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ABSTRACT

We are interested in the intrinsic difficulty (or complezity) of computing an approximate
solution of the linear operator equation Lu = f. Practical examples of such problems
include the cases where L is a known partial differential or integral operator. Problems of
the form Lu = f are typically solved under the constraint that only partial information
about f is available, such as the values of a finite number of inner products, or the values
of f at a finite number of points. It is of interest to determine when algorithms which are
in wide use are optimal algorithms, i.e., algorithms which produce an approximation with
minimal cost. We are especially interested in determining conditions which are necessary
and sufficient for the finite element method (FEM) to be optimal. For the cases of elliptic
partial differential equations and of Fredholm integral equations of the second kind, we
describe such a condition, in the form of an inequality involving the order of the problem
and the degree of the finite element subspace. Suppose this inequality is violated; is the
non-optimality of the FEM inherent in the information used by the FEM, or is it because
the FEM uses this information in a non-optimal manner? The latter is the case; there -
always exists an algorithm using this information which is optimal. We also discuss the
situation in which the information used by the finite element method (which consists of
inner products) is not available. Suppose that the only admissible information about f
consists of evaluations of f. In the case of the Fredholm problem of the second kind, this
information is optimal; moreover, a finite element method in which the inner products are
approximated by quadrature rules is an optimal algorithm. However there exist elliptic

problems of positive order for which this new information is non-optimal.
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1. AN OVERVIEW

Information-based complexity (as described in Traub et al. {1980], Traub et al. [1983],
and Traub et al. [1984]) is a new approach to the synthesis and analysis of algorithms. This
approach has been designed especially for problems which cannot be solved exactly with
finite cost. This includes many of the important problems of applied mathematics, such
as ordinary differential equations, partial differential equations, and integral equations.

A rich source of such problems is the approximate solution of linear operator equations.
We are given a known linear transformation L of function spaces; we wish to find, for
some f, an ¢-approximation to the solution u of the problem Lu = f. Here, by an
€-approrimation, we mean an element u, such that |ju — u.]| < ¢. Furthermore, this -
approximation is to be found with minimal cost. In order to precisely define cost, we will

need a model of computation; this will be specified later. Hence our goal is to find

(i) the e-complezsity COMP(¢), which is defined to be the minimal cost of finding an
¢-approximation, and .

(i) an optimal algorithm o, that is, an algorithm which produces an e-approximation

and whose cost is COMP(e).

In order to'do this, we must know something about f. The knowledge that we have
about f is called the tnformation Nf. Most often, this information Nf consists of a finite
number of linear functionals of f. For example, if f belongs to a Hilbert space, then Nf
might consist of a finite number of inner products of f, while if f belongs to a space of
continuous functions, then Nf might consist of a finite number of evaluations of f.

As arule, f will belong to an infinite-dimensional space, since f will typically be defined
on a region containing an uncountable number of points. But the information which is
known about each f is finite. Hence, the information Nf does not uniquely determine the
right-hand side f. (For instancé, if the information consists of the values of f at a finite

set {z,,...,z, } of points, then for each f there will be an infinite class of functions f
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such that f(z,) = f(z;) for 1 < ¢ £ n.) Since there are many f which yield the same
information, we say that the information N is partial. The lack of injectivity in /N allows
one to find a (sharp) lower bound r(N) on the error of algorithms using N. (For reasons of
geometry, r(N) is called the radius of information; see Chapter 1 of Traub et al. [1980].)

This implies that one can find an e-approximation iff
r(N) <e.

It is desirable to find an algorithm ¢y using N whose error equals r{/N). This means that
o~ has minimal error among all algorithms using N. Moreover, one can often determine
optimal information for each n, i.e., information N, involving n linear functionals such
that r(N;;) equals the nth minimal radius of information r(n) (i.e., the minimal value of
r(N) over all N consisting of n linear functionals). Since N, is nth optimal information,
we see that the algorithm py. (which has minimal error among all algorithms using the
information N;;) has minimal error among all algorithms using information involving vV
linear functionals. |

As promised above, we now define an abstract model bf computation. We proceed in
t@o steps. Our first step is to assume that we are given a class of linear functionals
such that ény functional in that class is computable. (This is sometimes called an oracle
model of computation.) For example, if the function space to which f belongs is a Hilbert
space, we might choose the class of linear functionals to be inner products. If the function
space is a space of continuous functions over some fixed domain, we might choose function
evaluations as our class of linear functionals.

Furthermore, we assume that the cost of evaluating a linear functional is fixed. This
assumption is made only for the sake of simplicity. It can also be justified by the following
example. Suppose we have a procedure for computing the value of a function at a point;
then the assumption of fixed cost essentially means that we charge for the number of times
the procedure is invoked. The cost of evaluating a linear functional will be denoted by ¢

throughout this paper.




Note that we can now determine the minimal number of linear functionals needed to
find an e-approximation. Since r{n) measures the nth minimal radius of information, the
answer is given by

m(e) =inf{n:r(n) <e€}.
Note that-this gives a lower bound on the e-complexity of the problem, namely that
COMP(¢) > cm(e). (1.1)

This lower bound is an intrinsic property of the problem. For example, if we find that
m(¢) is unacceptably large, then we cannot find an e-approximation with a cost that we
are willing to pay.

Our second step in defining the model of computation deals with the cost of combining
information. Suppose we have found information N, consisting of m(¢) linear functionals,
which is strong enough to compute an e-approximation. Let ¢, be an algorithm whose error
equals r(N,), i.e., the error of p, is less than ¢. How hard is it to implement this algorithm?
Tbe answer clearly depends on the form of . In.many cases, we can (fortunately) prove
that @, is linear, i.e., a linear combination of the functionals making up the information.

More precisely, suppose that the optimal information is of the form

A (f)
N Jf= : for n = m(e).
An(f)
Then there exist functions g,,..., gn such that

NS =D NN
1=1

Since the functions g,, ..., gn are independent of f, they may be precomputed in advance.
If we agree to do this precomputation, then the evaluation of p,(N,f) at a point requires
at most n scalar multiplications and n — 1 scalar additions. Hence, the total cost of using

@, to find an e-approximation is at most
(c+2)m(e) - 1. (1.2)
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Comparing this result with (1.1), we see that ¢, is optimal to within a constant additive
factor. Furthermore, since ¢ > 1 in all practical situations (i.e., evaluation of a linear
functional is much harder than an arithmetic operation), the e-complexity COMP(¢) is
essentially equal to ¢ m(e¢) and is achieved by the algorithm ¢,.

Although this information-based approach is appealing, there are at least two reasons
why it may be less popular than one might expect. First of all, it can be difficult to
determine optimal algorithms and information for specific problems. Furthermore, even
in situations where optimal algorithms and information can be determined, they must
compete with other techniques which have been used for a long time. This is despite the
fact that the criteria by which these methods were selected may have been ad hoc, having
nothing to do with the (perhaps) more basic goal of finding an algorithm which solves -the
problem to within the desired error and which has minimal cost.

For this reason, it is especially gratifying to find that a “standard” algorithm is opti- -
mal. When this happens, we-are not faced with the problem of trving to .apply a gencral
technique for constructing an bptimal algorithm to a situation in which the calculations
involved in constructihg this algorithm may be expensive. In addition, since a standard
technique is now shown to be néarly optimal, we do not have to overcome a user’s natural
resistance to abandoning a tried and true method for a novel one.

However, we should point out that classical algorithms are not always optimal. For
example, it has been shown that Gauss quadrature is not an optimal algorithm for in-
tegrating certain families of analytic functions. Moreover, the penalty for using Gauss
quadrature instead of the optimal algorithm for ¢-approximation is unbounded as ¢ — 0.
(See Kowalski et al. {1983] for details.)

In this paper, we will restrict our attention to regularly elliptic partial diﬂ'érential equa-
tions and to the Fredholm integral equation of the second kind. The finite element method
(FEM) is a very popular algorithm for such problems (see Babuska et al. [1972], Ciar-
let {1976], and Oden et al. [1976]). The finste element information (FEI) used by the FEM
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consists of inner products (f, 8,),...,(f,3n), where {81,...,39, } is a basis for a piecewise
polynomial space of degree k. For each of the problems Lu = f discussed in this paper,
we give a simple condition which is necessary and sufficient for the FEM to be an alﬁost-
optimal algorithm. This condition depends on the degree k of the finite element subspaces
being used ‘and the smoothness r of the right-hand side f. (More precisely, we assume that
an a priori bound is known for the Sobolev r-norm of f.)

We find that the e-complexity of an elliptic problem of 2mth order is
O(e~N/r+m)) 3560,
and the FEM is optimal for this problem iff
k>2m—-1+r.
The e-complexity of a Fredholm integral equation of the second kind is
(/")  ase—0,

and the FEM is optimal iff

k>r—1.

For the elliptic PDE, we see that the e-complexity goes to infinity very quickly (as € goes
to zero) if r is close to —m; for the Fredholm integral equation, this happens is r is close
to zero. This behavior is intrinsic to the problem, and there is no-thing that can be done
about it.

Next, suppose the condition for optimality is violated. Is the non-optimality of the FEM
inherent in the finite element information (FEI) it uses, or is it because the FEM uses
FEI in a non-optimal manner? We show that the latter is the case; there always exists an
algorithm using FEI (called the spline algorithm) which is optimal.

Of course, in order for the finite element method described above to be defined, one must

be able to exactly calculate the inner products comprising the finite element information.
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This means that for any f, the exact values of inner products of f with certain piecewise
polynomials must be available. This is often an unrealistic assumption. It is usually more
reasonable to ;ssume that any f can be evaluated at any point in its domain. .If this is
the case, one can define a finite element method with quadrature (FEMQ) using roughly as
many function evaluations as the FEM uses inner products, where the integrals appearing
in the FEM are approximated by a quadrature rule. It is then reasonable to ask when the
FEMQ is optimal. It turns out that the FEMQ is optimal for the Fredholm problem of

the second kind iff
k>r-1;

that is, the FEMQ is optimal for the Fredholm problem precisely when the FEM is optimal
for this problem. However, the FEMQ is not optimal for all elliptic problems of positive
order. For instance, in the case of a second-order elliptic problem in one dimension, one can
show that the e-complexity increases from 8(¢=}/("+1)) to ©(¢~!/") if the only information
allowed consists 6f evaluation of functions at a point. Hence, the FEMQ is non-optirria.l
for such problems precisely because it uses non-optimal information. .

We now outline the structure of this paper. In‘ Section 2, we consider the case of a
two-point boundary-value problem. Although this is a very simple example, it does allow
us to illustrate the key points mentioned above. In Section 3, we describe the results for
the case of an elliptic partial differential equation. In Section 4, we discuss the situation
of a Fredholm problem of the second kind. Finally, in Section 5, we briefly describe some

open problems and discuss directions for future research.




2. A TwWO-POINT BOUNDARY VALUE PROBLEM

To give the reader the flavor of our results, it will be helpful to look at a model problem.
On the one hand, the description of this problem does not require a great deal of technical
background; on the other hand; the results that have been obtained for this problem are
typical of those for more general elliptic problems. To this end, we consider the weak
solution u of the two-point boundary value problem

| —u”(z) + u(z) = f(z) for0<z <1,
(2.1)
u'(0) = u'(1) = 0.
In order to explain what is meant by a weak solution, we have to use some standard

terminology about Sobolev spaces. Let I = [0, 1]. For any non-negative integer [, we define

the Sobolev I-tnner product (-,-); and the Sobolev l-norm || - ||; by
l
(v,w); = Z / v (z)w) (1) dz (2.2
=071
and

l |
lolle = Vimoh = | 3 /, (v (2))? d, (2.3)

=0
respectively. (When ! = 0, it is customary to omit the zero subscript.) Then the Sobolev
space H'(]) is defined to be the closure in Lo([) of the set of all C*([) functions whose
Sobolev I-norm is finite. (Note that H°(I) = L,(I).) When [ is a negative integer, the

Sobolev [-norm is defined by duality, i.e.,

(v, )| @

lvlli = sup 2.4)

weCce(I) llwl][-
(with 0/0=0). When [ is not an integer, there is a technique known as “Hilbert space
interpolation” which may be used to define the Sobolev I-norm; see Butzer et al. [1967].

We are now ready to describe the weak form of the problem (2.1). Define a bilinear form

B on H!'(I) by
B(v,w) = /(v'(z)w'(z) + v(z)w(z)) dz Vv,we H'(]). (2.5)
!
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Then we seek an element u € H'([) such that
B(u,v) = (f,v) VYve H'(I). ' (2.6)

Since B(v.v) = ||v]|3, one can use the Lax-Milgram Lemma of functional analysis (see e.g..
Schechter [1971]) to see that for any f € H~'([), there exists a unique u € H!([) such
that (2.6) holds; we write u = Sf to indicate this fact. Using an integration by parts, it
is easy to see that any solution u of (2.1) is also the solution of (2.6); moreover, if the
solution of (2.6) is sufficiently smooth, it is also a solution of (2.1).

As indicated in Section 1, we only know (for each f) information consisting of the values

of a finite number of linear functionals at f. It is often assumed that this information is

of the form
(f 81)
N.f= . (2.7)
(f,8n)
Here, { 81,...,9n } is a basis for a finite element subspace S, of H'(I) having dlmensmn n

and degree k. That is, we subdivide the interval I into equal subintervals. Then S, consists
of the space of continuous functions which, when restricted to each of these subintervals,
are polynomials of degree k. Such functions are called séh’nea, and $, is sometimes called
a spline space. (See e.g., Schultz [1973].)

Assuming this information NV, is available, we can now define an algorithm for approx-
imating the weak solution Sf of the boundary-value problem with right-hand side f. For

each n, this approximation u, has the form
un(z) = Za,s,(r), (2.8)
1=l
the coefficients a,,..., a, being chosen so that
B(us,8)=(f,s) (1<i<n) (2.9)

Note that u,, depends on f only through the information N,. We indicate this fact by

writing u, = ©a(Naf). The algorithm ¢, is referred to as the finite element method
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(FEM) defined by S,. Clearly, the FEM is an algorithm which uses the finite element
information (FEI) given by (2.7).

Why should one use the finite element method? The FEM has a long and noble history,
with roots stretching back to Galerkin [1915] and Courant [1943]. Moreover, the FEM is
easily implemented. The formulation (2.9) may be expressed as the solution of an n x n
linear system. The coefficient matrix of this system is. banded, with a bandwidth that is
independent of n (although it does depend on k). Hence, the coefficients of (2.8) may be
found in time which is proportional to n.

However, the FEM was derived by an ad hoc criterion (i.e., the projection of the weak
solution into a spline space). Our basic goal is to find ¢-approximations as cheaply as
possible. What does the one have to do with the other?

To answer this question, we must decide how to measure the error of the FEM. In order
to do this, we recall two results for the FEM. As above, we write u = Sf for the actual
solution and u, = n (N, f) for the approximate solution produced by the FEM using S,.

The first result is that the FEM gives a best approximation in S,. That is,
I1Sf = @n(Na )l = ||y = unlly = Jof Jlu -l (2.10)

The second result is a bound on the H!([)-error in approximating the solution. That is,
if u € H"*2(]) for some r > —1, then there exists a positive constant C, depending only
on k and r, such that
llu = ually < Cn7"|luflrs2, (2.11)
where
p=min{k,r+1}. (2.12)
This bound may be expressed in terms of f, rather than u, by using the “shift theorem,”
which states that if f € H"(]), then u = Sf € H"+2(I); moreover, there exists a positive
constant C, depending only on r, such that
CTHISflr42 S 1 fllr < ClISSllr42 - (2.13)
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Then (2.11)-(2.13) yield that for any r > —1, there is a positive constant C such that for

every positive integér n,
IS/ = en(Na s < Cr=#lfll. ¥/ € H(D). (2.14)
The estimate (2.14) may be rephrased as follows. Let
F={feH (I):|fll-<1} (2.15)

denote the unit ball of H"(I). The error e(ion) of the finite element method is defined to
be
c(‘pmNn) =;:g||5f_¢n(an)”l (2-16)

Then
e(@n, Nu) < Cn™*, (2.17)

We now ask whether this estimate is sharp, and whether we can find an algorithm using
finite element information which is better than the finite element method, in the sense of
having smaller error. Here, we define the error of an arbitrary algorithm ¢ using N, by

(2.16), except that now ¢, is replaced by ¢; that is,
e(p, Nn) = sup [|Sf = o(Nn f)[1 - (2.18)
JEF ‘ .
Recall (from Section 1) that the radius of information
r(N,) = igf e(e, Nn) (2.19)

denotes the minimal error over all algorithms using the finite element information .V,. We
then have the following result from Werschulz [1982b]:

»

THEOREM 2.1.

(i) The error of the FEM is given by

e(n, Nn) = B(n~#) as n — oc,
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where p = min{ k,r+1}.
(ii) The radius of FEI is given by

r(Na) =6(n~U*))  asn—co.

REMARK 2.1. We briefly describe a linear algorithm 7, using the finite element infor-
mation N, such that e(p;, N,) = r(N,), i.e., having minimal error among all algorithms

using FEIL Let S*: H'(I) — H"(I) denote the Hilbert space adjoint of S, i.e.,
(Sg,v)1 = (9,5 v), Yge H (I),Yve H'(]).
Recalling that s; is the sth basis function for S,, we let
t; =S55"s, (1 <5< n).

uh(z) = ) ajti(z),
=1

where the coefficients o, ..., a, are chosen so that

B(u;,8;) = (f, &) (1<i<n).

Since u; depends on f only through the finite element information N,, we write u;, =
©n(N, f). The algorithm ¢, is called the spline algorithm using N,. From the results
of Chapter 4 of Traub et al. [1980], this spline algorithm 7, has minimal error among all
algorithms using N,. I

Hence, we conclude from Theorem 2.1 that the FEM makes (almost) optimal use of
its information iff ¥ > r + 1, i.e., we have a condition which is necessary and sufficient
to insure that the FEM is the best method using FEI. We now ask whether there is any
information which is better than finite element information. Recalling that r(n) measures
the nth minimal radius of information, this question is answered by the following result

(see Werschulz [1982a] and Werschulz [1982b] for details):
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THEOREM 2.2. The nth minimal radius of information is given by
r(n) = 6(n=(r+1)) asn—oo. |

Hence we see that finite element information always yields the smallest possible error.

Of course, all of the previous discussion is based on the assumption that finite element
information is available. That is, we have assumed that the inner products (f,s;) =
J; f(z)s,(z) dz (for 1 < i < n) can be calculated for any f € F. This is often an unrealistic
assumption. It is often more reasonable to assume that f(z) can be evaluated forany f € F
and at any z € [0, 1]. Of course, this assumption itself is built on the more basic assumption -
that f(z) is defined for any f € F and any point z €,[0,1]. By the Sobolev imbedding
theorem (Adams [1975]) and the fact that the class F of all right-hand sides f is the unit

ball of H"([), we must now assume that

1
> -, .20
r> > | (2.20)

_ since otherwise f(z) will not be defined for every f and z. .

If we allo‘w the evaluation of any right-hand side at any point in its domain, one can
then approximate the integrals required by the FEM via a quadrature rule. We describe
such a finite element method with quadrature based on the spline space S, described
above. Recall that the interval I has been subdivided into equal subintervals [,..., I;.
On each subinterval I}, let z; 5,..., 2k ; and w, 4,... VW, g respecti{/ely denote the nodes

and weights of a Gauss quadrature rule, so that

k
/1 w(z)dz ~ Y wiw(z;), (2.21)
5 =1

with equality if w is polynomial of degree 2k — 1. We now re-write the set of nodes as
{z1,...,2n } (WithO0O < z; < --- < 7, < 1) and the set of weights as {wy,...,ws }, with
w; being the weight corresponding to the node z;. For each f, define the linear functional
A; approximating the inner product (-, 3;) by
n
MOEDBITCHINCAP (2.22)
=1
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Note that we can compute /\l(f), .. +yAn(f) from the standard information
f(z1)
Nof=1| : : (2.23)
S(zn)

(The information N, is called “standard” information, because it is more usual to assume
that we can evaluate a function at a point than it is to assume that we can evaluate more
general linear functionals, such as inner products with finite element basis functions.)

We are now able to define an algorithm, using the standard information 1\7,,, for approx-
imating the weak solution Sf of the boundary-value problem with right-hand side f. For

each n, this approximation u, has the form

in(7) = ) _ &;s,(z), (2.24)

i=1

the coefficients a,,..., &, being chosen so that
Blun,8) =Xi(f) (1<i<n). . (2.29)

That is, we replace the integrals appearing in the definition of the FEM by quadratures.
Note that i, depends on f only through the standard information N,. We indicate this
fact by writing u, = gc'),,(N,,f). The algorithm o, is referred to as the finite element
method with quadrature (FEMQ) defined by §,,.

How good is the FEMQ? For the sake of exposition, we restrict our attention to the case
where

k>r+1. (2.26)

The results in Chapter 4.1 of Ciarlet [1976] may be used to see that there is a positive

constant C such that for every positive integer n,

ISf = @a(NaDlls SCn~"IIfll- VS e H(]) (2:27)
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That is, the error of the FEMQ satisfies
e($n, Na) < Cn7" (2.28)

This estimate indicates that the FEMQ may be worse than the FEM based on the same
spline space. That is, since k > r+ 1, the error of the FEM is.e(n‘('“)); this should
be compared to the O(n~") estimate of the FEMQ’s error given by (2.28). Can this
degradation in error (when going from the FEM to the FEMQ) be avoided? The answer,
as found in Werschulz [1982a] is “no.” More precisely, let

#(n) = inf{r(N,) 1 21,...,z0 €T} (2.29)

denote the nth minimal radius of standard information. That is, F(n) is the minimal error
among all algorithms using standard information coosisting of function evaluations at any

n points in the interval /. We then have

THEOREM 2.3. The nth minimal radius of standard information is
f(n) =6(n~") asn — oo. 1

This tells us that (2.28) is a sharp estimate of the error of the FEMQ. Moreover, although
the FEMQ is a linear algorithm, this result shows that it has almost minimal error among
all algorithms using standard information. Moreover, the loss when going from the FEM
to the FEMQ is due to the fact that standard information is weaker than finite element
information; that is, the minimal error among all algorithms using standard information
is greater than the minimal error among all algorithms using FEIL

We now seek to translate these results concerning minimal error into results which say
when the FEM is (almost) an optixﬁal algorithm; that is, we seek to determine when the
cost of using the FEM for e-approximation equals the problem complexity COMP(¢) (at

least to within a constant factor). In order to do this, we let

FEM(¢) = inf{ cost(©n) : ¢n is 3 FEM using FEI N, such that e(en, Na) < €} (2.30)
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denote the minimal cost of using the FEM to compute an ¢-approximation. We then have

the following result from Werschulz [1982b]:

THEOREM 2.4.

(i) COMP(¢) = ©(e~/"*1)) as ¢ — 0.
(ii) FEM(¢) = ©(¢~'/#) as ¢ — 0, where g = min{k,r+1}. 1l

These results may be viewed in two different lights. If we take an optimistic viewpoint,
we see that the FEM is optimal (to within a constant) for all r satisfying r < k — 1. That
is, if we choose k large, then the FEM is nearly optimal for a wide range of r. Moreover,
the FEM itself does not depend on r. Such results are important, since it may be difficult
to determine the exact smoothness of a given right-hand side f.

If we choose a pessimistic viewpoint, we can say that the FEM is not optimal whenever
we know that r > k — 1. In this case, the spline algorithm ¢} using finite element
information N, (with n sufficiently large) is an optimal algorithm for this problem. More

precisély, let

SPLINE(¢) = inf{ cost(},) :¢n, is a spline algorithm using FEI N, such that
(2.31)

e(pn, No) < €}.

That is, SPLINE(¢) is the minimal cost of finding an ¢-approximation with the spline

algorithm using FEI. Then Theorem 2.4 and the results of Section 1 yield that
SPLINE(¢) = 6(COMP(e)) = 6(~/("t1))  ase—0. (2.32)

Moreover, if we let denote the penalty for using the FEM (rather than an optimal algo-

rithm), we see that

pen(e) = 6(c~?) as € — 0, (2.33)

where

(2.34)




so that
lx_r.r}) pen(¢) = +° (2.35)
Hence, the asymptotic penalty for using the FEM instead of an optimal algorithm when k

is too small is unbounded.
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3. ELLIPTIC BOUNDARY VALUE PROBLEMS

In the previous section, we discussed the situation of a simple two-point boundary value
problem. In this section, we describe how these results may be extended to general elliptic
problems in several dimensions. The results are all taken from Werschulz ‘[1983]. The
nofation used is the standard notation for multi-indices ard for Sobolev spaces, inner
products, and norms, found in Ciarlet [1976]. As before, fractional- and negative-order
Sobolev spaces are defined by Hilbert-space interpolation and duality, respectively.

Let Q ¢ IRY be a bounded, simply connected, C* region. Define the uniformly strongly
elliptic operator

Lv=)_ (-1)*1D%(aasD"v),

lal,|B|€<m

with real coefficients a,3 € C*®(Q) such that a,p = ap,. In order to have appropriate
boundary conditions, let
Bjv= ) bjaD"v (0<j<m-1)
lal<gq;

where b, € C*(00Q) are real-valued and
0<q < - -<gm-1<2m—1.

We assume that { B; ;-':a' is a normal family of operators which covers L on (2. To make

the boundary-value problem be self-adjoint, we let
m* =min{y:q; > m},
and require that

{QJ 1;:6'1U{2m_1_q] ?=',,1,={0,...,m-1},

uska et al. (1972] and Chapter 5 of Oden et al. [1976] for further

(See Chapter 3 of Bab

; : mples.)
gt |lustrative examp
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We are interested in solving the elliptic boundary-value problem:

for f € H™(Q2), where r > —m, find u: ] — IR such that
. Lo=f intl
(3.1)
Bju=0 ondQl 0<sj<m=-1).
Let

HP(@Q)={ve H™(Q):Bjv=0 (0<;j<m —1)}

denote the space of H™(Q)-functions satisfying the essential boundary conditions. We

define a symmetric, continuous bilinear form B on HE (Q2) by

B(v,w) = Z /aagDavDﬁw.

lal.|81gm ~

We assume that B is weakly HE (Q)-coercive (see pg. 310 of Oden et al. [1976]). Since

B is symmetric, this means that there exists a positive constant v such that

for any nonzero v € HE (1), there exists nonzero w € HE (Q2) such that
|Bv,w)| 2 7llvllmllwllm. - (3:2)

We now define the variational boundary problem as follows. Let r > —m. We wish to

solve the following problem:

for f € H™(Q), find u = Sf € HZ(Q) such that
Buww=(f)=[fv VveHE(@). (3.3)
0

From the Generalized Lax-Milgram Theorem (Theorem 5.2.1 of Babuska et al. [1972]),
S:H"(Q) — HE(Q) is a well-defined bounded linear transformation.
As in the previous section, we assume that we know information consisting of the values

of a finite number of linear functionals of any right-hand side [. Once again, it is often

assumed that this information is of the form

(f!le
M= .

]

(/) 35) (3.4)
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where { 8;,...,8, } is a basis for a finite element subspace S, of HE (Q) having dimension
n and degree k.  We assume that the family { S, }5%, of finite element subspaces is guasi-
uniform (pg. 272 of Oden et al. [1976]). Of course, since the region Q is C*®, we must make
an additional assumption about the boundary elements to guarantee that S, € Hg (Q2) in
the situation where (3.1) is not a Neumann problem. _(For instance, we may use curved
elements as in Ciarlet et al. [1972].)

We now seek to approximate, for a right-hand side f, the solution Sf of the problem
(8.1). This approximation u, will be found by requiring that u, € S, (so that u, has the
form (2.8)) satisfy

B(un,8)=(f,8) (1<i<n). (3.3)

Since u, depends on f only through the information Ny, f, we write u, = ¢n(Na f). The
algorithm g, is once again called the finite element method (FEM) using the finite element
information (FEI) N, which is defined by S,.

We may now ask whether or not the FEM is optimal for this problem. In order to do
this, we must first decide how to measure the error. Following the ideas of the previous

section, let us measure the error of an algorithm ¢ using information N by
e(p, N) = sup [|Sf = o(Nf)]l: - (3:6)
JeF
Here, F is the unit ball of H"(Q2), i.e.,

F={feH (Q):/ll-<1}, (3.7)

where r must be chosen so that

r2> —m. (3-8)

Note that we are now measuring error in the Sobolev l-norm. In what follows, we will

require that |
0<I<m stidec kS 2m—1—1. (3.9)
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(See Remark 3.1 of Werschulz [1982b] for further discussion.)
Standard results (see Babuska et al. [1972] or Oden et al. [1976] for details) yield a bound

on the error of the FEM.of the form

e(@n, Np) < Cn~s+m=0/N (3.10)

where

p=min{k+1-mm+r}. (3.11)

Once again, we ask whether the estimate (3.10) is sharp, and whether we can find an
algorithm using FEI whose error is smaller than that of the FEM. The answer is given by

the following result from Werschulz [1983]:

THEOREM 3.1.

(i) The error of the FEM is given by
e(on, Nn) = B(n~—(K+m=-OIN) as n — oo,

where p is given by (3.11).
(i) The radius of FEI is given by

l"(Nn) 2 e(n-—(r+2m-—l]/N) as n ___. . 1

REMARK 3.1. As in Section 2, the spline algorithm 7, is a linear algorithm using the

finite element information N, which has minimal error among all algorithms using FEI

(See Chapter 4 of Traub et al. [1980] for details.) §

Hence, we conclude from Theorem 3.1 that the FEM makes (almost) optimal use of jts
inf tion i -
ormation iff K > 2m -1+ r. As before, we now ask whether there is any inform t]
J allon

. h ans ’ert i {
IS

the following result from Werschulz (1983 given by

0




THEOREM 3.2. The nth minimal radius of information is given by
r(N) = §(n—(r+2m-0)/N) asn—oco. |

Once again, finite element information always yields the smallest possible error.

As before we translate the results on minimal-error algorithms into results on complex-
ity. As in the previous section, we let COMP(¢) denote the (intrinsic) e-complexity of the
problem; FEM(¢) denotes the complexity of using the FEM to find an e-approximation.
We then have the following result from Werschulz [1983]:

THEOREM 3.3.

(i) COMP(e) = ©(e=N/(r+2m=D)) 35 ¢ - 0.
(ii) FEM(e) = ©(e~N/(8+m=1))a5 ¢ — 0, where p = min{k+1-mm+r}. §

Viewed in an optimistic light, this result says that the FEM is optimal (to within a
constant) for all r satisfying r < k + 1 - 2m. The pessimistic interpretation of thi; result
is that the FEM is non-optimal wheﬁever r> k+1-2m. In this latter case, one can
show (as in the previous secton) that the asymptotic penalty for using the FEM, rather
than the spline algorithm using the same finite element information as the FEM uses, is .

unbounded.




4. THE FREDHOLM PROBLEM OF THE SECOND KIND

In the two previous sections, we dealt with boundary-value problems for elliptic differ-
ential equations. In this section, we consider an integral equation, namely the Fredholm
problem of the second kind. There is a vast literature dealing with the numerical so-
lution of these problems. See, e.g., the books Anderssen et al. [1980], Atkinson [1976],
Baker [1977], Delves et al. [1974], Golberg [1979], and te Riele {1979], as well as the survey
article Ikebe [1972].

The complexity results in this section are all taken from Werschulz [1984]. Although
we will describe these results in a Hilbert space setting (i.e., error is measured in the L,-
norm), the results of Werschulz [1984] are established in an L,-setting, where p € (1, oc].
These results in Werschulz [1984] include, as a special case, the results of Emelyanov et
al. [1967], which appear to be the first results on optimal algorithms for the Fredholm
problem of the second kind.

Let [ denote the unit interval [0, 1] and let r be a'non-negative integér. Letk:IxI — R
be a function such that 6{1: is continuous for 0 € j < r, where 6{ denotes the jth partial

derivative with the ith variable. Define a linear operator K: Lo(f) — Lo([I) by
(Ko)(z) = [ Kz wvi)dy. (41)
Then K is compact. We also assume that 1 is not an eigenvalue of K. Set
L=I-K. (4.2)

Then L is an invertible bounded linear operator on Lo(I), i.e.. L has a bounded inverse

on Lo(]).

We are interested in solving the Fredholm problem of the second kind:

for f€ H"(I), find u = Sf € La([) such that

Lu=f. (1.3)
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By the remarks above, S: H"(I) — L,([) is a well-defined bounded linear transformation.
As always, we only know (for each f), information consisting of the values of a finite

number of linear functionals at f. It is often assumed that this information is of the form

(f) 31)
N.f= : , ‘ (4.4)
(f) 8")
where {3,,...,89, } is a basis for a finite element subspace S, of Lz([) having dimension n

and degree k. That is, we subdivide the interval I into equal subintervals; then S, is the
space of functions whose restriction to each of the subintervals is a polynomial of degree
k. Note that the only difference between S, as defined here and as defined in Section 2
is that interelement continuity was imposed in Section 2, but that no such requirement is
made in this section.

For a right-hand side f, we seek to approximate the solution Sf of the problem (4.3).
An approximation u, will be chosen by requiring that v, € S, (so that once again, u, has

the form (2.8)) and that '
(Lun, &) =(f,8) (1<i<n). (4.5)

Since u, depends on f through the information N, f, we write u, = p,(N,f). Once
again? the algo;'ithm ©n is called the finste element method (FEM) using the finite element
information (FEI) N, which is defined by $,.

Does the FEM make optimal use of finite element information? Is FEI optimal infor-
mation? In order to answer these questions, we must once again specify how to measure
the error of an algorithm. Let us agree to measure the error of an algorithm ¢ using
information N by

e(p, N) = sup 1S/ = ©(N/llo, (4.6)

where F' is once again the unit ball of H" (), i.e.,

F={feH (I):]|fllr<1}. (4.7)
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That is, we measure error in the norm of L2(I) = H°(I).

We then have the following results of Werschulz [1984]:

THEOREM 4.1.

(i) The error of the FEM is given by
e(®n, Np) = 6(n7%) as n — oo,

where p = min{k+1,r}.
(i) The radius of FEI is given by

r(N,) =6(n"") as n — oc.
(iii) The nth minimal radius of information is given by
r(n) =8(n"") asn—oco. 1

Thus we see that the FEM makes (almost) optimal use of its information iff £ > r — 1.
However, FEI is always optimal information (at least to within a constant factor). Fur-
thermore, there exists a linear algorithm using FEI, called the spline algonthm, which has
minimal error among all algorithms using FEI. From this, we see that the spline algorithrﬂ
using finite element information N, bas (almost) minimal error among all algorithms using
information involving n linear functionals.

Of course, the previous discussion has based on the assumption that the inner products
required by the FEM are available. That is, we assume that for any f € F and for any
finite element basis function g, we are able to compute fl f(z)s,(z) dz. Often, this is not
the case. As in Section 2, it is more common to assume that we can evaluate f(z) for any
f € F and at any z € I. Of course, we must assume that r > 1/2 in order for f(z) to be
defined; since r is a non-negative integer, this means that we now must assume that r > 1.

If we now allow the evaluation of f(z) for any f and any z, we can then describe a

finite element method with quadrature for this problem. The details are almost the same
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as those in Section 2, except that we now require the points z,,...,z, of evaluation to
be the nodes of a piecewise (k + 1)-point Gauss quadrature rule. Thus we once again
have an approximation A; of the linear functional (-, 3;) (which is now exact for piecewise
polynomials of degree 2k +1)." As before, we can compute A;(f),...,As(f) from the

standard information ‘
f(z1)

N.f=| : |. (4.8)
[(zn)

Since we are going to replace integrals by quadratures in the right-hand side, there is

one further place where this replacement can be done. Recall that the approximation

produced by the FEM has the form (2.8), i.e., a linear combination of the finite element
basis functions. -The vector a of weights is found by solving a linear system of the form
Ga = B, where f; = (f, 8;) and G,; = (Ls,, 8i). So far, we have decided to replace 8 by
B, where 8; = A;(f). In practice, the inner products appearing in the coefficient matrix G

would also be replaced by quadratures (using the same nodes and weights as those used

in approximating the inner producté on the right-hand side). This leads to a new bilinear

form B, such that
Bn(v, w) ~ (Lv, w). (4.9)

i ight-hand
We are now ready to define a finite element method with quadrature. For a righ

side f, an approximation ii, € Sn is chosen such that

By (in, s) = M) (1Si<n). (4.10)

we write @n = &n(Naf)-

s on f through the standard information Nn,
(FEMQ) defined "

Since i, depend

The algorithm @n is said to be the finite element method with quadrature

by Sa. _
How good is the FEMQ? From Werschulz [1984], we find
THEOREM 4.2. The error of the FEMQ satisfies

e(@n, Nn) = e(n™") as n — 00,
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where p = min{ k+1,r}. 1§
Thus the FEMQ is as good as the FEM. Moreover, when & > r — 1, the FEMQ bas
almost minimal error. '
Finally, we translate<these minimal-error results into results on complexity. As before,
COMP(¢) denotes the intrinsic e-complexity of the Fredholm problem, while FEM(¢) and
FEMQ(¢) denote the complexity of using the FEM and the FEMQ (respectively) to find

an e-approximation. We then have the following result from Werschulz {1984]:

THEOREM 4.3. Let p = min{k+1,r}. Then:

(i) COMP(¢) = ©(e=1/7) as e — 0.
(ii) FEM(¢) = ©(e~'/#) as¢ — 0.
(iii) FEMQ(¢) = ©(e~'/4) as ¢ —0. §

As in the previous sections, this theorem can be viewed in either an optimistic or a

pessimistic light. The good news is that both the FEM and the FEMQ are optimal (again

I ) -_— -

Ei Q . 1

’

. ) line algori
using FEI (which 1s optimal) is unbounded. piine algorithm




5. SUMMARY, OPEN PROBLEMS, AND FUTURE DIRECTIONS

In the previous sections, we discussed how information-based complexity has been ap-
plied to the e-approximation of certain differential and integral equations. We found that
if the degree of the spline space is properly chosen, dépending on the smoothness of the
right-hand side f and the order of the operator L, then the classical FEM is optimal.
Although the implementation of the FEM is not trivial, much work has been done on this
area, and this problem is well-understood. When the FEM was non-optimal, we found that
the fault lay with the fact that the FEM used its information in a non-optimal manner. In
fact, one could always find a method, using the same finite element information that the
FEM used, which was optimal.

What else can we expect from the abplication of this approach to the solution of differ-
ential and integral equations? In this section, we describe a few possible areas of attack.
The list is by no means intended to be exhaustive.

The first thing to note is that for the operator equations Lu = f considered in this
paper, the norms used to measure both the smoothness of a right-hand side f and the
error in the approximation of u were Hilbert Sobolev norms. These are by no means the
only norms of interest. For instance, we might need a good pointwise approximation of
u, so that an L., error estimate is required. Analogously, the smoothness of f might be
measured by a non-Hilbert Sobolev norm. Hence, we are interested in determining the
e-complexity of Lu = f, where f is in the unit ball of one Sobolev space, and the error
is measured in the norm of another Sobolev space. In particular, it is important to know
under what circumstances the FEM is optimal for such problems.

The reader has probably noticed a certain similarity in the results of the previous sec-
tions. Of course, Section 2 is merely a special case of Section 3; thvever, no such easy
relation exists between the partial differential equation in Section 3 and the integral equa-
tion in Section 4. Is there a common framework which ties these areas together? If so, is

there a common explanation of the results of Sections 3 and 4?7 What further results can
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one obtain from this common viewpoint?

Note that all of the results of this paper were expressed using ©-notation. Except for
the case of simple model problems, we do not know the value of the ©-constants. The
important problem of determining these constants (or even of determining explicit bounds
for them) should be investigated. We suspect that this problem will be quite difficult.

The next item of interest is to consider nonlinear problems, such as
-u"(z) = f(z, u(z), ¥'(z)) for0<z < - (5.1)

(subject to some boundary conditions). Under what conditions on f can we find an e-
approximation for positive €7 When is the FEM an optimal algorithm? If the FEM is
non-optimal, can we find an easily-implemented algorithm that is optimal?

The results reported in this paper depend highly on the fact that these problems admit
“shift theorems” which relate smoothness in f and smoothness in u. For example, the fact
that shift theorems hold for certain elliptic problems (see Chapter 3 of Babuska et al. [1972]
and Chapter 8 of Oden et al. [1976}) \a;as used in establishing the results described in this
paper. There are a number of situations (such as problems with shocks) in which shift
theorems do not hold. What does the information-based approach have to say about such
problems?

Finally, note that all of the results of this papei’ were given in terms of a worst-case
setting, under the assumption that the information was free of error. One should also
determine the situation for an average-case setting (in which the worst-case error is replaced
by an average-case error), as well as an asymptotic setting (in which we are interested in
optimizing the rate of convergence for a fixed right-hand side). Furthermore, since it is
generally unrealistic to assume that the information is error-free, it will be important to

determine what happens when the information is contaminated by error.
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