'h

The DADQ Production System Machlne*

Salvatore J. Stolfo
and
Daniei P. Miranker
Departmeat of Computer Science
Columbia University
New York City, N. Y. 10027

29 October 1984 CUCsS-213-34

Abstract

DADO is a parailel, tree-structured machine designed to provide significant performance improvemeants in
the sxecution of large expert systems implemeated in production system form. A fuil-scale version of the
DADO machine would comprise s large set of processing slements (PE's) (on the order of thousands), 3ch
zontaining its own processor, a small amount (16K bytes, in the current prototyne desiga) of iocal random
aci::3 memory, sad & specialized [/O switch. The PE’s are inter-onnected to form 2 complece binary tree.

This paper describes the application domain of the DADO machine aad the rationale for its design.
Parallel algorithms for production system executicn are briefly described. We then focus on the machine
architecture and detail the hardware design of a moderately large prototype comprising 1022
Microprocessors curreatly under developmeat at Coiumbia University. We conciude with ver
:acouraging performance statistics recently calcuated from aa azalysis of simulations of the system.

"Thlz rrsenr:l lag Seen supoerted 9v the Dafenze Advaizesd Research Projesi3 Agency :hrough
sentraey NC003%-32-C-0427, a3 weil a3 grants ‘rom Iacei, Digital Zquipmeat, Hewiett- acrard, Valid Logie
syziemz aad BM Corocraticas aad iz New Yorx Siale renndatioa for Aivazesd Tacazoicgy. Wa

srataluily acgacw.adge L2 1uspcet.

Table of Contents

1 Introduction

2 Expert Systems
2.1 Currant Technology
2.2 Production Systems

2.3 Why 1 specialized production system architecture?

3 The DADO Machine
3.1 The System Architecture
3.2 The Binary Tree Topology
2.3 Production System execution
3.4 Algorithm 1: Full Distribution of PM
3.5 Algorithm 2: Originai DADO Algoritam
3.8 Algorithm 3: Miranker's TREAT Algorithm
3.7 Algorithm 4: Fine-grain Rete
3.8 Algorithm 3: Multiple Asynchronous Execution
2.9 Comparison to other tree machines .
4 The DADOQ Prototypes
4.1 Physical Characteristies
4.2 The Prototype Processing Element
4.3 The EPROM Resident Kernel
4.4 The DADO?2 [/O Chip
5 Performance Evaiuation of DADO?2
5.1 Design Alternativas
3.2 Evaluation Method
5.3 Evaiuation Resuits
6 Programming DADO
7 Conclusion

JPDC Journal Vasajsn 10-35.24

e W (9 = = e

-t n W

——
12 O

— -
~t O 9

]

83 U3 b= e
WL~ 0w -~

3

Aanq
-t

D
-
25
25

Figure
Flgure
Flgure
Figure
Flgure .
Figure 3:
Flgure 7:
Figure 8:
Figure 9:
Figure 10:
Figure 11:
Flgure 12:
Figure 13:
Flgure 14:
Flgure 13:
Flgure 18:
Flgure 17:

L X
s 90 40 6s ae

o

Llst of Figures

Organization oi' 2 Problem-Soiving Eagine.
An Exampie Production.
Hyper-H ambedding of 1 binary tree.
The Leiserson chip design.
The Leiserson printed circuit board.
Abstract Production System Algorithm.
Full Distribution of Production Memory.
Functional Division of the DADQ Tree.
Original DADO Algorithm.
The TREAT Algorithm.
Fine-grain Rete Algorithm.
Simple Multipie PS Program Execution.
The DADO]1 Prototype Processing Element.
The DADQ? Prototype Processing Element.
Mustration of Tre=e Neighbor Communication.
Relative Performance of Four DADO PE Configurations.
Pe:rformance Comparison of DADGOLl and DADC? of Similar Complexity on

Variable Size Working Memory.

JPDC lournai Version 10-28-34

1 Inctroductlon

Due to the dramatic increase in computing power and the concomitant decrease in computing cost
neeurring over the last decade, many researchers are attempting to design computer systems to soive
somplicated prodiems or execute tasks which have in the past been performed by human experts. Ths
focus of Knowiedge Engineering is the construction of such complex, knowledge-based expert computing

systems.

In general, knowledge-based expert systems are Artificial Intelligence (AI) problem-solving programs
designed to cperate in narrow ‘‘real-world’’ domains, performing tasks with the same competencs as a
skiiled human 2xpert. [llucidation of unknown chemical compounds [Buchanan and Feigenbaum 1978],
medical diagnosis {Davis 1976], mineral =xploration [Duda et al. 1979] and telephone cable maintenance
[Stoifo and Vesonder 1982| are just a few examples. The heart of these systems is a knowledge base, a
largs <allsction of facts, definitions, procedures and heuristic “rules of thumb", acquired directly from a
human ezpert. The knowledge engineer is an intermediary between the expert and the system who
sxcracts, formalizss, represents, and tests the rejevant knowledge within a computer program.

“Just as robitics aad CAD/CAM technologies offer the potential for higher productivity in the “blue-coilar”
wark forcs, it appears that Al expert systems will oifer the same productivity increase in the ‘“white-
sollar” work force. As a result, Knowiedge Engineering has attracted considerable atteation from
government ind industry for research and development of this emerging technology. However, as
xnowledge-based syscems continue to grow in size and scope, they wiil begin to push comventional
:omputing systams to their limits of operation. Evea for sexperimental systems, many researchers
reportedly experiencs frustration based on the length of time required for their operation. Much of the
research in Al has focused on the problem of represeating and organizing knowiedge, but little attention
4as been paid to specialized machine architectures supporting problem-solving programs.

DADO is a large-scale parallel machine designed to support the rapid execution of expert systems, as well
as muitiple, indenendent expert systems. In the lollowing sections we present an overview of DADO's
appiication domain as well as the raticnale for its design. Parallel algorithms for production system
axecution are then briefly described. We then detail the hardware design of the DADOZ2 prototype.
rurreatly under :castruction at Coiumbia University, comoprising 1088 microprocessors. We conclude with
a presentation of >erformance statistics recently calculated from simulations of the system. Based on our
studies, a full scale version of DADO comprising many thousands of procsssing elemeats will, in our
opinion, be technically and 2conomicalily feasible in the aear futurs,

2 Expert Systems

2.1 Current Technology

Knowledge-based expert systems have been constructed, typically, from two locsely coupled modules,
coilectively forming the problem-soluing engine (see Figure 1). The knowledge dase contains ail of the
relevant domain-specific information permitting the program to behave as a specialized, intelligent
probiem-solver. Expert systems contrast greatly with the zarlier general-purpose Al problem-solvers
which were typicaily implemented without a specific application in mind. One of the key difTerences is the
larz2 amounts of probiem-specific xnowledge sncoded within present-day systems.

Much of the researzh in Al has concentrated on sffective methods for representing and operationalizing

iv
human experiantizi fomain <nowiedge. The representations that have been proposed have taXen 1 variety

JPDC Journal Varsion 10-22-34

of forms inciuding pursly declarative-based logical formalisms, “highly-styiized™ rules or productions. and
structured generaiization hierarchies commaniy referrad to as semantic nets and frames. Maay knowliedge

bases have been impiemented in rule form, to be detailed shortly.

Figure 1: Organization of a Problem-Solving Eagine.

The inference engine is that component of the system which controls the deductive process: it implemeats
e most aporopriate strategy, or reasoming proce=s (or the problem at haad. The eariiest Al problem-
s0ivars ware impiamented with an iterative branching technique searching 3 iarge combizatorial space of
stobiem states. Heuristic knowiedge, applied within 1 static :ontrol structure, was introduced o limit the
search process whiie attempting to guarantee the successful formation of soiutions. [a coatrast, state-of-
the-1rt :xpert 3ysiems separate the control strategy from an inflexible program, and deposit it in tie
tnowiedge dase iiong with the rest of the domain-specific knowledge. Thus, the problem-solving stratezy
Secomes domain-dependent, and is responsible to a large sxtent for the gocd performance exhidbited dy
today’s systems. However, 3 great deal of this kind of taowledge is necessary to achievs highly competent

performance.

Within 3 zreat number of existing sxpert syatem programs, the corpus of tnowledge about the problem
domain is :mbodied by a Production Syatem program. As has been reported by several researchers,
producticn system rspresentation schemes appear well suited to the organization and implementation of
knowledgs-based soltware. Rule-based systems provide 1 convenient means for human 4xperts to
sxplicate <heir knowiedge, and are easiiy implemented 1nd readily modified and exteaded. Thus, it is the
sase with which rules can be acquired and explained that makes production systems so attractive.

2.2 Production Systems

In ganeral, 3 Production System [Newell 1973, Rychener 1978, Forgy and McDermott 1980 is defined by
3 set of rules, or sroductions, which form the Production Memory{PM), together with a database of
asseruons, called the Working Memory{WM). Each production consists of 3 conjunction of patierm
siementa. cailed the left-hand side (LHS) of the ruie, along with 1 set of actions called the rigit-hand side
{RHS). The RHS specifies information that is to be added to (asserted) or removed from WM wien the
LHS successfuily maiches against tae contents of WM. An example production, borrowed from the biocks

world, is iilustrated (3 figurs 2.

{1 speration. tde zraduction system repeatedly :xecutes the foilowing cycie of operations:

JPDC Journal Versicn 10=54=34

Flgure 2: An Example Production.

(Goal (Clear-top-of Block))

(lsa =x Black)

(On-top-of =y =x)

{Isa =y Blocx) ->
delete{On-top-of =y =x)
assert(On-top-of =y Table)

Il :he Zoal is to ciear the top of a block,
and thers is 3 block (=x)
covered by something (=y)
which i3 also a block,
then
remove the fact that =y is on =x f[rom WM
and assert that =y is on top of the table.

l. Match: For sach rule, determine whether the LHS matches the currsnt environmeat of WM.
All matching instances of the rules are collected in the conflict aet of rules.

2. Select: Choose sxactly one of the matching rules according to some predefined criterion.

3. Act: Add o or delete from WM ail assertions specified in the RHS of the selected rule or

perfcrm soms operation.

During the selection phase of production system execution, a typical interprater provides con/lict
resolution strategies based on the recency of matched data in WM, as weil as syntactic discrimination.
Rules matching data siements that were more rscently inserted in WM are preferred, with ties decided in

favor of ruies that are more specific (i.e., have more constants) than others.

2.3 Why a speciallzed production system archltecture?

One problem facing expert systems technology is efficiency. It should be evident from the above
description that large production system programs would spend most of their time in the match phase
r:quiring an snormcus aumber of primitive symbol manipuiation tasks. Hence, as this technology is
ambitiously appiied to larger and more complex problems, the size and concomitant slow speed of
:xecution of produc:ion system programs, with large rule bases, on conventional machines wiil most likely
ioom such attempts to failure. The RI program [McDermott 1981|, designed to configure Digital

Equipment Corporation VAX computers, provides a convincing illustration.

{n its current form. RI contains approximately 2500 rules operating on 3 WM containing several hundred
data items, descridiag a partiaily configursd VAX. Running on a DEC VAX 11/780 computer and
implemented in OPS3 [Forgy 1982, a highly efficient production system language, RI executes from 2 %o
Configuring an entirs VAX system requires 1 considerable

800 production syztem cycies per minute.
The performance of such

ameunt of omputing time on 3 moderately large and 2xpensive computer.

syziems will quickiy werzen as axperts are designed witd not caiy one to two thousaad ruizs. dut perhaps

JP2DC lJournal Version 10-23-34

with tens of thousands of rules. [ndeed, several such large-scale systems are zurreatly under deveiopment
1t various researen centers. Statistics ars difficuit %o calculate in the absence of specific 2mpirical data.
Sut it is conceivable that such large systems may requirs an unacceptable 1mount of :omputing time for 3
medium size conventional computer Lo execute 1 single cycle of production system execution! Thus, we
consider the design and implementation of a specialized production system machine to warant serious

attencion by parailel archicects and VLSI designers.

Much of the sxperimental research conducted to date on specialized hardware for Al applications has
focussed on the reaiization of high-performance, cleverly designed, but for the most part, architesturally
convsationai machines. (MIT's LISP Machine exemplifies this approach.) Such machines, while quite
possidly of zrear practicai interest to the research community, make no attempt to employ hardware

paraileiism on the massive scale characteristic of our own work.

Thus. simply stated, the goal of the DADO machine project is the design and implementation of 3 cost
effective high performance rule processor, based on largs-scale parallel processing, capabie of rapidly
sxecuting 3 production system cycle for very large rule bases. The ssseace of our approach is 0 sxecute a
very large number of pattern matching operations on concurr=at hardware, thus substaatially accelerating
the match phase. Our goals do not include the design of a high-spesd parallel processor capable of a

parailel search through a combinatorial solution space.

A small (13 pracessor) prototype of the machine, constructed at Columbia University from sompoaents
suoplied by Intel Carporation, has been operational since April 1983, Based on our sxperiences with
z2nsiructing tlis small prototype, wa delievs 3 larger DADQ protatype, comprising 1023 processors. to Se
tecanically and +conomically feasible for implementation using current technoiogy. We beiieva shat this
larger =xperimental device will provide us with the vehicle for svaluating the performance, as well as the
hardware design, of 3 full-scale version of DADO implemented entirely with zustom VL3I zirzuics.

3 The DADO Machlne

3.1 The System Architecture

DADO is 3 fine-grain, parallel machine where processing and memory ars sxtensively intermingled. A
fuil-scale production version of the DADO machine would comprise a very large set of processing elementas
(PE’s) (on the arder of thousands), sach containing its own processor, a small amount (16K bytes, in the
current design of the prototype version) of local random access memory (RAM), and a speciaiized [/O
switch. The PE"s are interconnected to form a compicte binary tree (see figurs 3).

Within the DADO machine, sach P is capable of =xezuting in sither of two modes under the zontrol of
run-time software. [a the first, which we will cail SIMD mode (for single instruction stream, multipie
data stream [Flyan 1972]), the PE axscutes instructions broadcast by some ancsstor PE within the tree.
In the second, which will be referred to as MIMD mode (fer multipls instruction stream, multiple data
stream), 2ach PE executes instructions storsd 1a its own locai RAM, independently of the otier PE's. A

stngie =onveaticnai coprocessor, adjaceat to the root of the DADOQ tres, controls the operation of the
entire 2nsemble of PE';s.

When 3 DADO PE :aters MIMD mode. its logical state is changed in such 2 way as to =Tactivaiy
“disconpest” it and its descendants from all higher-levei PE's in the tre=. [n particular, 3 PE in MIMD
mode dces not receive any instructions that might be placed on the tree-struciured sommunication bus by
za2 o 1t3 1ace:stors. Suear 3 PE may, however, droadeast .nitsueticns 0 de 2xesuted Dy its own

JPDC lJournai Version 10-22-34

descendants, providing ail of these descendants have themselves besn switched to SIMD mede. The
DADO machine can thus be configured in such 3 way that an arbitrary internal node in the tree acts 1s
the root of 3 tree-structured SIMD device in which all PE’s 2xecute a singie instruction (on different daca)
at a given point in time. This flexible architectural design supports muitiple-SIMD execution [MSIMD) as
for :xampie [Siegel et al 1981] but on a much larger scale. Thus, the machine may be logicaily divided
into distinct partitions, each executing a distinct task, and is the primary source of DADOQ’s speed in
axecuting a large number of primitive pattern matching operations concurrently.

The DADO [/O switch, which will be implemented in semi-custom gate array technology and incorporated
within the 1023 processing element version of the machine, has been designed to support rapid global
communication. In addition, a specialized combinational circuit incorporated within the [/O switch wiil
allow for the vary rapid selection of a single distinguished PE from a set of candidate PE's in the tree, a
pracass we call resolving. Currently, the 15 PE version of DADO performs these operations in firmware

smbaodied in its off-the-shelf components.

- -

3.2 The Binary Tree Topology h

As VLSI technology continues its downward tread in scaling, many PE's may be implemented on 2 singie
silicon chip. If the minimum featurs size is halved, for example, four times as many components can be
placad on a single chip. Thus, futurs microcomputer technology may provide additional speed, function
and storage capacity of a single PE on a chip. Alternatively, as is the case with many of the approaches
to fine-grain parailelism, many simpler procsssors may be integrated on the same chip. [t is crucial,
therefors, to interconnect a large number of processors in the most area-2(ficient topolegy possibie.
Further consideration muat also be given to methods which efficiently drive the largs number of devies
zomponents Lo be placed on the chip, and which ar= not restricted by the severs pin-out limitations of

packaging tacanoiogy.

In our initial work, several alternative parallel machine architsctures ware studied to determine a suitable
organization of 1 special-purpose production system machine. High-spesd algorithms for the parailel
execution of production system programs were developed for the perfect shuifle [Schwartz 1980| and
binary tr2e machine architeciurss {Browning 1978|. Forgy [1980] proposed an interesting use of 3e mesh-
connected [LLIAC [V machine [Lowrie =t. al. 1975| for the parailel axecution of production systems, but
recognized that his approach failed to find all matching rules in certain circumstances. Of these
architeciures, the binary tree organization wasg chosen for impiementation. For the preseat paper we

summarize these reasons as foilows: _
- Binary trees are efficiently implemented in VLSI technology:

* Using the well known “Hyper-H'' embedding (see figure 3), binary trees can be embedded
tn the plane in an amount of ares proportional to the number of processors. Thus, as
VLSI continues scaling downward, higher processor densities can be achieved.

* A design for a single chip type (see figure 4), first reported by Leiserson [1981], embeds
both 2 complete binary subtree and one additicnal PE, which can be used to implement
an arbitrarily large binary tree. Thus, binary tree machines have a very low number of

distinct integrated parts.
* Pin-out on the Leiserson chip remains constant for any number of embedded PE's.

® The Leiserson chip used with a simple recursive construction scheme producss printed
cireuit board designs {see figurs 3) that make= optimal use of avaiiable area. This single
riated :irouit board design is suitable for implementiag an arbitrariy large binary toze.

~ ey -
PR N

JPDC Journal Varsion 10-23-34

- Broadcasting data to 1 large aumber of recipients is handled efTiciently by tree structurss.

- Most importantly, the binary tre=e topology is a aatural [it for productica system programs.

Figure 3t Hyper-H smbedding of a binary trze.

We aote that binary trees do have certain limitations of practical importance. Although broadeastiog a
smail 1mount of iaformation o 3 large naumober of r=cipients is 2fficiently handled by binary tress. the
converse is, in general, unfortunately not true. That is, for certain computational tasks (permutation of-
data within the tree, for sxample) the siTeczive bandwidth of communicaticn is restricted by the top of the
tree. Fortunacely, as we shall see shortly, this "binary tree bdotilenecx’ does aot arise in tie execution of

producsion systems.

3.3 Production System execution

[n our sarijer work, extensive theoretical analyses and softwars simulations of 1 high-spe=d algorithm for
produciicn system execution cn DADO were completed and reported in [Stolfo aad Shaw 1982). Since
that time we have invented a number of other related parailel algorithms. [n this sestion we outline thess
five abstract algorithms. Each algoritim ofT2rs 3 aumber of advaatagss for particular types of production
system programs. A mors detailed trsatment of these algoritams has appearsd sisewhers [Scolfo 1584
Wa 2xpect to implement these aigorithms on 3 DADO prototype and :ritically evaluate he performanc:
of *ach on a varisty of appiication programs. Softwar= development is presently undsrway using a small
DADO prototype that has been coerational at Columbia University since Aprii, 1983, Ve begin with 2
orief description of 3 general parallel approach to sxecuting production systems.

LA

On first glance it appears that =ach phase of the productioa system sycie is suitable for dirsst sxesution

4
-

PDC Journal Vessicn 12-22-34

h

Figure 4t The Leiserson chip design.

L — - F
T — R
[Badhadbadiadadl d g | l------‘--l
- : |
) i i |
.' iy . I
: — - :
X : X c ‘
: | ' |
; ; o a |
| R | S |

on parailel hardware, with the greatest opportunity for a speed-up in the match phase. This requires a
partitioning of PM and WM among the available proc=ssors: some subser of processors would stors an

pracess the LHS of rules, whiie another possibly intersecting subset of procsssors would stors and process
WM elements. Thus, we envisage a set of processors concurrantly exezuting patterna matching tests for 3
aumber of riles issigned to them. Similarly, once a conflict set of riles is formed, high-speed selection
can be impiemented in parallel as a logarithmic time algebraic operation. Finally, the RHS of a rule can
be processed by a parallel update of WM. We summarize this approach by the abstract algorithm

itlustrated in figure 3.
This very simple view of the parallel implementation of the production system cycle forms the basis of our

subsequenc algorithms.

The reader is assumed to be knowledgeable about the Rete match algorithm (see [Forgy 1979 and [Forgy
1982]) for compiled production system programs. We will thus fre=ly discuss the details of the Rete match

when nesded without prior explication.

3.4 Algorithm 1: Full Distribution of PM

[n this case, a very small number of distinet production rules are distributed to each of the DADO PE's,

as weil as all WM elements relevant to the rules in question, i.s., only those data slements which match

some pattern in the LHS of the rules. Algorithm 1 alterzates the satirs DADO tree between MIMD and
SIMD modes of speration. The match phase is implemented as an MIMD process, whersas selection azd

act execute as S{MD operations.

!n simplest terms, 2ach PE exscutes the match phasze for its own small przducticn zystem. Cae :uch
ion sysiam is 2ilowed 1o “firs” 3 rale, howsver, which i3 communicated to ail cther PE's.

.
arociet he

Lgsoamis iiuzisated o Ogure 8.

JPC 2 Jonrnal Vesion [3-28-34

Flgure 3: The Leiserson printed circuit Soard.

r '] r] 14 " r n
. ’ S v 4 . v # . »
. - . ’ wey | . %) .
o el T " v a r . r

f i

| |

§ ; !
)) r » 7: " 14 n
8 4 8 4 . s . ’
’ 18 ’ 8 ’ L . .
N br a k4 » T . v

|
r a r » v a b4 n
. ’ u ’ . ’ . ’
4 8 ’ L 4 [L4 8
" Rd) R4] b » r
i
r 2 ' a r: n r 2
L] L ’ . ’ . .
] b ’ % . . ’ L
[R4] T a | r 2 r
[} r

1. Assign some sudset of rules to 3 set of (distinet) procsssors.

2. Assign some subset of WM elements to a set of procsasors (possibly distinct from those in step
1).

3. Repeat untii a0 rule is active:

1. Broadcast an instruction to all processors storing rules to begin the match phase,
resuiting tn the formation of a lacal conflict set of matching instances.

b. Considering =2ach maximaily rated instance within each procssscr. compute the
maximally rated rule within the entire system. Report its instantiated RHS.

2. Broadcast the changes to WM regorted in step 3.b to ail procsssors, which update their
local WM accordingly. =ad Repear;

Flgure 8: Abstrac: Production System Algorithm.

3.3 Algorithm 2: Original DADO Algorithm

The original DADO aigorithm detailed in [Stoifo 1983] makes dirsct use of the machine’s ability to sxzcute
5 bota MIMD 1aa SiMD modes of operation 1t the same point ia time. Tae machine is logically divided

i3t0 taree isnceztualy distinct tomponents: 3 PM-leved, 1a upper troe and 1 aumber of Wlf-sudtrezs (ses

JPDC Journal Version 10-12-34

Ca

(W1

Initiaiize: Distribute a simple rule matcher to sach PE. Distribute 3 few distinct rules to #ach

PE. Set CHANGES to initial WM =lementa.

. Repeat the foilowing:

. Act: For each WM-change in CHANGES do:

1. Broadcast WM-changes (add or delete 2 specific WM element) to all PE's.

b. Broadcast a3 command to locally match. |Each PE operates independently in MIMD

mode 1nd modifies its local WM. If this is a deletion, it checks its local conilict set and

removes rule instances as appropriate. [f this is an addition, it matches its set of rules

and modifies its local conilict set accordingly].

¢. =nd do;

- -

. Find local maxima: Broadcast an instruction to each PE to rate its local matching instances

according to some predefined criteria (conflict resolution strategy (see [McDermott and Forgy,
1978)).

. Seleen: Using the high-speed max-RESOLVE circuit of DADO?, identify a single rule Tor

axecution from imong all PE's with active rules.

. Instantiate: Report the instantiated RHS actions. Set CHANGES to the reported WM-

changes.

. end Repeat;

Figure 7: Fuil Distribution of Production Memory.

S2P0C Journal Version 10-2:-34

'h

10

figurs 8). The PM-level consists of MIMD-mode PE's executing the match phase it oae appropriately
shosen levei of the iree. A aumber of distinc: rules are stored in sach PM-level PE. The WM-suptrees
rooted by the PM-level PE's consist of 3 number of SIMD mode PE's collectively aperating 1s a hardware
content-addressadle memory. WM siements reievant to the rules stored at the PM-level root PE ars fuily
distriouted throughout the WM-subtrse. The upper tree coasista of SIMD mode PE's lying above the

PM-ievel, which implement syncironization and selecticn operations.

Figure 31 Functional Division of the DADO Tree.

Ucocer Tree:

syncaTronize,
setect § act

A

—_— N L_svel:
TRICH, SOt JBieVArcCe
4 nyantste

o

Soment - agcressacie
memcries

—
|
\ } ‘WM Sustrees:
!
—

\
\
S

M

[t i3 probabdiy best to view WM as a distributed relation. Each WM-subtrae PE thus stores relational
tupies. The PM-levet PE's match the LHS's of rules in a manner similar %0 processing *siational quertes.
In terms of the Rete match, intracondition tests of pattera siements in the LHS of a sule 1re sxecuted as
reiational sefection, while tnterzondition tests correspond to equi-join operations. Each PM-levei PE thus
stores 1 ser of reiational tests compiled from the LHS of 1 rule set assigned o 1t. Concurrency is achievad
Setween PM-leval PE's as well 1s in accessing PE's of the WM-subtrees. The aigoritam tis iilustratad ia
figure 8.

3.8 Algorithm 3: Mlranker's TREAT Algorithm

Dantel Miranker has invented an algorithm which modifies Algorithm 2 o include sevaral of the featurss
of =ae Reie matza for zaving state. Tae TREe dsscciative Temporsily reduadaat (TREAT) sigesitam
Miranxer 1584 mag2s uze of the :ame legical division of the DADO tree as in Algeritam 2. Howavar, tns
$tale of e >revices matsd operation (g iaved in distrisuted data structurss witain the WM-suotoees,

<PDC Journsi Version 10-28-34

l

2}

(&)

e

11

. Initiaiize: Distribute a match routine and a partitioned subset of rules to each PM-level PE.
Set CHANGES to the initial WM =siements.

. Repeat the [cllowing:

. Act: For sach WM-change in CHANGES do;

a. Broadcast WM-change to the PM-level PE’s and an instruction to match.

b. The match phase is initiated in cach PM-leve] PE:

i.

lii.

Each PM-leve] PE determines if WM-change is relevant to its local set of rules by
a partial match routine. If 30, its WM-subtree is updated accordingly. [If this is 2
deletion, an associative probe is performed on the element (relational selection) and
any matching instances are deleted. If this is an addition, a free WM-subtree PE is

identified, and the =lement is added.]

ii. Each pattern <lement of the :ules stored at 3 PM-level PE is broadcast to the

WM-subtree below for matching. Any variable bindings that occur are reported
sequentially to the PM-ievel PE for matching of subsequent pattern slements

(relational equi-join).

A local conflict set of rules is formed and stored along with a priority rating in a
distributed manner within the WM-sybtrse.

e. =nd do;

. Upon termination of the match operation, the PM-levael PE's synchronize with the upper tree.

. Select: The max-RESOLVE circuit is used to identify the maximally rated coaflict set

instance.

. Report the instantiated RHS of the winning instance to the root of DADO.

. Set CHANGES to the reported action specifications.

. #nd Repeat;

Figure 91 Original DADO Algorithm,

JPDC Journaj V:reion 10-23-34

b,

TREAT views the patiern slements in the LHS of rules as reiational aigebra terms, as in Algorithm 2.
Thus. the svaiuation of such refational algebra tests is ilso axecuted within the WM-subtrees, State is
savad in 1 WM-subtree in the form of distributed Rete aipha memories corresponding to partial zeleztions
of tuples mateching various pattern slements. Rule instancezs in the conflict set computed on previous
cycies ars 1iso stored in a distributed manner within the WM-subtrees. These two additions substantiaily

imprave the performancs of Algorithm 2, (We note that Anoop Gupta of Carnegie-Mellon University
2. TREAT shouid

independently anaiyzed a similar aigorithm in [Gupta 1983|. Compared to Algorithm
serform substantially better for temporally redundant systems. We note that Gupta's analysis of

algorithm 2, howaver, depends on certain assumptions that derive misieading resuits.)

Aaother aspect of TREAT is the clever manner in which relevancy is computed. Pattern slements are
first distributed 20 the WM subtrees. When a2 new WM eiement is added to the system, a simple match it
2ach WM-subtres PE determines the set of rules at the PM-level which are afTzcted by the change. Those
identified ries are subsequently matched by the PM-level PE restricting the scope of the match to a
smaller set of rules than would otherwise be possible with Algorithm 2.

The TREAT algorithm is outlined in figure 9.

3.7 Algorithm 4: Flne-graln Rete

A Rete astwork compiled from the LHS's of a rule set =onsists of 1 aumber of simple nodes *2ncoding
match oparations. Tokens, representing WM modifications, flow through the network in one direstion ind
ars processed 3y sach node lying oa their travarsed paths. Fortunateiy, the maximum fan-in of any acde
in 1 Rete aetworkt is vwo. Hence, 3 Rete network cia be represented 13 3 binary tree (with some munimal

amount of acde splitting).

This observation l2ads to Algorichm 4 whersby a logical Rete network is smbedded on the physicai DADO
binary iree struciure. [n the simpiest case, leal nodes of the DADO tree store and execute the initial
linear chains of one-input test nodes, whereas internal DADQO PE's execute iwo-input node operations.
The physical canasctions bet'wesn processors correspond to the logical data flow links in the Rete network.
The :ntire DADO machine operates in MIMD mode whiie executing this algerithm, behaving much like a
otpeiinad data flow arshicecturs.

Algorithm 4 is iilustrated in figure 10.

3.8 Algorithm 5: Multiple Asynchronous Executlon

In our discussion so far, no mention was made about multiple ruie firings. We may view this as

- multiple, independently =xecuting production system programs, or

- 2xecuting multiple conflict set rules of the same proudction system program concurrantly.

In this regard we ciTsr not a sinaie alzorithm, but rather an observation that may be put to practical use

in 2ach of the 1Zovamentioned aigerithms.

"We note that i1ny DADO PE may be viewed as a root of 3 DADO machnine. Thus, any algorithm
operating at th: »hvysical root of DADO may also be sxecuted by some descendant node. Hence, any of
the aforsmenzionz1 iigorithms can he axecuted at various sites in the machine soncurreatly! {This was
noted in {Stoifo 1nd Shaw 1982].) This coarse leval of paralleiism. however, wiil nsed to b2 zontroiled by
some aigoritamic 2rocess axecuted in the upper part of the tree. The simplest tase is representad by the

a9
L

preczdure dlustratad in figure 11, which is simiiar tn some respects to Algorithim 2.

In tne rases wner: various PS-level PE's need to :ommunicate resuits with :achother, step 1 is reslaced

JPDC Journai Versivon 1C-2.-34

1. Inizialize: Distribute %o each PM-level PE a1 simple matcher (described below) and a compiled
set of rules. Distribute to the WM-subtr=e PE’s the appropriate pattern siements appearing in
the LHS of the rules appearing in the root PM-level PE. Set CHANGES to the initial WM

s{ementa.
2. Repeat the following:

3. Act: For 2ach WM-change in CHANGES do;

2

1. Broadcast WM-change to the WM-subtree PE's,

b. If this change is a deletion, broadcast an instruction to match and delete WM zlements
and any affected conflict set instances calculated on previous cycles.

¢. Broadcast an instruction to PM-level PE to enter the Match Phase.

- -

d. At sach PM-level PE do;

i. Broadeast to WM-subtree PE's an instruction to match the WM-change against
the local pattern :lement.

ii. Report the affected rules and store in L.
iil. Order the pattern elements of the rules in L appropriately.

iv. For each rule in L do;

1. Match remaining patterns of the rules specified in L as in Algorithm 2.

. For each new instaace found, store in WM-subtr== with a priority rating.

19

3. and do;

v. end do;

e. 2nd for #ach;
4. Select: Use max-RESOLVE to find the maximally rated instance in the tree.
5. Report the winning instance.

§. Set CHANGES to the instantiated RHS of the winning rule instance.

. 2nd Repeat;

Flgure 101 The TREAT Algorithm.

JPDC Journal Version 10-28-34

N

14

1. [nitialize: Map and load the compiled Rete netwark on the DADO trse. Each node is provided
with the 1ppropriate match code 1nd aetwork information (see [Forzy 1982 for details). Set

CHANGES to initial WM =lements.

2. Repeat the following:

3. Act: For sach WM-change in CHANGES do;

3. Broadeast WM-change (a Rete token) to the DADO leaf PE's.

Broadeast an instruction to ail PE's to Match. (First, the leal processors sxecute their

b.
one-input test sequences on the new token. The interior nodes lay idle waiting for match
resuits computed by their descendants. Those tokeas passing the ona-input tests are
communicated to the immediate ance=stors which immediateiy begin processing their two-
input tests. The process is then repeated until the physical root of DADO reporis
c2anges to the coaflics set maiatainedin the DADO control processor).
2. end do;
Seisct: The root PE is provided with the chosen instance from the coatroi processor. Set
CHANGES to the instaatiated RHS.

4. 2nd Repeat;

Flgure 11: Fiae-grain Rete Algorithm.

-PDC Journal Va2rsicn 10-28-34

[

_Broadcast an instruction t

-

1o

_lnitialize. Logically divide DADO to incorporate 2 static Production System-Level (PS-level),

similar to the PM-levei of Algorithm 2. Distribute *he appropriate production system program

»0 2ach of the PE's at the PS-leveal.

o sach PS-level PE to begin execution in MIMD mode. (Upon

completion of their respective programs, each PS-level PE reconnects to the tree above in

SIMD mode.)

. Repeat the following.

a. Test if ail PS-level PE's ar= in SIMD mode.

Ead Repeat;

. Execution Complete. Halt.

Figure 12: Simple Multiple PS Program Execution.

JPOC Journal Verslon 12-22-34

fi -

L6

with approopriate rode sequences to report and broadcast vaiues from the PS-level in the proper manner,
Each of the programs executed by PS-level PE's are first modified 0 synchronize as necessary with the
soot PE :0 rocrdinate the communication acts, at, for axample, termination of the Act phase.

In addition to concurrent execution of multiple production systam programs, methods may be employed o
concurr2atly execute portions of a2 single production system program. These methods are intimataiy ried
10 tie way ruies are partitioned in the tree. Subsets of rules may be constructed by a static analysis of
PM separating those rules which do not dirsctly interact with 2ach other. [n terms of the match problem-
soiving paradigm, for sxample, it may be convenient to think of independent subproblems and the
methods implementing their solution (see [Newell 1973|). Each such method may be viewad as 1 higa-
level subroutine reprasented as an independeat rule ser rooted by some internal node of DADO.
Afgoritam 1. for :xample, may be applied in parallel for =2ach rule set in question. Asyachronous
axecution of these subroutines procezds in a straight forward manner. The complexity arises when one
subset of rules infers data requir=d by other rule sets. The coordination of these communication acts is
tae focus of our ongoing research. Space does not permit 3 complete specification of this approach. and
thus the reader is sncouraged to see [Ishida 1984 for details of our initial thinking in this dirzction.

Of the five reported algorithms, only the original DADO algorithm (aumber 2) has been carefully studied
analyticaily. Thae performance statistics of the remaining four algorithms have yet o be anaiyzed in
decail. However, much of the performancs statistics cannct be aaalyzed without specific 2xampies and
detaiied impiementations. In the course of the next year of our researsh we intend to impiement 2aci of

the stated algerithms on a working prototype of DADO.

Although analytical studies and softwars implementations are primary tasks of the DADO project. our

surreac 2iforts have focussed on the coanstruction of hardwars. Many parailel computing devices have
been proposed :a the literature, howsver, often such devices are constricced only on paper. Many
scieatific and snginesring proolems rsmain undetected until an actual device (s construct:d aand
:xperimentaily svaiuated. Thus, we are activaly buiiding a larger prototype consisting of 1023 Intai 8731

A small 13 PE version of DADO is currsatly operational at Columbia University

microcomputer <hips.
[n the remainder of %his

acting as a deveiopment system for the soitware base of the larger prototype.
paper we concsatrate on the details of the hardware for these prototypes, as well as the soitware systams

that have beszn impiemented thus far.

3.9 Comparison to other tree machlnes

[t should be notsd that many of the decisions made in designing DADO were influenced by the
orgamization of the NON-VONI supercomputer (Shaw 1982] and the Caitech tree machines [Browning
1980]. Psrhaps the best way to distinguish DADO from these two tree machine architecturss is by
zonsidering the modes of sxecution of each of the constituent PE's, and the implications for the hardwarse

design.

Tae proposed Caitech tree machine is a full MIMD device incorporating thousands of PE's in a full-scale
versicn. Each PE sxscutes its own independent program aad thus requires 1 substantial amount of loral
memory as is the :age in the DADO machine. Communication is supported by a buffersd message passing
protocol, where tle recepient of =ach message is identified by relatively complex [/O circuitry at 22ch
node. Other forms of communication (for sxample, global broadcast) ars implemented by sequential logie.

NON-VONI. by :omparison, is a full SIMD, massiveiy-parallel synchronous device incorporating miilions
of simple. Aghiy-area efficien: PE's, 2ach associated with only 54 bytes of local RAM. [n general. 2ach
NON-VON1 PE 2xecutes an instruczion broadcast {rom 2 singie eontroi nrocsssor, located at the root of
3 trze. 2ad thus requirss 1 highly-2ificient method of giobal broadeast. The [/O switch design
arrporatad witain 2zed node of tae NON-VONIL tres containg 2 f2w invarters driving the signals 1iong

TiEt duE iad iheradore commualcziion (S imziementad Sy digh-spesd romobinational logic.

]

JPDC Journsi Varsion 10-25-34

J#

17

DADO., on the other hand, is capable of executing in both SIMD and MIMD modes, and thus contains
siements of both machine designs. DADO incorporates a combinational [/O switch simiiar to that
smployed in NON-VON. However, each DADO PE may drive the [/O switch, in addition to the singie
roprocessor of DADO. Thus, DADO 1also supports very high speed global broadcast. However, because of
the repiication of substantial programs within various PE's in the tree, 3 DADO PE has been designed
with a more general (8 bit) processor as well as an 16K byte RAM. Thus, DADO cannot achieva the same

processor density as is possible in NON-VON.

The DADO design attempts to synergistically merge the advantages of both the NON-VON and the
Caltech tree machine. [ndeed, DADO can be easily programmed to simulate both proposed designs. It is
10t clear whether or not the NON-VON approach to single-instruction stream, massive parallelism will be
substantially limited by its inability to execute independent coarser-grain programs concurrently. For
sroduction system programs, that appears to be the case. Nor i3 it clear whether or not the Caltesh
approach of large-acale parallelism, albeit substantially lower than that of NON-VON for certain
computational problems, can achieve the same throughput projected for NON-VON. It is our hope that
experimentation with the DADO prototype may provide some of these answers, and begin to elucidate the

precise nature of the tradeofTs involved with boCh approaches.

4 The DADQ Prototypes

4.1 Physleal Characteristles

As noted, a 15element DADO! prototype, constructed from (partially) donated parts supplied by Intel
Corporation, has besn operational since April 25, 1983. The two wire-wrap board system, boused in a
chassis roughly the size of an [BM PC, is clocked at 3.5 magahertz producing 4 million instructions per
second (MIPS) {see [Miranker 1384b]). (The =iTective useadbie MIPS is considerably less due to the
sigaificant overhead incurred in interprocessor communication. For each byte quantity communicated
through the system, 12 machine instructions ars consumed at 2ach level in the tree while executing an
asynchronous, 4-<ycle handshake protocol.) DADO1 contains 124K bytes of user random access storage
and 80K bytes of read only memory. A much larger version, DADOS, is currently under coanstructioa
which will incorporate 1023 PE’s constructed from two commerciaily avaiiable Intel chips. DADO1 does
aot provide enormous computational resources. Rather, it is viewed as the development system for the
software base of DADO2, and is not expected to demonstrate a significant improvement in the speed of

=xecution of a production system application.

DADOQ2 will be implemented with 32 printed circuit boards housed in an [BM Series [cabinet (donated by
[BM Corporaticn). A DEC VAX 11/750 (partially donated by DEC Corporation) serves as DADO?2’s
coprocessor (although a Hewlett-Packard workstation may be used as weil) and is the only device a user of
DADO? will see. Thus, DADO? is considered a transparent back-end processor to the VAX 11/730.

Thae DADO?2 system will have roughly the same hardware complexity as 2 VAX 11/750 system, and il
amorized over 12 units will cost in the range of 70 to 90 thousand dollars to construct considering 1982
mariet retail costs. The DADO?2 semi-custom [f/O chip is planned for implementation in gate array
technology and will allow DADO?2 to be clocked at 12 megahert2, the full spesad of the Intel chips. The
average machine instruction cycle time is 1.8 microseconds, producing 3 system with 3 raw computational
throughput of roughly 570 million instructions per second. We note that little of this computational
rescurce i3 wasted in communication overhead as in the DADO1 machine.

JPLCC Journal Varsion 10-2r-34

13

4.2 The Prototype Processing Element

Each PE in the l3-eiement DADO!L prototype system incorporates an [ntel 8731 microcomputer <hip.
serving 1s he srocessor, and an 3K X 8 Intel 2186 RAM chip, serving as the local memery. DADO?2 wiil
incorporate 3 slightly modified PE. The Intel 2187, which i3 fully compatible with but faster than an [ntel
2186, repiaces the DADOL RAM chip ailowing the processor to be clocked at its fastest speed. Further,
the custom [/O zhip will contain memory support circuitry and chus also replaces several additional zates

»mpioyed in DADOI.

Although the original version of DADO had been designed to incorporate a 2K byts RAM within sach PE,
an 3K bdyte RAM was chosen for the prototype PE to allow a modest degree of fexibility in designing and
impiementing the :oftware base for the full version of the machine. In addition, this extra “‘Sreatiing
room” within 2ach PE allows for sxperimentatioa with various special operations that may be
incorporated in the full version of the machine in combinational circuitry, as well as afTording tae

opportunity to criticaily =valuate other proposed (tree-structursd) parallel architectures through software

simulation.

- -

[t is worth noting though that the proper choice of “'grain size'' is an interesting open question. That is.
“through sxperimental evaluation we hope to determine the size of RAM for 2ach PE, chosea against the
aumoer of such siements for a fixed hardware compiexity, appropriate for the widest range of production
system appiications. Thus, future versions of DADO may consist of a number of PE's sach coataining an
amount of RAM significantly larger or smailer than implemented in the curre=at prototype systems.

Tae Intel 3751 is 12 moderateiy powsrful 8 bit microcomputer incorporating 1 4K :raseabdle programmabie
r22d oniy memery (EPROM), and 1 256-byte RAM on i single silicon caip. The incorporation of aa
ZPR0M in :ach DADO?2 PE provides a suitable measurs of conservative saleguarding i wae zver
ancounter bugs that need to be repairsd when the prototype is fully configured. One of zhe x2y
tharactenisiics of tae 3751 processor is its [/O capabiiity. The 4 parallel, 8-bit poris provided in 2 40 pin
pacxage has contriduted substantially to the sase of implementing 2 binary tree intercoaneciion between
sroceasors. DADOL was implemented within 4 months of delivery of the hardwars components, Figure

13 iilustraces the DADOL prototype PE whiie figurs 14 iilustrates DADO?2's PE.

Nots that the same processor connections 2xist in the DADQ?2 PT desiga a3 those appearing in the
DADOL! desiga. If in the unlikely svent that the pianned [/O chip does aot {unciion properiy, DADO?2 will
thus remain operational, but will not run as fast as =2nvisaged. Since 2ae DADO1 hardwars to date 1as
remained operabie, we are convinced that the fully upward compatibie DADO?2 PE design easurss the

successful operation of a 1023 PE version of the machine.

In DADO1 the ¢ccmmunication primitives and sxecution modes of 3 DADO PE are implemeated by a
small kernel system resident within sach processor EPROM. The specialized [/O switch 2avisaged for the
larger varsion of the machine is simulated in the smaller version by a shor: sequeatial computation. As
noted, the 1023 siement prototype would be capable of executing in excass of 3570 MIPS. Althouzh
pipelined communication is employed in the DADO1 kernel design, it is sxpecied that fewer instructions
per second would be schisved on DADO? without the [/O chip, as detailed in a following section. Thus.
the design and impiementation of a custom [/O chip forms a major part of our curr=at hardware researsh

activitles,

[t should be noted that, in xeeping with our principles of "‘low-cost performances.” we have selested 2
processer technoicgy one ge=neration behind existing availabie microcomputer technology. For example.
DADO? ¢ouid havs desn designed with 1023 Motoroia 68000 processors or [ntei 80236 chips. Instead. we
lave chcsen a relatively siow technology to limit the number of chips for sach PE, as weil as to
lemonstrate cur mcost important architectural principals in a cost effective manner.

Furthermore, zince tde Intel 8731 does act oress surrent VLST tash:

Iy

JPDC lournal Varalon 1D=-225-34

Figure 131 The DADO! Prototype Processing Eiement.

T

=

[. 'Y
-oum ey 1Lms
] &
) 217 BT

the reaim of feasibility to implement 3 DADO?2 PE on 3 single silicon chip. Thus, although DADO? may
ippear impressive (an inexpensive, compact system with a thousand computers executing roughly 600
miilion insructions per second) its design is very conservative aad probably ac¢ feast an order of magnitude
less sowerful than a similar device using faster technology. [t is our conjecture though that the machine
will be practical and useful and many of its limitations will be ameliorated as VLSI continues its
dowaward trand in scaling. (DADOQ3 may serve to'prove this conjecture.)

4.3 The EPROM Resident Kernel

Each 8751 processor in the DADQ machine contains an identical program storsd within its EPROM, This
program, called the DADO kernel, implements the execution semantics of 2 DADO PE, {the MIMD and
SIMD modes of operation), and is in a sense the microcode of the DADO machine. The kernel may alco
be viewsd 2s an operating system. [t contains low level [/O drivars, ccde for higher levsi DADO
sommunication primitives and run time support procsdurss. PPL/M, detailed in a subsequent section, is
tae high level parailel language designed for system-level programming of DADO.

The DADO kernel and the PPL/M compiler are tightly integrated. The advantages of restricting access
10 *he machine through a high level language are numerous. Most importantly, the preductivity of the
DADO system programmers is enhanced by programming only in 3 high level language as oppcsed to
assembly languags. Further, the parallel programming coastructs ars clearly defined 3ad the DADO
x2rnei nesd only suppert a small aumber of weil defined srimitives. Lastly, PPL/M is strongly typed aad
ta2 compiler pravents tie syst:m programmer from Jdirsstly accsssing the xarn:l. Ther:fore, the Xarael

tzn e made TToust willout #xtansiva :oror iad parameter <a-oxiag.

JPDC Z:urnal Varsicn [C0-2:-34

&

The DADO? Prototype Processing Element.

Flgure 14t
——e
| W

Ay it
= & e B
- w e n —E l-,

-—me || ' ‘ L | wae

—— &
——'T=_——_i} -

T |
) - XA XL

T2 cernel has two top level internreters, one for MIMD mode behavior of 3 PE and one for SIMD mods.
Moenitor cails made by run time software may change the state of 3 PE from one mode %o the other. [n
MIMD mode. code is sonvantionaily fetched and =xecuted from the PS's locai RAM. SIMD iastructioa
siccks may be smbedded within such code. When a SIMD biock is sncountersd 3 monitor ¢all is made
with 1 pointer 10 the SIMD block. The kernel then broadcasts the instruction stream lo the desceadaat
PS’s and subsequently executes the instructions directly.

The 3IMD mode interpreter executes a simple loop: read the instructions broadcast {rom its parsnt. pass
them 0 1ts chuidren and if the PE is in SIMD snabled state sxecute them. [the SIMD instruction is a
DADO sommunication primitive, coatrol is passed to an appropriate monitor routine.

DADO :ommunication primitives are implemented with six low level [/O functions. Each funciion
aarforms a read or write operation with each of 2 PE's three tree neighbors. For examoie, the DADO
primitive “SEND(RC)” simultaneousiy moves a byte from each PZ’'s variadle called A3, to 3 second
variacis [C8, in the PE’s right chiid (see figurs 13). This operation is illustrated by the (cilowing sode
s2qyence. The distinguished “snsble’” variabie, EN1, appearing in 2ach PE is set to the currenc SIMD
mods stats of the proceusor: sither enabled or disabled.

=

. o

+P0OC Journal Version 10-28-34

SEND _RC: procedure ();

Jeciare temp byte; /* Local temporary. */
temp== Read _P; /* Read byte [rom parent. */
Write _RC({A8); /* Write byte to left child.*/

if EN1 then [O8 = temp; /* If enabled, accept the byte. */
=nd;

The low level routines “Write _RC' and “Read _P" act as no-ops if the communication is performed
with a logically disconnected neighboring PE. The PPL/M compiler insur=s that this kernel routine is
cailed within 2very SIMD PE at the same time. The low level I/O functions =xecute the primitive steps of
a four cycie handshake protocol which forces the appropriate synchronization of the operations.

A complex issue arises when defining communication among a group of processors, some of which may be
in SIMD disabled state. What shouid a SIMD disabled processor do with a byte received from 1n =nabled
processor? Simiiarly, what should happen if the communication primitive directs a dizabled procsssor Lo
send 2 byte to 1a 2nabled one! These issues have been resolved using the following convention:

A SIMD procsssor executes all instructions whether it is enabled
or disabled. However, instructions sxecuted by a SIMD disabled processor :

have no local side efTects.

In effect a disabled processor may communicate data to a neighbor, but data received by the disabied
processor is ignored. Thaus, the behavior of a PE is determined only by information local to the PE. In
the above code segment for example, the kernel routine completely performs the 1/O operation and then
explicit!ly tests the enable flag before introducing the side eiTect,

4.4 The DADO?2 I/O Chlp

In the DADOI1 prototype all communication operations ars performed directly by firmware in the
processor’s kernel. For each byte moved along 3 tras edge 12 instruction cycles are consumed to execute 3
four cycle handshake. Though computationally expeasive, this implementation is quite expedient for the
rapid prototyping of a small machine. Howevar, a2 1023 node DADO?2 is 10 levels deep. Thus, if DADO?
were implemented using the same strategy an instruction broadcast from the root of the tree to a leaf
would require at least 120 instruction cycles. For the larger machine we decided to construct a smail
circuit to improve global communication: Broadcast, Report, and Resolve {discussed below). Despite using
a synchronous bit-serial protocol, the currant [/O chip design is able to broadeast or report a byte value
thoughout the machine in less than one 8731 instruction cycie.

We havs also included in the design memory support logic with parity checking as well as a global
interrupt mechanism. The global interrupt mechanism permits any PE in the machine to initiate an
interrupt in every PE and the host coprocessor. After an interrupt the machine may perform a contex:
switch. Curreatly under development is a symbolic debugging program for a parailel programming

eavironment which uses this hardware capability.

The [/O chip is being implemented in a small, 1000 gats, semi-custom gate array chip. The logic design
and simulation is being done with the aid o a Valid Logic Systems Scald design station, a state of the art

logic decign system. The semi-custom [/O chips will be fabricated under contract with LSI Logic

Carporation.

JPDC Journal Varsion 10~28-34

h

(223l

- s

Flgure 13: [llustration of Tree Neighbor Communication.

A Tro
Srsasiee M

e ~wmmnose
wre was s

NaAts ¢ ¢ T euatrus Jadary & WA) rNeTTuUction

LI "%a)
Siemmieg ST
TME -t roee
oS srma s

&
BE

Mata 374 4 IIT0 suatrIe artE” A WNoEC) iAstruction

JPDC lJournai Yession 10-28-34

b

5 Performance Evaluation of DADOZ2

3.1 Design Alternatives

As noted. much of the available computing power in the DADOL prototype is consumed by firmware
executing 2 four :ycie handshake communication protacol. For this reason we investigated the tradeo(Ts
invoived with adding a specialized [/O circuit to handle global communication among the PE’s in DADO2.
The current [/O circuit design provides the means to broadcast 1 byte %o all PE's in the tree in less than
one 8751 instruction cycle. This efficiency gain does not come free. The [/O circuit increases 2 PE’s
component sount. The appropriateness of the [/O circuit was determined by investigating the relative
performancs of a machine incorporating the [/O circuit. and a machine without the [/O circuit and using

the remaining board area for additional PE's.

A second but orthogonal issue for the machine design is whether or aot it is worthwhile to buffer the
instruction stream to the SIMD PE’s. In a typicali SIMD machine a control processor issues a stream of
machine level instructions that ars sxecuted synchronously in lock step by all the slave processors in the
array. DADO is different. Since sach PE of DADO is a fully capable computer, and communication
batween PE's is generally expensive, an instruction should be made as “meaningful” as possibie. What is
sammunicacted 1s an instruction in DADO is usually a pointer to a procsdure, stored locaily in #aca slave
PE. Primitive SIMD DADO instructions are in fact parailel procsdure ¢ails and may be viewed as macro

stryctions.

For example, 1 common instruction that will be sxecuted by a DADO PE is “"MATCH(pattern)”, where

MATCH is a generalized pattern match routine local to each processor.

Transmitting pointars to procedurss makes effective yse of communication links but introduces 3 difficult
problem. A precedurs may behave differently depending on the locai data. Thus, the same macro
instruction may require different amounts of processing time in =ach PE. !n such a device either the PE's
must synchcanize on avery instruction, and therefore potentially lay idle while the slowest PE finishes, or
the PE's must Se able tc buffer the instruction stream Lo possibly achisve better utilization. However,
buffsring the instructions requires additional overhead which may decrease the ovarail performance of the

system.

5.2 Evaluation Method

To resolve these two design issues the DADO instruction stream was characterized by studying the code
implementing the match phase of the DADO production system algorithm. (roughly 10 pages of PPL/M).
Queuing modeis were developad for sach configuration representing the 4 possibie combinations: a DADO
PE with aad without the I/O circuit, and with and without buffering. The four modeis were simulated
using the [(BM Research Queuing Network Simulation package, RESQZ2, [Sauer 1982}, Tae package has a
aumber of very powsrful simulation primitives including generation of job streams with a variety of
distributions times, sctive queues with a variety of queueing service disciplines as well a5 mechanisms to
provide flow contrei. Complete detaiis of this study can be found in (Miranker 1983).

5.3 Evaluation Results
Figurs 16 summarizes the relative throughput of the four configurations working on a problem typical of

the size we sxpect 3 1023 node DADO to handle: 1-2000 productions and 1000 ~orking memory slements.
The simulations saow that the [/O circuit :aa be expazted to aearly double i+ jerformance of the DADO
ace of 27 and 20

machine. Howsvar, "3z ovarhead associated with duff2ring causes a1 decr=ase in pariormanc:

i’

parzentin 2snfiguraticns with and witicut the [fO cirsuic, regpactivaly.

Y

JPDC Journal Varsion 10-23-34

Jrov

Flgure 16: Relative Performance of Four DADO PE Configurations.

-
e - -39 o - 29 oy o3 l
- - w! wsim
/78 Sirtu 1,9 QIrguee, 1/ Tiecur | /G Tireus g

Figurs 17 is a comparison of a 5 level DADO subtzze (consisting of 31 PE's) without the [/O circuit, 3ad 3
4 level DADO subtree, {consisting of 15 PE's) with the [/O circuit. The x-axis represents a rough
aoproximation of e aumber of WM slements in the system. The griph shows that for typical size

sroblems 3 9 leval deep DADOZ with the [/O circuit will outperform 3 10 level deep DADO1 without the
1/O circuit by roughly 15 percent. However, the smaller machine's performance degrades faster than that
of the larger machine. The simulations indicate for problems larger than those we anticipage it is

worthwhile 0 dispense with the [/O circuit in favor of additicsal PE's.

Parformance Comparison of DADO! and DADO? of Similar

Figure 17:
Complexity on Variable Size Warking Memcry.

qelactive
Tarsugapue

-~
o

“4cIXLnG Memory 3ize

JPDC Journal Varsicn 10-28-34

b

8 Programming DADO

PL/M |[Intel 1982] is a high-level language designed by Intel Corporation as the hest programming
anvironment for applications using the full range of Intel microcomputer and microcontroller chips. A
superset of PL/M, which we call PPL/M, has been implemented as the system-level language for the
DADO prototypes. PPL/M provides a set of facilities to specily operations to be performed by

independent PE’s in parallel.

Intei’'s PL/M language is a conventional block-oriented language providing a full range of data structures
and high-levei statements. The following two syntactic conventions have been added to PL/M for
programming the SIMD mode of operation of DADQ. The design of these constructs was influenced by
the methods smpioyed in specifying parallel computation in the GLYPNIR language [Lowrie et al. 1975
designed for the [LLIAC IV parallel processor. The SLICE attribute defines variables and procsdures that
are resident within sach PE (Al, [08 and ENI, cited above, for example). The second addition is a
syntactic coastruct, the DO SIMD block, which delimits PPL/M instructions broadcast to descendent
SIMD PE's. (In the flollowing definitions, optional syntactic constructs are represented within square

~ brackets.)

The SLICE attribdute:

DECLARE variable[(dimension)] type SLICE;

name: PROCEDURE{(params)] [type| SLICE;

Each declaration of 2 SLICEd variable will cause an allocation of space for the variabie to occur within
each PE. SLICEd procedures are automatically loaded within the RAM of each PE by an operating

system executive resident in DADQ's coprocessar.

Within a PPL/M program, an assignment of a value to a SLICEd variable will cause the transfer to occur
within :ach 2nabled SIMD PE concurreatly. A constant appearing in the right hand side will be
iutomaticaily broadcast to all 2nabled PE's. Thus, the statement

X=3;
whers X is of type BYTE SLICE, wiil assign the value 5 to 2ach occurrence of X in each 2nabled SIMD
PE. (Thus, at times it is convenient to think of SLICEd variabdles as vectors which may be aperated upon,
in whcle or in part, in parallel.) However, statements which operate upon SLICEd variables can only be

specified within the bounds of a DO SIMD block.
DO SIMD jlock:

DO SIMD;
.‘-sr.a.t,emento;

r-statement ;
END;

The r-statement is restricted to be any PL/M statement incorporating only SLICEZ verigbles and

congtants.

In addition to the fuil range of instructions available in PPL/M, 3 DADO PE in MIMD mode will havs
aviiladle to it a set of built-in functions to perform the basic tree communication operations, in addition

o functions controiling the various modes of execution.

As nctad, direct Rardware support is provided by the szmi-custom [/O chip for 2ach of the gicbal

S?PDC Jeurnal Versicn 10-25-34

communication functions: BROADCAST, REPORT and RESOLVE. Other communication primitives are
implemented by firmware embedded in the processor EPROM as in DADQIL. The interested reader is
saferred o {Stolfo =t al. 1982| for the details of these primitives, as wail ag a complete specification of the

PBL/M language.

The RESOLVE instruction recsatly redesigned from studying DADO1's behavior deserves special mention
herz, The RESOLVE instruction is used in practice to disable all but a single PE, chosen arbitcarily frem
i1mong 3 specified set of PE's. [n DADOI, first a SLICEd variable is set %0 one in ail PE's %0 be inciuded
in tie sandidate se.. The RESOLVE instruction is then issued by a PE executing in MIMD mode, causing
ail but one of the flags in descendent PE’s, sxecuting in SIMD mode, to be changed 0 zero. (Upon
executing 3 REZOLVE instruction, one of the inputs to the MIMD PE will become high if at least one
candidate was found in the tres, and low if the candidate set was found to be empty. This sondition ~ode
is stored in a SLICEd variable, which exists within the MIMD PE.) By issuing an assignment statement,
ail but he singie, chosen PE may be disabled, and 1 sequence of instructions may be sxecuted oa ths
thosen PE alone. [n particular, data from the chosen PE may be communicated to the MIMD PE through

a sequence of REPORT commands. - .

In DADOI, the RESOLVE function is implemented by the kernel by propagating a series of “kiil” signals
in parallel from 1il caandidate PE's to ail (higher-numbered) PE's in the tree. [n DADO?2, the RESOLVE
operation has been generalized to operate on 8-bit data, producing the mazimum value storsd in som=
zandidate PE. Receated use of this max-RESOLVE function allows for the very rapid selsction of
multipie dyce data. This eircuit has provan very useful for 3 aumber of DADO algarithms which made use
o tree 2sigaber zmmunication instructions primarily for ordering data within he tree. The use of the

ZSCOLVE often obviates the need for sucl communication instiuctions, Coasequently.

aign-speed max-AE
tae view 3f DADO 13 a binary tree architecturs has became, fortuitousiy, nearly transparsnat in most of

the aigorithms written for DADO.

7 Conclusion

The largest shars of our software «ffort has -oncentrated cn parailel ‘mpiemaniations of varions Al
ipplicaticns. Tihe mest imporzant of these is aa interpretar for the parallei e=xesutica of production
ystem programs. A restricted model of production systems has been implemented in PPL/M ana is
curreatly being tested. Our plans include the completion of an interprater for 3 mors general version of

(O

forward-chaining production systems in the coming months.

We have ajso decome vary interssted recently in PROLOG. Since PROLOG may be :cnsid:rad as 2
special cace of production systems, it is our beiief that DADOQ can quite naturally support periormance
improvements of PROLOG programs over conventional implementations. Some interssting work in this
direction nas been reported in [Taylor et al. 1983/

Lastly, we note the relationship of LISP 1o DADO. Part of our work has :oncsntrated on providing L/SP

with additional parsilel processing primitives akin to those :mploysd in PPL/M. Wa have come 0 use

PSL LISP {Griss 1981 for this purpose due to its reiative =ase in porting to a new processor. [n [Waisbarg
2t al. 1984 we report on the currsac status of the ||[PSL (paralle: PSL) implementation and note its

.

relationship 1o PPL/M.

By way of summary, it is our belief that DADO can in fact support the high-spesd sxecution of 3 very
iarge class of Al applications specifically expert systems impiemented in rule form. Coupled with 1n
:fficient imziementation in VLSI technology, *5e largs-scale paralleiism achisvadcie on DADO wiil indesd

orovide signtficaat performance improvements avar voan Neumann machinss. Inde=d, our praiiminary
2

g2:t tial the 1022 PE werzion of DADO is sxpected 20 :x:cute RI. {or examoie. at an

ger geconc! Prageac ststistics for 3

statisties sug
v : rala oia xeess of I3 orocuction gystem cycies

IPTC Jousnal Varsion 1G-28-34

- £

-
-

reimplementation of KR! on 1 VAX 11/730 project a performance of 30-50 cycles per second. [t is
interssting to aote further that this larger prototype will be comparable in hardware compiexity to the
DEC VAX 11/7530, a smaller, slower and much less expensive version of the VAX 780 used presently to
:xecute RI. Hence, DADO2's paralleiism b5ased on Intel 8731 technolegy achieves 3 30% performance
improvement over 2 machine roughly six times its size. Lastly, had we used a processor technology based
on the Motorcila 88000, for sxampie, DADO?2 would achieve an execution rate of over 1300 production

system cycles per second! DADO3 should perform substantiaily better.

Acknowledgemnents

[t is a great pleasure to thank the many people and organizations who have contributed to the DADO
project. Daniel Miranker, Ph.D. student at Columbia, is responsible for many of the detailed hardware
and software designs of che machine and is the driving force in the 2ffort to implement the OPS family of
ianguages on the system. Stephen Taylor, also a Ph.D. student, working closeiy with Chris Maio, Andy
Lowry and facuity co-investigator Professor Gerald Maguire have made tremendous progress in specifying
the sxecution of PROLOG on DADO. Their design of the PROLOG system is as elegant as the hardware
_solutions provided by our project engineer, Shunsaku Ueda, who deserves special mention. Many
researciers have contributed in substantial ways, too numerous to specify in great detail. We thus would
like to acknowiedge the efforts of Eugene Dong, Andrew Comas, Mark Lerner, Jody Woeiss, Mike
Wzisberg, Jim Gilpatrick, Janvid Cheng, Wai Man Wong, Monique Fei, Daphne Tzoar, Doug Degroot,
Alex Pasik and Ted Sabety. We would also like to thank Lanny Forgy, Allen Newell and Mike Rychener
{for very interssting and thought-provexing conversations about DADO.

The Defznse Advanced Research Projects Agency is our primary source of support through coatract
N00039-32-C-0427. [ntel Corporation has contributed most of the companents used in the construction of
DADOIL, and :ontinues to support our development «ffort for DADO? by providing additional hardwars
components. Digital Equipment Corporation and Hewlett-Packard Corporation have provided
romputaticnal rasources for our softwars devsiopment. Valid Logic Systems has donated the prototypne
boards used in the construction of DADOI and has continued to aid aour research. Recently the DADO
project has rezsivad support from the New York State Foundation for Advanced Teachnoiogy, for which
we are grateful. Finally, we acknowledge the assistance of [BM Corporaticn for providing components (or
DADO?2 s weil 15 taking a more activs role in supporting our research.

JPDC Zournal Varslon 10-26-34

REFERENCES

Browaing, S.. “Hierarchically Organized Machines”, In
Mead and Conway (Eds.), /ntroduction to VLSI Systems, 1978.

Browning, S., The Tree Machine: A Highly Concurrent Computing
Environment, Ph. D. Thesis, California Institute of Technology, 1980.

Buchanan. B. G. and Feigenbaum, E. A.
DENDRAL and Meta-DENDRAL: Their applications dimension,

Artificial Intelligence, 11:5-24, 1978,

Davis, R. aad J. King. .
An Querview of Production Systems. Tachnical Report Stanford

University Computer Science Department, 1975.

Davis, R. Applications of meta-level knowledge to the
comgtruction, maintenance and use of large xnowledge bases,
Rep. No. STAN-CS-76-332. Computer Science

Dapartment, Staaiord Univarsity, 1976.

Duda, R.. Gashnig, J. and Hart, P.E.

Model design in the PROSPECTOR consultant system for mineral
sxpioration, {n D. Michie (Ed.), Ezpert systems

in the micro-slectronic age,

Edinburgh Uaiversity Press, 1532-167, 1979,

Fiyan. M. J., “Some Computer Organizations and Their
Eifzctivensss”, [EZZ Transaciions on Compulers, 1972,

Forgy, C. L.. A Note on Production Systems and [LLIAC [V,
Tzchnical Report 130, Department of Compucer Sciencs,
Carnegis-Meilon University, 1980. —

Forgy, C. L.. Rete: A Fast Algorithm for the Many Pattern/ Many Objes:
Pattern Mateh Problem, Artificial [nteiligence 19, 1982

Griss, M.L. and A. C. Hearn, A Portable LISP Compiler. Software-
Fractice and Exzperience, 11, 1981,

[acel Corperation, PL/M-51 Users’s Guide for the 2051 Based
Deveiopment System, Order Number 121966, 1982,

Ishida. T.. “Asynchronous Parailel Execution of Production Svystems on
1 Trae-struciursd Machine™, T:chnical Report, Depariment of Computer

Seiznce, Coiumaia Uaivarsity, 1984.

Laserson, C. E.. Area-Efficient VLST Computation,
Ph. D. Thesis. Departmeat of Computer Scienes, Carnegiz-Moailon

JPDC Journal Veaersion 10-22-34

29

Caiversity, 1981.

Lowrie, D. D.. T. Layman, D. Daer and J. M. Randal, “GLYPNIR-
A Programming Language for [LLIAC [V, Comm. ACM, 18 3,

1975.

McDermott, J, “R1: The Formative Years', AT Magazine
2:21-29, 1981.

Miranker, D. P, “Performance Analysis of Two Competing DADO PE
Designs™, Technical Report, Department of Computer Science, Columbia

University, 1983.

Miranker, D. P, “The System-level design of the DADO1 Prototype”,
Technical Report, Department of Computer Science, Columbia Univearsity,

-

1984. (in preparation) =

Miranker, D. P., “Production System Execution on DADQ ",
Technical Report, Department of Computer Science, Columbia University,

1984. (in preparation)

Newell, A, "Production Systems: Models of Control Structures”,
[n W. Chase (editor), Visual [nformation Processing,
Academic Press, 1973.

Rychener, M., Production Systems as a Programming Language for
Artificial Intetligence Research. Ph.D. thesis, Department of Computer

Science, Carnegie-Meilon University, 1976.

Sauer, C. H., E. A. Macnair, and J. F. Kurose,
The Research Queueing Package, CMS User's Guide.
Tecanical Report RA 139 #%41127, [BM Research Division, 1982

Schwartz, J. T., Ultracomputers, ACM Transactions on
Programming Languages and Systems 3(1), 1980Q._

Shaw, D. E., The NON-VON Supercomputer, Technical Report,
Department of Computer Science, Columbia University, 1982.

Siegel, H. J., L. J. Siegel, F. C. Kemmerer, P. T. Mueller, H. E.
Smolky and D. S. Smith, PASM: A Parititionabie SIMD/MIMD System for

Image Processing snd Pattern Recognition, [EEE Tran. on
Computers, 1981,

Stoifo, S. J. and D. E. Shaw. Speciaiized Hardware for Production
Systemns. Technical Report, Depariment of Computer Science, Columbia

University, 1981.
Stolfo, S. J. and D. E. Shaw, "DADO: A Tree-structured

Machine Architeszure for Production Systems’*, Proc. National
Con/[eremce on Artificial Int:iligence, Carnegie-Mellon University

JPDC Journal Version [232-24

and University of Pittsburgh, 1982.

Stoifo, S. J., D. Miranker and D. E. Shaw,
Programming the DADO Machine: An [ntroduction ‘o PPL/M,
Technical Report, Department of Computer Science, Columbia University,

1982.

Stoifo, S. J., D. Miranker and D. E. Shaw, “Architecturs and
Appiications of DADO: A Large-scale Parallel Computer for Artificial
[nteiligence”, in Proceedings International Joint Con ference on
Artificial Intetligence, Karsiruhe, West Germany, 1983.

Stoifo, S. J., “The DADO Parallel Computer””, Technical Revort,
Department of Camputer Scieace, Columbia University, 1983.

Stolfo, 5. J., and G. T. Vesonder, ACE: An Expert System Supporting
- Analysis and Management Decision Making, 1982. (to appear in the
Bell System Tecanical Journal.)

Taylor, S., C. Maio, S. J. Stolfo and D. E.
Shaw, PROLOG on the DADO machine: A Parallel System for High-Speed

Logic Programming, Technical Report, Departmeat of Computer Science,
Coiumbia University, 1983.

Taylor, S., S.G. Maguire, S. Stolfo and A. Lowry, “Implementing
PROLOG using parallel a3saciativae operationa”, Proc, Logic
Programming Conference, Atlantic City, 1984,

Weisberg, M., M. Lerner, G. Maguirs and S. J. Stolfo, “l|PSL: A

Parallel Lisp for Pragramming the DADO Machine”, Technical Report,
Department of Computer Science, Coiumbia Univarsity, 1984,

JPDC Journal Version 10-22-34

REPORT DOCUMENTATION PAGE

rr

12. REPORT SECWRITY CLASSIFICATION
UNMCLASSIFIZ!

10, RESTRICTIVE MARKINGS.

NONE

22, SECURITY CLASSIFICATION AUTHQRITY

3. DISTRISBUTION/ AVAILABIUTY CF REPCART

APPROVED FOR PUBLIC RELEASE

5. DECLASSIFICATICN/ DOWNGRADING SCHEDULE

DISLRIBUTION UNLIMITZD.

4. PERFQRMING CRGANIZATION REPQRT NUMBER(S)

5. MONITQRING QRGANIZATION REPCRT NUMBER(S)

50. SFICT SYMBOL

64. NAME TF ISAFCRAMING CRGANIZATICON
(If sppticacie)

CCLUMBIA UNIVERSITY

7a. NAME CF MONITORING QRGANIZATION
NAVELEX

S¢. ADCRESS (Cry, jtate. and JIP Cooe)
430 Computer Science Building
Columbia University
New York, NY 10027

7h. ADORESS (Gty, State, and 2IP Cooe)
2511 Jerferson Davis Highway

Arlington, VA 22202

-

8b. CFF:Cz SYMBOL

NMAME CF FUNDING SPCNSCRING
(If eppiicatie)

CAGANIZATION
DARPA

3.

9. PROCUREMENT INSTRUMENT CENTIFICATION NUMBER

3¢ AODRESS (City, State, ana JIP Coce)

1400 ¥ilson Roulevard
Arliagton, VA 22209

- - e

10 SOURCE 2F SYNQING MUMSERS

NCRX JNIT

23CGRAM
ELIMENT NO.

PROJECT
NO-N00039-
34-C-0163

TASK

NO.

ki ACCE351ICN NO

PEONITOE fnciuGe lecurity Jlasstcanchl

The DADO Prcduction System Machine

J. and

~E
oF
84,

EPCRT [Year, won’m Cay)

Cctober

‘averse .f necessary 4nd .denury dy 2i0ocx numoer)
ams, Parallel Comout-.,

T£30S Continue an
Production Sys:

grogramming, LISP.

.-\.,

Generation, Logic

| o

Canunue Qn reverse 1f recessary and (Centify Jy 210CX_numoer)

DADO is a parallei. tree-structured machine designed to provide significant performance improveaments in
the =xezytion of large sxpert systems implemeated in production system form. A full-scale version of the
DADO machine weiid comprise 3 large set of processing <lements (PE's) (on the order of thousands), =ach
zontaining its own processor, 1 small amount (16K bytes, in the current prototype design) of locai random
1¢1238 memory, aad 3 specialized [/O switeh. The PE's are interconnected to form a complete binary tree,

This paper describes the applicaticn domain of the DADO machine and the rationale for its design.
Parallel sigorithms for production system sxscuticn are briefly described. Wa then focus on the machine
derall the hardware design of a moderately large prototype comprising 1023
surreatly uynder development at Columbia University. Wa conclude

arsritesturs aad
with very
atly calcuated from an analysis of simulations of the system.

procsssors
zncouraging performances statistics rece

miere

T TMOACMLAEILTY IF 23373aCT

23ST3ACT SECURITY CLASSIFICATION
UNCLASSIFIED

bR

ez

25 33° - _gizg

-
SNSEL3 MCH. LA
, -

DULNOMITED A
- -

219 TiLiF=CNE (Incluce Arma (OQe) 11 <.

r217)

23n-31° 0

CFACs 3rM80L

21T 2.

2T 2T T3y Ze Lleg
205 368 20301ee.

-l 230 a0st2q.

SECLRITY TLASSIFICATICN OF “=§ 32G

