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Abstract
A key element (one is tempted to say the heart) of most digital systems is the clock. Its
period determines the rate at which data is processed, and so should be made as small as
possible, consistent with reliable operation.

Based on a worst-case analysis, clocking schemes for high-performance systems are
analyzed. These are 1- and 2-phase systems using simple clocked latches, and 1-phase
systems using edge-triggered D-flip-flops. Within these categories (any of which may be
preferable in a given situation), it is shown how optimal trade-offs can be made by
appropriately choosing the parameters of the clocking system as a function of the techmology
parameters. The trade-offs involve the clock period (which of course determines the data
rate) and the tolerances that must be enforced on the propagation delays through the logic.
Clock-pulse edge tolerances are shown to be an important factor. [t is shown that, for
systems using latches, their detrimental effects on the clock period can be converted to
tighter bounds on the short-path delays by allowing D-changes to lag behind the leading
edges of the clock pulses and by using wider clock pulses or, in the case of 2-phase systems,
by overlapping the clock pulses. ’

1. Introduction

Virtually all contemporary computers and other digital systems rely on clock pulses to
control the execution of sequential functions. A number of different general schemes are
used, along with several different types of flip-flops or similar storage elements. Despite the
deceptively simple outward appearance of the clocking system, it is often a source of
considerable trouble in actual systems. The number of parameters involved, particularly in
2-phase systems, is large, and a close analysis reveals a surprising degree of conceptual
complexity.

If one is not particularly interested in maximizing performance, then a 2-phase system with
non-overlapping clocks, or a I-phase system with edge-triggered FF's is not difficult to
design. However, if minimizing the clock period is a prime issue, then the problem becomes
far more complex. However, significant performance gains are possible by carefully choosing
the clocking parameters (period, pulse-widths, overlap), and further gains may be achieved
by using well designed latches.

In this study we develop sets of relations for 3 basic types of systems that make possible
intelligent trade-offs between speed maximization (period minimization) and the difficulty of
satisfying constraints on the logic path delays. We begin with discussions of the state
devices considered, the nature of imprecision in clock-pulse generation and distribution
systems, logic block delays, and the design goals. We then analyze the simple case of the 1-
phase system using edge-triggered FF's. After this warm-up, we proceed to treat the 1-
phase system using latches, a considerably more complicated case. An extension of the



methodology used in that section is then applied to the case of 2-phase systems using
latches. Some overall conclusions are then presented in the final section.

1.1. State Devices and Their Parameters
The state devices (or storage elements) treated here are:

The latch (2, 8, 1] (sometimes referred to as the

polarity hold latch. This is a device with inputs C and D, and
output Q (often Q’, the complement of Q is also generated), such that,
ideally, while C = 0, Q remains constant (regardless of the value of
D). and while C = 1, Q = D, changing whenever D changes (see
Fig.1-1 ). (For real latches, as is explained below, there are
non-zero delays in the response times, and there must be constraints
on the behavior of the inputs.) The C- and D-inputs are usually
referred to as the clock and data inputs respectively. Although it is
not, in general, necessary to do so, in the applications treated here,
the system clock signals are indeed fed to the C-inputs of the
latches. A variety of implementations of latches are known, differing
in such factors as suitability for various technologies, load driving
ability, and relative values of the parameters to be discussed
subsequently. Latches with logic hazards have been used in some
systems. In order to eliminate the possibility of malfunction due to
those hazards, the complement of the C-signal is distributed -
independently to the latches with its edges carefully controlled
relative to the corresponding edges of the C-signals. We do not
discuss such systems here, where it is assumed that the latches are
free of hazards.

The edge-triggered D-flip-flop (ETDFF) [2, 6] has the same

inputs and outputs as the latch, but Q responds to changes in D only
on one edge of the C-pulse (see Fig.1-2 ). That is, Q can

change only at the time that C changes from O to 1 (the rising edge of
the C-signal), and then only if necessary to assume the same value

that D has at that time. (There are also ETDFF’s that change state on
the negative-going edge of the C-signal. Furthermore, it is possible

to build a double-edge-triggered D-FF [9] that will respond on

both edges of the C-pulse)

(See hand drawn figures at end of manuscript)
Figure 1-1: Behavior of an Ideal Latch

(See hand drawn figures at end of manuscript)
Figure 1-2:  Behavior of Ideal Positive Triggered ETDFF



1.1.1. Latch Parameters -

The significant parameters for a latch are listed below, with rough definitions (illustrated
in Fig. 1-3). These definitions are then refined to take into account dependencies that exist
among the parameters.

(See hand drawn figures at end of manuscript)
Figure 1-3: Latch Parameters

Cwm: Minimum clock-pulse width, the minimum width of the clock
pulse such that the latch will operate properly even under worst-case
conditions, and such that widening the C-pulse further by making its
leading edge occur earlier will not affect the values of Dpq: U,

or H, as defined below.

Doq: Propagation delay from the C-terminal to the Q-terminal,
assuming that the D-signal has been set early enough relative to
the leading edge of the C-pulse.

Dpq: Propagation delay from the D-terminal to the Q-terminal,
ass:ming that the C-signal bas been turned on early enough relative to
the D-change.

U: The set-up time, the minimum time between a D-change and the
“trailing edge of the C-pulse such that, even under worst-case
conditions, the Q-output will be guaranteed to change so as to become
equal to the new D-value, assuming that the C-pulse is sufficiently
wide.

H: The hold time, the minimum time that the D-signal must be held
constant after the trailing edge of the C-signal so that, even

under worst-case conditions, and assuming that the most recent
D-change occurred no later than U prior to the trailing edge of C, the
Q-output will remain stable after the end of the clock-pulse. (It is
not unusual for the value of this parameter to be negative.)

Note that Dpq, for example, may vary significantly depending on whether the latch output
is being changed from O to 1 or vice versa. A similar situation exists for Doq-  Where
appropriate it is useful to add subscripts R or F to these parameters to distinguish between
the rising and falling output cases. This will not be done here. Instead, we shall confine
ourselves to using overall maximum and minimum values, as indicated below.

The addition to the subscripts of Dpq or Dcq of an M or m make these parameters the
maximum or minimum values respectively.  These are the extremes with respect to
variations in the parameters of the components from which the latches are constructed, the
directions of signal changes, and the destinations (Q or Q') of the signals.

In the definition of Dcg. it is assumed that D has assumed its proper value early enough.
We can make this concept more precise by requiring that the change in D occur sufficiently



early so that making it appear any earlier would have no effect on when Q changes. For
any real latch it is always possible to define such an interval. Similarly, when defining
Dpg. it is assumed that the leading edge of C appears sufficiently early so that turning C
on any earlier would not make Q change any sooner. Again this is possible for any real
latch.

Now we state an important postulate regarding propagation delays:

Suppose that C goes on at time t., and that D changes, making D different from Q, at
time ty. Then we postulate that the time, tq at which Q changes is, at the latest:

tg = MAX[tc + Degy tp + DDQM] (1)

Although for some latches there are higher order effects, depending on the technology, that
may cause tq to be larger when the difference between the arguments of the MAX is small,
the error is small enough to justify our postulate for most practical purposes. Refining the
model to take such effects into account is left for further research.

A related assumption about latch behavior is that, provided that the set-up, hold-time, and
minimum pulse-width constraints are observed, the propagation delay will not be affected by
the clock-pulse going off before the output changes in response to a D-change. An
examination of a variety of latch designs appears to justify this assumption.

There are other possibilities for refining our results, by using more complex definitions of
latch parameters. If we define the actual interval between the occurrence of a 'D-change and
the trailing edge of C as u (note that proper operation requires that u > U), then, for
many latch designs it will be found that the hold time, H, is, over some range of values of
u, a decreasing function of u. There are also possibilities for reducing the clock-pulse width
below Cy, . (within limits), usually at a cost of increasing propagation delays and/or set-up
and hold times. For the sake of making the analysis more tractable, we shall not consider
these alternatives, but instead shall assume that there is a fixed, consistent, set of latch
parameters, as described above.

In summary, we assume that the minimum clock-pulse width is large enough so that
further increases cannot reduce any of the other latch parameters, that U is minimal, that H
is minimal given U, and that the postulate stated above regarding propagation delays is
valid.

1.1.2. Edge-Triggered-D-FF Parameters
The significant parameters for an ETDFF are defined below (see also Fig.1-4:



U: The set-up tsme, the minimum time that the D-signal must be
stable prior to the triggering edge of the C-pulse.

H: The hold time, the minimum time that the D-signal must be held
constant after the triggering edge of the C-pulse. (The value of
H may be 0 or even negative for some ETDFF’s.)

Cwm: Minimum clock-pulse width, the minimum width of the clock
pulse such that the ETDFF will operate properly even under worst-case
conditions.

Doq: Propagation delay from the C-terminal to the Q-terminal,
assuming that the D-signal has been set up sufficiently far in advance
as specified by the set-up time constraint.

(See hand drawn figures at end of manuscript)
Figure 1-4: Parameters of a Positive-Edge-Triggered-D-FF

1.2. Clock-Pulse Edge Deviation ,

In any real world system there are limits to the precision with which events can be timed.
Our concern here is with synchronous systems with clock-pulses distributed to a multitude of
devices for the purpose of coordinating events. The intent is to have certain clock-pulse
edges occur simultaneously at all devices (in some cases fixed displacements may be specified
for corresponding signals at different devices). In designing clocking schemes, it is necessary
to take into account the extent to which this goal cannot be fully attained.

The approach taken here is to assume that, at each significant clock-pulse edge, there is a
specified tolerance range, within which we can assume the errors will be confined. This is,
essentially, a "worst-case” approach. No attempt will be made to exploit statistical
information that could make possible more precise estimates of errors, nor will any effort be
made to consider the effects of correlations between errors or between delays.

The most elaborate situation that we deal with is that of 2-phase systems using latches as
storage elements. Here both the leading and trailing edges of both clock-pulses are of
interest (although the analysis makes it clear that certain edges are more significant than
others). We define tolerances for all 4 edges, designating them as T Ty Ty and Ty,
corresponding to the leading and trailing edges of C1 and C2 respectively. Assume that, for
example (see Fig. 4-2), the leading edge of the Cl-pulse for some period would have arrived
at every latch at time t (which we refer to as its nominal arrival time) if there were no
inaccuracies in timing. Then, in the actual system, this edge is received at every latch
somewhere in the time interval, (t - T, , t + T, ). Corresponding assumptions of course
apply for the other 3 edges. Our goal is to design our systems so that if this assumption,
and corresponding assumptions about the precision of the components used, are valid, then
there will be no failures due to timing, even if some malicious demon is, in each case,
permitted to choose the extreme deviations most likely to cause trouble. Of course in 1-



phase systems we need only define 2 edge tolerances, T| and Ty.

We are lumping together in these edge tolerances all sources of imprecision in clock timing
and distribution. These are principally in the circuits used to determine the clock-pulse
widths, often called "shapers”, and in the networks used to distribute the pulses to the
individual latches (or other similar devices). This latter factor is generally referred to as
clock-pulse skew. In the case of 2-phase systems, it is also necessary to consider the circuits
that determine the phase relationship between the Cl- and C2-clocks.

Relative to other sources of error, the precision with which the clock frequency can be
maintained, at least in high performance systems, is so great (due to the use of crystal
controlled oscillators) that we can safely neglect this factor. (If this assumption is not
justified in any particular case, it is not difficult to introduce a tolerance factor on the clock
period, which can be superposed on our basic results.)

By representing all of the timing deviations in terms of the edge tolerances, we simplify
our analysis, making it easier to treat, as a separate issue, the mechanisms whereby precision
is lost.

-

The precision with which clock-pulse widths can be controlled is generally a function of
how precisely delay elements can be specified. The same factor usually is involved in

controlling the phase between the C1- and C2-pulses of a 2-phase system. The ratio of 2 .

delays on the same chip can be specified with much greater precision than is the case for
- delays' on different chips. Usually one edge of the output of a shaper can be controlled
more precisely than the other. In the 2-phase case, there are techniques for minimizing the
edge-tolerances for particular pairs of edges. As is shown in the sequel, T,, and T, are
usually more significant. They should therefore be kept smaller, relative to the other 2 edge
tolerances.

Several factors contribute to clock-pulse skew. Despite all efforts to equalize conduction
path lengths between the clock source and each clock-pulse "consumer”, differences inevitably
occur in both off-chip wiring and in paths on chips. Since it is usually necessary to provide
amplifiers in the distribution paths, variations in the delays encountered in such devices
along different paths produce significant amounts of skew.

Another contribution to skew results from the fact that pulse edges are never vertical as
shown in our idealized diagrams, and that there is variability among individual latches, even
on the same chip, with respect to the voltage thresholds that effectively distinguish 1's from
0's. Thus even if a pulse edge should arrive simultaneously at the inputs to 2 different
latches, its effect might be felt at different times due to a difference in thresholds. The
result is the same as if the delays in the paths leading to the 2 latches differed. Hence
such effects are considered as part of the skew. Note that, unlike the factor due to varying
length conduction paths, this effect could result in the delayed sensing of a positive-going
edge at a latch that is relatively quick in sensing a negative-going edge. (This would occur
if the device involved had a relatively high threshold.)



1.3. Logic Block Delays ,

In addition to the various parameters associated with the clocking system and with the
latches or FF's, a very important pair of parameters is that associated with the logic
circuitry: the mazimum and minimum delays in any path through the logic block,
designated as D, and Dy, respectively. As is made evident in our analysis, large
variations among logic path delays are clearly detrimental. That is, for a given value of
Dy it is desirable to keep the smallest path delay as close to Dy,, as possible.

It is frequently the case, when choosing the clocking parameters, that the value of D,
the long-path delay is given; it is a function of the maximum number of stages of logic, the
amount of fan-in and fan-out associated with gates in the longest paths, and of the
technology, which determines propagation delay through individual gates. The lower bound
on the short-path delay D, on the other hand, can often be dictated, within limits, by the
clock system designer, using such means as adding delay pads to increase the delays in the
shortest paths, or adjusting the power levels of certain key gates.

The ultimate limits on how tightly the short-path delays can be controlled, that is, on how
high a lower bound, D g, on them is feasible, depend on the tolerances with which gate
delays can be specified, as well as on how well wire lengths, both on and off chip can be
predicted at design time. It is these factors that determine, for a given value of D,,, what
the largest feasible value of D g is. ‘

1.4. Goals for Design of Clocking Schemes

It is assumed here that a principal goal in the specification of a clocking scheme is to
make the period as small as possible, which is tantamount to maximizing the speed of the
system. But of course this must be done within the confines of a design that results in a
system that can be made to operate reliably.

It is obvious that minimizing D;,, is basic to minimizing the clock period. But, as pointed
out above, it is also important to keep the smallest path delay as large as possible. But it
is by no means easy to make the logic path delays uniform in value. For this reason, we
have developed procedures for finding the minimum possible value of P given the maximum
achievable lower bound, D, g, on the short-path delays.

2. Optimum Parameters for 1-Phase Clocking with ETDFF'’s

For 1-phase systems using ETDFF's, the clocking parameters to be determined, (see
Fig.1-4) are the period, P, and the clock-pulse width, W. A block diagram of the systems
under consideration is shown as Fig.2-1.

(See hand drawn figures at end of manuscript)
Figure 2-1: Block Diagram of a 1-Phase System

We develop a set of constraints, such that if all are satisfied, and if the D-signals arrive
on time for the first cycle, then they will also arrive on time for the next cycle and will
remain stable long enough to ensure that the FF's react properly. By induction, it follows



that, for all succeeding cycles, the FF-inputs are also stable over the appropriate intervals,
so that the system will behave according to specifications.

For any clock-pulse period, proper operation requires that the D-signals become stable at
least U prior to to the earliest possible occurrence of the triggering edge. (It is assumed
here that this is the positive-going edge. Precisely the same arguments apply where the
triggering edge is negative going- or even if the FF’s trigger on both edges.) If we assume
that t = 0 coincides with the nominal time of the leading edge of the current clock pulse,
then the earliest possible occurrence time of that edge is -T . (See part (a) of Fig.2-2.)
Hence, the latest possible arrival time, under worst-case conditions, of the D-signals for the
current clock pulse, tn , ., must meet the constraint:

torar £ Ty - U

(See hand drawn figures at end of manuscript)
Figure 2-2: Ensuring that D-Signals Don’t Arrive Too Late in ETDFF Systems

Defining the latest possible arrival time, under worst-case conditions, of the D-signals for

the nezt clock-pulse as tp, ,.n, it follows that "on time arrival” of D for the next cycle
means:

torary S P - Ty - U . (2)

Since the latest possible occurrence of the leading edge of the current clock-pulse is at TL
it follows that the latest arrival time of the D-signals for the next cycle is:

torary = T, + Degm + Dy (3)

(See part (b) of Fig.2-2.)

ReplaFing tDLArN D relatif)n (2) by its value from equation (3), we have the required
constraint to ensure that D-signals are not late:

Solving for P converts it to a more meaningful form:

Next it is necessary to constrain the system so as to ensure that the earliest arrival time
of a D-signal for the nezt cycle does not arrive so early as to violate the hold-time
constraint for the current cycle. (See Fig.2-3.)



(See hand drawn figures at end of manuscript)
Figure 2-3: Ensuring that D-Signals in ETDFF Systems Don't Arrive Too Early

Given that the latest occurrence time of the leading edge of a clock pulse is T, the hold-
time constraint mandates that the earliest occurrence time of a D-signal for the next cycle,

topamn: Satisfy:

tpeamn > T + H (5)

Since the earliest occurrence of a leading edge of a clock pulse is at -T|, we can express
tpearn D terms of the FF propagation delay and the logic delay as:

toeamrn = “TL + Deqm + Dim

Inserting the value of tpp, . from the above equation into relation (5) gives us a relation,
the satisfaction of which is a necessary and sufficient condition for preventing, under worst-
case assumptions, premature changes in D-signals:

Simplifying and re-'arranging terms yields the basic constraint that defines [)'Lmé, the lower
bound on the short-path delays:

Dim > Dypp = 2T+ H - Degn (8)

In addition to constraints (4) and (6) on the period and short-path delays, it is necessary
to add a third constraint to ensure that the minimum pulse-width specification for the FF’s
is satisfied. Since, under worst-case assumptions skew might make the leading edge late and
the trailing edge early, the minimum width specification for the clock pulses is:

W > 2T, + Cypn (7)

The procedure for choosing optimum clocking parameters for 1-phase systems using
ETDFF’s is usually very straightforward. We simply set W at any convenient value
satisfying constraint (7) and set P to satisfy constraint (4) with equality. In most cases it
will be found that the constraint on the short-path bound given by (8) is not difficult to
meet. In the unlikely event that this is not the case, it may be necessary to insert delay
pads at the outputs of the FF’s. The procedure for doing this is the same as that for the
1-phase case with latches, treated in Section 3.4 on page 15.
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3. Optimum Parameters for 1-Phase Clocking with Latches

Fig.2-1 is a block diagram of the 1-phase systems treated here. Clock signals with
parameters noted are shown in Fig.3-1. We shall develop a set of constraints, involving the
various parameters we have discussed, such that if and only if they are all respected, the
system will operate properly in the sense that the D-inputs to all the latches will arrive on
time for each clock cycle (as specified by the set-up time parameter), and will remain stable
for a sufficient interval (as specified by the hold-time parameter).

(See band drawn figures at end of manuscript)
Figure 3-1: Parameters for 1-Phase Systems

The argument is in the form of induction on the clock periods. It is assumed at the
outset that the D-signals arrive on time for the first clock cycle. Constraints are developed
to ensure that, given this assumption, the D-signals will arrive on time for the next cycle.
Additional constraints are then found to ensure that the D-signals remain stable for an
adequate interval during the first cycle. It is then obvious by induction that the same will
be true for all subsequent clock cycles.

More specifically, our initial assumption is that, under worst-case conditions (of delay
values, edge tolerances, etc.), every D-signal must arrive (at a latch input terminal) no later
than U prior to the trailing edge of the clock pulse. Taking t = 0 as the nominal time of
occurrence of the leading edge of the clock pulse for the current cycle (i.e. the time this
edge would arrive if the tolerance on this edge, T, were 0) , the earliest possible occurrence
time of the trailing edge would be W - Ti. . '

Since the D-signal must arrive at least U prior to this edge, we have for the latest
permissible arrival time for D, ty, ,

torar S W-Tp - U (8)
Assume now that the above constraint is satisfied for the first clock cycle.

3.1. Preventing Late Arrivals of D-Signals
The latest (under worst-case conditions) arrival time of D-signals for the next cycle is

designated as tp , . The maximum permitted value of torann is found by simply adding
P to the right side of (8):

tooary S W-Tp-U + P (9)

(See part (a) of Fig.3-2).

The worst-case value of tp; , . is the latest time at which the output of a latch could
respond to a D-signal, plus the maximum delay through the logic. Designating the latest
occurrence time of a leading edge of a clock pulse as tg,;, and using postulate (1) (see page
4) for determining the latest time at which the output of a latch could change, we obtain:
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torann = MAX[tcy, + Deome torar + Ppoml + Dum

(See hand drawn figures at end of manuscript)
Figure 3-2: Ensuring that D Arrives Sufficiently Early

(The discussions pertaining to the left and right parts respectively of the MAX expression
are illustrated by parts (b) and (¢) of Fig.3-2) The value of t., is clearly T , and the
value of ty . is given by (8), so replacing those variables in the above relation gives us:

toramny = MAX[T, + Doqyy W - Tp - U + Dpgyl + Dy ' (10)

Combining (9) with (10) produces:

Solving for P yields:

This expression can be decomposed into 2 constraints that, in combination, are equivalent
to it:

and

P > Dpgy + Dpy ' (12)

The constraint (12) can be intuitively justified by noting that it represents the total time
for a signal to traverse a complete loop, under worst-case conditions. If the period were
any less, then, if the worst-case conditions were actually realized, a signal following a
sequence of such maximum delay paths would fall increasingly far behind the clock pulses
until it eventually violated a set-up time coanstraint.

Constraint (11) can also be justified intuitively. (Transposing the W-term makes this
clearer.) [t can be interpreted as stating that, starting at the leading edge of a clock pulse,
there must be time, under even worst-case conditions, before the trailing edge of the nezt
clock pulse, for a signal to get through a latch, and the logic block in time to meet the set-
up time constraint at the input to some latch.

The D-signals for the next cycle will arrive on time if, and only if, both (11) and (12) are



satisfied, and if (8) is satisfied for the current cycle.

3.2. Preventing Premature Arrivals of D-Signals

If the D-signal for the next clock cycle is generated too soon, then the hold-time constraint
for a latch might be violated. This is where the short-path delays become important. In
order to prevent the possibility of a hold-time violation, it is necessary that, in the worst-
case, a D-change for the next cycle not occur until at least H after the latest possible
occurrence of the trailing edge of the clock-pulse defining the current cycle. With teL S
the latest occurrence of a clock-pulse trailing edge, and tpgp,. as the earliest possible
arrival of a D-signal for the next cycle, this constraint is expressed as:

toearN > tcrr + H

(This discussion is illustrated by part (a) of Fig.3-3.) Replacing to ¢ by its value, W +
TT, we obtain: :

tpeann > W + T + H (13)

Letting tog, represent the earliest possible arrival time of a clock-pulse leading edge, and -
tpEarr TEPresent the earliest arrival time of a D-signal for the current cycle, we again utilize
postulate (1) to obtain: ' '

toearn = MAX[tcg, + Dogm toearr + Ppgml + Dim

(See hand drawn figures at end of manuscript)
Figure 3-3: Ensuring that D Doesn’t Arrive Too Early

(The discussion involving the left part of the MAX is illustrated in Fig.3-3(b).) Replacing
tcgr by its value, -T|, and bringing D, inside the MAX, yields:

tpgann = MAX[T, + Degm + Dimy tpear + Ppom + Dil (14)

Inserting the above value of tpg,, . in (13) yields:

MAX[-T, + PCQm + D 'oEar + Ppgm + Dl > W + Ty + H (15)

Now we show that, for a system that operates properly even under worst-case conditions,
(15) is satisfied if, and only if, the left part of the MAX in (15) exceeds the right side of
the inequality. The "if” part of this assertion is obviously true.

To prove necessity (the "only if” part) let us assume that (15) is valid but that the left
part of the MAX does not exceed the right part of the inequality. Then it follows that the
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right part of the MAX must satisfy the inequality, and hence must exceed the left part of
the MAX. In that case, (14) is reduced to:

toearrN = 'pEArr T Pogm + Dim (18)

But from relation (12) it is clear that:

Adding tpgp,,, to both sides yields:

From the above and from (16) we then obtain:

toearr + P > tppann

But this means that, for each cycle (in the worst case), D arrives earlier and earlier .
relapive to the trailing edge of C. Therefore, even if tpg,,. is comfortably above the
minimum for the first’ cycle, it will eventually violate the liold-tjme constraint, and hence
the system would not operate properly under worst-case conditions. Hence, by contradiction,
we have completed the argument that (15) is equivalent to

or, solving for D :

The above expression gives us the lower bound, D, g, on the short-path delay. Satisfying
this bound is necessary and sufficient to ensure against the premature arrival of a D-signal.

3.3. Consequences of the Constraints
The basic constraints derived in the previous subsections are reproduced below:

P>Dogy + Dy + U+ T + Tp - W (11)

P > Dpou + Dy (12)



14

To these we must add one more to ensure that, even under worst case conditions, the
clock-pulse width at any latch input meets the minimum clock pulse width specifications of
the latches. This is:

W>Cyn + T + Tr (18)

W in (11) cannot usefully be increased beyond the point where the right side of (11)
would, if equality held, violate (12), which of course also represents a lower bound on
P. Note that it is undesirable to increase W gratuitously, since this would, as indicated by
constraint (17), raise the lower bound on the short-path delays. To find the maximum
useful value of W, treat (11) and (12) as equalities and solve them simuitaneously
(eliminating P) to obtain:

When W is less than the above value, relation (11), with equality, specifies the minimum
value of P. When W equals that value, the minimum value of P is given by (12). The .
maximum useful value of Dy 5 is found by substituting into (17) the maximum useful value
‘of W. This gives us: ’ ' '

If the value of the lower bound on the short-path delays given by the above relation is
attainable, then the minimum P-value of (12) is attainable. If not, then, to find the
minimum P-value as a function of an achievable value of D g, solve (17) and (11) (as
equations) simultaneously for P, eliminating W. this results in:

Since W must also satisfy constraint (18), there is a corresponding lower bound on D g,
which is found by substituting into (17) the right side of (18) for W to obtain:

Dimg = AT, + Tp) + H - Degp + Cypm (22)

The relations developed here are the basis for the optimization procedure of the next
subsection. First, however we must consider a possible variation of the development thus
far.! The initial assumption in the discussion of 1-phase systems was that the D-signals

IThe necessity for considering this possibility was pointed out by Vijay Pitchimani and Gordon Smith.
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must appear at latch inputs no later than U prior to the trailing edges of the clock pulses.
In what followed, this constraint was consistently observed. But what if we had made a
stronger assumption, i.e. that the D-changes must appear even earlier, say at U + r (r >0)
prior to the trailing edges of the clock pulses? s it possible that there might be some
advantages to this?

The key to analyzing this question is to observe that the proposal is exactly equivalent to
assuming a larger value of the set-up time U. The effect of this can be determined by
looking at those constraints and derived relations that involve U, namely (11), (19), (20) and
(21). The value of D5 necessary to achieve the minimum P increases with U. So does the
minimum value of P for any value of D g in the range for which equation (21) is valid.
Thus there are clear disadvantages to this alternative of effectively increasing U, and no
apparent advantages to compensate for them. It follows then that any l-phase clocking
scheme that violates any of our constraints will, under the worst-case assumption, either be
vulnerable to failure, or will be suboptimum in that either P or D o would be reducible
without increasing the other.

3.4. When the Short-Path Bounds Cannot be Met

Now observe that neither the basic constraint (17) on D g, nor either of the derived
extremes of D o given by (20) and (22) involve Dy, Thus there is no inherent reason
why the range found for D, p (in terms of the afore-noted extremes) should be much -
below- ‘or indeed not above- Dy,, If, despite all-efforts, including the use of delay pads in
critical paths, it is still not possible to satisfy the lower bound on the short-path delays
represented by (22), then (assuming that the relevant latch or other parameters cannot be
favorably altered so as to remedy this situation), it is necessary to resort to more drastic
measures.

The most practical technique appears to be to introduce uniform delay elements into all
logic paths so as to increase the minimum path delays by an amount sufficient to get us
into the desired range. Suppose, for éxample that the largest value of D o that can be
reliably guaranteed, is less than the bound of (22) by the amount d,. Then we could add
delay pads with minfmum values d_ to the outputs of all latches. The effect would be to
increase the attainable D, o to the desired minimum, and to increase D), by the amount
corresponding to the mazsimum value of delay elements with minimum values d.. If we
define T, as the delay element tolerance ratio, dy,/d,, then the addition to Dy is Tyd,. °
Note that P increases by T,d, over the value obtained for it if the D, _p from (22) is used
in equation (21). The graph of Fig.3-4 illustrates how P varies with the maximum
attainable value of D n. It is piece-wise linear, with the left part corresponding to the
region where uniform pads must be added as just indicated, and with the right part
generated directly from equation (21). The value P, corresponds to the value given by
relation (12). :

(See hand drawn figures at end of manusecript)

Figure 3-4: P As a Function of the Largest Achievable Lower Bound on
Short-Path Delay
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3.5. Procedure for Optimizing the Clocking Parameters

We are now in position to describe a procedure’ for finding the minimum clock period,
given Dyy -5, the maximum lower bound we can enforce on the short-path delays. The
corresponding value of W is also determined.

A complicating factor is the possibility that the lower bound on W, given by (18), might
exceed what we have called the "maximum useful value of W™, given by (19). In that
event, the W-value is given by (18), and D5 is given by (22). Note that, when Dy o is
less than the required value of D g, it is necessary to pad the outputs of all latches with
delay elements whose minimum values make up the difference. This adds to the period an
amount T, times this minimum value.

The procedure is as follows:

IF the right side of (18) < the right side of (19)
THEN
IF Dyy g 2 right side of (20)
THEN
D, g = right side of (20)

W < right side of (19)
P = right side of (12)
ELSE
DI..mB_‘= D};{LmB .
IF Dy mp = right side of (22)
THEN
P & right side of (21)
Solve (17) to determine W
ELSE
d = right side of (22) - Dyy 1
In all latch outputs put delay pads with minimum value d
. W & right side of (18)
P « right side of (11) + T,
ELSE
W & right side of (18)
D, ..p < right side of (22)
IF Dy g 2> right side of (22)
THEN
P &= right side of (12)
ELSE
d & right side of (22) - Dy 5
In all latch outputs put delay pads with minimum value d
P« right side of (12) + T,d

Other procedures based on the constraints developed here may be useful under special
circumstances.



17

4. Optimum Parameters for 2-Phase Clocking with Latches

Fig.4-1 is a general block diagram of the 2-phase clocked systems treated here. Clock
signals (shown in Fig.4-2) go directly to the C-inputs of the latches. Facilities for scan-in
and scan-out are not included as they do not affect the basic arguments.

The strategy to be followed is based on the assumption that if the D-inputs to all of the
latches are valid in the intervals specified by the U and H parameters, then the system will
operate as specified. A set of constraints will be derived, such that if the D-inputs to all of
the Ll-latches arrive early enough for the first clock cycle, then if, and only if, all of the
constraints are satisfied, the inputs to the L2-latches will arrive on time for the first C2-
clock interval, and the D-inputs to the Ll-latches will arrive early enough for the next Cl-
clock interval. Also, the D-inputs to the Ll-latches will remain valid long enough during
the first Cl-interval, and the D-inputs to the L2-latches will remain valid sufficiently long
during the first C2-interval. By induction, it then follows that, for all subsequent clock
periods, the latches will all have valid inputs during the preséribed intervals.

(See hand drawn figures at end of manuscript)
Figure 4-1:  Block Diagram of a 2-Phase Clocked System .

(See hand drawn figures at end of manuscript)
Figure 4-2: Parameters for 2-Phase Systems

Throughout the following discussion it is assumed that t == O at the nominal time (by ’
"nominal time” we mean what the time would be if the edge-tolerances were 0) of the
leading edge of the C2-clock. (The actual arrival time of this edge at any L2-latch may be
anywhere between -T, and +T, ) It follows then that the earliest arrival time of the
trailing edge of the Cl-pulse is V - T,;. To ensure that the Ll-latch set-up time
constraints are met, even under worst-case conditions, tp,, .. the latest arrival time for D1-
signals during the current clock cycle, must satisfy:

toiwarr S V- Tip - Uy : (23)

In all that follows, it is assumed that, for the first clock period, all Dl-signals arrival
times satisly constraint 23.

The argument that the constraints developed here are necessary as well as sufficient is
dependent on the assumption that, in the worst case, (23) is satisfied with equality. Since
this is not actually necessary, it follows that the constraints are not strictly necessary.
However, enforcing a more stringent constraint on arrival times of Dl-signals, namely that
they be required to be earlier by some additional amount, is equivalent to assuming that U,
has increased by this same amount. The effect of this is considered at the end of this
section, where it is shown that, as compared with the disadvantages, there is very little to
be gained by increasing U, (or U,, which is equivalent to insisting that the D2-signals arrive
at a time earlier than required by the set-up time requirements).
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4.1. Latest Arrival times of D2-Signals For First Clock Interval

First we develop constraints to ensure that, if the Dl-signals arrive on time, the D2-signals
will also arrive on time. (Refer here to Fig.4-3(a).) In this case, "on time” means that, in
order to respect the set-up time constraint for the L2-latches, the D2- -signals must arrive no
later than U, prior to the trailing edge of the C2-pulses. At the earliest, the trailing edge
of a C2-pulse might occur at W, - T,,

So the latest arrival time, tp, ..., of the D2-signals must satisfy:
orarr £ Wa - Tor - Uy . (24)

(See hand drawn figures at end of manuscript)
Figure 4-3: D2 Arrival Time

Let to, , be the latest arrival time of the leading edge of a Cl-pulse. Then, recalling
postulate (1) (see P.4) about latch propagation delays, the latest time when the output of an
L1-latch changes (an alternate description of tpoLar) 1S as follows (the left side of the MAX
is illustrated by part (c) of Flg 4-3, and the right side by part (b)):

tporarr = MAX[tp, e + Dipom toi + D) cqml

Replacing tc, ;. by its value, V - W, + T, and tp,; ., by the value glven in relation
(23) (assuming that (23) is satisfied wnh equality) gives us:

tporar = MAX[V - U - Tjp + Doy, V- W, + T + D\ cqml (25)

Combining (24) with (25) we obtain:

MAX[V - Ul - TIT + D]DQ‘N{' V.- W1 + T]L + DlCQM] S W2 - T2T " U2

This can be expressed as 2 separate constraints:

V-U -Tit+Dpgy < Wy-Typ - U,

and

V-W, + T, +Dicgy SW,-Tyr - U,

which can be rewritten, respectively, as

Wy 2V + Uy - U + Dpoy + Top - Typ (26)
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and:
W, + W, 2V + U, + Doy + Ty + Top (27)

If (23) is satisfied, then.(26) and (27) are sufficient conditions for ensuring that, even under
worst-case conditions, the D2-signals arrive on time. If (23) is satisfied with equality, then
they are also sufficient for this purpose.

4.2. Latest Arrival Times of D1-Signals During the Next Cycle

Now consider what is required to ensure that the Dl-signals arrive on time for the nezt
clock cycle, assuming that the D1- and D2-signals are on time for the present cycle. (Refer
here to part (a) of Fig.4-4.) The upper bound on the latest arrival time, ty, , n of 3 DI-
signal during the next cycle is obtained from (23), which gives the latest permissible arrival
time for the first cycle, by simply adding the period, P, to the right side. This gives us:

'DILArN <P+ V. Ul - Tx'r | (28)

(See hand drawn figures at end of manuscript)
Figure 4-4: D1 Arrival Time

Now consider how long it might take a signal to get through an Ll-latch, through the
following L2-latch, and tkrough the logic to reach an Ll-latch input in time for the next
Cl-pulse. (See Fig.4-1). In terms of the latest arrival time at an L2-input, tp, ,.,, 3and the
latest possible occurrence of a C2 leading edge, toy ., postulate (1) (p.4) gives us for the
latest arrival time, toaar for a signal at an L2-output:

tgatarr = MAX[tpoarr + Dopus tearr + Pacqudl

Adding the maximum delay through the logic, Dy,,, gives us the latest arrival time,
tpiLarn fOF 3 signal at an Ll-input during the nezt cycle:

torany ™ MAX[tpoar + Dopqat tcorr + Pacqul + Pum

.Equation (25) gives us tpy a 30d teo is simply T, . Substituting in the above relation
yields:

UDiLARN = M.-\X[MAX[V - Ul - Tn‘ + DIDQM,
V-W + T, + chqml + D2DQM,

Ty, + Docqud + Dym



Expanding the inner MAX yields:

toipany = MAX[V - U, - T\p + Djpqy + Dopqur

\ \’Vl + TlL + DICQM + D'.’DQM'

Ty, + Docqul + Dy (29)

There are 3 factors restricting the propagation of signals thru the 2 latches: propagation
thru the D-inputs of both L1- and L2-latches, propagation from the C-inputs of the L1-
latches (involving the location of the Cl-leading edge) through the D-inputs of L2-latches,
and propagation from the C-inputs of the L2-latches (involving the location of the C2-leading
edge). These are all accounted for in the above expression. They are illustrated in parts
(b), (¢), and (d), respectively of Fig.4-4. :

Replacing tp, o~ 10 (28) by the value found in (29) gives us:
VW, + T, + Dicgu + Dopqm

Solving for P and simplifying yields:
P > MAX[D,pom + Dapgms
- W, + Dicqm + Dopgu + U, + Ty, + Ty,

T+ Ty, - V 4+ Dycqu + U] + Dy (30)

Relation (30) can be decomposed into the following 3 equivalent constraints which, taken
together, are equivalent to it:

P 2 Dipgm + Dapgm + Dy (31)

P2>-W +Dcqu+ Dppgu + Uy + Dy + Ty + Typ

or, solving for Wi:

W, > - P+ Dicqu + Dopgu + Uy + Dy + Ty + Ty (32)



Each of the above constraints can be justified intuitively:
Constraint (31) indicates that the period cannot be less than the
total time it wonld take a signal, under worst case conditions, to
propagate around a loop (i.e. thru an L1- L2-latch pair and the
logic).

Constraint (33) (when the -V is transposed) states that,

starting at the leading edge of a C2-pulse, there must be time,
prior to the end of the nezt Cl-pulse, for

signals to get through L2-latches and the logic to the inputs of
Li-latches prior to the set-up times for those latches, under worst
case conditions of logic delay, latch delay and edge tolerances.

Similarly, (32) states (transposing the -P term

helps make this clearer) that a similar relation holds with

respect to starts made at the leading edge of Cl-pulses and ending
at the trailing edges of Cl-pulses during the next cycle.

Note that if (28) is satisfied with equality, and.if (27) is satisfied, then, it is not difficult '
to show, with the aid of (31), that (32) is implied. Alternatively, satisfying both (32) with
equality and (27) ensures that (28) is satisfied. .

4.3. Premature Changes of D1-Signals

Next we ensure that changes in Dl-signals do not propagate through the L1- and L2-
latches and the logic so fast that they cause some Dl-inputs to change to their values for
the nert cycle prematurely, i.e. before the hold times for the current cycle have expired.
(Refer here to part (a) of Fig.4-5.) The earliest arrival time, tp paon Of such "short-path”
signals for the next cycle must be later than H, after the latest possible occurrence of a Cl-
trailing-edge; that is:

toigany > ¥V + Ty + H, (34)

(See hand drawn figures 2t end of manuscript)
Figure 4-5: Premature D1-Changes

The earliest time that a Dl-signal can change as a result of signal changes generated
during the same clock period getting around the loop is arrived at analogously to the way
relation (29) was produced; the same 3 categories of constraints must be considered. Now,
however, since we seek the minimum delays, we use minimum values for the delays within
the MAX expressions, and the carlicst times for the critical clock-pulse edges.

With te,g, as the earliest occurrence time of a C2-pulse leading edge, and with tpop,, as
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the earliest arrival time of a D2-input change, postulate 1 indicates that the earliest output
from an L2-latch can occur at tqops BiVen by:

tgee = Maxteop, + Docqm: tpoearr + Dopgml

Adding D to each component of the MAX of the right side of the above relation, and
replacing teop, by its value -T, gives us tp paap the earliest arrival time of a Dl-change
for the nezt clock cycle:

toieann = MAX[T,, + Docqm + Dim tooearr + Dopgm + Diml (35)

To find tp,pa,, is the same as finding the earliest output of an Ll-latch. If we represent
the earliest occurrence time of a Cl-pulse leading edge by tg,g;, and the earliest arrival of
a Dl-input for the current cycle as ty,p,,., then we have:

tpegar = MAX(tcip + DlCQm' 'pigarr T DlDQm] i (36)

Replacing tc,g, in the above equation by V - W, - T, , and inserting the resulting
expression for tp,p, . in (33), yields:

tpiparny = MAX[-Ty + Dycqy + Dy MAX[V - Wi - T

+ Dicom: tpiearr + Dipgml + Dopgm + Dyl

Expanding the inside MAX in the above equation gives us:

Lm

torigary = MAX[Ty + Dyegy + D
V- w1 B TlL + DlCQm + D2DQm + DLmr

t’DlEAr\' + DlDQm + D2DQm + DLm] (37)

(The first 2 parts of the MAX are illustrated in parts (b) and (c) respectively of Fig.4-5.)

Now we show that, for a system that operates properly even under worst-case conditions,
inequality (34) is valid if, and only if, it is valid when the value used for toiEann IS that of
(37) with the third part of the MAX deleted. The "if” part of this assertion is obviously
true.

To prove necessity (the “only 'if” part), let us assume the contrary, namely that (34) is
valid and that neither of the first 2 parts of the MAX of (37) exceeds the right side of
inequality (34). '
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Then, since tppaon MUsSt satisfy inequality (34), it follows that the third part‘of the
MAX must do so. Therefore it must exceed each of the first 2 parts, both of which can
therefore be deleted from relation (37), reducing it to:

tpieary = 'Diearr T Dipgm + D2ogm + Dim (38)

But, from relation (31) it is clear that:

P> DlDQm + D2DQm + Dy

Adding tp,pa,, to both sides gives us:

toieare ¥ P > tpiear + Dingm t Dongm * Dim

From the above and from (38) we have:

toreanN < tpigar T P

But this means that, for each cycle (in the worst case), D1 arrives earlier and earlier
relative to the trailing edge of Cl. Therefore, even if tpp,,, is comfortably above the
minimum for the first cycle, it will eventually violate the hold-time constraint, so that the
system would not operate properly. Hence, by contradiction, we have completed our
argument.

Thus we can replace tp,pan ID inequality (34) with the right side of (37), omitting the
third part of the MAX (and factoring out D ), which gives us:

MAX[-Ty, + Docqm V- W, - Ty + Dicgm + D2pgm! + Dim

>V + T+ H

Solving for D, produces:
Dim > Dpmg = MIN[V + H, + Tz + Ty, - Dycqm:

W, + H + T, + Ti1 - Dicqm - Dopgul

The above expression can be partitioned into 2 relations, at least one of which must be
satisfied:

Dy > Dppg = V+H + T+ Ty - DQO (39)



Dim > Dpmg = W, + H + Ti1 + Ty, - Dicom - Dipgm (40)

While it is conceivable that a system might exist for which the right side of (40) is less
than the right side of (39), an examination of the 2 expressions suggests that this is very
unlikely. Hence, in most cases it is constraint (39) that should be relied upon.

4.4. Premature Changes of D2-Signals

Now consider how to ensure that the D2-signals, once on, remain stable long enough for
proper operation, i.e. that the hold-time constraints for the L2-latches are satisfied. It is
necessary to ensure that tpop, . the time of the earliest change in a D2-signal resulting
from a signal passed by the nezt Cl-pulse satisfies the following relation, where teoLt 15 the
latest occurrence time of the trailing edge of C2:

tpogann > toout T Hp (41)

The latest appearance of the trailing edge of C2, C, r, occurs at W, + T,;. (Refer now
to Fig.4-6 (a).) Replacing to, o in (41) by this value, we obtain:

toeeary > Wp + Top + H, (42)
(See hand drawn figures at end of manuscript)
Figure 4-86: Premature D2-Changes

Noting that the earliest time that any Dl-signal is permitted to change as a result of a
previous D1-change during the same cycle is V + H, + T, 1 (see relation (34)), and that the
leading edge of the next Cl-pulse occurs no earlier than P + V - W, - T,,, we can
compute tp.o. o as below:

tpeparny = MAX[V + H, + T 7 + DQO: P+V-W -T,+ DlCQm] (43)

Combining (42) and (43) yields:

> W, + H, + Typ (44)
The left and right parts of the MAX of (44) are illustrated in parts (b) and (c)
respectively of Fig.4-8.

Relation (44) can be expressed as the following pair of relations, at least one of which
must be satisfied:



V+H + Ty +Dipgn > Wy + Hy + Top

P+ V-W - Ty + Dign > W, + H + Typ

These may be more conveniently expressed respectively as

W, <H -H +Dpgn +V+Tir-Tor (45)

and

W +W, < Deqn+V+P-H- Ty -Tp (48)

They constitute necessary and (along with the other constraints developed above) sufficient
conditions for ensuring that the inputs to the L2-latches will remain on for a sufficiently
long time relative to the trailing edges of the C2-pulses. Under most circumstances, it
would appear that (48) is much more likely to be satisfied than is (45)

4.5. Intervals During Which Output Signals are Valid
(Since the material in this subsection is not essential to what follows, it may be skipped at
first reading.)

It outputs are taken from the logic block, and are thereafter sent to external receivers
instead of to Ll-latches, then it is clear that those signals will be stable and valid at least
over the interval during which we have ensured that the Dl-signals are valid, namely:

(V-U - Typ V+ H + Tp)

If the outputs are taken directly from L2-latches, then we can compute the stable output
interval as follows.

The unstable interval begins at the earliest time at which a Q2-signal can change (i.e. the
earliest time an L2-latch output can change). This time, tg,,,, can be found in terms of
the time of occurrence of the earliest leading edge of a C2-pulse, which is -Ty, and tpopyp
the earliest time at which a D2-input can change:

tswa = MAX[-Ty + Dpcqm: tpeear + D2pgml

We have already found an expression for tp,pa,, in equation (38), which we can insert in
the above expression. Let us do so, also replacing the to,g term by its value as indicated
on page 22, namely V - W, - T,,. This gives us:



tswa = MAX[Ty + Docgm

MAX[V - W, - T, + Dicqm tpiearr * Dingml + Dopoml

Expanding the inner MAX yields:
tqug = MAX[-T, + DQCQm'
V- Wx B Tu. + DlCQm + D2DQm'

toiearr + Dipgm + Dapgml (47)

As was shown earlier (page 21 in connection with relation (34)) the earliest change of D1
permitted for the next cycle is at time:

H + V + Typ

Therefore, the earliest time we can expect D1 to change for the current cycle, i.e. the
value of typ, is P less than that amount, or:

toigar = P + Hl + V + TIT

Substituting this value into (47) gives us:

t’StUn = MA'X['T2L + D2CQm'

V-W T + Dicgm + Dapgm:

-P+H +V+ T + Dpgm + Dopgnml (48)
The Q,-signals become stable again after the latest D2-change prior to the set-up time

propagates to the latch outputs. Using the value for the latest D2-change given in (24) (see
page 18), we get for tg, ... the latest time that the unstable period can end:

teadun = MAX[W, - Typ - Uy + Dy Ty + Docqul (49)
At all other times, the Q,-signals are guaranteed to be stable and valid.

4.6. Consequences of the Constraints
The necessary and sufficient constraints derived above are reproduced below:

Wo 2V +U,- U + Dypoy + Typ - Tip (26)
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W, +W,>V+U, + Doy + Typ + Tor (27)
P > Dypgm + Dapqm + DLum (31)
W, >-P+Djcqu + Dopgu + Uy + Dy + Ty, + Ty (32)
P2 -V 4+ Dygy + Uy + Dy + Tip + Ty A (33)

At least one of the following 2 constraints on D _must be satisfied. In most cases
constraint (39) is less stringent (its right side is smaller) and so determines D g, the lower
bound on D .

Dim > Dpmg =V + H + Tp + Ty - Docqnm -+ (39)
Dim > Dy = Wy + Hy + Typ + Ty, - Dicqm - Dapgm - (40)

At least ome of the following 2 constraints must be satisfied. In most cases this will be

(48). :

W, + W, < Diegm+V+P- Hy - Ty - Typ (48)

In addition to the above constraints, 2 more are necessary to ensure that the clock-pulse

widths satisfy the minimum requirements of the latches themselves. These are:

W, 2 Cyip + Ty, + Typ (50)

and

W, 2 Cyop + Ty + Ty (51)

Our objective is to choose the clock parameters (widths, period and overlap) so as to
maximize the speed of the system (clearly this is achieved when the period, P, is minimized),
while making it as insensitive as possible to parameter variations. That is, we would like to
make the tolerances as large as possible. We often start out with a desired value for the
maximum logic delay, D,,, in a logic path (the long-path delay) as this is largely
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determined by the given technology and the desired maximum number of stages of logic.
The crucial factor determining feasibility with known tolerances for delay per logic stage is
then the minimum delay in a logic path, D, , or short-path delay. If the required lower
bound on the short-path delay is too large compared to the long-path delay, then the system
may be difficult or impossible to realize reliably.

We therefore define the problem as that of finding the minimum value of P such that the
lower bound on the short-path delay (D ,g) is acceptable (not too large). It is assumed
that we are given all of the latch parameters, the clock-pulse edge tolerances, and the long-
path delay, D ,,.

The key constraint on D is almost always (39). Hence we set D o equal to the right
side of that constraint and solve for V:

V=D g H - Tip- Ty + Doogm (52)

Now substitute the above right side for V in relation (33), which is the key constraint on
P. to obtain an expression for the minimum value of P as a function of the short-path
delay:

P=H, + U + Dycqm - Docqm + Pum - DLmp  + AT p + Tyy) (53) -

This expression is valid provided that the value of P obtained does not violate constraint
(31). Thus to find the maximum value of D, o beyond which no further reductions in P
are possible, we must first find the maximum value of V for which (33) is valid (i.e. the
value for which (31) is not violated). We do this by substituting the right side of (31) for
P in (33) and, treating the resulting expression as an equality, solving for V:

V=T + Ty + Dycgm + Uy - Dipqum - Dapqm (54)

There is clearly nothing to be gained by making the overlap any larger than the value
given in expression (54), since the effect would be to increase the lower bound on the short-
path delay without reducing P beyond the absolute minimum given by (31).

Now we can compute the maximum useful value of Dy o by substituting into (39) the
above value of V:

Dimp = AT;p + Ty ) + H + U; - Dipong - Dopom + Docom - Pocgm (55)

Now we are in position to discuss the question mentioned at the beginning of this section
as to the consequences of forcing the DI1- and/or the D2-signals to appear earlier than the
minimum bounds dictated by the set-up times for the latches. The effect of doing this is
the same as if the values of the set-up times (the U;'s) were increased. Let us examine the
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relations derived here to see what effects such increases would have.

First observe that U, appears in constraints (26), (32), and (33), as well as in expression
(54) for the maximum useful overlap, in expression (53) for the value of D o corresponding
to the absolute minimum bound on P, and in expression (53) for the minimum value of P
as a function of the lower bound on the short-path delay. The direct effects of increasing
U, are detrimental in all cases except that corresponding to (28). That is, the period would
have to be increased and/or D 5 would have to be increased (various trade-offs are
possible), both of which are bad, but the lower bound on the width of the C2-pulse would
be relaxed, a benefit, but seldom one that is needed.

The U,-term appears only in constraints (26) and (27), and in expression (49) for the end
of the unstable period for the outputs of L2. In the first 2 cases it tightens (by increasing)
the lower bounds on the pulse widths, which is mildly bad, and in the last case it increases
the interval during which the Q2-signals are stable, which might conceivably be
advantageous in some situation.

It therefore does not seem useful to consider requiring the D-inputs to the latches to, arrive
earlier than necessary, unless a very special circumstance should make important one of the
factors discussed above. An interesting, and perhaps useful, added conclusion from the
above discussion is that the set-up time for the L2-latches is of less importance with respect
to speed and tolerances than is the set-up time for the Ll-latches.

4.7. Computing Optimum Clock Parameters
Let Dy, ..mp De the largest lower bound that we can enforce on the short-path delays. To
compute optimum clock parameters, proceed as follows:

IF Dyyump 2 right side of (55)
THEN

D g = right side of (55)

P & right side of (31)

V &= right side of (54)
ELSE

Dimg *= Duurima

P == right side of (53)

Compute V from relation (39)
W, = MAX(right side of (28), right side of (51)]
Compute W, from relation (27) (use equality)
Increase W, if necessary to satisfy constraint (50)
IF W, + W, > right side of (48) (Not likely.)
THEN

IF W, violates (45) (It probably will.)

THEN increase P to satisfy constraint (46)
IF D g > right side of (40) (Not likely.)
THEN decrease D, g until (40) is satisfied with equality
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The procedure given above is intended as a general guide to the use of the constraints
developed here. In particular cases alternative procedures may be more appropriate.

5. Conclusions

As is evident from the length of the corresponding section, the task of determining
optimum clocking parameters for systems using ETDFF’s is relatively simple. The clock-
pulse width is not critical, and the constraint on the short-path delays is seldom stringent.
The price paid for this is that the minimum clock period is the sum, not only of the
maximum delays through the logic and the FF's, but also of the set-up time and twice the
edge tolerance. No trade-offs are possible to reduce this quantity.

For 1-phase systems using latches, it may be possible to make the period as small as the
sum of the maximum delays through a latech (from the D-input) and the logic. In order to
do this, the clock-pulse width must be made sufficiently wide (usually past the point where
the leading edge of the clock-pulse precedes the appearance of the D-signals). Wider clock
pulses imply increased values of D o, the lower bound on the short-path delays. If this
bound is not to become unreasonably high, it is necessary to keep the edge tolerances small.
It is also helpful if the difference between the maximum and minimum values of the
propagation delays from the C-inputs of the latches are small.

The 2-phase system with latches is inherently more complex in that more variables are .
involved. As in the previous case, trade-offs are possible between P and D o Here the
intermediate variable is V, the amount of overlap between the Cl- and C2-pulses. In very
conservative designs there is a negative overlap and Dy _g is zero. If positive overlaps are
permitted, P can be decreased, but at the cost of making D, o non-zero. A continuum of
trade-offs exists to the point where P is reduced to the sum of the maximum propagation
delays through the L1- and L2-latches (from the D-inputs) and the logic. Again it is
possible to absorb the effect of edge tolerances in terms of short-path rather than long-path
problems.

An important advantage of 2-phase over l-phase systems is that, for every 2-phase system,
simply by varying the overlap (i.e. the phasing between the Cl- and C2-clock pulses) D g
can be varied continuously from zero to the highest useful value (with the minimum P of
course changing in the opposite direction). On the other hand, for 1-phase systems, the
range of variation of D, o possible by varying the clock-pulse width is often much smaller,
particularly at the low end. As illustrated in the graph of Fig.3-4, there may be a
significant range of values of D, _p that is attainable only by adding delay pads at the
outputs of all latches.

In 1-phase systems, if the designer is overly aggressive and it becomes apparent during the
test phase that the short-path bound cannot be met, then it is usually necessary to add
delay pads at the latch outputs as well as to increase the clock period. This usually means
very extensive changes, affecting many chips. Should the same situation arise in connection
with a 2-phase system, in addition to increasing the clock period, all that need be done is to
reduce the amount of overlap, adjustments that affect only the clocking system, usually a
much simpler process affecting far fewer chips. Hence designers of 2-phase systems can
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afford to be bolder in choosing the clock period since the penalty for over-reaching is less
severe,

With only one latch in each feedback path, the lower limit on the clock period is lower
for 1-phase systems, although this factor is somewhat attenuated by the fact that some
latches in 1-phase systems will have both inputs from sources that fan out to other latches,
and outputs that fan-out to many gate-inputs. Both of these are factors that reduce speed.
But in 2-phase systems each Ll-latch feeds only one other device (an L2-latch), and each L2-
latch receives its D-input from a source (an Ll-latch) feeding no other device. Hence, all
other things being equal, we would expect the delays through the 2 latches in the feedback
paths of 2-phase systems to have less than twice the delays of the one latch in the feedback
path of a 1-phase system.

An advantage of 2-phase systems over both of the other types considered here is that they
are somewhat more compatible with the LSSD concept for system testing {1, 2].

It appears that all three types of systems have their places. Where there is a willingness
to exert great efforts to suppress skew (e.g. by hand-tuning the delays in clock distribution
paths), and to control other related factors very precisely, the 1-phase system may be the
best choice, as in the case of the CRAY I machine. In other cases of high performance
machines, 2-phase clocking may be more suitable. Use of ETDFF’s seems to have
advantages for less aggressive designs.

"The results presented hére in such precise looking relations obviously depend heavily on the
precision with which the parameters of those relations can be determined. Realistic figures
must be obtained that take into account such matters as power supply and temperature
variations, as well as data sensitive loading considerations.

The relations developed here may be useful in determining what latches to use in certain
situations and to determine’ how to modify latch designs so as to improve system
performance.. For example, an examination of the constraints developed in Section 3.3 (see
page 13) for 1-phase systems with latches suggests that the minimum value of Dpq is of no
importance, whereas the minimum value of Deq fs important in that the larger it is, the
less stringent is the constraint on short-path delays.

In the 2-phase case, minimizing (D.‘,CQM - Dech) is clearly helpful. It relaxes the
requirement on D, o imposed by equation (55), which, if it can be satisfied, allows P to be
set to the minimum value given by (31). If (55) cannot be satisfied, then P is given by
equation (53), and will therefore vary directly with (chQM - chQm).

On the other hand, neither DICQM, DlCQm’ DlDQm' nor DQO seem to be of primary
importance. As was pointed out on page 29, the set-up and hold-time requirements for the
Ll-latches are much more important than are the corresponding parameters for the L2-
latches. It is clear that there are different optimum requirements for L1- and L2-latches.
Furthermore different choices may be appropriate depending upon whether or not an effort
is being made to attain the minimum period corresponding to the maximum loop delay.
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It is clear from the results developed here that minimizing clock edge tolerances is of
considerable importance in high performance digital. systems. In 2-phase systems, a special
effort is warranted to minimize T, and T, , which appear in key several constraints.
Unfortunately, technology trends are such as to emphasize factors that cause skew. For
example, as the dimensions of logic elements on chips shrink, the ratio of wiring delays to
gate delays grows. A high priority must therefore be given in wiring algorithms to the clock
distribution system. Off-chip wiring forming part of the clock distribution network must be
carefully controlled. In some cases the insertion of adjustable delays in these paths may be
warranted. It is quite likely that the continuation of the trends that exacerbate the skew
problem will soon make it worthwhile to consider systems that do not use clock pulses or
that use clock pulses only locally. Discussions of such asynchronous, self-timed, or speed-
independent systems are in [4, 8).

Logic designers and those developing computer aids for logic design customarily pay a
great deal of attention to minimizing long-path delays. It is also important to consider
techniques for increasing short-path delays. In line with this there is a need for circuit
designers to develop techniques for introducing precisely controlled delay elements where
needed. At present, in many technologies, logic designers are forced to cascade inverters to
produce delays. This is wasteful in terms of both chip area and power. In general, the
idea that greater speed may result from better delay elements should be conveyed to those
developing digital technology.

Further developments along the lines developed here would include the use of statistical
rather than worst-case analyses, which would allow us to choose clocking parameters such
that the likelihood of a timing failure is very small, but not zero. This usually implies
shorter clocking periods. In using this approach it is important to be able to take into
account correlations among delay values, skew etc. in various parts of the system [5, 7]

It is also possible to speed up systems by exploiting detailed knowledge of the logic paths.
There may be, for example, constraints on the sequencing of signals through certain
combinations of paths that allow us to consider comsecutive pairs, triples, etc. of cycles
together and thereby realize that shorter periods are feasible than would be the case if each
period were considered separately. - Research along this line is being conducted by Klim
Maling [3)].

An earlier presentation of the work discussed here, in a different form with different
notation was issued by the authors several years ago [10, 11]. The idea that clocked
systems could be speeded up by permitting the D-inputs to latches to lag behind the leading
edges of the clock-pulses and by allowing the Cl- and C2-clock pulses to overlap is not new.
These ideas are included in the very interesting book on digital systems design by Langdon
[2], and have been pointed out by David Chang of IBM’s Poughkeepsie Laboratories a
number of years ago in at least one internal memorandum.
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