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Abstract

NON-VON is a highly parallel supercomputer, portions of which are now under
construction at Columbia University. A full-scale NON-VON prototype might
comprise as many as a million tiny processing -elements, each associated with a -
small random access memory. Among the principal goals of the NON-VON Project
is the development of programming languages and compilers that realize the
machine's potential for massive parallelism while insulating the user from the
details of its tree-structured physical topology.

One conceptual metaphor that has proven useful in pursuing this goal is the
notion of an jintelligent record, a primitive data element of arbitrary size
that functions as if it were associated with its own dedicated computer. This
paper describes the essential mechanisms used to support intelligent records
within a high~level parallel programming language environment. We then
illustrate the use of these techniques in a few simple applications and
explore certain time/space tradeoffs that characterize alternative record
allocation schemes.

1 Introduction

Over the past few years, growing numbers of computer scientists have become
interested in alternatives to the conventional "von Neumann" computer,
Computer architects see new opportunities in the the emerging possibilities

1This research was supported in part by the Defense Advanced Research
Projects Agency under contract N00039-82-C-0427.




for large-scale parallelism afforded by the technology of very large scale
integrated (VLSI) eircuits. Larguage designers are exploring alternatives to
the von Neumann model of computation for the description of computational
tasks,

A particularly forceful case against the von Neumann machine has been made by
Dr. John Backus in his influential 1977 Turing Award lecture, entitled "Can
Programming be Liberated from the von Neumann Style?" [Backus, 1978]. Among
the central themes of this lecture was the contention that our preoccupation
with conventional computer hardware, whose operation is based on serial,
"yord-at-a-time" transfers between memory and CPU through what Backus calls
the "von Neumann bottleneck™, has had an unfortunate affect on the evolution
of programming languages. Research related to the NON-VON machine
architecture [Shaw, 1982] seeks to advance beyond the hardware and software
limitations of the "von Neumann bottleneck".

Implemented using nMOS VLSI circuits custom-designed at Columbia and .
fabricated using DARPA's MOSIS system, NON-VON is one of the most ambitious
attempts to date to realize very large scale parallelism using current
integrated circuit technology. A full-scale NON-VON machine might incorporate
between 100,000 and 1,000,000 tiny processors, each associated with a small
(on the order of 64 bytes) random access memory. In the NON-VON architecture,
a number of these unusually area-efficient processing elements are embodied
within each integrated circuit. The individual processing elements are
interconnected in such a way as to allow them to simultaneously perform useful
computational work, supporting an effective processor-memory banduidth many
orders of magnitude in excess of today's fastest machines.

While the realization of massive parallelism is central to the goals of NON-
VON Project, it must be emphasized that the machine has been designed as much
for ease of programming as for the attainment of unprecedented execution
speed. Much of our attention has thus been directed toward the design and
compilation of high-level languages capable of fully exploiting NON-VON's
potential parallelism while insulating the user from the low-level details of
its physical organization.

Intuition might suggest that the use of such a parallel programming language
would be far more difficult than the generation of software for a conventional
machine, It has been our experience, however, that a large share of the
operations that are performed in practice are in fact more easily described in
such languages than in those typically used to program conventional machines,
To be sure, the highly nonstandard organization of the NON-VON machine raises
a number of new issues for the language designer. On the other hand, NON=-
VON's architecture obviates the need for many of the loops, indexes, pointers,
hashing techniques, and other constructs found in conventional applications
software that are in fact extrinsic to the semantics of the problem domain.

This paper focuses on some of the most important mechanisms used in the
implementation of very high level linguistic constructs for NON-VON. In the
following section, we briefly describe the physical organization of the NON-




VON machine, and outline the essential capabilities of its instruction set.
The remainder of the paper i3 dedicated to software- and language-related
issues, First, we discuss the use of abstraction to manage the complexity of
NON-VON software, and introduce a simple extension of Pascal capable of
exploiting the machine's potential for massive parallelism, We then provide
examples of algorithms and code, at both a low level (to exemplify the
detailed behavior of the machine) and a high level (to illustrate the
management of complexity). Considerable attention is given to the means by
which the physical mapping of logical records onto physical processing
elements is made transparent to the programmer, while preserving the full
potential parallelism of the machine.

2_The NON-YON Supercomputer

Previous supercomputer designs have tended to focus on the efficient solutdion
of a rather specilalized class of numerical problems. NON-VON, on the other
hand, is intended to provide highly efficient support for a2 wide range of
numerical and non-numerical applications involving the manipulation of large
quantities of data. In particular, highly efficient support is provided for
the kinds of operations which seem to characterize much of the workload
involved in commercial database management and data processing applications.

The NON-VON architecture comprises three subsystems: the Primary Processing
Subsystem (PPS), the Secondary Processing Subsystem (SPS) and the Control
Processor (CP). Briefly, the PPS incorporates a large number of simple,
highly area-efficient Processing Elements (PE's), configured as a binary tree.
The SPS is based on a number of "intelligent disks" whose individual disk
heads are each associated with a small amount of hardware capable of
dynamically examining the data that pass underneath them, and passing selected
records along to the PPS in a highly parallel fashion. The CP is a
conventional general purpose computer that broadcasts instructions to be
executed simultaneously by all PE's in the PPS.

A brief overview of the structure and function of the machine is presented
below. Readers familiar with the NON-VON architecture may wish to skip to the
beginning of the following section.

2.1 Primary Processing Subsyatem

NON-VON's Primary Processing Subsystem embodies a vast number (on the order of
a million, during the intended time frame for practical application of the
machine) of very simple processing elements, each containing its own locally
accessible random access memory. Although the instruction set of an
individual PE can support up to 256 bytes of RAM, a current realization of the
architecture might incorporate on the order of 64 bytes of local storage per



processing element. The processor data path, communication circuitry and
control logic” together occupies only about as much silicon area as the local
RAM, allowing a number of PE's to be embedded on a single chip. (During the
target time frame, each chip might contain between 64 and 128 such processing
elements.) Each PE contains an I/Q switeh, which is used to support several
modes of inter-processor communication.

In practice, many or all of these tiny PE's are often able to operate
concurrently on data stored in their respective local memories, supporting
effective execution speeds far exceeding those of today's fastest
supercomputers, Because of their samall size, however, the PPS is expected to
be scarcely more expensive than an equivalent amount of ordinary random access
memory. From the viewpoint of performance, the PPS may thus be regarded as an
ultra-high-speed parallel processing ensemble; from a cost perspective,
though, it is better viewed as a (slightly overpriced) random access memory
unit,

The - physical organization of the PPS is based on a scheme proposed by "
Leiserson [1981], in which a single type of fully "scalable®™ chip is used to
build a tree of arbitrary size., Each chip contains a complete binary subtree
and a single internal node. The number of PE's in the subtree may be
increased arbitrarily as device dimensions continue to decrease without
increasing the number of pins per package. As illustrated in Figure 1, the
Leiserson packaging scheme has the property that two such chips may be
interconnected to form a larger tree having precisely the same external
connections as a single chip., This process may be repeated recursively to
construct an arbitrarily large tree using printed circuit boards having a
regular, planar, area-efficient layout. Connections between boards, and (in a
large machine) between cabinets, are made in the same manner as those between
chips. Unlike most other interconnection topologies proposed for use in
highly parallel machines {Kung and Leiserson, 1979; Leighton, 1981], the
number of wires required to interconnect the various system modules is thus
independent of the size of :he PPS, allowing the construction of very large
machines having manageable inter-modular wiring.

The cornerstone of the NON-VON architecture {s the association of a small
amount of RAM (at most 256 bytes) with each of a vast number of simple
processors. The processors are physically interconnected with a communication
pattern in the form of a birnary tree. The hardware also provides adjacent
neighbor communication, with neighbors defined by adjacency in an inorder
traversal of that tree. The processor - memory pairs, referred to as
processing elements (PE's), cooperate in single instruction stream, multiple
data stream (SIMD) mode, under the direction of a general purpose computer
attached to the root of the tree of PE's. This control processor (CP) is
responsible for the broadcast of instructions through the root and down into
the tree, where the instructions are executed in parallel by the PE's,

In addition to the tree neighbor communication established by the topology of
the physical interconnections, the I/0 switches in each NON-VON PE provide
communication between linearly adjacent neighbors, which are defined to be
PE's that are consecutive in an inorder traversal of the tree. All PE's can
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receive data in parallel from their parent (or left child, or right child).
Parallel communicaticn with left neighbors, or right neighbors may also be
performed, although two time steps are required, as illustrated by the next
figure, :

Broadcast communication is also supported by NON-VON. A byte may be sent to
all PE's simultanecusly, reaching the leaves of the tree of PE's through
combinational logic within one instruction time. One other communication
pattern supported by the I/O switch design is not a parallel operation: a
uniquely enabled PE may be instructed to report a byte of data, which will be
propagated up the tree and out through the root with a small combinational
logic delay.

The first version of the NON-VON PE, which we bave come to call NON-VON 1, has
an architecture comprising four functional units. The first is an I/0 switch
handling 8-bit and 1-bit communication paths among the PE, its children, and
parent. The second portion is a PLA that receives incoming 8-bit instructions
from the I/0 switch, and generates appropriate control signals for the PE's
logic. The third part i3 a 64 byte RAM. The fourth unit contains the
processing power. It is organized around two data buses, one for byte-wide
data, and the other for 1-bit data. There are eight byte-wide registers,
including a memory address register (MAR), an I/0 register (I08), and two
accumulators (A8, B8). The eight -1-bit flag registers include the enable
register (EN1), an 1/0 register (I01), and two 1-bit accumulators (At, B1), as
well as a carry bit (C1). There is a comparison unit that compares the
contents of A8 and B8, sets A1 if A8 = B8, and sets B1 if A8 > B8. The 1-bit
ALU has both arithmetic and logical functions. The arithmetic implemented is
1-bit add with carry, and 1-bit subtract with borrow, using operands from A1
and B1 as well as the carry bit from Ci1. The result is left in A1 and C1.

All 16 Boolean functions of A1 and B! can be performed, with the result
developed in A1l.

The instruction set for NON-VON 1 is fairly ordinary in many respects. There
are no branch instructions, however, as programs are not stored locally. The
only addressing modes for RAM are absolute, and indirect through the memory
address register, which can be manipulated by the instruction set. There are
also some apecial instructions for NON-VON, as described below. The
instruction set consaists of six groups:

1. Register Transfer Group: NON-VON 1 can load and store A1, A8, B1,
and B8 from any of the eight registers having the correct length.

2. Memory Access Group: Transfers between AB and RAM may be
performed, with the address found either in the MAR or as the
second byte of the instruction.

3. Arithmetic and Shift Group: One-bit add and subtract are
implemented, as described previously. Additionally, there are bi-
directional 9-bit circular shifts of the A and B registers, with
A8+A1 forming one lcop, and B8+B1 forming the other. These
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rotation operations facilitate bit-serial arithmetic of arbitrary
length, as well as general communication between the 1-bit and 8-
bit data paths.

4. Logical Function Group: All sixteen Boolean functions of two bits
are provided, with A1 and B1 as operands, and A1 receiving the
result.

5. No Operand Group: ENABLE causes all PE's to set EN1. PE's having
EN1 clear ignore all other instructions. This allows selective
execution in subsets of the PPS. COMPARE generates a comparison of
A8 and B8, setting A1 := (A8 = B8§), and B1 := (A8 > B8). RESOLVE
operates on all enabled PE's having A1 set. It clears A1 in all
but the "first® such PE. For NON-VON 1, "firast"™ means first in an
inorder traversal of the PPS. This instruction is used to select
an individual from a set of PE's, and forms the basis of code to
enumerate a set, one element at a time.

6. Communication Group: The BROADCAST! and BROADCAST8 instructions
causs all enabled PE's to receive a bit or byte (respectively)
broadcast from the control processor, with the value placed into A1
or A8, respectively. REPORT! and REPORT8 perform the inverse
operation, although the control processor will receive valid data
only if precisely one PE has been enabled to execute the report
operation. The SEND1, SEND8, RECV1, and RECV8 instructions cause
all enabled PE's to send or receive in parallel, each transferring
a bit or byte between this PE's A register, and some neighbor's I0
register. The three physical neighbors are parent, left child, and
right child. Additionally, there are two logical neighbors to each
PE, called left neighbor and right neighbor. They are defined to
be the PE's visited just prior to and just after this one in a
traversal of the PPS. For NON-VON 1, logical neighbors are defined
by adjacency in an inorder traversal.

2.2 Segondary Proceasing Subavatem

The secondary processing subsystem (SPS) of NON-VON is currently conceived of
as a collection of perhaps 256 small Winchester disk units, each having a
control and connection unit, referred to as an Intelligent Head Upnit, or IHU.
The IHU provides its disk with comparison logic "at the head", as well as the
ability to perform hashing calculations on data being read. Appropriate
buffering and error handling are also performed. The SPS provides secondary
storage to the PPS, but its primary service is "filtering" data. ' Selection i3
performed within the SPS, with only relevant data passed on to the PPS, so
that the bandwidth between SPS and PPS is well utilized. The IHU's for an SPS
of size 256 would connect to the PPS at all PE's located eight levels below
the root of the tree, with the IHU's logically interposed between the I/0
switches of the PE's seven and eight levels below the root. Thus each IHU is
located above a subtree of the PPS, and these subtrees may all perform disk




I/0 simultaneously. This provides an immense bandwidth, allowing efficient
use of the massive parallelism available in the PPS.

2.3 Control Processor

The ensemble of PE's cooperates in a single instruction stream, multiple data
stream (SIMD) mode [Flynn, 72], under the direction of a general purpose
computer attached to the root of the tree of PE's, This control processor
(CP) is responsible for the broadcast of instructions through the roct and
down into the tree, where the instructions are executed in parallel by the
PE's., It also handles I/0 between the user and NON=-VON.

3 Using Abstraction

Experience has shown that in the absence of support from structure and
abstraction, one cannot reliably create correct. programs for von Neumann
machines. We believe that managing the complexity of a parallel processing
ensemble is potentially more difficult.

A universal approach to the management of complexity is to raise the level of
abstraction and hide low-level details. Programming language designers have
developed abstract data types, modules, objects, and message passing. In the
area of operating systems, we have monitors and communicating sequential
processes. In computer communications, the International Standards
Organization has developed the OSI Reference Model for network architectures,
defined in terms of seven layers, each providing more sophisticated and
abstract services to the layer above it.

In the high level languages under development for NON-VON, we wish to
establish a certain degree of hardware independence. In particular, the
programmer should not be grappling with issues related to the size of the RAM
in each PE. Neither should the programmer explicitly map a record's fields
into the PE's RAM address space, nor assign available PE's to hold and process
various data., Using information obtained from the programmer's declarations

of variables, the runtime system in the control processor will handle such
matters,

In the case of multiple instructlon stream, multiple data stream processing,
the formalisms given for communicating sequential processes seem appropriate.
For example, MIMD PE's can be modeled as ADAZ taska[Ichbiah et al., 1980] that

2ADA is a trademark of the US Department of Defense



achieve synchronization during a rendezvous. In the case of SIMD machines
such as NON-VON, this formalism does oot fit well., Here a PE has just a small
amount of data, and no local program. It does not take independent action; it
executes the same instructions as all other enabled processors, in lockstep,
We have taken a few steps towards understanding the present situation, and
have identified three ways of thinking about our data and PE's with a degree
of abstraction.

3.1 The Multiple Record Type

The multiple record type is an extension of the formalism given by a2 Pascal
record, It allows reference to an aggregation of data, without giving the
superfluocus structure implied by an array, file, or list. An instantiation of
a multiple record consists of a collection of data, such that each member
conforms to the record format given in the declaration. Multiple record
declarations serve as explicit indications of data suitable for parallel °
computation. In the remainder of this paper, the distinction between
"multiple record®™ and "instance of a multiple record™ will be suppressed whers
the context makes the proper meaning clear.

3.2 Virtual PR'S

One notion consistent with our desire for independence from the physical
details of the. PE is that of a yirtual PE. If a record requires just a few
bytes, we may pack several records into each physical PE. Similarly, if the
record is too large to fit in one PE's RAM, it may be split into pieces, and
stored in several PE's. In either case, a programmer working in an
-appropriate high level language sees one record stored per PE. Thus the PE's
that are seen by the programmer are virtual, in that they do not have a fixed
size determined by the hardware.

3.3 Intelligent Recorda

Another view of the PPS even further removed from the hardware is that of a
collection of "intelligent records®. From this perspective, each element in a
multiple record is considered to have its own processing power, We may then
consider instruction sequences directed from the control processor to the
records themselves. For an intuitive example of such a statement sequence,
consider

All employee records listen to me,
Anyone who has years-employed greater than 20,
add 1000 to your salary.
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When expressed in our extended version of Pascal (described later), the
previous example would appear as follows:

WITH employees DO
WHERE yearsEmployed > 20 DO
salary := salary + 1000;

Let us examine how such processing might actually be performed by the NON-VON
PE's. Since this example i3 given as an illustration of the functioning of
the PPS, the code is written at a higher level than the NON-VON instruction
set described earlier. For reasons of perspicuity we have chosen to suppress
details such as the implementation of 16-~bit addition on a machine having bit-
serial arithmetic. We trust the reader is willing to trade rigor for lucidity
and conciseness in this instance.

Suppose first that the employee records already have been loaded into the PPS,
with one record per PE. When a multiple record is placed into the PPS, atag
field is added to each of the members, so that they may be distinguished from
members of other multiple records. For this example, suppose that the tag is
stored in the byte of RAM at location 0, the years-employed in RAM location 1,
and the salary in the word at locations 2 and 3. Suppose further that the tag
designating employee records is "17", We might then have the following
assembler-level instructions broadcast down into the PPS by the control
processor, for execution in parallel by the PE's.

; Enable all PE's so they will execute the following instructions.
; The hardware effect is to set the enable flag (ENA) in each PE.

ENABLE s enable all PE's

Select those PE's which contain employee records:

Load the tag into the accumulator, and compare with 17. The result
is developed in the EQ and GT flags, which are set to indicate
equality and accumulator greater than operand, respectively.

By storing the EQ flag into the ENA register, those PE's having

tag 17 will remain enabled, while the others will be disabled, and
will not participate in further computation.

e We We W we uwe we

LOADB 4,0 ;v 1o9ad a byte into the accumulator from RAM 0, the tag
CMP #17 + compare accumulator with the constant 17
STORE EQ,ENA ; 1f equal, remain enabled; otherwise become disabled

; PE's still enabled load the years-employed field, and compare with
; 20. Only PE's that contain employee records showing more
; than 20 years of employment are permitted to execute further.

LOADB 4,1 ; load years-employed
CMP #20 ; compare with the constant 20
STORE GT, ENA ; 1f greater, remain enabled
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; Fipnally, for all PE's still enabled, load the salary field (2 bytes)
; add 1000, and store the result back

LOAD 4,2 ; load bytes 2 and 3 into the accumulator
ADD #1000 ; add 1000
STORE 4,2 ; store the result

3.3 The Rup-time System Laver

The run-time system layer is a collection of functions that provide abstracted
data manipulation services to the programmer., These functions generate and
issue the low-level NON-VON instructions necessary to accomplish arithmetic,
comparisons and matching, I/0, and database operations on multiple records:.
LISP was chosen as the implementation language for the experimental runtime
system. This choice of language was motivated by the freedom from side-
effects encouraged by the functional, applicative nature of LISP. This
enables relatively simple modifications to be made as our understanding of the
problem develops.

The functions that form the run-time system accept arguments which are given
in terms of the multiple records. Relational algebraic operations on database
tables and views [Date, 1981] are supported, with data referenced by record
name and field name. As a brief example, the code to increment (in parallel)
the salary of all engineers might be written as:

(SETFIELD (SELECT 'employees 'eq 'jobtitle 'engineer)
'salary
(+ (GETFIELD 'employees 'salary)
1000))

Where the functions SETFIELD, SELECT, and GETFIELD are as follows:
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(SETFIELD <view)> <field> <new valued)
looks up the tag corresponding with the view name, and
broadcasts instructions to the PPS in order to enable just
those PE's containing data for that view. Then it looks
up the absolute PE RAM locations corresponding to the field
named, and broadcasts instructions to update the field.

(GETFIELD <view)> <field>)
also enables those PE's containing the view, and generates
instructions to extract the value of a field from the proper
PE RAM locations.

(SELECT <view)> <relation> <field> <value>)
enables just a subset of PE's containing a view, based o¢n a
comparison (eq, ne, 1lt, le, gt, ge) of a field and a valus.
The function "+® in the context of the example, generates -
instructions to perform parallel arithmetic in the enabled PE's,

Thus the programmer is insulated from many low-level details. The system
finds the records in the PPS, handles the mapping of fields onto PE RAM, and

performs low level operations necessary to manipulate information within each
PE.

3.5 The Pascal Layer

In an effort to facilitate the use of services provided by the run-time system
layer, we have been writing a compiler to translate an extension of Pascal
into calls on the run-time LISP functions [Bacon et al., 1982]. The work done
3o far on extending Pascal must be considered preliminary, as the issues
pertaining to the modeling of execution in an SIMD tree machine are not fully
understood at this time. Some of the extensions we currently use are
described below.

There i3 one new built-in data type, the multiple record. A variable of type
multiple record refers to a collection of records that undergo operations
performed in parallel. For example, after the mass administration of a
rejuvenating formula, a youth clinic might wish to perform actions suggested
by the following code fragments:
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TYPE
~ customel = MULTIPLE RECORD
name : PACKED ARRAY[1..30] OF CHAR;
balance : REAL;
ageClaimed : INTEGER;
END;
VAR

pigeons : customer;

BEGIN

{ the next statement causes parallel operations }
WITH pigeons DO
BEGIN balance := balance - 400.00;
ageClaimed := ageClaimed - 10
END;

The five unary operators that perform vector merge operations on Boolean
values developed in the intelligent records are ANY, ALL, NONE, SEVERAL, and
ONE. They may be used to control the selection of alternatives in an IF
statement. ANY is true if the condition holds in one or more member of the
multiple record, ONE is true if the condition holds in precisely one member,
while SEVERAL means more than one. To continue the previous example, we could
write:

IF ANY (pigeons.ageClaimed > 40)
THEN Writeln('There i{s still money to be made.')

Two new statements have been added. The first has the form:

WHERE <Boolean expression> DO <{statement>
ELSEWHERE <statement)>

(The ELSEWHERE portion is optional.)

The effect of this statement is to calculate the Boolean expression in all
currently enabled intelligent records. Those that satisfy the Boolean execute
the statement after DO, while those enabled records which do not satisfv the
Boolean execute the statement after ELSEWHERE.

The FOR EACH statement 13 used to iterate sequentially through the members of
a multiple record. It has the form:

FOR EACH <multiple-record identifier>
DO <{statement>
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Continuing the rejuvenation example, we may have the following code:

writeln(' Customers who have been reduced to childhood:");

FOR EACH pigeon DO
IF pigeon.ageClaimed < 18 THEN Writeln(pigeon.name)

In addition, other statements have been extended semantically to apply to
multiple records. For the CASE statement, if its controlling expression
refers to a multiple record, all the members will be processed, each according
to the case it satisfies, This use of CASE is equivalent to a linear nesting
of WHERE ... ELSEWHERE statements. For the WHILE ... DO and REPEAT ... UNTIL
statements, i1f the controlling Boolean refers to a multiple record, the body
of the loop will be executed in parallel, in all enabled members of the
multiple record.

3_Storage of Records Larger Than a PE's RAM
Let us reconsider the example given earlier,

WITH employees DO
WHERE yearsEmployed > 20 DO
salary := salary + 1000

The assembler-level code previously given for this example was based on the
assumption that an employee record fits into a physical PE. If this is not
true, the record must be subdivided, with portions stored in several PE's.
Records so stored are termed spanned records. Records that are spanned across
physical PE's introduce complications into the processing. For instance,
suppose that in the present example, the years-employed and salary fields are
not in the same PE. After selecting the PE's having years-employed greater
than 20, how may we find the corresponding salary fields? As another example,
suppose we wish to compare the contents of one field against another in each
member of some multiple record. If the two fields from each record are not in
the same physical PE, communication between pairs of PE's will be required.
How may this be done in parallel, using a single instruction stream?

3,1 Linear-peighbor Spanned Records

One good choice of allocation patterns is to place subparts of spanned records
in PE's which are adjacent by their linear-neighbor connections. In the
simpler non-spanned case, we addressed fields in PE RAM by their byte offset.
Now we use an offset counted in PE's from the head of the record, and then the
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byte offset within that PE. If the tag 13 placed in RAM cell 0 in the head of
each record, RAM cell O in the other PE's must be cleared tc 0 so that record

heads may be found unambiguously. Suppose for the employee example, that each
record spans three PE's. Suppose further, that the years-employed field is in
the first PE at offset 1, and the salary field is in the third PE at offset 4.
Then the previous example would appear as follows:

{ Enable all PE's so they will execute the following instructions, and
3 clear the I/0 register, as it will be needed for linear-neighbor
; communication later.

ENABLE ; enable all PE's
LOAD I0,#0 ; clear the I/0 register

s Select those PE's which contain heads of employee records.

LOADB A,0 ; load a byte into the accumulator from RAM 0, the tag
CMP #17 ; compare accumulator with the constant 17
STORE EQ,ENA ; 1f equal, remain enabled; otherwise become disabled

; Now select for years-employed greater than 20

LOADB A, 1 s+ load years-employed
CMP #20 s compare with the constant 20
STORE GT,ENA + 1f greater, remain enabled

For all records whose heads are still enabled, we wish to move over
two PE's to the right. First we will put a 1 into the I/0 register
of PE's which are enabled (recall all I/O registérs were cleared at
the beginning). Then we will send this "mark™ to the right twice,
and finally use it to et the enable register appropriately.

“we wo we wa e

LOAD IO, #1 ; mark the I/0 register of all PE's currently enabled
ENABLE ; everyone listen

SEND RN s move the mark to the right neighbor

SEND RN : move the mark to that PE's right neighbor

STORE IO,ENA ; those PE's which are now marked stay enabled.

; Fipally, for all PE's currently enabled, i.e. those containing the
s third portion of records for employees employed more thanmn 20 years,
; load the salary field (2 bytes), add 1000, and store the result back

LOAD A, Y ; load bytes 4 and 5§ into the accumulator
ADD #1000 s add 1000
STORE A,Y4 s store the result
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Comparison of fields from different PE's of a spanned record may be handled in
a similar fashion. For example, to compare the salary field with some field
in the head of employee records, one might proceed in this fashion:

The salary field is in bytes 4 and 5 of RAM in the 379 pPE's,

We will take bytes 4 and 5 from A L L PE's, and send them left
two times. The result will be that in PE's that bave heads of
employee records, the I/0 register will contain the corresponding
salary value.

s wo we wo we

ENABLE ; enable all PE's

LOAD I0,4 ; load bytes 4 and 5 into the I/O register
SEND LN ; send to left neighbor

SEND LN : send to that PE's left neighbor

; Now select those PE's which contain heads of employee records.

LOADE A,0 s+ load a byte into the accumulator from RAM 0, the tag
CMP #17 ; compare accumulator with the constant 17
STORE EQ,ENA H ;f equal, remain enabled; otherwise become disabled

; At this point, only heads of employee records are enabled, and in
; those PE's, the I/0 register contains the salary from that record.

The preceding examples have all assumed fixed length fields to simplify the
code presented. In fact, NON-VON can work with varying length fields also,
assuming a table of offsets to fields is stored in the head of each record.
Storing these offsets in each PE gives the one level of indirection needed to
process variable length fields on an SIMD machine,

4,2 Iree-shaped Spanned Records

The linear-spanned record storage scheme described above has a theoretical
disadvantage in that communication between gields of a record requires time
that 1s linear in the length of the record.” One possible improvement would be

3Note that we are considering the time required for a linear neighbor
communication to be constant, since it is a primitive operation provided by
our hardware within the usual instruction execution time. In another model,
one could assign a time complexity O(log |PPS|) to this communication, where
'PPS! i3 the number of PE's in the Primary Processing Subsystemn.
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to allocate spanned records in subtrees, as illustrated below. OUnfortunately,
this would only use the levels of the ?PS near the leaves, while not using
those PE's in the top portion of the tree, Communication within a record in
this case would occur in time proportional to the logarithm of the record
length. It should be noted that the constants are such that in practical
situations, operations within subtree-spanned records might not be faster than
those in linear-spanned records.

PE

/ \

PE PE

/ \ / \
] ¥ ]
/\ 7\ /7 \
# &) (8 )8 &
Figure 3: Subtree allocation. -

Some problems are solved particularly efficiently in an architecture providing
tree-structured communication. A disadvantage shared by linear- and subtree-
spanned records described praviously, is that a tree structure of
communication between records is not available. This capability may be
obtained, however, through a generalization of the subtree-spanned record.

One generalization has the same tree-shaped allocation pattern for each
record, but records are located at arbitrary positions in the PPS, not only at
the leaves. For example, two records which each span three PE's might be
allocated as depicted below:

PE
/ \
PE
/ N\
PE
/ N\ /N /N
PE PE PE PE PE PE

Figure 14: Two bushes

We have termed tree-shaped structures such as these bushes. A k-bush is a
collection of k PE's forming a complete, full binary tree. The number of PE's
required to form a bush is one less than a power of two, which suggests that
bushes are less space efficient than linear-spanned records. This relative
disadvantage arises from a phenomenon very similar to "internal fragmentation”
in a paging eavironment. In the case of linear-spanned records, we only
expect half of the space in the laat physical PE to be wasted. In bushes,
however, the waste is asymptotically greater. Maximal waste occurs when the
space required by a virtual PE is one byte more than will fit in a full bush,
in which case the next larger size must be used. This larger bush will
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consist of one more than twice as many PE's, and so will be slightly more than
1/2 empty. Od the average, then, one quarter of the space in a bush will be
wasted. For linear-spanned records, the wasted space will be independent of
the record size, but in the bush pattern of allocation, this is not so.
Equivalently, we may say that the asymptotic average space wasted is zero for
linear-spanned records, but is about 25% for bush-spanned records.

Bushes may be organized in two ways. Unkempt bushes are scattered throughout
the PPS in arbitrary positions, as in the previous figure. For algorithms
requiring tree-structured communicatioan between records, landscaped bushes are
desired.

Pigure 5: Three landscaped bushes

A landscape i1s a collection of k-bushes that forms a full (k+1)-ary tree.
Landscaped bushes provide tree structured communication among records. An
algorithm for calculating all partial sums will be presented as an example of
the use of this communication to obtain asymptotically faster time complexity
(excluding I/0) than available on sequential machines.

A&LSMMLEMM&MM&A

Any algorithm for generating n partial sums on a sequential machine must form
each of these n sums. Even though the work charged to each sum can be done in
constant time [Browning, 1980], there are n sums; the tota) time required is
O(n). In NON-VON, as in the tree machine developed by Browning, the formation
of partial sums can be overlapped, so that the aggregate time required for the
calculation is 0(log n)., Browning's tree machine has a multiple-instruction
stream, multiple data-stream (MIMD) organization, as well as message buffering
between PE's. We present a derivative of her algorithm for NON-VON, which
operates with the same asymptotic time complexity, which is SIMD, and which
does not need message buffers. Starting with data arranged according to an
inordgg traversal of the PPS, the algorithm develops all partial sums so that
the k PE receives the sum of values 1 through k.

The computation occurs in two phases. During the first phase intermediate
sums propagate up the PPS tree from leaves to root. In the second phase, sums
nove back down the tree. For this discussion, we refer to the levels of the
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PPS by number, with 1 at the root and k at the leaves.

In the up phase, summing occurs level-by-level, starting with the leaves.
Each PE on the currently selected level receives the value held by its left
child and adds it into its own value. Then it receives the value held by its
right child, and places the sum of that and its own value into a variable
available for its parent to read from the next level.

In the down phase, summing also proceeds level-by-level, starting with the
root. PE's on the selected level take the value received from their parent,
and pass that value on to their left child. Then they add it into their own
partial sum, and also pass this new sum on to their right child.

For expressing the algorithm in the extension of Pascal, each intelligent
record contains two variables, named data.self and data.io . The algorithm
begins with the variable self in each intelligent record containing that
record's contribution to the sum. The result of the computation is develéped
in that variable, overwriting the initial value. Three built-in functions are
assumed in the extended Pascal. EnableLevel(l) enables those intelligent
records in level i of the landscape of records. Receive(myVar, nbr, itsVar)
operates in parallel, in all enabled records. It moves the contents of the
he;ghbor's variable itsVar into the local variable myVar, where permitted
neighbors are identical to those for the NON-VON instruction set described
earlier., Send(myVar, nbr, itsVar) allows all enabled records in parallel to
send a copy of myVar's contents to itsVar in the specified neighbor. The
implementation of these functions using the communication primitives provided
by the PPS hardware is atraightforxard, and as used in the following code,
each is a constant time operation.

41p general, Enablelevel(.) i3 a log time operation.




WITH data DO
BEGIN

{ initialization }
{0 := self;

{ up phase }
FOR 1 := k-1 DOWNTO 1

BEGIN
EnableLevel(1i);
Receive(io, leftChild, io);
self := self + io;
Receive(io, rightChild, io);
io := self + 1o

END;

{ down phase }
EnableLevel(1);
1o := 03
FOR 41 := 1 TO k-1
BEGIN
Enablelevel(1);
Send(io, leftChild, io);
self := self + io;
Send(self, rightChild, io)
END;
EnableLevel(k);
self := self + 1o

END { WITH data }

. "—’_,—’————-8-_--____-\\ﬂ2
2/ \6 10/ \w
1 ///, \\\3 5'// \\‘I 9’// 13//’ \\\15

11

Figure 6: All Partial Sums -- Original Data
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Figure T: All Partial Sums -- After Up Phase

Figure 8: All Partial Sums -- After Down Phase
4.3 Bushes Are Not Binary

The algorithm given for computing all partial sums is designed specifically
for a binary tree., Thus it works for records stored in 1-bushes: bushes
consisting of one physical PE. However, a bush consisting of more than one PE
has more than two children. For example, a 3-bush has a root and. two leaves.
From these two leaves, the 3-bush obtains four children. A 7-bush has eight
children. Thus it is deairable that programs for NON-VON not be written
specifically for bipary trees. Fortunately, we have found it usual for 1-bush
algorithms to have a natural generalization to algorithms for the k-bush case.
As an example, we note that the All Partial Sums algorithm given previously
works for k-bushes, provided that certain conditions are met. First, the data
teing summed must be located in the root of each bush during certain times,

If the fleld containing the value being summed happens to be in some other PE,
it must be moved up to the root of the bush during (or prior to) the
calculation, Second, PE's other than roots of bushes must have space set
aside to hold a temporary value that is initialized to 0. Third, the data are
placed into bushes in an appropriate generalization of the inorder pattern.
The generating rule for "extended inorder” on a 2k-ary tree is "visit the
left-most k children from left to right, then visit the self, then visit the
right-most k children from left to rightn.

Given these three conditions, the previous All Partial Sums algorithm works
for bushes consisting of 2k-1 physical PE's. The sums present in a landscape
of 3-bushes after the up-phase and down-phase of the algorithm are illustrated
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in the next two figures.

(6)
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Pigure 9: 3-Bush Partial Sums -- After Up Phase

Pigure 10Q: 3-Bush Partial Sums -- After Down Phase

During normal operation, it is expected that more than one multiple record
will reside in the PPS at any given time. Thus it will be necessary to find
free space to hold a multiple record that is to be loaded into the PPS. The
following algorithm will determine whether there is enough space of the proper
shape to hold a landscape of a given size, and if so, will identify the root
of thst landscape. The running time of the algorithm is no worse than
0(logn), where n is the number of PE's in the PPS.

In the Pascal extension, the built-in function Resclve takes as argument a
variable in a multiple record. It uses the hardware RESOLVE instruction to
identify just one member for which the variable i1s non-zero. The presence of
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responders, indicated by the condition of a control wire in the control
processor, is returned as a Boolean value. Procedure MarkEmpty puts a
temporary record in registers of all PE's. The record contains two Boolean
variables, self and 1o, with self initialized to TRUE in PE's that are empty.

1. Let the levels in the PPS be denoted 1 through L, with 1 for the
root and L for the leaves. Let k be the number of levels in the
PPS needed to hold the landscape.

startlevel := L;
responder := FALSE;
WHILE (NOT responder) AND (startlevel >= k) DO
BEGIN
MarkEmpty;

{AND the mark up k-1 levels:}

FOR level:=1 TO k-1 DO

BEGIN
Enablelevel(startlLavel = level);
Receive(io, leftChild, self);
self := self AND io.
Receive(io, rightChild, self);
self :z self AND io

END;

.

{Wwas an entire landscape empty?}
responder := RESOLVE(self);

{ If there is a responder, stop. It is the root of an available
landscape of the requisite size, Otherwise loop back to look
for a landscape starting one level higher in the PPS. }

IF NOT responder
THEN startLevel := startlLevel - 1;

END { WHILE }

{ If responder is true, the search succeeded. Otherwise, there is
not sufficient space for the landscape. }

2. After a landscape'=s root has been identified, the heads of bushes
in the landscape may be marked in O(k) time by proceeding downward
from the root of the landscape, marking all PE's in the appropriate
levels.

The same algorithm may be used for the allocation of random bushes. In this
case, the landscape-size parameter 13 set to the desired size of one bush, and
the procedure 1s used repeatedly until as many bushes a3 needed are identified
and marked as not-empty.

It may be noted that the allocation of linear-spanned records may be pérformed
more rapidly. The time required is O(r), where r is the number of physical
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PE's required to hold one record. A method that achieves this time complexity
is to mark all available PE's, then propagate that mark through left neighbor
connections r-1 times, destroying the mark in transit if it passes through a
PE which is not available. After r-1 of these "left shifts", the marks will
be present in all PE's that can serve as heads of the linear-spanned records.
The potential records so identified may overlap, but this need not cause
difficulties. Linear-spanned records do_not use tree-neighbor communication.
They are loaded with data one at a time.5 As each PE is filled, any mark
indicating "potential head of record®™ can be cleared, so that the next
available empty record may be located in constant time, using the RESOLVE
instruction., One other detail is that it is necessary to prevent a record
from spanning across subtrees, since the subtrees are loaded in parallel.

5 Storage of Records Smaller Than a PR'S RAM

Despite the great bandwidth between NON-VON's Primary and Secondary processing
subsystems, internal operations tend to be faster than I/0. To solve problems
haviog more data than the number of PE's in the PPS, it may be necessary to
take several passes over the data. External sorting is a well known example
of an analogous situation in the sequential machine environment. In NON-VON
it is natural to place one record per PE, but if each record is significantly
smaller than the PE's RAM, the number of external processing passes through
the data can be reduced by storing several records per physical PE. This will
yield a decrease in the I/0 time, although the internal processing time may
increase by a factor proportional to the number of records stored per physical
PE; the "packing ratio®.

In processing a record, certain state information is developed in the
registers of the physical PE which contains it. If several records are to be
stored in a PE, it may be necessary to provide a small amount of RAM with each
record to save the register contents. Thus at any instant, one record is
"exposed®, in that its state is in the PE's physical registers, while the
other records stored in that PE are "buried®, with their state information
hidden in the PE's RAM. The collection of all currently exposed members of a
multiple record is called a "slice". In algorithms requiring the interaction
of each record with all others, one may expect a time penalty proportional to
the packing ratio, because if k records are packed per physical PE, it may be
necessary to repeat every operation k times, once for each slice. An
illustration of this is given by deletion of duplicates, from the area of
database manipulation. We choose one record, report it out of the PPS, and
broadcast it back in, matching for duplicates, and destroying any which are
found (including the original just read out). This process is repeated until
there are no more records to be reported out. Suppose that there are n

SThe intelligent head units may load their subtrees of the PPS in parallel,
but under each IHU the loading is sequential.
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distinct records. Each record that is not a duplicate is read out to the CP.
This is 0{(n).- Por each such record, it must be matched against all p slices,
which is 0(p). Thus the run-time is O(pn), which shows that in this example
the cost of packing is a multiplicative factor equal to the packing ratio.

& _Another Associative Storage Allocation Pattern

Previous examples have illustrated the use of linear-spanned records and
landscaped bushes. One other common storage organization found in NON-VON
algorithms uses the PPS as an associative store. In this case, bushes need
not be landscaped; random bushes serve just as well. The increased
flexibility of this allocation pattern may permit more efficient use of the
space available in the PPS.

The transitive closure G' of a digraph G=(V,E) has an edge x-->y {iff therse 1is

a directed path from x to y in G. We will let n denote the number of vertices

!v! {n G. The number of edges |E| in G falls in the closed interval [0,n°]), as
each vertex may be the initial egdpoint of edges to each other ve;tex, as well
as of a self-loop. Similarly, n bounds the number of edges in G

There are several transitive closure algorithms for sequential machinés
mentioned in [Browning, 1980)]. Perhaps the most widely known is Warshall's
Algorithm, whigh uses an adjacency matrix for input and output, and has time
complexity 0(n”). The best time complexity mentioned by Browning for
sequential machines is O(T log?n), where T is tge time required to multiply
two matrices. Currently T is appsogi gSly 0(n=~ ), so the best sequential
algorithm complexity 1s about O(n n) 5 her MIMD tree machine,
Browning achieves a run time of O(nz), using 0(n“) processors.

As may be expected, NON-VON can calculate the transitive closure of a graph
with better asymptotic time complexity than von Neumann machines, meeting the
trivial 0(n2) lower bound imposed by I/0 requirements in a tree machine.

The first NON-VON algorithm given for this problem is a modiflcaticn of the
Floyd-Warshall algorithm, It achieves time complexity O(n ), using O(n )
virtual PE's, This provides an example supporting an observation we have made
for certain algorithms: the highly area-efficient simple processors and
communication hardware used in the NON-VON PPS can equal the asymptotic sapeed
of an MIMD tree machine with powerful PE's and communication primitives.

The second NON-VON algorithm has 0(n2 log n) worst-case time complexity. It
uses random bushes, and a technique not unlike Browning's. It is quite space
efficient, however, requiring n bushes, each containing just n bits of RAM.
As an aside, it may be noted that this algorithm will also_work using n
linear-spanned records, but with a time degradation to O(n-”). The space
required remains 0(n“), but with better constants than for the bush
implementation because of the "internal fragmentation® effect mentioned
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earlier,

6.1 Tranaitive Closure 1

The first transitive closure algorithm for NON-VON is a parallelization of the
Floyd-Warshall algorithm. Each PE represents an edge in the complete graph
Kn' Specifically, it holds integers a pair of integers represeating the
initial and terminal endpoints of the edge, as well as a Boolean value
indicating whether the edge is a member of the closure. The sequential
version of Floyd-Warshall sets the Boolean in the following way:

FOR k:=1 TO n DO
FOR 1:=1 TO n DO
FOR Jj:=1 TO n DO
exists(i,J) := exists(i,j) OR ( exists(i,k) AND exists(k,J) )

The parallel version used by NON~VON uses n? virtual PE's, each containing one
of the exists(®.%) Booleans. In each of n iterations, for some fixed k, all
of the Booleans given by exists(®,k) and exists(k,®) are broadcast into the
PPS, in O(n) time., All PE's are working: PE(1,j) listens for exactly.two
Booleans, namely exists(i,k) and exists(k,j). If they are both true, then
PE(i1,J)) sets exists(i,j) true, and this happens simultaneously for all 1 and
J.

FOR k:=1 TO n DO
BEGIN
FOR 1:=1 T0 n DO
BEGIN read exists(i,k);
broadcast exista(i,k)
END;
FOR J:=1 TO n DO
BEGIN read exists(k,J);
broadcaat exists(k,J)
END;
- exists(i,J) := existsa(i,J) OR ( exists(i,k) AND exists(k,J) )
END

In the sequent%al version, each iteration of the loop for k has time
complexity 0(n“), limited by the time for the nested loops for i and j, so the
algorithm is O(ng). In the parallel version for NON-VON, each iteration of
the loop for k has time complexity O(n), which is limited by the I/0 time.

The exists Booleans are updated in constant time, because the PE's perform
this in parallel, n° at once. As an aside, we note that similar algorithms
will mgltiply matrices and solve problems such as all pairs shortest path, all
in 0(n®) time. Sequential Floyd-Warshall has been classified in (Aho,
Hoperoft, Ullman, 19T4].
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6.2 Transitive Closure 2

For the second algorithm, n virtual PE's are used, each having (at least) n
bits of RAM. The virtual PE's are numbered with the vertiges of G. If bit y
1s set in virtual PE x, that represents an edge x~-->y in'G . The virtual PE's
may take the form of bushes or linear-spanned records, but a fference will
be seen in the algorithm's time complexity, which will be O(n° log n) for the
bush variant, and 0(n”) for the linear-spanned version, reflecting the
differing cost of communication within each of these types of spanned records.

Step 1. Initialize the PE's.

First we place into each PE its positional number in an inorder
traversal. This can be done hierarchically on the n bushes in
0O(log n) time, as follows. Let the number n of virtual PE's be
2k-1. The numbering is performed level-by~-level in the PPS. The .,
root is labeled with k. It labels its left child as k - k/2, and
its right child as k + k/2. They label their left children with

. their own value minus k/4, and their right children as their
value plus k/3. The next level of labeling is performed by
subtracting and adding k/8. The process continues until the
leaves of the PPS are labeled. Next the RAM cells are cleared.
Since there are n bits of RAM in each virtual PE, this step can
be done in 0(n) time.

Step-2. Broadcast the edges of G.

For each edge x-=>y in G, select the PE with virtual number x, and
set its RAM cell y., The time complexity of th%s step is bounded by
the number of edges in G, which is at most 0(n“)

Step 3. Develop the tranaitive closure.

First push all the edges of G onto a stack.
WHILE stack not empty DO

1. Pop stack top into xy, send xy to output; it is part of the solution.

2. Select PE x; set its RAM cell y. {( so that x-->y will not be
generated again }

3. Select all PE's except x. In parallel, mark all those for which RAM
cell x i3 set and y is clear, then set their RAM cell y.

4. Associatively enumerate the marked PE's, reporting out their inorder
numbers k, and push each new edge k-<>y onto the stack.

Step 3.3 can be understood from the point of view of PE k as "I know that I
can get from myself to x; I have just heard that we can get from x to vy,
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therefore we can get from myself, k, to y." The only edges that result to be
read out in step 3.4, are those of the form k-->y, They were not previously
generated, because the test of 3.3 checked that RAM cell y was clear. Edge
k-=>y can only be created by virtual PE k. Thus edges are not generated more
than once.

Each iteration of this loop uses cone edge from the stack. Every edge on the
stack is an edge in the transitive closure. There are no duplicates produced.
Thus it might appear'that ghe time complexity of this step is linear in the
number of edges of G , 0(n“) in the worst case, but this is not so. In order
to do the comparisons in part 3.3, it is necessary to bring the contents of
RAM cells x and y into the physical PE that heads each virtual PE. For
bushes, this can be done in O(log n) time. For linear-spanned virtual PE's,
it takes O(n) time. Thus in the case of bushes, the algorithm has time
complexity 0(n“ log n), whereas for the linear-spanned case the algorithm
complexity is o(nd).

7 l‘nnn l |;=: an

This paper has discussed programming language constructs, data organizations,
and algorithms for the NON-VON Primary Processing Subsystem. We observed that
the conception of problems in terms of virtual PE's and intelligent records
tends to make certain programming tasks easier on NON-VON than on conventional
sequential processors. For example, direction of instruction sequences to
intelligent data records obviates the need for generation and manipulation of
data structures, removing an entire area of program design activity. The
runtime-layer of functions performing low-level services insulates the
programmer from details of the machine's architecture. The Pascal extensions
provide a convenient and natural means for expressing parallel activities:
substantial speedup is achieved without the necessity of extracting implicit
parallelism, yet awkward low-level specification of parallel activities is
avoided. Aspects of SIMD programming common to associative architectures in
general are added as new statements and extensions to fundamental semantics,
while instructions that depend on the particular architectural features of
NON=VON are encapsulated in built-in functions. As with any conventional
compiler, the programmer is protected from details such as the explicit
mapping of variables into memory and registers. Low-level issues which arise
only in a parallel envircnment, such as limited RAM in each PE, are also
handled inviaibly.6 Because of the fineness of NON-VON's granularity, this is
not excessively wasteful of computing resources. For contrast, one may
consider the devaatation that would result from the wastage of 25% of the PE's

6Programs for more than a PPS=full of data still require explicit handling
by the programmer, analogous to "external® algorithms for conventional
machines, The role of NON-VON's Secondary Processing Subsystem for this
domain of programming is not discussed in the present paper.
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in ILLIAC IV.

Two principal sources of speedup gained by NON-VON have been noted. The first
i3 derived from the associative processing capability, which allows the inner
loop of many sequential algorithms to be performed in constant time, rather
than linear time. The second is a result of tree-neighbor communication
patterns, by which mathematically associative vector merge functions can be
computed in O(log n) rather than O(n) time. We observe that compute-bound
algorithms for sequential machines can achieve I/O-limited computation rates
on NON-VON, suggesting that wires are the fundamental limitation of our
architecture, i ’
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