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ABSTRACT

ANALYST, an interactive protocol performance analyzer, is used to analyze the
- performance of a two phase locking protocol. ANALYST implements s specification-
based methodology for performance analysis of protocols which extracts from an
algebraic specification of a protocol a model of its timing behavior. Any timing .
requirement or performance measure that can be formally specified in terms of
attributes of this timing behavior can be thus analyzed. An algebraic specification
of a two phase locking protocol that wuses time-out for deadlock detection s
provided. Two timing requirements necessary for its efficient performance are
specified and analyzed yielding optimal settings of protocol parameters (such as time-
out rate). Additionally, the mean response time and probability of deadlock of the
protocol are specified and analyzed. This, to the best knowledge of the authors, is
the first automated, analytic performance analysis of such a high-level protocol.

*This research was supported in part by the Defense Advanced Research Projects Agency under contract N0O0CO39-84-
C-0165, the New York Stste Center lor Advanced Technology in Computers and Information Systems under NYSSTF
CAT(83)-8, and » grant from ATET.



1 Introduction

Recently there has been a growing need for automated tools to aid protocol
designers in verifying the correctness and snalyzing the performance of protocols.
Protocol behavior is typically time-dependent and its correct functioning depends not
only on functional requirements, but also on timing requirements [Noun 84, Shan
84]. Most of the past efforts, bowever, have concentrated on functional verification
tools.  Timing requirements of protocols have been typically ignored.  Furthermore,
in contrast to automated verification tools, analyses of protocol perfcrmance have
been acco;nplished manually, (see for example [Tows 79, Bux 80]). Such analyses are
based upon ad hoc and protocol-dependent techniques and thus cannot be integrated

with other tools in a protocol development environment.

In this paper, the performance of a two phase locking (2PL) protocol [Bern 79] is
analyzed automatically using ANALYST. ANALYST is based on a formal
methodblogy which extracts a timing behavior of a protocol from its algebraic
specification. This timing behavior c¢an be used in analyzing the timing

requirements and performance measures of protocols.

The 2PL protocol uses locking to regulate the concurrent access to shared data
base items by multiple transactions. The functional correctness of such ‘concurrency
control protocols has been studied extensively [Ceri 84]. Performance analysis of these
protocols, on the other hand, has just began to attract interest (see for instance
[Ches 83, Morr 84]). We provide the first sﬁecification-based performance analysis
of this protocol.

In section 2 we give an informal overview of the methodology underlying
ANALYST. In section 3 we provide an algebraic specification of the 2PL protocol,
and analyze its performance. Two timing requirements, the mean response time, and

the probability of deadlock are specified and analyzed.




2 A Formal Methodology for Specification-Based
Performance Analysis of Protocols

2.1 An Algebraic Specification Method

The communication behavior of a protocol may be described by expressions in a
specification algebra.  We assume synchronous interprocess communication in which a
sender (receiver) process issuing a send (receive) event is blocked until the receiver
(sender) process is ready to receive (send) it. That is, a communications block the
sender and receiver processes until a successful rendezvous.  Let send, receive, and
rendezvous events be represented by lower case letters preceded by I, “?” or

“&”, respectively.

Consider the communication behavior of a sender process S in a simple data
transfer protocol.  The sender sends a message and terminates upon receiving an
acknowledgment, or sends the message again after a time-out period. This
behavior can be described by a Communication Tree (CT) shown in Fig. 1 where
nodes represent’ the behavior at a certain execution ‘point "and the branches
represent the events, The execution starts at the root and proceeds as follows. A
branch followed by a node indicates that the event Ilabeling the branch is
sequentially followed by the behavior represented by the node. A number of CTs
connected to a node indicates that any of them can be executed

non-deterministically. All leaves of a CT indicate deadlock or termination.

Such CTs can be formally defined using a universal algebra [Grat 68]. Each CT
corresponds to an expression in the algebra. Let & denote the set of send events,
receive events, and rendezvous events. Also, let the set of isdentifiers I refer to

labels of nodes in a CT. An expression E is defined by
$ (deadlock),

—t
.

2. I € I (identifier),
3. e¢«E (sequential composition), ¢ € ¢,

4. E+ E (non-deterministic composition),
or




5. E | E (concurrent composition).

Concurrently composing two expressions produces a conmcurrent ©behavior which
informally includes a rendezvous event for every pair of correspending send and
receive events, and a shuffling of other events belonging to the two expressions
[Miln 80, Noun 84]. The behavior of the sender process in the data transfer

protocol can be specified recursively by the following equation in S:
S == !mesaage « (lacknowledgment « $ + &time—out « S)

where &time—out is a rendezvous event between the sender process and a timer
process.  This equation is represented in the CT by the node la.cled S connected
to the CT whose behavior is represented by the expression on the right hand side
of the equation. Given the behavior of the receiver process R in the data transfer

protocol

R == lacknowledgment .$
then
S|R= SR
= Zacknowledgment « .$ + &time—out « (S [$)

. (We assume that concurrently composing -two identifiers produces a new identifier

that is a concatenation of the two former identifiers.)

In other words, the concurrent composition of expressions produces a composite
expression which is expressed in terms of the sequential composition, non-deterministic

composition, and deadlock operations. Any expression A in the algebra of CTs can

then be represefted canonically as a sum of summands E?-l a; ¢ A;.

A protocol can be specified as a list of processes. Assuming that the simple data
transfer protocol involves also a medium process M (whose behave includes a
rendezvous event denoting message and acknowledgment loss) and a receiver process

R, its specification would be given by
PROTOCOL’ DATA _TRANSFER : S, M,R

The concurrent behavior of the protocol can be obtained by concurrently composing
the specification of its processes. During the composition, any deadlock or

unspecified reception errors in the protocol behavior can be detected.




2.2 A Specification-Based Performance Analysis

In analyzing the performance of protocols, the specification and analysis of timing
requirements and performance measures need be addressed. For example, a timing
requirement for the data transfer protocol example described above, and assuming
that its medium process can lose messages, would be to ensure that the probability
of time-out occurring before a loss in the medium is minimal and that a time-out

occurs as soon as possible after 8 loss [Noun 84]. An example of a performance

measure is the mean roundtrip delay starting from sending a message and ending . .

with receiving its acknowledgment at the sender.

The two aspects of protocol performance can be specified and analyzed wusing a
timing behavior of protocol. A methodology for extracting this timing behavior
from algebraic specifications of protocols augmented with the distributions of the
events involved, is described in [Noun 88]. Timing behaviors of protocols are
modeled as marked point proccsses [Suyd 75 Times between occurrences of events
are assumed to be exponentially distributed random variables. Probability, mean
time, and variance time attributes of the timing behavior are defined as
homomorphic images of expressions in the specification algebra. If the execution
point is at the root of a CT representing expression B, the probability, and the
mean and variance of the time duration of A (a summand of B) are denoted by
Pg(A), Mpg(A), and YB(A), respectively. A necessary condition for these attributes
to be defined is that A is a terminating behavior meaning it includes the deadlock
symbol. Three theorems in appendix [ define mappings from operations in the

specification algebra to operations on these attributes.

Two functions; Terminate and Restrict, have been defined to be used in isolating
interesting event sequences of a protocol's concurrent behavior or segments of it.
Let P represent the power set of a set that includes all pairs (¢,]), where ¢ € ¢
and J€L Informally, Termsnate[A, i maps the CT corresponding to expression
:?zl a;e A; to another CT identical to the former, with the exception that for
every branch labeled a; incident upon s node labeled A; where (aj,Aj)E P, then

J

node A; is labeled with a *“$' instead. This means that the new CT represents

a behavior that would terminate after executing event a Restrict[A,A, where



A—E’.‘ 1“|"Ax" maps the CT rooted at A.to another CT that is identical to
1=

the former, with the exception that every branch with a labeled event a; restricted
by (“j:Aj)ep and Aj7‘A, is excluded. Complete definitions of these functions can

be found in [Noun 886].

Any timing requirement or performance measure of a protocol that can be specified
in terms of attributes of its timing behavior can be analyzed. For example, the
timing requirements necessary for the efficient operation of the simple data transfer
protocol can be specified as follows. Let C denote the concurrent behavior

obtained from S | M | R.  This concurrent behavior execution consists of sequences

in which time-out occurs before a loss in the medium (which would be represented - -

by an internal event), and other sequences in which time-out occurs after a loss.
The latter sequences can be isolated using Restrict function on C to get Cp
The timing  requirement of the protocol can  be  then  specified as
minimize M{C) and mazimize PC(C’R). By analyzing this timing requirement an
optimal setting of the time-out period is computed. The mean roundtrip delay can
be specified by M(C). ' -

3 A Two Phase Locking Protocol

In a distributed data base system, data items are distributed among several sites.
User processes, at possibly different sites, execute transactions that are allowed to
concurrently sccess and modify the data items. Clearly, such concurrent access has -
to be controlled in order to maintain a consistent state of the data base.
Locking is one policy that has been used for that purpose. Eswaren, et. al,
[Eswa 78] have shown that cobsistency is maintained by protocols using locking if
transactions do not request new locks after releasing a lock (well formed

transactions).

A two phase locking (2PL) protocol is a concurrency control protocol that uses
locking [Bern 79]. In a 2PL protocol, all transactions are well-formed and each
passes through a growsng phase, commits, and then pursues a shrinking phase. In
the growing phase, a transaction goes through a loop of performing some processing

actions. Whenever it needs a lock, it sends a locking request to the concerned



data item, then continues processing after its request is granted. The growing
phase ends when the transaction commits, i.e., "all its actions are guaranteed even if
the transaction later aborts (due to failure of its process, for example). In the
‘shrinking phase, a transaction releases all acquired locks in the same order in

which they were acquired and terminates.

A 2PL protocol ensures consistency of the data items, but it does not guarantee
absence of deadlock situations. Such situation may arise between two transactions if
each - is waiting for a lock acquired by the other. Deadlock can be avoided if
each process locks all data items required by a transaction before initiating it
(static locking). Otherwise, a deadlock detection and recovery mechanism has to be

employed to recover from deadlock situations.

In this study, we assume the following regarding the operation of the protocol:

1. Dynamic locking: a process locks a data item only when it is
required during the growing phase.

2. Ezclusive locks: a lock can not be shared by more than one process
simultaneously; note that no distinction is drawn between read and write
locks. ‘

3. Locking through polling: a process that has sent a request for
acquiring a lock would retry again after a waiting period to acquire it;
note that no requests are assumed to be queued at a data item.

4. Deadlock recovery via time-outs: a process waits for a specified period
for lock acquisition and upon time-out it aborts and restarts [Ceri 84].
This - mechanism aims at deadlock detection. A process might, however,
time-out even when no deadlock has occurred.

Although the two last assumptions have been considered by other researchers, no
work has been reported on how to optimally set the time-out and polling rates.
If the time-out rate is too large, then a transaction would be unnecessarily aborted
and restarted thus decreasing throughput of the protocol. If it is too small then
a transaction would would for s long time after a deadlock situation has occurred
to abort and consequently the response time of a transaction would be degraded.
Similarly, if the polling rate is too high, then the network is flooded with polling

messages and assuming. Also, assuming that a lock grant arriving while a process is



sending another request does not preempt it, then if the polling rate is too high
the response time will be degraded. The same “effect can be also due to that a
data item scheduler receiving a lock request spends item to processes it, during
which a release request might arrive and its processing delayed. If the polling rate
was too small then the response time would be degraded since a process waits too
long before trying again to acquire a lock. Note that the use of time-outs for
deadlock detection involves local decisions to restart a transaction, minimal overhead
in the response time compared with other detection mechanisms which involve

elaborate” computations and checks of wait-for graphs [Ceri 84].

An algebraic specification of the protocol is given in section 3.1. The concurrent
behavior of the protocol is computed and the space and time complexities of
computing it are examined in section 3.2. Also, some interesting behaviors
belonging to this concurrent behavior are specified and derived. The performance

of the protocol is analyzed in section 3.3.

3.1 An Algebraic Specification

Consider a distributed data base system with M logical processes, and N distinct
data items each with a scheduler process associated with it. Let M denote the set
{tf; s==1,..,M}, and N denote the set {y; s==iI..N}. The communications between
a process P; and a data item Dj are depicted in Fig. 2. There are three ports
through which they interact: a port a;; for messages to acquire a new lock to the
data item, a port lij‘ for messages to grant a lock, and a port i for messages
to release a lock. The 2PL protocol is then specified as

PROTOCOL 2PL : P, , Py , .. , Py , Dy , Dy , .. , Dy

Before introducing the detailed slgebraic specifications of processes and data item
schedulers, we describe simplified versions of their CTs. These CTs are illustrated in
Fig. 3 and Fig. 4, respectively. In these figures, events denoting communications
between a process P; and data item scheduler Dj are described by a subsecript iy

events denoting internal events in a process P; are described by subseript i (except

&p,-j representing process s deciding it needs to lock data item ).

A process P; starting a new transaction, as shown in Fig. 3, might perform some



actions and then decides it needs a lock to data item j (&p,-j). It then sends a
request to it (!a;j) and starts a time-out timer. The process is blocked until it
receives a granting of its request (?l'-j) upon which it either continues processing
and acquiring more locks, or decides to commit (&e;). If after a certain waiting
period the locking request is not granted, the process decides to try again (£&9;)
and sends another request. However, if the time-out period expires (&t;), the process
suspects that it is involved in a deadlock, aborts the transaction, and restarts it.
When aborting or committing a transaction, a process releases all the acquired locks
(!r,-j) in the same order in which they have been acquired. We assume that there
is always a transaction waiting to be executed on each process; therefore, after a
transaction commits and terminates a new transaction is started immediately. In
addition, it is assumed that the behavior of a restarted transaction is independent

from that of the previously aborted transactions.

The behavior of a data item scheduler D, as shown in Fig. 4, starts at a state
in which it is waiting for a locking request. The first locking request it receives

(?a,-j) is granted and the scheduler is locking.  Subsequent locking requests while it

is still locking are ignored. A grant of the first received locking request (!Iij) is

sent to the source process and the data item is locked. The data item remains
locked until it receives a release request from that process (?'ij)' Release requests

received from other processes (that are aborting) are ignored.

A glossary the identifiers used in the algebraic specifications and their descriptions
are given in Table 1. Identifiers are associated with subscripts denoting the
identity of the process or data item scheduler whose behavior they describe. In
addition, identifiers of a process specification, except for the initial identifier, are
associated with an ordered list of locked (and waiting to lock) data item numbers.
This allows the_ order of acquiring locks to be remembered and thus to release
them in that order in the shrinking phase. Identifiers of a data item scheduler
specification are also associated with the process pumber that is owning a lock for

the data item to distinguish between release requests when a data item is locked.

Algebraic specifications of a process and a data item scheduler are given in Fig. §

and Fig. B8, respectively. These specifications follow the simpler corresponding CTs



in Fig. 3 and Fig. 4, respectively. One ac :d detail in Fig. $§ is that since a
process might be involved in deadlock only if it has already locked one data item,

time-out is not allowed when a process is waiting for its first lock.

3.2 Concurrent Behavior
The concurrent behavior C of the specified 2PL protocol is :..:a by

The time complexity of obtaining the concurrent behavior of the 2PL protocol is of
O(NIM.M2NLNIM.MN), and the spsce complexity is of O(N'M MN). A proof of

how these complexities are computed is given in [Noun 88).

These -explosive time and space complexities are due largely to that every process
has a different identifier to describe its behavior for every possible sequence of
locks acquired. Also because every data item scheduler has a different identifier
for every possible process that might lock it. Consequently, generating the
concurrent behavior of the 2PL protocol with large numbers' of communicating
processes and data items is very expensive. Subsequently in this paper, we will
examine only the case of both M and N equal to 2 (unless noted otherwise)
Even in this case the concurrent beha.vior. includes 580 equations! Therefore,
instead of listing the complete concurrent behavior we describe in this section some )

interesting sequences belonging to it.

The comcurrent behavior C describes the concurrent execution of transactions on two
processes that can access any of the two available data items. It includes, for
example, sequences of events in which one process, waiting to acquire a lock to a
data item, is blocked because the other process has already acquired that lock. It
also includes other sequences of events in which transactions are executed and

committed without deadlock.

The specifications of processes and data item schedulers in the 2PL protocol given
in Fig. 5 and Fig. B8, respectively, are cyclic. For example, after s transaction
running on a process commits another transaction is assumed to be ready and is
started. Consequently, the concurrent behavior C is also cyclic describing the

execution of several successive transactions on the processes in the data base.



The first behavior that we are interested in deriving from C is the terminating
behavior, denoted by Cj,., Which starts at 'C and ends with the transaction
executing on process P; releasing its last lock and terminating. This behavior
describes the execution of one transaction from start until termination, and the
effects of other concurrent transaction on it.

C, can be derived as follows

Cierm = Terminate|C , {(&r,*P1*), (&r(5,*P1*)}] (2)

erm

where ‘*’ matches any string and is used to indicate any identifier (recall from
section 2.1 that names of identifiers in the specification of a concurrent behavior
are concatenations of corresponding identifiers in the concurrently composed

specifications).

Two other behaviors that will be used in specifying timing requirements necessary
for the_efficient performance of the specified 2PL protocol, can be derived from
Ct

The first behavior, which we refer to as Cy is a behavior belonging to
Ciern 'n which the two processes are constrained - such that they time-out only

erm:
after the  occurrence of a deadlock situation. The second behavior, which we. refer
to as C,, is 8 behavior belonging to Cy,,, in which process P; is constrained
such that retries to acquire an awaited lock for a data item only if that data

item is free.

The Restrict function can be used to derive C, as follows. Two identifiers in the

concurrent behavior Cy,., correspond to the protocol being in a deadlock state:

Fi1 F2 W 12 W21 and F|2 Fol W 21 W12, For the first identifier, process
P, has data item D; locked and is waiting to acquire lock to D, while process
P, has data item D, locked and, is waiting to acquire lock to D). The same
description applies to the second identifier with the exception that the data items
are interchanged. Therefore, to compute C, time-out should be allowed only if

the 2PL protocol is in any of these two states.



Let P ={(&t,F1 Fp2 W12 Wy21),
(&t,F, 2 Fo1 W21 Wy12),
(&1, Fy 1 Fa2 W12 Wy 21),
(&t5,F 2 Fo1 W21 Wy12)}

then C; = Restrict(C, o D) (3)

To derive C,, process Py should be allowed only to retry for an awaited lock if
that lock is available. The identifiers corresponding to the cases when process P,
is waiting to acquire the lock to data item D; that is free are D;*W;1* and
D,*w21* Similarly, the identifiers corresponding to the cases when process P,
is waiting to acquire the lock to data item D, that is free are *Dy W;2* and
*Dy Wi12°,

Let F == {(&CI'DI * Wl 1 ‘) y (&CI'DI * Wl 21 ‘) ,
(&Cy, * D, W, 2%), (2Cy, * Dy Wy 12 %))

then Gy = Restrict(C,, . Pl (4)

The last two behaviors that we are interested will be derived from the complete
concurrént behavior C. These behaviors are to be used in analyzing the behavior of
the protocol in deadlock situations. Consider the terminating behavior, Cy .4
representing those behaviors of the protocol in which the protocol terminates when
a deadlock occurs. Thus we can examine the deadlock behavior of the protocol
without giving a chance for time-outs to resolve these deadlocks. Clead ©3D be
computed from C by

Cgead = Terminate[C, {(&a,,F;1 F2 W, 12 W, 21),
(&a10,F) 2 Fp 1 Wy 21 W, 12),
(Zag) Fy 1 Fp2 W12 W,21),
(&Zagq,Fy 2 Fyl W21 W, 12)} (5)

Now let us derive behavior Cj; which includes only those events sequences that lead
to deadlock. C3 can be derived from Cy,,4 by constraining &a;; and &a;e such
that process P, does not lock the two available data items and therefore there

would be no possibility of deadlock. Also, &ec; should be constrained in order to

avoid committing before allowing deadlock to occur. If T denotes the set of all

identifiers in C, then Cy is given by



C3 == Restrict|Cy .4, {(&ay . 1€ (T - D,*S,21)),
(&a91, 1€ (T - * Dy 5, 12)),
(&ep.T€ {O1)}] | (6)

3.3 Performance Analysis

3.3.1 Timing Model

Let ), denote the exponential rate of the occurrence time of event &e. The rates

of the events included in C are described as follows:

)‘Px'j : rate of process § accessing data item 3.

)‘ti : rate of time-out of process 1.

)‘g‘, : rate of polling of process ¢ for awaited lock.

)‘ci : rate of committing of process 1.

xa',j : rate of transmission plus propagation, and processing of

locking request from process § to data item j.

AL, ¢ rate of transmission plus propagation, and processing of

granting a lock from data item 5 to process i.

A : rate of transmission plus propagation, and processing of

a release request from process { to data item j.

Let the"-delay incurred in the transmission, propagation, and processing of a locking
request, granting, or release request be denoted by 5.4 =1/Xai'j=1/xzilj=l/xri
for any 1,35, We assume that any process in the data base has the same rates
of events for various transactions running on it.. This is clearly true for
transaction-independent rates such as delay. It is also a reasonable assumption for
other transaction-dependent rates assuming that transactions running. on a process

belong to the same transaction class that has the same rates.

W J



3.3.2 Specification and Analysis of Timing Requirements

Two timing requirements are necessary for the efficient performance of the specified
‘.’PL protocol.  The first ensures that s process times-out only after a deadlock
situation in which it is involved occurs and it times-out as soon as possible in
order to avoid unnecessary delay. The second ensures that a process retries to
acquire an awaited lock only if the lock is available and does that as soon as

possible after it has become available to avoid unnecessary delay.

Optimal settings of the time-out and polling rates that satisfy these timing
requirements depend on the rates of the various events involved in the global
behavior of the protocol. Consequently, a process can not optimally set its time-out
and polling rates using only local knowledge about the rates of its events. It has
to also know the state of each of the data items in the case of *he first timing
requirement, and of each of the other processes and data items ior the second.

This is obviously not feasible in a distributed system.

- Alternatively, we show that if a process knows the rates of events of the other
processes and data item schedulers, it can wuse information showin: the effect of
these events on its performance to optimally set its time-out and polling rates.

Such information can be obtained by analyzing the timing behavior of the protocol.

As discussed in section 3.1, the first timing requirement of the 2PL protocol should
ensure that the transaction response time is minimized and throughput of the
protocol maximized. Instead of maximizing of throughput, we consider minimizing
l—PCterm(Cl) which indicates the probability of 2PL concurrent behavior in which
a process times-out unngcessa.rily. The <-cond timing requirement should ensure that
the tramsaction response time and the number of unnecessary locking requests sent,
are minimized. As & measure of the number of unnecessary locking requests, we

consider I—PC,m(C2)' Let
n=1= PCtarm(Cl) ()

and
pe=1- Pctm(cz) (8)




The mean time, t, of behavior C,.,. starting a new tramsaction until it commits

and releases all its acquired locks including restarts due to time-out is given by

The two timing requirements are formally specified as:

Treql - Minimize t, and p;.
Treq2 . Minsmize t, and Py
Consider behavior C,,.,,. In a deadlock situation the only two possible events to

occur are either process P; or process P, times-out (aborts), releases its locks, and
restarts.  This will allow the other process to acquire the awaited lock after it is
released.  Using rule P4 in appendix I we find that the probability of process Py
aborting is equal to x,l/(xtl+xt2). Similarly, the probability of process P, aborting
is equal to )‘t2/(ktl+)‘t2). If )"1 is set greater than x,2, then process Py has
higher priority in continuing without aborting, and conversely. The two processes
would have the same priority if their time-out are set equal.  The latter will be

assumed throughout the rest of the analysis.

In order to satisfy the two timing requirements, we vary the time-out rate for the
first and the polling rate for the second and find the value that minimizes the
mean time and the probability terms in each. Note that optimal time-out rate is
affected by variations in the setting of the polling rate. Therefore, we iterate
through computing the optimal setting of ome and use that to compute the optimal

setting of the other until we converge.

In Fig. 7 we plot t, versus p, for iterations 2, and 4. In Fig. 8 we plot mean

time of ¢t  versus py for iterations 1, 3, and 5. Note that the two goals in
both timing requirements are contradictory and therefore we replace Treq! and Treq2
t t
r r . N
by minimize e and minimsze = respectively. From the figures, optimal
e —f1

settingi_—of the time-out and polling rates such that Treq! and Treq? are " satisfied
for iterations 1 through 5 are given in Table 2. The optimal settings of the
polling rate in iterations 3 and 5 are identical to two decimal places. Thus the

iterations stop at 5.



3.3.3 Specification and Analysis of Probability of Deadlock

The probability of deadlock py is given by

=P Ci) (10)
va=Pc,, O

In Fig. 9 pg is plotted versus the rate of committing of process P, for several
values of the rate of committing of process P;. As the rate of committing of a
transaction class increases the shorter the transactions. That is, transactions that are
less likely to need to lock all the data items available in the data base.  The
figure shows that the probability of deadlock increases sharply as the length of

transactions increase,. especially if long transactions are runming on both processes.

In Fig. 10, the probability of deadlock is plotted against &, for various xpu =

xplz. Increasing the access rates leads to a smaller time spent in processing

actions (let it be denoted by tpc). The two rates are maintained equal to analyze

the effect of varying t,. on probability of deadlock while holding the access ratio

¢
constant. The figure pshows that as delay increases, the probability of deadlock
increases and saturates for very large delays. A large delay means that a lock
request sent by a process takes a long time to reach the data item duﬁng which
the other process might had the chance to lock it, thus increasing the probability
of deadlock. However, for a large delay that is already larger than the delay
between the other process and the data items, this increase disappears.
Additionally, as the processing time decreases the increases, the probability of
deadlock decreases because of the higher probability that the process decides to

commit instead of needing another lock.

3.3.4 Specification and Analysis of Mean Response Time

The mean response time of a process running one transaction including restarts is

given by o, In Fig. 11, p, is plotted versus the commit rate X"l for various

access rates xm-xpm. As . expected, the mean response time decreases as the

commit rate increases since transactions are shorter. Increasing the access rates

leads to a smaller time spent in processing actions tpe this results in a lower

mean response time. However, for very large access rates, p, saturates. This s

partly due to the increase of probability of deadlock as toe decreases since a high

probability of deadlock causes transactions to abort and restart thus increasing the

mean response time.



Appendix I: Mapping rules of attributes of a protocol’s
timing behavior ' |

Let F/[t) and f/t) denote the probability distribution and density function of the

occurrence time of

event e. Also, for a terminating expression C=3%"

m c
=17

++ Cj,

let CH(C)={cJ-; j=1,..,m} and 3, (C)=C, i a= c; J=1,..,m, or otherwise

undefined.

Theorem 1

P1. Pc(a . A)

n

J

Pc(a) ) Paa(c)(A)

E PC(G.' . A,)

=1
P3. P(a) A H [1—Fei(t)]dFa(t)
c"GCH(C')#d
if and only if & € CH[C|
P4. P$) 0 it Cols
P5. PC) 1

Theorem 2

MLl. MC(G . A)

M2. MJ(T0_ ap04)

M3. M (a)

M4, M_($)

MC(G) + Maa(C)(A)

Z PC(G") . MC(G{ . Al')

{==]

Z Pc(af)

1=1

A O -F o
e; € CH(C')
if and only if & € CH[C|

0




Theorem 3
VI. VC(G . A)

n
va, V43O a; e A) =

1==1

V3. Vc(a)

Ve, V$)

[Bern 79]

[Bux 80}

[Ceri 84]

[Ches 83]

[Eswa 78]

[Grat 68]

[Miln 80|

I

Vo) + Vo (ofA)

Z Pc(al') ' [VC(G" . A‘) + Mg(d‘ . A‘)l

=1

3 Pla)

ym]

-MYT 00 A
I [1;1?,‘(:)1 dt

- 2% t,‘.eCH((;)

—Mg(a)
t and only if a€CHIC]

== 0
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R;

D;
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where n <
Table 1:

process P

process P; is starting a Dnew transaction.

process P; has acquired locks for data items j; j,
Jn—y 2and has decided to send a locking request
to data item j,.

process P; has acquired locks for data items j; j
Jn—~y 2nd is waiting for lock of data item In-

; has acquired locks for data items N I

In-

process P; has decided to commit.

process P. is saborting.

process P; is restarting.

data item Dj is unlocked.

data item DJ- is being locked by process P;.

data item Dj is locked by process P,

N

Glossary of identifiers used in the specification of the
2PL protocol




PROCESS P;

N
P; = Y &pjeSi

=1
S; dy g Gu = lsij o Wi i1 Jze In
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+ &g;+ S; i g In
+ &t Ay Gor In
L" jl J.2... jn = Z &p"ko Si jl jz... jn k
ke N—{jl,...,jn}
+ &Cio C' jl j2 jn
Cl' jl j2... J.n == !f'-jloC" J2 jn
C‘ ] == !f'-jo P"

Ai jl j2... jn = !f:'jloA" j2... jn

A'- 2 = !fijo R"
N
R" = Z &pl-j. S,- ]
=1 .
END

Figure 5: An algebraic specification of process P;




PROCESS D.: 1<,;<N

END

M M

=1 =1

M
= Z .’G"jo EJ f + E ?rkj. EJ 1
=] ke m={i}
+ ”l‘j' F" i+ ?r,-j. DJ
M

ke m=-{i}

ke u—{i}
Figure 8: An algebraic specification of a data item scheduler Dj
Iteration Number Rate Optimal Setting
1 )‘91 10.5
2 M, 5.25
3 )‘gl 8.2
4 My 5.0
5 xgl 8.2
Table 2: Optimal settings (in occurrences/sec) of the time-out o

and polling rates for various iterations
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