in some explicit
order.

'We use the term ‘soucture-oriented environment’ synonymously with ‘language-based editor’, ‘structure editor-
based environment’, ‘syntax-directed editor’, etc.

11

Abstract Data Types: Features resemble the encapsulated abstract data types of modern
programming languages [34]. Features are strongly typed, with an interface and an
implementation; they are similarly motivated: decomposability, abstraction, information hiding,
protection, erc. However, abstract data types do not by themselves lead to a high degree of
reusability since (a) they are language-dependent. and (b) they can be tailored to a particular
context in limited ways — specifically, the subtypes of generic modules can be instantiated by
each client. Features, on the other hand, are language-independent? and permit more -
specialization by their clients, with respect to both the data structure and the operations.

Specification Languages: Some specification languages [4, 16, 17] support composition of
distinct functionalities in the style of multiple inheritance. However, these languages are
oriented towards verification and cannot yet support completely automated translation to an
efficient executable form. More significantly, they specify data implicitly, and thus cannot
describe sharing. Furthermore, behavior is described axiomatically or algebraically rather than
operationally, making it difficult to specify interactive software.

5. Reusability Revisited

Current approaches to software reuse have had relatively little effect on software engineering
practice. Subroutine libraries have had the most success. However, subroutine libraries and
most other existing approaches are highly tied to linguistic and/or functional context. A software
building block can be reused only as the original programmer envisioned. A generic stack
module in Ada™ manipulates only Ada stacks. A window manager manages only windows.

There are three important prerequisites to achieving an order of magnitude improvement in
software production: (a) language-independence, (b) component reuse through composition, and
(c) reuse of components in unanticipated ways. For example, we would like to reuse a window
manager as a file system written in a different programming language. We believe this is
realistic. A window manager creates and destroys windows, moves windows, defines
subwindows, and reads/writes windows; a file system creates and destroys files, renames files,
includes files in directories, and reads/writes files. The structures of the two programs are very
likely similar, although the devices and implementation languages are quite different.

Our goal is to support this degree of reusability, without sacrificing previously written
software. Our approach is broadly based on a framework where software building blocks can be
transformed between two forms — programs and language-independent descriptions [18, 38].
*Old code’ is in a particular programming language, but new software could often be written as a
language-independent description.

However, there is as yet no acceptable language-independent notation; we cannot transform
automatically from programming languages to such a notaton; and we cannot transform
automatically back to the desired implementation language. All three problems must be solved.

2While our notation is itself a tool description language, descriptions of features written in that notation are
translated during the environment generation process into some specific executable language (‘Pascal, C, ewc)).
Features are ‘language-independent’ in the sense the target language can be virtually any programming language.

12

We believe that features are a significant contribution to the first and third problems. This
derives in part from Notkin’s results [29]: He applied environment generation to a wide variety
of integrated systems, including mail systems, document editors. and even ordinary
programming — even restricting attention to environment generation, we potentially impact
general software reusability. More concretely, our contidence comes from our design of several
components for a programming-in-the-large environment, including a configuration manager and
a module interconnection language with intermodule consistency checking ([14]), and
incremental recompilation, interpretation and language-oriented debugging ([22], (23]).

Our research contributes directly to synthesis of programming environments from rzusable
building blocks. We can now describe abstract units of functionality as features, define features
in terms of other features, and combine features with other features that specify both separate
and shared components and distinct behaviors for the same objects. We can further compose
synthesized features to generate arbitrarily complex programming environments incorporatirg
retailored programming tools.

References

(1] Vincenzo Ambriola, Gail E. Kaiser and Robert J. Ellison.
An Action Routine Model for ALOE.
Technical Report CMU-CS-84-156, Camegie-Mellon University, Department of
Computer Science, August, 1984.

[2 John W, Backus.
The Syntax and Semantics of the Proposed International Algebraic Language of the
Zurich ACM-GAMM Conference.
In International Conference on Information Processing. 1959,

[3] Danny Bobrow, er. al..
CommonLoops: Merging Common Lisp and Object-Oriented Programming.

In ACM Conference on Object-Oriented Systems, Languages, and Applications.
Portland, OR, September, 1986.

(<] R.M. Burstall and J.A. Goguen.
Putting Theories Together To Make Specifications.
In Fifth [nternational Joint Conference on Artificial Intelligence, pages 1045-1038.
Cambridge, MA, 1977.

(3] Ravinder Chandhok, David B. Garlan, Dennis Goldenson, Philip L. Miller and Mark
Tucker.
Structure Editing-Based Programming Environments: The GNOME Approach.
In Nanonal Computer Conference '85. July, 1985.

[6] Veronique Donzeau-Gouge, Gerard Huet, Gilles Kahn, and Bernard Lang.
Programming Environments Based on Structured Editors: The Mentor Experience.
Interactive Programming Environments.

McGraw-Hill Book Co., New York, NY, 1984,

(13]

(14]

(15]

(16]

(17]

13

Veronique Donzeau-Gouge, Gilles Kahn. Bernard Lang and B. Melese.

Documents Structure and Modularity in Mentor.

In SIGSOFTISIGPLAN Sofrware Engineering Symposium on Practical Sofrware
Development Environments, pages 141-148. Pittsburgh, PA, April, 1984.

Proceedings published as SIGPLAN Nortices, 19(3), May, 1984.

Robert J. Ellison and Barbara J. Staudt.
The Evolution of the GANDALF System.
The Journal of Systems and Sofrware 5(2):107-119, May, 1985.

Rodney Farrow.
Generating a Production Compiler from an Attribute Grammar.
[EEE Sofrware 1(4), October, 1984.

Peter H. Feiler and Gail E. Kaiser.

Display-Oriented Structure Manipulation in a Multi-Purpose System.

In I[EEE Computer Society's Seventh International Computer Software and Applications
Conference, pages 40-48. Chicago, IL, November, 1983.

S.I. Feldman.
Make — A Program for Maintaining Computer Programs.
Software — Practice & Experience 9(4):255-263, April, 1979.

Harald Ganzinger, Knut Ripken and Reinhard Wilhelm.

Automatic Generation of Optimizing Multipass Compilers.

In Information Processing 77, pages 535-540. North-Holland Pub. Co., New York, NY,
1977.

David Garlan.

Flexible Unparsing in a Structure Editing Environment.

Technical Report CMU-CS-85-129, Camegie-Mellon University. Department of
Computer Science, April, 1985.

David Garlan.

Views for Tools in Integrated Environments.

In [FIP WG 2.4 International Workshop on Advanced Programming Environments.
June, 1986.

Proceedings to appear as a book published by Springer-Verlag.

David Garlan.

Views for Tools in Integrated Environments.
PhD thesis, Camegie-Mellon University, 198x.
[n progress.

Joseph Goguen.

Parameterized Programming.

In Workshop on Reusability in Programming, pages 138-150. Newport, RI, September,
1983.

John V. Guttag, James J. Horning and Jeannette M. Wing.
The Larch Family of Specification Languages.
IEEE Sofrware 2(5):24-36, September, 1985.

[18]

(19]

(20]

[21]

[26]

(27]

(28]

14

Nico Habermann.

Private communication.

May, 1985

Regarding framework for reusable scftware.

S.C. Johnson and M.E. Lesk.
Language Development Tools.
The Bell System Technical Journal 57(6), July-August, 1978.

Gregory F. Johnson and Charles N. Fischer.

Non-syntactic Attribute Flow in Language Based Editors.

In Ninth Annual ACM Symposium on Principles of Programming Languages. January,
1982.

Gregory F. Johnson and C.N. Fischer.

A Meta-Language and System for Nonlocal Incremental Attribute Evaluation in
Language-Based Editors.

In Twelfth Annual ACM Symposium on Principles of Programming Languages, pages
141-151. January, 1985.

Gail E. Kaiser.

Semantics of Structure Editing Environments.

PhD thesis, Camegie-Mellon University, May, 1985.
Technical Report CMU-CS-85-131.

Gail E. Kaiser.

Generation of Run-Time Environments.

In SIGPLAN 86 Symposium on Compiler Construction, pages 51-37. Palo Alwo, CA.
June, 1986.

Proceedings published as SIGPLAN Notices. 21(7), July, 1986.

Donald E. Knuth.
Semantics of Context-Free Languages.
Mathemarical Systems Theory 2(2):127-143, June, 1963.

Bruce W. Leverett, Roderic G.G. Cattell, Steven O. Hobbs. Joseph M. Newcomer,

Andrew H. Reiner, Bruce R. Schatz and William A. Wulf.

An Overview of the Production Quality Compiler-Compiler Projec:.

Technical Report CMU-CS-79-105, Camegie-Mellon University, Department of
Computer Science, 1979. '

Raul Medina-Mora.
Synrax-Directed Editing: Towards [ntegrated Programming Environments.
PhD thesis, Camegie-Mellon University, March, 1982,

David A. Moon.

Object-Oriented Programming with Flavors.

In ACM Conference on Object-Oriented Systems, Languages, and Applications.
Portland, OR, September, 1986.

John R. Nestor, William A. Wulf and David A. Lamb.

IDL — [nterface Description Language: Formal Description.

Technical Report, Software Engineering Institute, Pittsburgh, PA, February, 1986.
Reprint of CMU Technical Report CMU-CS-81-139.

(29]

(30]

(31]

(32]

(33]

[34]

(35]

[36]

(37]

(38]

David S. Notkin.
Interactive Structure-Oriented Computing.
PhD thesis, Camegie-Mellon University, February, 1984.

David Notkin.
The GANDALF Project.
The Journal of Systems and Sofrware 5(2):91-103, May, 1985.

Steven P. Reiss.

Graphical Program Development with PECAN Program Development Systems.

In SIGSOFTISIGPLAN Sofnware Engineering Symposium on Practical Sofovare
Development Environments, pages 30-41. Pittsburgh, PA, April, 1984,

Proceedings published as SIGPLAN Notices, 19(3), May, 1984,

Thomas Reps, Tim Teitelbaum and Alan Demers.
Incremental Context-Dependent Analysis for Language-Based Editors.
ACM Transactions on Programming Languages and Systems 5(3):449-477, July, 1983.

Thomas Reps and Tim Teitelbaum.

The Synthesizer Generator.

In SIGSOFT/SIGPLAN Sofrware Engineering Symposium on Practical Sofnware
Development Environments, pages 41-48. Pittsburgh, PA, April, 1984,

Proceedings published as SIGPLAN Norices, 19(5), May, 1984.

Mary Shaw.
Abstraction Techniques in Modem Programming Languages.
IEEE Sofrware (4):10-26, October, 1984.

Richard Snodgrass and Karen Shannon.

Supporting Flexible and Efficient Tool [ntegration.

In[FIP WG 2.4 [nternational Workshop on Advanced Programming Environments.
Trondheim, Norway, June, 1986.

Proceedings to appear as a book published by Springer-Verlag.

Mark Stefik and Daniel G. Bobrow.
Object-Oriented Programming: Themes and Variations.
Al Magazine 6(4):40-62, Winter, 1986.

Walter F. Tichy.
Smart Recompilation.
ACM Transactions on Programming Languages and Systems 8(3):273-291, July, 1986.

Mark Tucker.

Private communication.

June. 1985

Regarding engineering of reusable software.

COMPOSING SOFTWARE SYSTEMS
FROM REUSABLE BUILDING BLOCKS

Gail E. Kaiser
Columbia University
Department of Computer Science
New York, NY 10027

David Garlan
Camegie-Mellon University
Department of Computer Science
Pittsburgh, PA 15213

October 1986

This research was supported in part by the United States Army, Software Technology Develop-
ment Division of CECOM COMM/ADP, Fort Monmouth, NJ and in part by ZT'I-SOF of
Siemens Corporation, Munich, Germany. Part of this paper was written while Dr. Kaiser was a

Visiting Computer Scientist at the Software Engineering Institute, Carnegie-Mellon University,
Pittsburgh, PA.

To appear in Twentieth Hawaii International Conference on System Sciences, Kona, HA,
January, 1987.

ABSTRACT

We argue that to achieve an order of magnitude improvement in software production, we need to
support software reusability that has three important characteristics: (1) language-independence,
(2) support for construction of systems from existing components. and (3) the ability to reuse a
component in @ way not anticipated by the original programmer. We describe a framework for
achieving these three goals. The important components of the framework are features, a unit of
modularity that can be composed in a manner similar to the multiple inheritance of object-

oriented languages and action equations, a declarative notation for specifying the behavior of
software building blocks.

1. INTRODUCTION

There are three approaches to software reusability that have achieved widespread use. The first
and foremost is subroutine libraries. Subroutine libraries have had a significant impact on the
production of mathematical software systems, and have also been applied successfully to such
areas as string manipulation and I/O. However, there are several reasons why subroutine
libraries alone are not sufficient to achieve an order of magnitude improvement in software
productivity.

One overwhelming problem is that an individual subroutine is simply too small; another way of
looking at this problem is that the glue necessary to make large numbers of subroutines work
together is too large. Another serious problem with subroutine libraries is they must be written
in a particular programming language, which means that decisions about primitive datatypes,
constructors for structured datatypes, and subroutine linkages have already been made by the
language designer or by the language implementor. A third, related problem is that the sub-
routines have already been written in a particular programming language, with all the details
filled in; it is not possible in general to change the number or types of the parameters or to pick
out part of the algorithm encapsulated in the subroutine.

The first and third problems are partially solved by the generic packages of Ada™!, which can
be considered an extension to subroutine libraries. Ada expands the size of the unit of reusability
beyond the subroutine level and encapsulates some of the glue among subroutines within the
package, so that the glue can also be reused. Generic packages also permit the types of selected
parameters to be specified by the application, but do not support changing the number of
parameters and do not aid the programmer in specializing algorithms to particular applications.

The second general approach to reusability is sofrware generation. This approach has been ap-
plied successfully to certain application areas, most notably report generators,
compiler-compilers? and language-based editors3. Software generation meets the important
criterion of language independence; in particular, the generator can be changed to produce
software in a different implementation language without significantly affecting the input nota-
tion. Software generation provides a relatively large unit of reusability, since the code produced
is often several orders of magnitude larger than the specification. However, software generation
has several serious problems. '

t

The most glaring difficulty is that a new generator must be developed for each application area.
This can only be done after the application area is well understood and has become relatively
standardized. We do not believe that application of software generation to new areas can keep
pace with expansions in software applications. Another serious problem with this approach is
:hat it is unclear how to combine the software systems produced by different generators in mean-
ingful ways. The obvious technique is to make large-scale patches to the generated code, but
this may lead to the problem described previously for subroutine libraries: the glue holding
things together is larger or more difficult to write than the original input specifications.

The third well-known approach to software reusability is object-oriented programming. Ex-
amples of object-oriented languages include Smalltalk-80™%, FlavorsS, LoopsS,
CommonLoops’, C++3 and Traits?. The various notions of inheritance supported by these lan-
guagss all provide some simple means for composing reusable software building blocks defined
as classes. This reusability is reladvely flexible since a class may augment and/or substitute for
the data sguctures and/or operadons inherited from its superclass(es).

However, this approach is not powerful enough. In acddition to augmenting and replacing, we
have to consider the problem of combining distinct operatons that are provided by different
building blocks. Some object-oriented languages address this issue, but their solutions must be
limited to explicit ordering because their operations are atomic procedures. In other words, there
is no way to interleave methods.” Object-oriented programming also shares the second flaw of
subroutine libraries. Like any other programming language, each object-oriented language im-
plies particular decisions regarding the possible implementations of datatypes and operadons.
This drastically limits, a priori, the potential contexts in which a class can be reused.

Although none of these approaches is adequate, all three do (at least) one thing right: they weat
reusability as part of the design rather than an afterthought of the implementation. i is not, in
general, feasible to decompose an existing software system into reusable software building

blocks that can be used to construct other systems. Reusability has to be engineered from the
10
start.

[n addition to this characteristc, three other characteristics appear to be crucial in achieving an
order of magnitude improvement in software reusability.
* Language-independence is necessary to prevent early implementation decisions that are
not relevant to the functionality of a building block:

* Composition of components is necessary to build large software systems with complex
functonality; ‘

* Flexibility in tailoring components is necessary to expand reusability beyond the applica-
tions anticipated by the implementor of a building block.

‘Some existing object-oriented languages do support ‘before’ and ‘after’ methods, but it is still impossible to
interleave at a finer granularity than full procedures.

We have developed a new approach to reusable software that incorporates all four characteristics
sketched above. The basic premise is to combine the advantages of object-oriented program-
ming with the advantages of software generation. The particular way we combine ideas adopted
from these approaches, plus new ideas of our own, solves many of the problems of both object-
oriented programming and software generation.

However, there are certain problems that we have not (yet) solved. Our approach is no better
than existing approaches at aiding programmers in determining whether or not a particular build-
ing block is suitable for reuse in a particular application; we do not suggest opportunities for
reuse, we just support them. Further, our approach does not address the orthogonal problem of
retrieving those existing building blocks suitable for reuse in a particular system.

2. MELD

The underlying basis for our approach consists of (1) an object-oriented notation that is inde-
pendent of any particular programming language, and (2) a translator for generating executable
code from the notation. Reusable software building blocks are written and composed in this
notation, which provides flexible means for combining both data structures and algorithms. The
translator uses techniques from software generation to produce efficient executable systems.

Our notation, called MELD,"” has two essential aspects that are not found in object-oriented pro-
gramming languages nor in object-oriented specification languages (such as Larch!! and OBJ12),
We refer to these aspects as fearures and action equations; these are discussed briefly below and
are explained in more detail in the following section.

Features are our reusable building blocks. Features are similar to Ada packages in that they
separate interface from implementation: features bundle together and provide information hiding
for a collection of abstract datatypes. Features are different from packages and modules in the
way in which the information exported by a feature can be used by importing features. In par-
ticular, features provide a unique mechanism for composing imported facilities with other im-
ported facilities as well as with locally defined facilities. This mechanism, called merging, is the
key to reusability.

The implementation of a feature normally consists of a collection of abstract datatypes!3.
Abstract datatypes are given as structural descriptions in a notation that provides a very general
means for describing data; our notation is language-independent in the sense that it does not
make any commitments to a particular concrete representation but can be implemented in terms
of any conventional programming language. The abstract datatypes of features are equivalent to
the classes of object-oriented languages, but using a language-independent notation based on the
Interface Description Language!® !5 (IDL). When features are merged, the corresponding

*“The dictionary definidon of "meld" is "melt+weld", or "to merge”. MELD also stands for Multiple Elucidations
of Language Descriptions, which was suggested by David Barstow.

abstract datatypes are synthesized into composite data structures in the same way that objects
consist of instance variables inherited from their defining class and from all its superclasses.
Merging resembles the multiple inheritance!6 of some object-oriented languages in that both al-
low multiple types to be coallesced into a single type. but it differs in that coallescing is defined
at the grain size of a feature rather than at the grain size of a single data type (i.e., a class).

The body of a feature associates action equations™ — with each abstract datatype to describe the
behavior of instances of the type. Action equations specify (1) the constraints that must hold
among data structures, and (2) the dynamic interactions among data structures and between the
system and external agents, such as the human user(s). As we will explain later, when features
are merged, the corresponding action equations are related by the dependencies among the inputs
and outputs of the equations.

Features are implemented by transladng the abstract datatypes and action equations into a con-
ventional programming language. The abstract datatypes are wanslated using established tech-
niques from generation of structure editors,!” while the wanslation of action equations is a simple
adaptation of algorithms developed for the incremental evaluation of atribute grammars.!3 The
implementation is explained in Section 4.

3. EXAMPLE

We now illustrate how reusable software building blocks are written and composed in MELD.
First we implement a generic memory manager as a feature. The processing performed by the
memory manager is described using action equations. Then we define a second feature, a simple
environment for programming-in-the-large, which provides entities for the memory manager to
manage. Finally, we merge these two reusable features into a small system.

3.1 A Memory Manager

Suppose that we would like to implement a facility for loading and storing arbitrary eatities to
disk. Traditionally we might modify the the implementation of the entities themselves to support
memory management. Alternatively we might add the facility to do memory management for
any dat directly to the run-time support of the programming language, perhaps as a generic
package. Neither approach induces reusability. In the first case, the memory management is
specific to the entities. In the second case, the memory manager is ‘reusable’ in the same sense
that a text editor or a compiler is reusable: | use it today on one file, you use it tomorrow on
another file. This memory manager cannot be tailored to the particular needs of the application.
Using MELD, however, we take the approach of constructing a reusable software building block
that can be incorporated into any system requiring memory management.

*"*Action equations should not be confused with other ‘equations’, such as algebraic equations, mathematical
equations, etc.

The Memory Manager feature describes the world as seen from a simple memory manager’s
point of view. The world consists of a collection of memory managed entities grouped together
under a memory managed root. Each memory managed entity has a unique identifier, a disk
location, a designation of whether it is loaded in core or not, and a timestamp representing the
most recent access to it. This information about each memory managed entity is always main-
tained in core; the actual content of the entity is what the memory manager loads and stores. The
memory manager loads the content of an entity when it is first accessed. When primary memory
is nearly full, entities are stored according to a least-recently-used policy.

Figure 1 shows the abstract datatypes for our generic memory manager. The description is en-
capsulated into a feature, which has a name, an interface and an implementation. The interface
lists the abstract datatypes exported by the feature in its exports clause and lists the other features
that are imported in its imports clause.

In this case, the MM-ROOT and MM-ENTITY datatypes are exported. The components of
MM-ENTITY are entirely hidden, but the ‘maxentities’ component of MM-ROOT is available to
other features that import the Memory Manager feature. Any exported components are listed
within the square brackets following the name of their datatype; only the listed components are
accessible outside the feature.

Feature Memory Manager
Interface:

Exports MM-ROOT (maxentities],
MM-ENTITY[]

Imports Time, DiskIO
Irplementation:

Uses Tima, DiskIO

MM-ROOT ::=

curid: integer

maxentities: integer

inusa: integer

diskid: DISK-ID

allentitias: set of MM-ENTITY

key uniqueid

loaded: ordered set of MM-ENTITY
key uniquaeid
ordered low by lastuse

MM-ENTITY ::=
uniqueid: integer
incore: boolean
lastusa: TIMESTAMP
diskid: DISK-ID

End Feature

1. Feature Description
for a Memory Manager

[y

The implementation part of the feature defines two datatypes: MM-ROOT and MM-ENTITY.
The components of these data structures are listed with their types: the action equatons that
describe the behavior of the root and memory managed entities are given in Figures 2 and 3.

The MM-ENTITY abstract datatype is defined as a class, in the sense of the classes of object-
oriented languages. [t represents the entities managed by the memory manager. It defines four
components, or instance variables — ‘uniqueid’, ‘incore’, "lastuse’ and ‘diskid’ — which con-
tain the obvious information. Each instance variable is ryped, and strong typing is enforced. The
MM-ENTITY class represents only the stub for an entity: there are no instance variables
representing the content of the memory managed entity. Instance variables that do represent the
content are added when the Memory Manager feature is merged with one or more other features
that provide entities that require memory management. This is explained later on.

The MM-ROOT class defines the memory managed root, which has six instance variables. The
two most interesting are “allentities’ and ‘loaded’. The ‘allendties’ instance variable is a ser of
objects, each an instance of the MM-ENTITY class. In MELD. the set constructor guarantees
uniqueness and supports access according to a key, in this case the ‘uniqueid’ instance variable
of each object. "allentities’ represents the stubs of all memory managed entitdes, both those that
have been loaded into core and those that have not

The ‘loaded’ instance variable is an ordered ser of objecis. An ordered set works in the same
manner as a set, except that the objects are automatically ordered according to the value of a
particular instance variable (‘lastuse’). One behavior implemented by the action equations for
the Memory Manager feature is to maintain ‘loaded’ as only those memory managed entities that
are currently in core.

3.2 Equations for Memory Manager

The behavior of the generic memory manager is implemented by associating action equations
with the MM-ROOT and MM-ENTITY abstract datatypes; the equations appear as me:hods for
the corresponding classes.

The first method for MM-ROQT, given in Figure 2, constrains the ‘inuse’ instance variable to
always be equal to the length of the table of loaded entiies. This kind of equation ("<address>
1= <expression>") is called a constrainr. A MELD constraint is unidirectional: whenever the
length of ‘loaded’ changes, then the ‘inuse’ variable is automatically updated but not vice versa.
The purpose of a constraint is to establish an invariant for all objects defined by the class.

The second method in Figure 2 sets the default value of ‘maxentities’ to be "100". The default is
a special form of action equation that can be overridden by other action equations. As we shall
see. the notion of defaults and the ability to override defaults them are critical for reusability.

MM-ROOT

Methods:

inuse := Length(loaded)
default maxentities := 100

allentities :=
View: is (MM-ENTITY)

loaded :=
View: is (MM-ENTITY)
and incore

CREATE -->
curid := 1
diskid := NewDiskID()

NEWOBJECT =-->
curid := curid + 1

EXIT -->
Send STORE To loaded(all]
Assert inuse <= maxentities

Exceotion
Send STORE To loaded[1]

2. Methods for Memory Managed Root

The next two methods are also constraints. On their right hand sides, they illustrate the use of a
new mechanism that we call views.!? A view consists of a collection of objects that all satisfy
some property, where the specification of the property is given by a patrrern; that is, views and
patterns support associative retrieval. Here the elements of the view for the ‘allentities’ instance
variable are all instances of class MM-ENTITY. The elements of ‘loaded’ are the subset of
memory managed entities whose ‘incore’ variable is set to "true”". The most remarkable property
of a view is that its membership is dynamically adjusted as objects are added, deleted, and
modified within the system. Garlan’s dissertation?0 gives a complete discussion of views and
their implementation.

The four methods discussed so far are different than the methods of most object-oriented lan-
guages in that none of these methods has a name (also known as a selector). These methods are
not triggered by the receipt of a message:; they are permanently active, and are evaluated as
necessary according to the dependencies between their inputs and outputs. When an input to a
permanently active method changes in value, the method is automatically re-evaluated to
produce a new output. For obvious reasons, there must not be any circularities among the inputs
and outputs of permanently active methods.

The next three methods in Figure 2 are closer to the traditional methods of object-oriented lan-
guages. In each case, one or more action equations is attached to an event. An event is equiv-
alent to the name, or selector, of a method; events are not related in any way to interprocess

communication (IPC) mechanisms.”**” An event can be sent to an object by the run-time support
or by another equation; this is similar to the message passing of object-oriented languages.
Events may have parameters, although no parameters are required for our examples. The equa-
tions attached to a particular event are evaluated only when the object receives a corresponding
message.

The run-time support automatically sends a message to an object whenever any of a collection of
primitive operations (such as create, destroy and access) is performed on the object. An equation
for one object can send a message to another object using the send equation ("Send <event> To
<destination(s)>"). When a new memory managed root is created, the run-ume support sends
the CREATE event to the root, causing the corresponding method to be evaluated. One con-
straint initializes "curid’ to "1" and the other sets "diskid’ to the value of the function NewDiskID
(imporied from the DiskIO feature). These constaints are different from the constraints dis-
cussed previously, which were not attached 1 events, in that they are evaluated only when their
event is received._ In particular, they are not re-evaluated whenever their arguments change in
value — otherwise the second equation wou!d contnue re-evaluating itself forever, since New-
DiskID returns a different value on each invecation.

Exit is another primitive operation. When the system terminates, the run-time support automati-
cally sends the EXIT event to all the objects it maintzins. The EXIT method for the memory
managed root sends the STORE event to every entity in the ‘loaded’ table, causing each entity
that is currently in core to be saved on disk. The STORE event does not correspond to a primi-
tive operaton; it is defined as a new event by its appearance in the Memory Manager feature.

The NEWOBIJECT event is also defined by the implementor. This event is sent by the new
entity whenever a new entity is created. The equation increments the value of “curid’ to produce
the next unique identifier.)

The final method for the MM-ROOT class is called an asserdon. An assertion ("Assert
<boolean expression> Exception <action equation>") causes the run-time support to check that
a certain condition is true. If that condition is ever false, the exception can make repairs. display
errors, erc. In this case we use an assertion to check whether our system has loaded too many
entities into core and, if so, the equation sends the STORE event as needed to store the least
recently accessed entities on disk. Since the assertion is not attached to any event, this activity is

repeated as necessary to keep the number of loaded entities less than or equal to the value of
‘maxentities’.

The methods for the MM-ENTITY class, shown in Figure 3, are similar. The functions of the
methods should be self-explanatory.

""*"However, we are working towards a distributed implementation of action equations based on our previous
work in algorithms for disgibuted evaluation of atmibute grammars;?! a non-distributed algorithm for auribute
evaluadon has been adapted for our current implementation — see Section 4.

MM-ENTITY ::= .
Methods:

ACCESS -->
Assert incora
Exception
Send LOAD To self
lastusa := Now()

CREATE -->
diskid := Undefined
uniqueid := ~MM-ROOT.curid
Send NEWOBJECT To “MM-ROOT

DELETE =--=>
Assert diskid = Undefined
Exception
diskid := FreeDiskID(diskid)

LOAD -->
Assert incore
Exception
print := "Could not locad."
incore := Load(diskid)

STORE -->
Assert diskid != Undefined

Exception

diskid := NewDiskID({()
incore := not Store(diskid)
Assert not incore
Exception

print := "Could not store.”

3. Methods for Memory Managed Object

3.3 A Small Environment for Programming-in-the-Large

Now that we have defined a generic memory manager, we need some entities for it to manage.
As part of this example, we describe a small environment for programming-in-the-large as a
MELD feature. The environment illustrated in Figure 4 provides modules and implementations
as entities to be memory managed. A module consists of either internal modules and/or im-
plementations, plus additional information such as lists of imports and exports. Modules are
organized into collections called projects; as we will see, a project corresponds to a memory
managed root. The full description of this environment should also contain an associated opera-
tional part (for example, methods to check interfaces between modules), but this is not shown
here.

10

Feature MDE
Interface:
Exzorts all
Imsorts Programming Language

Irplementation:

Uses "Programming Languaga

PROJECT ::=) i
proj-nama: idensifier
modules: seq of MCODUL=

MODULZE ::=
mod-nama: identifier
irports: seg of IMPORT-ITEM
exports: seg of SIGNATURE
componants: seg of COMPONENT

IMPORT-ITEM ::=
idenitifier

CCMPONENT ::=
MCDULIE | DMPLZMENTATICN

IMPIEMENTATICN =
signature: SIGNATURZ
body: COD=

G}

nd Feature

4. Specification of a
Module Description Environment

Notice that the Module Description Environment (MDE) featurs is also reusabls. The
MODULE and IMPLEMENTATION classes can be tailored to the desired programming lan-
guage by importing and then using a feature that defines the appropriate stuctures for SIG-
NATURE and CODE. In the case of Ada, which defines its own module construct, the

MODULE class might be merged with the imported PACKAGE class in the manner explained
below.

3.4 Merging the Memory Manager and the Module Description Environment
Continuing with our example, we combine the Memory Manager and Module Description En-
vironment features into a small system. In this system, the memory manager will manage
modules and implementations of modules. We do this by establishing a connection between the
MM-ROOT and PROJECT classes, on the one hand, and between the MM-ENTITY, MODULE
and IMPLEMENTATION classes, on the other. Figure 5 illustrates how this is done using
MELD.

11

Feature Memory Managed Modula
Interface:
Exports:

Imports: MDE,
Memory Manager

Implementation:

Merges:

Feature MDE
Feature Memory Manager
with MM-ROOT as PROJECT

MM~-ENTITY as MODULE,

IMPLEMENTATION
PROJECT ::=
maxentitiaes: integer
Methods:
maxentities := 200

End Feature

5. Merging Memory Manager and
Module Description Environment

A feature may combine a group of imported features. In this case the Memory Managed Module
feature imports both the Memory Manager and Module Description Environment features, and
the abstract datatypes from the two imported features are merged in the implementation. When
the MM-ROOT class is merged with the PROJECT class, this means that each instance of the
resulting PROJECT class of the Memory Managed Module feature has all the instance variables
from both the PROJECT class of the MDE feature and from the MM-ROOT class of the
Memory Manager feature. However, the only instance variable from the MM-ROOT class that
can actually be accessed here is ‘maxentities’, since it is the only instance variable exported by
Memory Manager. A new action equation overrides its default value of "100" and changes the
value of ‘maxentities’ to "200", so our memory manager maintains at most 200 entities in core
rather than 100. This capability for overriding defaults makes it easy to tailor features to a wide
variety of applications.

The Memory Managed Module system works as follows. Consider the case where a module (or
implementation) is accessed by some agent. This would happen, for example, when a human
user of the environment for programming-in-the-large tried to read the text of the module. The
run-time support sends the primitive ACCESS event to the module, which activates any action
equations attached to the ACCESS event for the MODULE class. In this case, the only equa-
tions are inherited from the MM-ENTITY class (Figure 3). These equations update ‘lastuse’ to
the current time and check whether the ‘incore’ instance variable has the value "true"; if not, the
run-time support sends the LOAD event to self, meaning the module. This has the effect of

loading the content of the accessed entity. [f there are now too many entities in core, the least
recently used entity is stored on disk.

This concludes our example. A real system would probably merge a large number of such fea-
tures resembling, for example, figure 6.

Feature A Larger System

Interface:

Feature MDZE .
?eééé:e Memory Managex

Featura Compilation Unit
Feature Docuxantation Facility
Feature My Error Handler

End Feature

6. Description of a
More Realistic, Larger System

4. INNPLEMENTATION

The implementaton of MELD borrows heavily from the software generation approach to
software reusability, as described in the inwoduction. The implementation has four parts: an
environment for developing and maintaining MELD descriptions; a translator of structural
descriptions; a translator of action equations; and the run-time support. The environment is itself
described in MELD and implemented through a bootstrapping procedure. We briefly discuss the
other three parts of the implementation here; see Garlan’s?0 and Kaiser's2 dissertations for
details and discussion of complexity results. Note that the ranslation is independent of any par-
ticular implementation language.

A data structure in 2 MELD system is a synthesis of one or more abstract datatype descriptions
given in different features that have been merged together. The descriptions themselves are not
actually combined in the implementation. [nstead, each object has several facers, where each
facet corresponds to one of its datatype descriptions. This is necessary because only some facets
of an object may be active at any given time; this was seen in our memory manager example,
where the stub for an object could be loaded and manipulated independently of its content.

It is easy to translate individual structural descriptions into the corresponding datatypes in con-

13

ventional programming languages. For example, in Pascal each facet would be represented by a
record, where each field in the record is a component or a pointer to a component (depending
perhaps on the type of the component). The difficulty arises in maintaining the connections and

consistency among the various facets of the same object. This is handled by the run-time sup-
port.

Unlike the structural descriptions, the action equations for a synthesized data structure are com-
bined. A local dependency graph is constructed that represents all the action equations attached
to the same event. The nodes in the graph represent equations and the edges represent the depen-
dencies among the inputs and outputs of the equations. The local dependency graph is also con-
structed for all those action equations (for the same synthesized type) that are not attached to any
event. These dependency graphs are used by the run-time support to determine the order in
which to evaluate active equations.

The translation of action equations also involves translating each individual action equation into
a procedure that performs the activities given in the equation. The procedures may take advan-
tage of the facilities provided by the implementation language, as well as the primitives provided
by the run-time support.

The run-time support provides all the necessary primitives for creating, destroying and accessing
objects. It sends standard events as necessary; e.g., the ACCESS event is sent to an object when-
ever the object is accessed. It also provides primitives to send the new events used in the MELD
description and manages a queue of pending events.

The most important job of the run-time support is to order the evaluation of active action equa-
tions. This is done using an adaptadon of Reps’ incremental attribute evaluaton algorithm,]8
which was developed for the purpose of generating language-based editors from attribute
grammars. The basic idea is that the local dependency graphs are combined into a composite
dependency graph at run-time to reflect the actual connections among objects. Only the graphs
for the current event, plus the graphs that are not specific to any event, are considered in the
composition. A topological sort of the composite graph determines the order in which equations
are evaluated. This algorithm is linear in the number of affected objects, and is thus optimal.

A prototype implementation written in CommonLoops’ is currently under development.

5. CONCLUSIONS

MELD meets the three fundamental criteria outlined in the introduction, and thus is superior to
the three relatively accepted approaches to software reusability that we have discussed. The
notation abstracts away from any particular programming language, although almost any lan-
guage is suitable for implementation. MELD supports composition of components through merg-
ing and supports tailoring through renaming and default equations.

MELD is a blend of the object-oriented programming and software generation approaches to

14

reusability that solves most of the significant problems of these two approaches. From software
generation, we took the idea of a declarative notation that is independent of any particular pro-
gramming language but that can be translated into an efficient implementatdon. From object-
oriented programming, we took the concepts of inheritance and of encapsulating behavior with
data sguctures.

To that we add our unique concept of merging both data structures and operations. Other object-
oriented languages merge data structures, in the sense of inheriting instance variables defined by
a superclass, but no other notation supports combination of algorithms on the basis of depen-
dencies.

Our future plans include

* gaining additional experience using MELD;

¢ developing novel debugging aids for MELD systems;

¢ implementation of MELD for a multi-precessor and/or distributed environment, where dif-
ferent facets may reside on different machines;)

* synthesizing multiple visual representations of data based on MELD mechanisms;

» using MELD to build a realistic programming-in-the-large environment that can be aug-
mented and modified by its users.

ACKNOWLEDGEMENTS

We would like to thank Charlie Krueger, David Miller and Benjamin Pierce for their useful
criticisms and suggestions regarding a draft of this paper. We would also like to thank Nico
Habermann for motivating our interest in reusable software.

REFERENCES

1. United States Department of Defense, Reference Manual for the Ada Programming
Language, 1983, ANSI/Military standard MIL-STD-1815A

2. Rodney Farrow, **Generating a Production Compiler from an Atmibute Grammar'’, JEEE
Sofrware, Vol. 1, No. 4, October 1984,

Thomas Reps and Tim Teitelbaum, "*The Synthesizer Generator’’, SIGSOFTISIGPLAN
Sofrware Engineering Symposium on Practical Software Development Environments,
Pitsburgh, PA, April 1984, pp. 41-48, Proceedings published as SIGPLAN Norices,
19(5), May, 1984:

4. Adele Goldberg and David Robson, Smalltalk-80 The Language and its Implementarion,
Addison-Wesley Pub. Co., Reading, MA, 1983.

David A. Moon, ""Object-Oriented Programming with Flavors’’, ACM Conference on
Object-Oriented Systems, Languages, and Applications, Portland, OR, September 1986.

(9%

n

6. Mark Stefik and Daniel G. Bobrow, ‘‘Object-Oriented Programming: Themes and
Variations’’, A/ Magazine, Vol. 6, No. 4, Winter 1986, pp. 40-62.

7. Danny Bobrow, er. al., ‘*CommonLoops: Merging Common Lisp and Object-Oriented

16.

17.

18.

19.

[§S)
2

15

Programming’’, ACM Conference on Object-Oriented Sysiems, Languages, and
Applications, Portland, OR, September 1986.

Bjarne Stroustrup, The C++ Programming Language, Addison-Wesley Pub. Co., Read-
ing, MA, 1986.

Gael A. Curry and Robert M. Ayers, ‘‘Experience with Traits in the Xerox Star
Workstation’’, Workshop on Reusability in Programming, Newport, RI, September 1983,
pp. 83-96.

Mark Tucker, *‘Private communication’’. Regarding engineering of reusable software

John V. Guttag, James J. Homing and Jeannette M. Wing, ‘‘The Larch Family of
Specification Languages’’, [EEE Sofrware, Vol. 2, No. 5, September 1985, pp. 24-36.

Joseph Goguen, ‘‘Parameterized Programming’’, Workshop on Reusability in
Programming, Newport, RI, September 1983, pp. 138-150.

Mary Shaw, ‘‘Abstraction Techniques in Modern Programming Languages’’, IEEE
Software, No. 4, October 1984, pp. 10-26.

John R. Nestor, William A. Wulf and David A. Lamb, "‘IDL — Interface Description
Language: Formal Description’’, Tech. report, Software Engineering Institute, Pittsburgh,
PA, February 1986, Reprint of CMU Technical Report CMU-CS-81-139

Richard Snodgrass and Karen Shannon, '‘Supporting Flexible and Efficient Tool
Integration’’, IFIP WG 2.4 International Workshop on Advanced Programming
Environments, Trondheim, Norway, June 1986, Proceedings to appear as a book
published by Springer-Verlag

Alan H. Bomning and Daniel H. H. Ingalls, *‘Multiple Inheritance in Smalltalk-80"’,
AAA/-82, Pittsburgh, PA, August 1982, pp. 234-237.

Raul Medina-Mora, Syntax-Directed Editing: Towards [Integrated Programming
Environments, PhD dissertation, Carnegie-Mellon University, March 1982.

Thomas Reps, Tim Teitelbaum and Alan Demers, '‘Incremental Context-Dependent
Analysis for Language-Based Editors’’, ACM Transactions on Programming Languages
and Systems, Vol. 5, No. 3, July 1983, pp. 449-477.

David Garlan, *'Views for Tools in Integrated Environments’’, [FIP WG 2.4 Inter-
national Workshop on Advanced Programming Environments, June 1986, Proceedings to
appear as a book published by Springer-Verlag

David Garlan, Views for Tools in.lnzegrated Environments, PhD dissertation, Carnegie-
Mellon University, 198x, In progress

Simon M. Kaplan and Gail E. Kaiser, ‘‘Incremental Attaibute Evaluation in Distributed
Language- Based Environments’’, Sth ACM SIGACT-SIGOPS Symposium on Principles
of Distributed Computing (PODC), Calgary, Alberta, Canada, August 1986, pp. 121-130,
Also available as Department of Computer Science, University of Illinois at Urbana-
Champaign, Technical Report UTUCDCS-R-86-1294/UILU-ENG-86-1751, September,
1986

Gail E. Kaiser, Semantics of Structure Editing Environments, PhD dissertation, Carnegie-
Mellon University, May 1985, Technical Report CMU-CS-85-131

MELD: A Declarative Language
for Writing Methods

Gail E. Kaiser*
Columbia University
Department of Computer Science
New York, NY 10027

David Garlan
Carmnegie-Mellon University
Department of Computer Science
Pittsburgh, PA 15213

13 June 1986

Copyright © Gail E. Kaiser and David Carlan

This research was supported in part by the United States Army, Software Technology
Development Division of CECOM COMM/ADP, Fort Monmouth, NJ. and in part by ZTI-SOF
of Siemens Corporation, Munich, Germany. *This paper was completed while Dr. Kaiser was a

Visiting Computer Scientist at the Software Engineering Institute, Carnegie-Mellon University.
Pittsburgh, PA.

Final version to appear in Phoenix Conference on Computers and Communications,
Phoenix, AZ, February, 1987.

Abstract

Object-oriented programs are written as collections of messages. When an object receives a
message, the system attempts to find a method with the same name as given in the message. The
system queries the class that defines the object. If the class provides a corresponding method,
the method is performed. The method may return a value to the sender of the message. It may
have side-effects on the local memory of the object. The method may send messages to
additional objects as part of its computation. This notion of encapsulating operations, in the

form of methods, within the definition of an object is common to essentially all object-oriented
programuming languages.

Messages and methods are currently written in what is fundamentally a procedural style. A
message is a procedure call with several parameters, where one parameter is distinguished as the
object to which the message is sent. A method is a procedure: it may return a value, have side-
effects, and invoke other procedures by sending messages.

We believe that the object-oriented framework lends itself quite easily to the description of
programs in a declarative language. In this paper, we propose a declarative language for writing
messages and methods. Our notation retains all the important features of object-oriented
programming, but adds a higher level of abstraction to the description of object behavior. Our
language, called MELD, is an extension of attribute grammars. Its implementation takes
advantage of algorithms developed for incremental attribute grammar evaluation in the context
of language-based programming environments.

1. Introduction

In this paper we propose a new approach to the problem of writing methods for object-oriented
languages. We are particularly concemed with those object-oriented languages that support
multiple-inheritance, although our results apply equally well to languages that support only a
single chain of ancestors for each class. Our approach derives from our previous work in the
generation of programming environments {10, 12]. We show how Backus-Naur Form (BNF)
[2], a standard formal notation for programming language definition, extends quite naturally to
the description of classes in an object-oriented framework. We describe a declarative language
based on attribute grammars [22] that we have used to specify the semantics of programming
languages and programming environments (20, 16]. We demonstrate the applicability of these
notations to object-oriented programming through an extended example.

Our declarative language, called MELD, combines an extension of BNF used in programming
environment and compiler research (19, 25] with our extended form of attribute grammars
[21,20]. We introduce the basic concepts of MELD in the context of programming environment
generation in order to ease the following discussion. We then describe intuitively the ideas
behind our application of MELD to object-oriented programming. We give an overview of
MELD, followed by an extended example describing the implementation of a small system using
MELD. We conclude with declarative notation

A prototype implementation of MELD, written in CommonLoops 3], is currenty under
development at Carnegie-Mellon University. This paper does not discuss the algorithms used in
the implementation; these are explained in [20] and [16].

(&)

2. Generation of Programming Environments

In recent years there has been considerable interest in systems that support the automatic
generation of programming environments from formal descriptions. Representative examples
include the Synthesizer Generator [29], Mentor [8], Gandalf [26] and Pecan [28]. In these
systems a language-independent kemnel is combined with a language-specific formal description
- usually an extended form of BNF - to produce an environment that supports the construction of
programs in that specific language. The kernzl provides such facilities as a user interface, often
in the form of a structure editor, and an interface to the host file system.

More significantly, the kernel maintains a database of program objects. This includes support
for the integrity of objects and support for the invocation of operations associated with objects in
the database. Program objects are typically represented as abstract syntax trees (ASTs), and the
integrity support usually involves preventing modifications that would result in syntactically
incorrect program objects. The operations supported by the kernel normally include primitive
operations such as create an object of a particular type. destroy a particular object, and move
the current focus of antentdon from one objec: to another. Additional operations may be defined
for a specific programming environment: this is how language-specific type checking, code
generation, interpretation, erc. are included in a programming environment.

For example, the formal description used for generating a Pascal programming environment
would include syntactic definitions of the ‘if’ statement and the ‘=" expression similar to the
illustration in Figure 2-1. These object defiridons are called productions, after the productions
of formal grammars. The IF production provides the knowledge needed by the kernel to create
an [F object; the production would be augmented with pretty-printing information [13] to display
an [F object. The IF and = objects are shown in Figure 2-2.

IF ::= condition: EXPRESSION
thenpart: STATIMENT
elsepart: STATEMENT

= ::= oparandl: EXPRESSION
operand2: EXPRESSION

{* The names of built-in productions
appear in bolditalics. *}
EXPRESSION t:= = | + | and | identifier

STATEMENT ::= IF | WHILE | BEGIN-END | WITH

The IF production indicates that an [F object consists of three components, where the first is an
EXPRESSION and the second and third are STATEMENTSs. The = production specifies that an
= object consists of two components, both EXPRESSIONs. EXPRESSION and STATEMENT
are each defined by a union, which is a list of alternative productions.

Figure 2-1: Portion of Formal Syntax Definition for Pascal

In addition to this kind of syntactic information, the formal definition of a programming

if Scondition
then 3thenpart
alse Jelsepart

if Soperandl = Soperand2
then 3thenpart
alsa 3Selsepart

The user moves the focus of attention to the "Scondition" component and requests the create
operation with the "=" argument. The kernel creates a new = object with two components and
inserts it in place of the "Scondition" placeholder. If the user had supplied the "while" argument
rather than the "=" argument in this situation, the kernel would have displayed an error message
instead of performing the invalid operation.

Figure 2-2: Consecutive Displays of Pascal IF Statement

language also describes the semantics the language. The definition would include all the
information required for type checking, code generation, run-time support for compiled code.
interpretation, debugging support, and the other tools desired for the programming environment.
Part of the semantics description can be written as an atrribute grammar {22]. Reps was the first
to apply attribute grammars to the generation of programming environments [6], and this
approach has been adopted by other researchers [18, 7]. Figure 2-3 shows part of the attribute
grammar for the Pascal ‘if’ statement followed by a stylistic variant of the same semantic rule.
This semantic rule is applied in Figure 2-4.

In addition to type checking, attribute grammars have been applied to most other phases of
compilation. They have proved very useful in the context of compiler-compilers as well as the
generation of programming environments. MUG2 [11] and Linguist [9] are two representative
examples of systems that have used attribute grammars to generate production-quality compilers.

However, attribute grammars alone are not sufficient for the generation of programming
environments that provide dynamic tools such as interpreters and run-time support environments.
Attribute grammars are not suited to the generation of such tools because of the inherently static
nature of the attributes. Attribute grammars support attribute equations that derive the values of
attributes from the components of the program and from the values of other attributes. The value
of an attribute changes only if the relevant portions of the program change. It is not possible for
an attribute value to reflect the history of program execution.

Because of this limitation of attribute grammars, some researchers have resorted to
implementing the dynamic aspects of programming environments as collections of procedures
(23, 1]. Other researchers limit their programming environments to the static tools that can be
specified in the formal attribute grammar notation [29].

We have solved this problem by developing an extended form of attribute grammars, called
action equations [21], that support the dynamic as well as the static aspects of programming
environments. We have embedded traditional attribute grammars in an event-driven
architecture, where events may represent external activities such as a user providing input for an

Ir ::= condition: EXPRESSION
thenpart: STATEMENT
elsepart: STATZMENT
error: Sstring

error := if condition.type = "boolean'" then ""
elsa '"<-- typae error"
IF ::= condition: EXPRESSION

thenpart: STATIMENT
elsepart: STATIMZENT

{* print is a built-in attribut=a implicitly
defined as a component of avary vroduction. *}

Agsert condition.typae = "bool=zan"
Exception print := "<-- tyoa azroxr"

In the first description, the error attribute is added as a fourth component of the [F object. The
value of the error attibute is defined by an attribute equation. In the second description,
syntactic sugar is provided for this common case.

Figure 2-3: Portions of Two Attribute Grammars for Pascal

if Soperandl + Soperand2 <--typeerror
then Sthenpart
else 3Selseparr

If the type attribute of the condition component has the value "boolean”, then the value of the
error attribute is the empty string; otherwise, this atribute is the string "<-- type error”. The
value of the type attribute is calculated by another attribute equation, not shown.

Figure 2-4: Display of Erroneous Portion of Pascal Program

executing program. Additional events may te generated intemally as a result of events initiated
externally.

Action equations work as follows. When an object receives a particular event, the attribute
equations attached to that event are activated; at all other times, these equations are passive and
are not considered during the attribute re-evaluations triggered by changes in the program.
Attribute equations that are not attached to any event are always active, and correspond exactly
to the attribute equations of attribute grammars. Figure 2-5 illusaates the action equations that
describe the interpretation of the ‘if’ statement.

wn

IF {:= condition: EXPRESSION
thenpart: STATEMENT
elsepart: STATEMENT

RUN -->
Send RUN To condition

RUN.On condition -->
Send RUN To
if condition.value = true
then thenpart
else elsepart

The user requests the run operation when the focus of attention is an IF object, causing the
kernel to send the RUN event to the IF object. This activates the send equation attached to the
event, which in turn sends the RUN event to the condition component of the IF object. When
the RUN event is received by the condition component, the value attribute of the component is
set by an attribute equation (not shown) that calculates the value of this attribute. The send
equation shown remains pending until the value atribute becomes available, and then sends the
RUN event to either the thenpart component or the elsepart component, according to the value
of the value attribute. Execution continues with the selected statement.

Figure 2-5: Portion of Action Equation Description for Pascal

3. Object-Oriented Programming

Programming environment generation systems have much in common with object-oriented
programming systems such as Smalltalk80[17]. With slight modifications, the formal
description of program entities can be seen as a collection of object definitions. Productions
correspond to the classes of object-oriented languages, components to instance variables, and
unions to superclasses. The operations associated with program entities can be viewed as
methods and the events correspond to messages. The language-independent kernel becomes an
object-oriented kemnel supporting an object-oriented database with facilities for browsing,
instance creation and deletion, and the invocation of methods. (These correspondences will be
made clearer in the following section.)

We believe there are many advantages to treating programming environment generation as a
form of object-oriented programming. The most important advantage is the new ability to
support inheritance, considered by many to be the essence of object-oriented programming.
Inheritance in the context of programming environment generation behaves as follows. When a
production is a member of a union, it inherits all the operations defined for the union. In this
way, we can define the general behavior required for Pascal expressions once, with the
EXPRESSION union, rather than repeating the definition for the = production, the + production,
etc. We can extend the notion of union to permit the list of alternatives to include both
productions and other unions. Then we can define the = and AND productions as members of
the BOOLEAN-EXPRESSION union, the BOOLEAN-EXPRESSION union as a member of the

EXPRESSION union and the EXPRESSION union as a member of the root OBJECT union.
The OBJECT union would define the common behavior of all Pascal language constructs. For
example, the generic create operaton with its syntactic validity checking would be associated
with the OBJECT union and inherited by all Pascal program objects. We have developed a
programming environment for Pascal, called MacGnome [4], following this object-oriented
approach.

We also believe that object-oriented programming can benefit from récent research in
programming environment generation. In particular, we believe that the idea of describing
object behavior in a formal, declarative notation can contribute substantially to the ease of
developing and maintaining object-oriented programs. We propose that current methodology of
writing methods as procedures be replaced with the description of methods as event-driven
constraint satisfaction.

In this scenario, the messages of object-oriented programming have the effect of sending an
event. The name of the event is given in the message. When a message is received by an object,
the corresponding class (a production in the language description terminology) is queried for a
corresponding method. If there is an event matching the name given in the message, then the
equations attached to that event become active. The active equations are evaluated in the order
implied by the the dependencies among these equations. When a send equation is evaluated. it
generates a message with the event given in the equation and sends the message to the
destination(s) given in the equation.

We have developed a declarative language, called MELD, for writing object-oriented programs.
MELD is an extension of our notation for writing language descriptions in the context of
programming environment generation. MELD includes notation for describing classes. including
instance variables, methods and superclasses. It also provides a modularity construct, called the
feature, to bundle together related class definitions and support information hiding. In the nex:
section, we give an overview of MELD. Tthe following section demonsira2s the advantages of
MELD using an extended example.

4. MELD Overview
MELD! is an object-oriented declarative language for writing object-oriented programs. These
programs are constructed from software building blocks called fearures, MELD's unit of
modulanty. Each feature implements a basic unit of functionality such as a menu package, a
window manager, an incremental recompilaton facility, or an error handler. Features can be
combined with other features to produce larger systems that merge their capabilities.
Summanzed briefly, the most important aspects of MELD are these:
* Each feature has an implementation consisting of a collection of classes and an
interface the exports some of these classes and imports other features. Other object-

oriented languages such as Flavors [24] provide bundling constructs based on the
Lisp packages, but do not enforce interfaces.

'According to the dictonary, the word "meld” is a combination of "melt” plus "weld”; thus, meld means merge.
Meld also stands for Multiple Elucidation of Language Descriptions - suggested by David Barstow.

e Multiple inheritance is used to combine the class descriptions provided by one
feature with those provided by others. This method of combination produces
composite object definitions. The various contributing features act like Flavors
mixins.

¢ Methods are written as systems of constraints on the values of instance variables.
The most important advantage of this style of notation is that it allows the system to
automatically derive dependencies and ordering relationships among methods, so
that a client of a feature need not bother with the implementation of a feature in
order to integrate it with mutually interacting features.

¢ [nstance variables are strongly typed, as in Traits [S]. The system provides a rich
collection of base types (integer, boolean, string, text, erc.) and type constructors
(sequence, set, ordered-set, array, erc.). Most other object-oriented languages
provide a single constructor such as an array; for example, Smalltalk80 supports
indexed instance variables.

5. MELD: An Example

We now illustrate how object-oriented programs are written in MELD. First we describe a
generic memory manager using MELD. The processing performed by the memory manager is
described using our declarative notation. Then we define a simple environment for
programming-in-the-large that provides entities for the memory manager to manage. Finally, we
combine these two features into a small system. The discussion that follows is informal; a more
detailed account of the notation is given in [14].

5.1. A Memory Manager

Suppose that we would like to implement a facility for loading and storing arbitrary entities to
disk. Traditionally we might add this capability to the implementation of the entities.
Alternatively we might add the facility to do memory management directly to the kemnel. Using
MELD, however, we take the modular approach: we define a feature that implements the memory

manager; this feature can then be combined with other features that implement the entities to be
managed.

The Memory Manager feature describes the world as seen from a simple memory manager’s
point of view. The world consists of a collection of memory managed entities grouped together
under a memory managed root. Each memory managed entity has a unique identifier, a disk
location, a designation of whether it is loaded in core or not, and a timestamp representing the
most recent access to it. This information about each memory managed entity is always
maintained in core: the actual content of the entity is what the memory manager loads and stores.

The root keeps track of the next available uniqueid, its own disk location for when the system
is not in operation, and a table containing the stubs for all the memory managed entities. The
root knows how many entities are currently loaded and maintains a table of loaded entities sorted
by their timestamp. We assume for simplicity that the default memory management policy is to
allow a maximum of n memory managed objects in core at one time; as new objects are accessed
the least recently accessed objects will be stored on disk to make room. Later we will see how
this policy can be tailored to meet the specific management policies of a system in which the
Memory Manager feature is used.

Figure 5-1 gives the syntax description portion of our generic memory manager. The
description is encapsulated into a feature, which has a name (Memory Manager), an interface
and an implementation. The interface lists the classes exported by the feature in its exporzs
clause and lists the other features that are imported in its imporzs clause. In this case. the MM-
ROOT and MM-ENTITY classes are exported. The instance variables of MM-ENTITY are
entirely hidden, but the “maxentities’ instance variable of the MM-ROOT class is available to
other features that import the Memory Manager feature. The exported instance variables are
listed within the square brackets ("[]") following the name of their class; only the listed instance
variables are accessible outside the feature.

Feature Memory Manager

Interface:
Exports MM-ROOT [maxantitises], MM-ZNTITY(]
Imports Tima, DiskIO

Implementaticn:

Uses Time, DiskIO

{* set of and ordered-set of define
constructors., *}
MM-ROOT ::= curid: integer
maxentities: integer
inuse: integer
diskid: DISX-ID
allentities: set of MM-ENTITY
key uniqueid
loaded: ordered-set of MM-EINTITY
key uniqueid
ordered low by lastusa

MM-ENTITY ::= uniquaeid: integer
incorea: boolean
lastuse: TIMESTAMP
diskid: DISK-ID

End Feature,Memory Manager

Figure 5-1: Feature Description for a Memory Manager

The Memory Manager feature imports two other features, Time and DiskIO, which provide the
functionalities implied by their names. The implementation part of the Memory Manager feature
lists these two imported features in its wses clause. Our uses clause acts like the Ada™ use

statement [27]: it has the effect of opening the scopes of the listed features, so the classes
exported by Time and DiskIO can be named directly, without an access path. In this case, the
TIMESTAMP class is imported from Time and the DISK-ID class is imported from DiskIO. If
the Time feature appeared in the imports clause, but not in the uses clause, then it would be
necessary to give the pathname Time. TIMESTAMP to refer to the TIMESTAMP class.

In addition to the uses clause, a feature implementation may define any number of classes and
unions. The Memory Manager implementation defines two classes: MM-ROOT and MM-
ENTITY. The instance variables of these classes are listed, with their types, in Figure 5-1; the
methods for the MM-ROOT and MM-ENTITY classes are given in Figures 5-2 and 5-3.
respectively.

The MM-ENTITY class represents the entities managed by the memory manager. It defines
four instance variables, ‘uniqueid’, ‘incore’, ‘'lastuse’ and ‘diskid’, which contain the obvious
information. Each instance variable is ryped. ‘uniqueid’ is an instance of the built-in class
integer, ‘incore’ is an instance of the built-in class boolean, and ‘lastuse’ and ‘diskid’ are
instances of classes imported from the Time and DiskIO features. Notice that the MM-ENTITY
class represents only the stub for the entity; there are no instance variables representing its
content. Instance variables that do represent the content are added when the Memory Manager
feature is merged with one or more other features that provide entities that require memory
management. This is explained later on.

The MM-ROOT class defines the memory managed root. It has six instance variables. The
two most interesting instance variables are ‘allentities’ and ‘loaded’. ‘allentities’ is a ser of
objects, where each of these objects is an instance of the MM-ENTITY class. In MELD, the set
constructor guarantees uniqueness and supports access according to a key. In this case. the key 1s
the ‘uniqueid’ instance variable of MM-ENTITYs. As we will see later on, ‘allendties’

represents the stubs of all memory managed entities, both those that have been loaded into core
and those that have not.

‘loaded’ is an ordered-set of objects. An ordered-set works in the same manner as a set,
except that the objects are automatically ordered according to the value of a particular instance
variable, in this case the ‘lastuse’ instance variable of MM-ENTITYs. One behavior
implemented by the methods for the Memory Manager feature is to maintain ‘loaded’ to include
only the memory managed entities that are curmrently in core. These methods could use the
notation "loaded[l]" to access the least recently used entity that is currently in core and
“loaded[last]" to access the most recently used entity. ’

The methods defined for the class MM-ROOT are given in Figure 5-2. The first of these is an
equation that causes the value of the ‘inuse’ instance variable to be the length of the table of
loaded MM-ENTITYSs, where Length is a primitive provided by each MELD constructor. This
kind of equation ("<address> := <expression>") is called a constraint. It constrains the “inuse’
variable to be the same value as the length of the ‘loaded’ table. The constraint is unidirectional:
whenever the length of ‘loaded’ changes, then the ‘inuse’ variable is automatically updated. The
purpose of a constraint is to establish an invariant for all objects defined by the class (this can
also be done procedurally, as in the active values of Loops {31]).

10

The second method in Figure 3-2 sets the default value of ‘maxentities’ to be "100". The
defaulr is a -ecial form of action equation that can be overridden by other action equations. A
defzult consiraint is applied only if no other constraint in the final system sets the value of the
instance variable on its left hand side.

MM-ROOT c=
Methods:

{* ‘inuse’ is the length of
the table of loadad objects. *}
inuse := Length(loaded)

{* Set the dafault valua for
maximum number of loadad objacts. *}
default maxentities := 100

{* Set up ‘allentities’ and ‘locadad’
instanca variables as wviaws.
Views are subsats of tha collection of
objects maintained by the kernal. *}
allentitises := View: is-prod(MM-EINTITY)

loaded := View: is-prod(MM-ENTITY) and incora

(* Initialization. *)
CREATE --> curid := 1
diskid := NewDiskID({()

{* Increment unigqueid countar
when a new objact is created. *}
NEWOBJECT --> curid := curid + 1

{* On terminating system axecution,
store all loaded objects. *}
EXIT --> Send STOREYOURSELF To loaded[all]

{(* If ‘loaded’ table overflows,
store the least recently used object. *}

Assert inusa <= maxentitias
Exception Send STOREYOURSELF To loadad[1l]

Figure 5-2: Methods for Memory Managed Root

The next two methods (with the ‘allentities’ and ‘loaded’ instance variables) are also
constraints. On their right hand sides, they illustrate the use of a new mechanism that we call
views [15]. A view consists of a collection of objects (defined by classes). all of which satisfy

11

some property. The specification of the property is given by a partern. Here, for example, the
elements of the ‘allentities’ instance variable are those objects of class MM-ENTITY. The
elements of ‘loaded’ are those objects that are MM-ENTITYs and also have their ‘incore’
variable set to "true”. The form of the collection given by the view is determined by the type of
the instance variable (respectively, set and ordered-set). The most remarkable property of a view
is that its membership is dynamically adjusted as objects are added, deleted, and modified within
the system. See [16] for a complete discussion of views and their implementation.

The four methods discussed so far are different than the methods of most object-oriented
languages in that none of these methods has a name (a name is sometimes called a selector in the
literature). These methods are not triggered by the receipt of a message; they are permanently
active, and are evaluated as necessary according to the dependencies between their right hand
sides (arguments or inputs) and left hand sides (outputs). When an argument to a permanently
active method changes in value, the method is automatically evaluated to produce a new value
for its output instance variable. For obvious reasons, there must not be any circularities among
the inputs and outputs of permanently active methods.

The next three methods in Figure 5-2 are closer to traditional methods. In each case, one or
more equations is attackad to an evenr. As explained earlier, an event corresponds to the name of
a method; an event can be sent to an object by the kernel or by another equation as the name (or
selector) part of 2 message. The equations attached to a particular event are evaluated only when
the object receives a message with the matching name. Thus the equations associated with an
event implement the method whose name is given by the event.

The kemel automatically sends a message to an object whenever any of a collection of
primitive operations (such as create, destroy and access) is performed on the object. An
equation for one object can also send a message to another object using the send equation
("Send <event> to <destination(s)>""). When a new memory managed root is created, the kernel
sends the CREATE event to the root. This causes the corresponding method to be evaluated.
The method consists of two constraints; one initializes "curid’ to 1" and the other sets ‘diskid’ to
the value of the function NewDiskID. These constraints are different from the constraints
discussed previously, which were not attached to events. These two constraints are evaluated
only when their event is received. In particular, they are not re-evaluated whenever their
arguments change in value (otherwise the second equation would continue re-evaluating itself
forever, since NewDiskID returns a different value on each invocation).

exit is another primitive kernel operation. When the system terminates, the kemel
automatically sends the EXIT event to all the objects it maintains. Most objects do not have a
method for the EXIT event, and so do nothing in this situation. The MM-ROOT class does
define a method for the EXIT event, so this method is performed when the memory managed
root receives the EXIT event. The method sends the STOREYOURSELF event to every entity
in the ‘'loaded’ table, causing each memory managed entity that is currently in core to be saved
on disk. The STOREYOURSELF event does not correspond to a primitive kernel operation: it is
implicitly defined as a new event by its appearance in the Memory Manager feature.

The NEWOBJECT event is also defined by the implementor. As we will see later, this event
is sent (by the new entity) whenever a new entity is created. The equation that implements the
method increments the value of ‘curid’ to produce the next unique identifier.

The final method for the MM-ROOT class is called an assertion. An assertion
("Assert <boolean expression> Exception <action equation>'") causes the kernel to check thata
certain condition is true. If that condition is ever false. the exception can correct the situation,
display an error, ezc. In this case we use an assertion to check that our system has not loadad too
many ecndtes into core. If such a condition is detected, the equation sends the
STOREYOURSELF event as needed to store the least recently accessed MM-ENTITYs to disk.
Since the assertion is not attached to any event, this activity is repeated as necessary to kezp the
number of loaded entities less than or equal to the value of ‘maxentities’.

The methods for MM-ENTITY, shown in Figure 5-3, are similar. The function of the methods
should be self-explanatory. The equations involve calls to several functions provided extemally,
namely Load, Store, NewDiskID, FreeDiskID and Now. NewDiskID and FreeDiskID are mace
available by virtue of the importation of the DiskIO feature.2 The most important of these are
Load and Store, which are implemented as kemel primitives that respectively load and store
objects to disk. INow is also a kernel primidve.

3.2. A Small Environment for Programming-in-the-Large

Now that we have defined a generic memory manager, we need some entities for it to manage.
As part of this example, we use MELD to describe a small environment for programming-in-the-
large. The environment illustrated in Figure 5-4 provides modules and implementations as
entities to be memory managed. A module consists of internal modules and implementations,
plus additional information such as lists of imports and exports. Modules are organized into
collections called projects; as we will see, a project corresponds to a memory managed root. The
full description of this environment should also contain an associated operational component (for
example, methods to check interfaces between modules), but this is not shown here.

3.3. Merging the Memory Manager and the Module Description Environment

Continuing with our example, we need to combine the Memory Manager and Module
Description Environment features into a system. In this system. the memory manager will
manage modules and implementations of modules. We do this by establishing a connection
between the MM-ROOT and PROJECT classes, on the one hand. and between the MNDM-
ENTITY, MODULE and IMPLEMENTATION classes, on the other. Figure 5-5 illustrates how
this is done using MELD.

A feature may combine a group of other features. The features are imported in the interface
part of the feature. In this case the Memory Managed Module feature imports both the Memory
Manager and Module Description Environment features, so it is a client of both of these features.
The classes from the two imported features are merged in the implementation part of the
Memory Managed Module feature. When the MM-ROOT class is merged with the PROJECT
class, this means that the PROJECT class of the Memory Managed Module feature has all the
instance variables from both the PROJECT class of the Module Description Environment feature

ZFeatures can export functions as well as classes. Functions are defined as collections of action equations and
auxiliary instance variables. These issues are not discussed further in this paper.

13

MM-ENTITY HEE SR
Methods:

{* When an entity is accessed,
locad it, if necessary, and update timestamp. *}

ACCESS --> Assert incore
Exception Send LOADYOURSELF To self
lastuse := Now()

{* When an entity is created assign it a disk
location and a unique identifier.
Send the NEWOBJECT event to the closest ancestor
of the MM-ENTITY object that is an instancse
of the MM-ROOT class. *}
CREATE --> diskid := UndefinedDiskID
uniqueid := “MM-ROOT.curid
Send NEWOBJECT To ~MM-ROOT

{* When an entity is deleted free its disk space, *}

DELETE --> Assert diskid = UndefinedDiskID
Exception diskid := FreeDiskID{(diskid)

{* Load an entity from disk. The Load function
returns a boolean indicating success. *}

LOADYOURSELF ~--> Assert incore
Exception print := "Could not load."
incore := Load(diskid)

{* When an entity is storad, get a new
disk location if necessary and
stora the aentity on disk.
Store returns a boolean indicating success. *}

STOREYOURSELF --> Assert diskid != UndefinedDiskID
Exception diskid := NewDiskID()
incore := not Store(diskid)

Assert not incore
Exception print := "Could not store."

Figure 5-3: Methods for Memory Managed Object

and from the MM-ROOT class of the Memory Manager feature. However, the only instance
variable from the MM-ROOT class that can actually be accessed by the client is ‘maxentities’,
since it is the only instance variable exported by Memory Manager. In this case, the client
defines a method that overrides the default value of “100” and changes the value of ‘maxentities’
to "200".

14

Featura Module Description Eanvironment
Interface:

{* Export all thes classes with
all their instanca variablas. *}
Exports all

{* Imports feature(s) defining
the desired programming languaga. *}
Imports Programming Languaga

Implementation:
Uses Programming Languags

{* ‘seg of MODUL=Z’ indicatas a szcuzancs of
MODULZ objects. *}
PROJECT ::= proj-nama: identifier
modules: szg of MODUL=E

MODULE ::= mod-nama: identifier
imports: seg of IMPORT-ITZM
axports: ssaq of SIGNATUR®
components: seg of COMPONENT

IMPORT-ITEM 1 1= (dentifier
COMPONZENT 1= MODULZ | IMD2LZ2ZUTAT
{* SIGNATURE and CODE ara imported from the
Programming Languaga featura. *}
IMPLEMENTATION ::= signaturs: SIGNATURS
body: CODE

End Feature Module Description Environment

Figure 5-4: Specification of a Module Description Environment

The Memory Managed Module system works as follows. Consider the case where a modulz
(or implementation) is accessed by some external agent. This would happen, for example, when
the user of the environment for programming-in-the-large tried to read the text of the module.
The kemel sends the primitive ACCESS event to the MODULE object. This activates any the
ACCESS method, that is, the acdon equatiors attached to the ACCESS event. In this case, the
only equations are inherited from the MM-ENTITY class; these equations are repeated in Figure
5-6. The assertion checks whether the ‘incore’ instance variable has the value true; if not, the
kernel sends a message with the LOADYOURSELF event to self, meaning the MODULE
object. In any case, ‘lastuse’ is updated to the current time.

Feature Memory Managed Module
Interface:
Exports:

Imports: Module Description Environment,
Memory Manager

Implementation:

Merges:

{* 'MM-ROOT’ is equated with ‘PROJECT’ and
‘MM-ENTITY’ is equated with both ‘MODULE'’
and with ‘IMPLEMENTATION’. *}

Feature Module Description Environment

Feature Memory Manager
with MM-ROOT as PROJECT

MM-ENTITY as MODULE, IMPLEMENTATION

{* Only the ‘maxentities’ instance variable of the
‘PROJECT’ class is exported by Memory Manager,
and thus can be referred to here. *}

PROJECT ::= maxentities: integer

Methods:
{* Tha valua of ‘maxentities’ is
changed from 100 to 200. *}

maxantities := 200

End Feature Memory Managed Modula

Figure 5-5: Merging Memory Manager and Module Descripton Environment

If a MODULE (or IMPLEMENTATION) object receives a message with the
LOADYOURSELF event, the two equations inherited from the MM-ENTITY class are
activated: these equations are also repeated in Figure 5-6. The constraint is evaluated first. since
the assertion is dependent on the value of “incore’. Remember that active action equations are
always evaluated in the order implied by the dependencies among their inputs and outputs. The
constraint calls the kernel Load function to load the entity from the disk location indicated by
the ‘diskid’ instance variable. If the load fails for some reason, such as the entity not being
found at the disk location, then the subsequent evaluation of the assertion and its exception
causes an error message to be printed.

Recall that a newly loaded module is automatically added to the ‘loaded’ instance variable of

16

MM-ENTITY M
ACCZSS --> Assert incore
Exception Send LOADYQURSELF To self
lastuse := Now({()
LOADYQURSELF --> Asgsert incora
Exception print := "Could not lcad."
incore := Load(diskid)

Figure 53-6: Some Methods for MMODULEs and IMPLEMENTATIONS

the PROJECT object, because of the method inherited from MM-ROOT (repeated in Figure 5-7).
The ‘inuse’ variable is constrained to be the length of ‘loaded’ because of another meathod
innerited from MM-ROOT, also repeated. The assertion is automatically evaluated if the value
of ‘inuse’ changes. If the new value of ‘inuse’ is graater than ‘maxendties’, the exception sends
the STOREYOURSELF event to the least recently accessed entity in the ‘loaded’ table. This
causes this module or implementation to te stored on disk, after which it is automatically
removed from ‘loaded’.

MM~-RCOT HIHE N
loaded := View: is-prod (MM-INTITY) and incore
inuse := Length(loaded)

(* 'maxsntities’ 1s actually ona greater than
the number of entities that may (transiently)
be in core at the same timae. *}

Assert inuse <= maxentities

Exception Send STOREYOURSELZT To loadad([l]

Figure 5-7: Some Methods for PROJECTSs

6. Conclusion

This behavior demonstrates the most important advantage of using action equations rather than
procedures to write methods. When a message is received, all of the MELD equations attached to
the corresponding event become active. This is in addition to those equations that are not
attached to any event, and are thus permanently active. These equations are evaluated in the
order implied by the dependencies among the equations. Thus the Memory Manager feature can
describe the behavior for memory managed entities without concern for the specific behaviors
defined for the particular entities by other features. The implementor of these other features can
write their behaviors without concern that their methods will mask or interfere with the methods

17

that perform memory management. (This is also the goal of the form of multiple inheritance
proposed by Snyder[30].) For example, ‘the implementor of the Module Description
Environment feature can define a method for the ACCESS event knowing that this method will
not block any methods defined by the Memory Manager feature for the ACCESS event.

This would not be possible in an object-oriented language where methods were defined
procedurally. Most such languages require that each class provide at most one method for each
relevant message. If a class defines a method with a particular name, it automatically overrides
any inherited methods with the same name. If a class does not define a method with a particular
name, a search strategy is applied to the superclasses to select exactly one matching method to
apply. This does not permit the independent development of different behaviors in response to
the same message.

Some object-oriented languages do allow multiple methods to be invoked for the same
message. In these languages, the problem arises as to the order in which the various procedures
should be invoked. Three solutions to this problem have been proposed: (1) require the class to
explicitly invoke the desired methods inherited from superclasses, as in Loops:; (2) require the
class to define a primary method and require the superclasses to explicitly state whether their
auxiliary methods are applied before or after the main method, as in Flavors; and (3) to define a
general search strategy, such as apply the methods in the order they are found in a depth-first (or
breadth-first) search of the hierarchy of classes and their superclasses. The first solution is
completely general, but requires intimate knowledge of the methods provided by superclasses.
The second and third solutions are not sufficient for all cases.

Our declarative notation for methods provides a solution to this problem that will in fact
handle all situations. We apply all the methods that match the event given in the message. The
equations that implement these methods are invoked in the order implied by the dependencies
among the equations. This solution is feasible only for equations, not for procedures, because it
is in general impossible to mechanically determine the dependencies among procedures.

There are situations when it is desirable for a class to provide methods that override the
corresponding methods defined by its superclasses. MELD provides the default action equation
for these situations. The feature that defines a method determines whether or not it is reasonable
for the method to ever be overridden; if so, it is defined as a default.

References

(1] Vincenzo Ambriola, Gail E. Kaiser and Robert J. Ellison.
An Action Routine Model for ALOE.
Technical Report CMU-CS-84-156, Camnegie-Mellon University, Department of
Computer Science, August, 1984,

(2] John W, Backus.
The Syntax and Semantics of the Proposed International Algebraic Language of the
Zurich ACM-GAMM Conference.
In International Gonference on Information Processing. 1959.

(3]

(4]

(8]

(9]

(10]

(t1]

(12]

18

Danny Bobrow, er. al..

CommonLoops: Merging Common Lisp and Object-Oriented Programming.

In ACM Conference on Objea Oriented Sysitems, Languages, and Applications.
Portland, OR. September, 1986.

Ravinder Chandhok, David B. Garlan, Dennis Goldenson, Philip L. Miller and Mark
Tucker.

Stucture Editing-Based Programming Environments: The GNOME Approach.

In Narional Computer Conference ’'85. July. 1985.

Gael Curry, Larry Baer, Daniel Lipkie and Bruce Lee.
Traits: An Approach to Multiple-Inheritance Subclassing.
In SIGOA Conference on Office Information Systems. April, 1982,

Alan Demers, Thomas Reps and Tim Teitelbaum.

Incremental Evaluation for Attribute Grammars with Applicatons to Syntax-directed
Editors.

In Eighth Annual ACM Symposium on Principles of Programming Languages. January,
1981.

Alan Demers, Anne Rogers and Frank Kenneth Zadeck.

Atribute Propagation by Message Passing.

In SIGPLAN '85 Symposium on Language [ssues in Programming Envirorments, pages
48-59. Seartle, WA, June, 1985.

Proceedings published as SIGPLAN Natices, 20(7), July, 1985.

Veronique Donzeau-Gouge, Gerard Huet, Gilles Kahn, and Bernard Lang.
Programming Environments Based on Structured Editors: The Mentor Experience.
Interactive Programming Environments.

McGraw-Hill Book Co., New York, NY, 1984.

Rodney Farrow.
Generating a Production Compiler from an Attnbute Grammar.
[EEE Sofnware 1(4), October, 1984.

Peter H. Feiler and Gail E. Kaiser.

Display-Oriented Structure Manipulation in a Multi-Purpose System.

In [EEE Computer Sociery's Seventh [nternational Computer Sofnware and Applica:ions
Conference, pages 40-48. Chicago, [L, November, 1983.

Harald Ganzinger, Knut Ripken and Reinhard Wilhelm.

Automatic Generation of Optimizing Multipass Compilers.

In Information Processing 77, pages 535-540. North-Holland Pub. Co., New York, NY,
1977.

David B. Garlan and Philip L. Miller.

GNOME: An Introductory Programming Environment Based on a Farmly of Structure
Editors.

In SIGSOFTISIGPLAN Sofrware Engineering Symposium on Practical Software
Development Environments, pages 65-72. Pittsburgh, PA, April, 1984,

Proceedings published as SIGPLAN Notices, 19(5), May, 1984.

19

[13] David Garlan.
Flexible Unparsing in a Structure Editing Environment.
Technical Report CMU-CS-85-129, Carnegie-Mellon University, Department of
Computer Science, April, 1985.

[14] David Garlan and Gail E. Kaiser.
MELD: An Object-Oriented Language for Describing Features.
March, 1986.
CMU Department of Computer Science.

[13] David Garlan..
Views for Tools in Integrated Environments.
In IFIP WG 2.4 Internarional Workshop on Advanced Programming Environments.
June, 1986.
Proceedings to appear as a book published by Springer-Verlag.

[16] David Garlan.
Views for Tools in Integrated Environments.
PhD thesis, Camegie-Mellon University, 198x.
In progress.

[17] Adele Goldberg and David Robson.
Smalltalk-80 The Language and its Implementation.
Addison-Wesley Pub. Co., Reading, MA, 1983.

[18] Gregory F. Johnson and Charles N. Fischer.
Non-syntactic Attribute Flow in Language Based Editors.

In Ninth Annual ACM Symposium on Principles of Programming Languages. January,
1982.

[19] Gail E. Kaiser and Peter H. Feiler.
Generation of Language-Oriented Editors.

In Programmierumgebungen und Compiler, pages 31-45. B. G. Teubner. Stuttgart.
April, 1984,

{20] Gail E. Kaiser.
Semantics of Structure Editing Environments.
PhD thesis, Carnegie-Mellon University, May, 1985.
Technical Report CMU-CS-85-131.

{21] Gail E. Kaiser.
Generation of Run-Time Environments.
In SIGPLAN '86 Symposium on Compiler Construction, pages 51-57. Palo Alto. CA,

June, 1986.
Proceedings published as SIGPLAN Norices, 21(7). July, 1986.
(22] Donald E. Knuth. . '

Semantics of Context-Free Languages.
Mathematical Systems Theory 2(2):127-145, June, 1968.

[23] Raul Medina-Mora.
Syntax-Directed Editing: Towards [ntegrated Programming Environments.
PhD thesis, Camegie-Mellon University, March, 1982.

(24]

(29]

(30]

(31]

David A. Moon.

Object-Oriented Programming with Flavors.

In ACM Conference on Object-Oriented Systems, Languages, and Applications.
Portland. OR, September, 1986.

John R. Nestor. William A. Wulf and David A. Lamb.

IDL — Interface Description Language: Formal Description.

Technical Report, Software Engineering Institute, Pittsburgh, PA. February. 1986.
Reprint of CMU Technical Report CMU-CS-81-139.

David Notkin.
The GANDALF Project.
The Journal of Systems and Sofrware 5(2):91-103. May, 1985.

Reference Manual for the Ada Programming Language
United States Department of Defense, 1983.
ANSIMilitary standard MIL-STD-1315A.

Steven P. Reiss.

An Approach to Incremental Compilation.

In SIGPLAN *84 Symposium on Compiler Construction, pages 154-136. Montraal,
Canada. June. 1984.

Proceedings published as SIGPLAN Norices, 19(6), June, 1984,

Thomas Reps and Tim Teitelbaum.

The Synthesizer Generator.

In SIGSOFTISIGPLAN Sofrware Engineering Svmposium on Practical Sofnvare
Development Environments, pages 41-48. Pittsburgh, PA, April. 1984,

Proceedings published as SIGPLAN Notices, 19(3), May, 1984,

Alan Snyder.

Object-Oriented Programming for Common Lisp.

Technical Report ATC-85-1, Hewlett Packard Compam Applications Tech'lolow
Center, February, 1985.

Mark Stefik and Daniel G. Bobrow.
Object-Oriented Programming: Themes and Variations.
Al Magazine 6(4):40-62, Winter, 1986.

