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Abstract

LPS is a Logic Programming System currently under develop-
ment and specifically targeted for implementation on massively
parallel architectures. We present a detailed explanation of al-
gorithms under development for paralle] execution of LPS pro-
grams. The explanation is significantly more detailed than those
published previously. An abstract proof procedure is developed
which encompasses these algorithms and several variants, as weli
as the standard sequential Prolog algorithm. This abstract pro-
cedure provides a conceptual basis for our discussion and for a
critical analysis of various execution strategies.

The algorithms have been successfully implemented and demon-
-strated in simalation on 3 number of small programs. Work is
currently underway to transfer this implementation to a wérking
prototype machine based on the DADO parallel architecture.

1 Introduction

Logic programming has attracted a great deal of attention as
a medium for the development of software for paralle] execu-
tion. Two major factors contributing to this perception are the
demonstrated suitability of logic programming for the expres
sion of a wide variety of software tasks, and the identification
of several sources of parallelism inherent in the logic formal-
ism itself. Thus logic programming languages appear to offer a
framework in which programs natarally lend themselves to effi-
cient paralle] execution, but in which the programmer need not
be overly cognisant of this goal.

With this view in mind we have developed methods for the exe-
cution of logic programs written in a language we call LPS, un-
der a particular parallel execation model {12: Taylor et al. 1984;
14: Taylor et al. 1984). Our methods are not well characterised
by any of the sources of parallelism identified in (Conery 1983),
although they bear some resemblance to OR and AND paral
lelism. We unify a conjunction of goals simultaneously throaghe
out a network of what may be considered intelligent memory
devices. Each of these devices receives the entire goal list and
attempts unification of each goal with every literal in its own
local store. Upon completion of this activity, a series of network
queries and combining operations results in the construction of
a single relation representing all potential solutions of the arig-
inal conjunction. The cycle repeats by selecting one member
of that relation and producing from it a new conjunction to be
solved.
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Projects Agency under contract NOOQ39-82-C-0427, New York State Sci-
en<e and Technology Foundation, Intel Corporation, Digital Equipmant
Cerporation, Vahd Logc Systems Inc, Hewlett-Pachard, ATLT Beil
Laboratones and International Business Machunes Corporation. -

We may view our proof search as a perusal through a tree of goal”
lists, where each node gives rise to children that can be obtained
via resolution of one or more of its goals with clauses in the
program. The structure of this tree depends on which goals are
chosen for resolution in each node. In particular, we note that
the standard sequential Prolog algorithm? chooses exactly one
goal in each node, whereas the current LPS algorithms® always
resolve every goal in the goal list. Both algorithms pursue a
depth first search, although the LPS search tree, in comparison
to the Prolog search tree, is characterized by:

o Shorter paths to leaves
o Earlier termination of anproductive paths

e Earlier consideration of most goals, causing
earlier branching but mot necessarily higher
branching faclors

o A substantially reorganised leaf structure, re-
sulting in a different order to the construction
of solutions

Although the LPS algocithms may appear to exhibit something
of a breadth first nature due to the simultaneous construction
of all children for whichever node i under consideration, that
view is misleading. Although the children are comstructed in
unison, coe child’s subtree is searched before any other child is
considered, 50 that the search pattern itself is purely depth frst.
The process may be viewed as a hill-climbing strategy in which
all branches are equally favored.

In this paper we begin by presenting an abstract proof procedure
that encompasses both the LPS and the Prolog algorithms, as
well as many variations. We proceed with a specific example of
the algorithm at work, followed by detailed explanation of the
current LPS implementation in terms of the abstract algorithm.
Finally, several alternative execution strategies are developed
and analysed in the context of the abstract proof procedure.

We include discussion of the trade-offs among various execution
strategies in terms of performance, storage requirements, and
sppropriateness to various types of logic programs. Much of
the analysis presented here is intuitive in ature, due to a lack
of observed performance measurements. Meaningful measure-
ments are difficult to obrain besuare:

e Our carrent ixnpien\e}lt‘ax—i;l\.; in the form of
a simulation on a sequential machine, so that
sample execution of any but the tiniest pro-
grams is prohibitively expensive. Implemen-
tations on a functioning parallel machine are

3 See (Wasren 1977). We will henceforth refar to thus sigonthm sa umply
the *Prolog algorithm®

3 We note that the aigonthms arv under ongong deveicpment




currently underway.

The algorithms do not as yet provide for ex-
tensions to the Horn clause formalism such as
segated condition elements, svaluable predi-
cates, and goals with side-effects. These fea-
tures are generally required by logic programs
that attempt to do anything substantial and
useful, so0 most existing programs cannot be ex-
ecuted in our current framework.

It is hoped that future work will remove these obstacles and
allow for statistical analyses providing grester insight into the
effects of the various strategies. This should in turn suggest
opportunities for a more general mathematical analysis.

For an introduction to logic programming methods the reader
is referred to (Robinson 196S; Robinson 1979; Kowalski 1979).
A very brief description of the Prolog lasguage, on which moch
of LPS has been modeled, may be found in (Shapiro 1982); for
complete details see (Bowen et al. 1982). A description of the
computing model for which cur algorithms are targeted may be
found in (12: Taylor et al. 1984). The DADO architecture,
for which a specific implementation is underway, is described in
(Stolfo and Shaw 1982; Stolfo et al. 1983). The reconciliation
operation which we use may have been independently discovered
by Pollard (Pollard 1981}, although we have encountered signil-
icant difficulty in obtaining this reference. Related algorithms
are described in (Khabasa 1984).

2 An Ahstract Proof Procedure

2.1 Proofs

We define a proof for a given directive to be sequence of goal lists
beginning with an instance of the directive and terminating in
the empty goal list. Each goal list s composed of contributions
from the individual goals in the preceding goal list, where each
goal contributes any one of the followiag:

o Itself, as a singleton goal list. In this case we
say the goal has been retained.

o The empty goal list, if the goal is satisfied via
some fact. In this case we say the goal has been
removed.

o Theinstance, under some substitution, of a rule
body whose rule head, under the same substi-
tion, i identical to the goal. Here we say the
goal has been expaaded.

Our proofl procedure can then be viewed as the search for such

a sequence. [n addition, if a proof s found, the minimal sub-
stitution that transforms the directive into the first goal list in
the sequence is displayed. We call this substitution a solution
for the directive.

Since there may be more than one way to satisfy any given goal,
one goal list may give rise to more than one successor goal list,
any or all of which may Jead to a successful prool. Thus there
may be several proofs for a single directive. In general we will
want our prool procedure to be capable of pursuing all possible
prools in a systematic fashion.

The difference stated in the Introduction between the search
trees traversed by the Prolog and LPS algorithms may now
be restated as follows: The Prolog algarithm pursues proofs in
which each proof step consists of either removing or expanding
the frst goal in a goal list and retaining all other goals. In the
carrent LPS algorithms no goal is ever retained in s goal step;

rather, each goal is either removed or expanded.

2.2 The Procedure

Our description of what constitutes a proof allows us to quite
readily verify proofs that are handed to us, but it is substantially
more difficult to discover correct proofs when they exist. Two
processes allow us to identify the substitutions that give rise to
proofs: unification and reconciliation.

Unification {Robinson 1965} provides a metbod for determining
whether a substitution exists that will transform two terms into
identical terms. Such a substitution is called a unifier, sdthough
in the sequel we shall use this term to refer specifically to the
most general unifier. By *most general® we mean that f U is
the most general unifier of terms T, and T;, and S is any other
unifying substitution, then S(T,) is an instance of U(T, ).

Reconciliation {Pollard 1981; Khabaza 1984} is a procedure for
determining whether two substitutions are compatible, and if so,
producing the *most general® substitution that subsumes both.
By this we mean that if R is the reconciliation of substitutions S,
and S,, then for any term T, R(T) is an instance of both S, (T)
and S, (T). As with unification, by “moet general® we mean that
any other substitution with this property, whea ipplied to any
term T, gives rise to an instance of R(T).

Given the mechanisms of unification and reconciliation, the con-
struction of a solution for a directive can be accomplished as
shown in Figure 2-1. Starting with the directive itself as a goal
list, the algorithm produces successive goal lists until either an
empty goal list is constructed or a failure condition is encoun-
tered. Upon successful termination, Substitution_List contains
a sequence of substitutions whose composition is a solution for
the directive. )

Construction of a aew goal List from its predecessor proceeds as
follows:

1. Each goal is analysed individually to produce:
its contribution to the new goal list; 3 substitu-
tion (which we call an instantiator) that will be
applied to the contribution before its addition
to the new goal list; and another substitution
comprising coastraints on the averall solution.

2. The constraining subetitutions are combined
via reconciliation to produce a substitution
supporting this goal step as a whole. This sub-
stitution is saved as 2 component of the solution
that we seek.

3. All inscantiators are apdated through compo-
sition with the above reconciliation.

4. Each contribution is passed through its corre-
sponding instantiator, and the resuits are col-
lected into a single goal list.

2.3.1 Contributions

Contributions (in their pre-instantiated form) are determined
a2 follows:

e A RETAINED GOAL contributes itself,
verbatim.*

e A REMOVED GOAL contributes nothing.

o An EXPANDED GOAL contributes the body

¢ Keep in mind that we are presenting an sbstract proof precedury which
encompasees seversl practical strategies. Thus sithough we have stated
that the LPS algonthmi never retain & goal, we inciude goal retanuon in
our sbetract procedure in order to sccomodate both the Proiog slgonthm
and severs! variants on the LPS aigonthms




Goal_List := Directive;
Substitution_List := NIL;

WHILE Not Empty(Goal List) DO
Constraint_Set := NIL;

FOREACH goal G in Goal_List DO
Decide whether G is to be retained, removed, or
expanded;
IF retaining G THEN
Contribution(G) = G;
Instantiator(G) := NIL;
ELSE IF removing G THEN
Find » fact unifying with G, call the unifier U;
IF none can be found, FAIL;
Contribution(G) = NIL;
Instantiator(G) = NIL;
Restrict U to bindinge for variables in G, add
the result to Constraint_Set;
ELSE IF expanding G THEN
Find a rule R whose head unifies with G, call the
unifier U; IF none can be fouad, FAIL;
Contribution(G) = rule body of unifying rule;
Instantiator(G) := U restricted to variables in R;
Insert bindings to new created variables into
Instantiator(G) for all variables from R not bound
Restrict U to bindings for variables in G, add
the result to Constraint_Set;
FI;
oD;

Compute reconciliation of all substitutions in
Constraint_Set, call the result Rec; IF reconciliation
fails, FAIL;

Add Rec to Substitution_List;

New_Goal_List := NIL;
FOREACH goal G in Geal List DO
Instantistor(G) = Instantiator(G) composed with R;
Instantiate Contribution(G) using lnstantiator(G}),
and add the result to New_Goal List;
oD;

Goal List == New_Goal List;
oD;

Figure 3-1: Abstract Proof Procedure

of the rule with whose head it anifies, verbasim.
2.2.2 Instantiators

Non-empty instantiators are only produced for expanded goals.
It would be pointless to compute an instastiator for a removed
goal since its contribution is always empty; in the case of a
retained goal, all instantiation information comes from the con-
straints imposed by unification of non-retained goals, s0 an
empty instantiator is set in place awaiting composition with
the reconciliation of those constraints.

The instantiator for an expanded goal is simply the unifier that
resulted from unification of the goal with a rule head. We only
include bindings for variables that are contained in the rule (rule
variables), since other bindings cannot contribute to instantia.

tion of the rule body. We also insure that every rule variable
is represented in the instantiator by binding any unbound rule
variables to new created variables. Such a binding adds no in-
formation; the objective is to insure that the instantiated rule
body will contain none of the original rule variables.

2.2.3 Constraints

Constraints are produced by unification of removed goals with
facts and expanded goals with rule heads. Each unifier is added
t0 a constraint set, after restricting it to variables that occurred
in the goal (goal variables). The constraint set is used to pro-
duce a consistent substitution for the preceding goal list which
supports its transformation into the succeeding goal list. Thus
the only bindings of interest are those for goal variables, which
is why the unifiers are pruned before adding them to the con-
straint set. Indeed, if the same fact or rule head is used to unify
with more than one goal, inconsistent bindings for non-goal vari-
ables might result, but these must not prevent the proof from
progressing. For example, consider the following program:®

Rule 1: tasty(X) :- sweet(X). -
Fact 1: sweet(cookies).
Fact 2: sweet{cake).

Directive: tasty(cookies), tasty(cake).

We sappose that (as would be the case with LPS) our algorithm
chooses to expand both of the original goals in its first step, us-
ing Rule 1. Unification of tasty(cookies) with tasty(X) pro-
duces the unifier [X/cookies), while unification cf tasty (cake)
with tasty (X) produces [X/cake]. Reconciliation of these two
unifiers cannot succeed since variable X cannot be bound to
both cookies and cake simultaneously. Clearly, though, the
directive is provable. This problem of unwanted binding in-
teraction does not occur if we discard bindings for X prior to
reconciliation. Note that these bindings remain in instantiatory
so that they may be used for instantiation of rule bodies.

Similar reasoning shows why it s necessary to include "dammy
bindings® for non-unified rule variables in the instantiators for
expanded goals. If this were not done, those rule variables might
end up occuring in two or more goals at some point during
the proof. This would cause unwanted interactions since the
algorithm would insure thst only mutually compatible bindings
were produced for all occarrences of those variables, while the
separate occurrences should in fact be treated indepeadently.

The purpose of composing each instantiator with the constraint
set reconciliation is to insure that each goal list is cast in terms
of the current state of knowledge of the solution under construc-
tion. That solution is constructed as a sequence of component
substitations, where each proof step produces one component.
If goal lists are not kept up to date in this fashion, the same vari
able may end up bound by two or more different components.
During later composition of the components, all but the first of

these binduigs would be completely ost. For example, the com-
pouition of {X/cookies] with [X/cake] is simply [X/cookies).
In general, it will be the case that no goal list will ever contain a
variable for which a binding exists anywhere in the component
substitutions produced thus far in the proof procedure.

8 For our examples we adopt the Prolog convention that rymbois begin-
ning with & capital letter are connidered variables, whiie all others are
conmidered predicate and function symboks



2.3 Some Observations

L ue to the “mcest general® nature of unification and reconcilia-
ticn, cur zigorithm computes the most general solution that will
suppart the constructed proof. This translates into conciseness
in tbe zolution set reported for a directive, although it does not
gaarantee that no solution will be an instance of another. This
May arise if there are multiple proof paths for some particular
solution.

Upon failure of a particular proof path, both the LPS and Prolog
algorithms backtrack to the most recent choice point and pursue
an alternate path. In the LPS algorithms we ind that all of these
alternate paths bave already been started by the simultanecus
construction of all possible successor goal lists from the choice
point. The Prolog algorithms do not benefit from such s head
start. As mentioned in the Introduction, this festure may easily
mislead one to suspect that the LPS search strategy includes
some breadth first component rather than being strictly depth
first.

Finally, it will be seen that in LPS the composition of the com-
ponent substitutions is performed incrementally as each compo-
nent is produced, rather than computing the entire composition
at the end of the proof.

3 A Proof Example

Consider the following program:

Rale 1: can_sat(X) :- food_store(S), open(S,now),
bas_money(X).

Rule 2: has_money(X) :- friend(Y,X), has_money(Y).

Fact 1: food_store(mama_joys).

Fact 2: food_stoce(take_home).

Fact 3: friend(chris,andy).

Fact 4: friend(tori,chris).

Suppose the author is interested in whether or not he is currently
able to eat. First, from general knowledge of neighborboed food
stores, and by subtly questioning his friends, he arrives at the
following additional facte:

Fact §: open{mama_joys,now).
Fact 6: bas_money(tori).

Next he invokes the proof algorithm with the directive
can_eat(andy) and obeerves the following execution:

1. The mitial goal list is {can_eat(andy)}. We choose to
expand the single goal via Rule 1. Unification with the rule
bead produces the substitution [X/andy).

Our goal's pre-instantiated contribution is the rule-body,
{food_store(S), open(S,now), has_money(X)}. The in-
stantiator is [X/andy, S/_1), where _1 i a created variable
to which 8 is bound since it was not bound during unification.
This expansion contributes nothing to the constraint set since
no goal variables were bound during uaification (indeed, there
were no goal variables to be bound!).

Reconciliation of our {empty) constraint set produces an
empty substitution, so our instantiator is not affected, and
the next goal list is {food_store(_1), open(_1,n0w),
bas_money(andy)).

3. Current goal list: {food store(_1), open(_1,now).
has_money{andy)}

Retain goal food_store(_1):

Contribution: food_store(_1)
Instantiator: NIL
Copstraint: NIL

Remove goal open(_1,n0w) via Fact §:

Contribution: NIL
Instantiator: NIL

Constraint: [_1/mama joys]

Expand goal has_money(andy) via Rule 2:

Contribution: {friend (Y X), bas_money(Y))
Instantiator: [X/andy,Y/_3]
Coastraint: NIL

The overall-constraint set is {{-1/mama_joys]}, whose rec.
onciliation is just (_1/mama joys]. The only instantis-
tor that is affected by this reconciliation i tht first, which
becomes [_1/mama_joys]. Instantiating all of the con-
tributions with their instantiators then produces the new
goal list: {food_store(mama.joys), friend(_3,andy),
has_money(_3)).

3. Current goal lHst:  {food store(mama jays),

friend(_3,andy), has_money(_3)} -

Remove goal food_store(mama_joys) via ‘Fact 1
Contribution: NIL

Instantiator: NIL
Constraint: NIL

Remove goal friend(_2.andy) via Fact 3

Contribation: NIL
Instantiator: NIL
Coastraint: [_2/chris]
Expand goal has_money(_3) via Rule 2:

Contribution: {friend(Y,X), has_-noney(Y))
Instanciacor: [X/_8, Y/_4]
Constraint: [-3,-8]

The overall constraint set is {[_2/ehria], [.3/_3]}, whose rec-
onciliation is [_3/chris, _S/chris|. This affects the instantia-
tor for the third goal, which becomes [X/chris,Y/_d). Instan-
tiating all of the contributions with their instantiators yields the
new goal list: {friend(_d,chris), bas_money(.4)}.

4. Carrent goal list: {friend(_d,ckris), has_money(_4)}
Remove goal friend(_d,chris) via Fact ¢:

Contribution: NIL
Instantiator: NIL
Constraint:  [_4/tori]

Remove goal has_money(_4) via fact 6:

Coatribution: NIL
Inscantiator: NIL
Conastraint: [_4/tori]

The overall constraint set is {[_d/torl], [_4/tori]},® whose

¢ Of course, this constraint sat 11 not really a set since it contains dupheate
entnes. However, the terminclogy s weful in a loose sense, and the cur.
rent LPS implementation wul 15 {act €2 through the work of reconciling
two identical constrants rather than removing the duphicaty



reconciliation is (_d/tori]. All contributions are nil, so the new
goal list is empty.

§. Current goal liat: {3

The algorithm terminates successfully npon encountering an
empty goal list.

The sequence of reconciliations that was generated by the algo-
rithm is:

(l

|-1/mama_joys}
[2/chris, -3 /chris]
[-4/veri]

The composition of these components yields the overall substi-
tution: (_1/mama_joys, _3/chris, _3/chris, _4/tori]. The
sequence of generated goal lists is:

{can_est{andy))

{food_store(..1), open(_1,now), has_money(andy)}

{food_store{mama_joys), friend(..2,andy),
has_money(chris)}

{friend(_4,chris), has_money(_4))}

NIL

If we ap.ply the overall substitution to this sequence of goal lists,
we arrive at our final proof:

{can_eat(andy)}

{food_store(mama_joys), open(mama_joys,now),
has_money(andy)}

{food_store(mama_joys), friend(chris,andy},
has_money(chris)}

{friend(torichris), has_money(tori)}

NIL

4 The Current LPS Implementation

The LPS algorithms that we have formulated can most easily
be understood as comprising three computational phases: onifi-
cation, join, and substitution. In this section we will discuss an
actual LPS implementation in terms of these components, relat-
ing each functionally to the abstract algorithm outlined above.

The implementation is based on the computing model described
in (12: Taylor et al. 1984). Very briefly, we envision a network
of independent processing elements {PE's) each equipped with a
moderate Jocal storage capacity. The network is controlled by a
coatol processor (CP) which coordinates global commuanication
and invokes individual instructions as well as local procedures
in snison throughout the PE network. Global communication
consists of broadcast messages from the CP to the network, and
reports solicited by the CP from individual PE’.

4.1 The Binding Set Representation

A binding set represents the result of applying a single step of
our proof procedure to a goal list. It contains the following
information:

o The reconciliation of the constraint set pro-
duced by unification of goals with facts and rule
heads.

® A list of rule body keys by means of which rule
bodies may be obtained at the CP for instan.
tiation and inclusion in a new goal list. Note
that a single rule body key may appear more
than once. This will be the case if the same
rule head was used to expand more than one
goal in the goal List.

Directives
Instantiation CP R
1 L4
_ Solutions
Ruie Bodies
Binding Seta
Goal Lists
Fact o
UniScaiion e‘bd& V’¢ »
Reconcifiation ’ PE’ <,
Substitution 8
] Rup
o R

figure «1: Plow of Data in LPS Execution

e An instantiator for each rule body key con-
tained in the binding set. If a key appears more
than once, each is associated with its own in-
stantiator.

Recall that the current LPS algorithms never retain goals from
one goal list to the next. Thus the above set of information
includes everything required to construct the successor goal list
as well as the solution componens produced by this goal step.

The overall data structure may be viewed a..rcompri:i.nl seve
eral ®layers,” each identified with a layer *marker.” Each layer
contains a substitution of some sort - either the single recou-
ciliation carried by the binding set or one of the possibly many
instantiators. In the former case, the layer is called the cornmon
layer owing to its nature as a substitution that encompasyes all

-the comstraint set components contributed by the unifications.

The layer marker for the common layer is the atom, COM-
MON. A layer containing an instantiator is called a rule layer,
since & non-empty instaatiator is produced only for & goal that
is expanded by unification with some rule head. The marker for
a role layer is 3 key identifying the rule that was used in the
expansion.

A binding set with no rule layers is of special interest, and we call
it & simple binding set. Other binding sets are symmetrically
termed complex binding sets. A simple bizding set is impoctant
because it is reported only at the completion of & successful
prool.

4.3 Distribution of Data

As we shall see, all unification is performed in the 'mdividful
PE's that form the processor network, whereas instantiation
takes place in the CP. For this reason we store all fnct{ and rule
heads, (that is, all the positive Literals of our program} in the PE
network itself. Each literal resides in a single PE, although aay
PE may contain several literals. Rule bodies, on the otlfer hand,
are kept in the CP. Each rule head in the PE network u.uggrd
with a key which can be used to identify the corresponding rule
body in the table maintained by the CP.

During execution of a logic program, goal lists are constructed
in the CP, initially from the directive and subsequently from
the goal list contributions carried in the binding sets. When a
goal list is complete it is transmutted to the PE ne.lvork where
unification, reconciliation, and composition operations produce
new binding sets. Of the possibly many binding sets produced,
a single set is selected for transmission back to the C.P, and the
entire cycle is resumed while the other binding sets lie dor.muu
in the PE network awaiting later selection. The operation i
shown pictorially in Bgure 4-1.




4.3 The Unification Phase

The first phase of the LPS algarithm begins with the transmis-
sion of a goal list from the CP into the PE network. Residing
in each PE is some {possibly empty) collection of facts and rule
heads that were placed there when the program was initially
loaded into the machine. Once the tranamitted goal list has
been captured, each PE unifies every goal with as many of its
resident literals as possible, producing unifiers which are stored
in the PE's local storage.

Unificatior with a fact produces a simple binding set whose
common layer is the constraint set contribution specified by the
abstract algorithm for a removed goal. That is, the unifier is
stripped of all bindings for variables that were not present in the
unified goal, and the resulting substitation becomes the common
layer.

Unification with a rule head produces & compiex binding set
whose common layer is the anifier stripped of its non-goal vari-
able bindings (same as the common layer for a removed goal).
The rule layer is the instantiator for the expansion, a1 spec-
ified in the abstract algorithm. In other words, the anifier
is stripped of all bindings for non-rule variables, and supple-
mensed with bindings to new created variables for all unbound
rule variables.” The marker for the rule layer is the key associ-
ated with the unifying ruje head.

Each binding set produced during the unification phase is tagged
with a level aumber which identifies, via its position within the
transmitted goal list, the goal whose unification gave rise to the
binding set. It will become clear during the discussion of the
join phase why this tagging is required.

4.4 The Join Phase

We have named the second phase of owr execntion loop as the
“join phase’ due to a useful interpretation of the basic opera
tion as an equi-join over a set of database relations. Indeed, if
we recall that each goal in the tranamitted goal set gave cise,
during the unification phase, to a collection of binding sets with
s common level number, we see that the level number provides
us with a key to the “relstion’ defined by the corresponding
goal. The database from which the relation was produced is the
collection of literals (facts and rule beads) present in the PE
network.

With this interpretation in mind, one sees that joining these sev-
eral relations, using reconciliation as the basic pair-wise match.
ing operation, computes reconciliations for all compatible com-
binations of unifiers for the goals in the transmitted goal list.
At the completion of the join phase, every one of these binding
sets will reside in the PE network and will be elegible for later
selection and elaboration of the particular proof path it repre
sents. Thus the transmitted goal list can be discarded at that

point.

Any matching operation performed on two binding sets will re-

quire that the two bindings sets be accessible to the same pro-
cessor. In general that will not be the case at the completion
~f the unification phase, since each binding set i stored in the
PE containing the unifying literal. The join phase thus requires

communication of binding sets around the neswork. This com-
maunication is coordinated by the CP.

? Note that varisbles created by two different PE‘s must be distinguish-
sbie. Thus is easily done if the PE's can be assigned unique identification
tags. as those tags may then be incorporated into the crested vanable
names. Such Lags may be sesigned st Systam startup using resalve and
feport operstions. Alternatively, many exuting and proposed machines
Mn:':do.u.r model can generate unique [D"s using vanous highly officient
mat .

The basic step in the join phase consises of selecting two rela.
tions out of the several to be joined and joining those two into
a single relation, thus decreasing by one the number of relations
to be joined. When only one relation remains, the join phase is
complete.

In order to join two relations, one of the two is chosen to *feed
into® the other. The CP loops over the feeder relation, extract-
ing one member from the PE network during each iteration. As
each element is obtained from the feeder it is broadcast to the
entire PE network, and any PE that holds elements from the
“consumer” relation attempts to reconcile the common layer of
the feeder with each of its resident consumers (remember, the
common layer is where the constraint set contributions were
placed during the unification phase). Whenever reconciliation
succeeds, a new binding set is created whose common layer con-
tains the reconciliation. Any rule layer that appeared in either
of the contributing binding sets is included in the new binding
set, and the level number is set 50 as to identify the new binding
set as belonging to the new joined relation under construction.

Each feeder binding set is discarded as soon as it has been
matched against all possible consumers, and when the entire
pair-wise join has been completed, the original tonsumer rela-
tion is discarded as well. Thus two relations have been dis-
carded, and one has been produced, bringing us nearer to our
goal of a single relation.

4.4.1 A Heuristic Por Ordering The Join Phase

In our computing model communication should be beld to a
minimum since it must all be funneled through a single channel
(the CP). Due to the commutative nature of the reconciliation
operation, we may exercise a simple beuristic that should, under
most circumstances, keep join phase communication close to
minimal. Specifically, we always choose the smallest existing
relation as the feeder, and the largest relation as the consumer.
Cases can easily be constructed in which some other ordering
turns out to be preferable, but the heuristic seems reasonable in
the absense of methods for predicting the sises of intermediate
join results.

In the general case we choose to implement an approximation
to the above heuristic since our computing mode! does ot pro-
vide an efficient means of determining the size of a distributed
relation.® We make use of a sequencing mechanism applied to
the relation members. The idea is that within each relation the
individual binding sets are assigned unique sequesice aumbery in’
the hope that the difference between the highest and lowest se-
quence numbers in a relation will generally be a useful estimate
to the sise of the relation.

In the current LPS implementation, sequence numbers are as-
signed during the unification phase according to the order in
which the clauses were asserted during program loading. Thus
any binding set that is produced by unification with the pro-
gram's Grat clause is assigned a sequence number of one. Unif-
cation with the program's second clause yields sequence number
two, and so on.

The assignment of sequence numbers to join results is analogous
to the calculation of storage offsets to multi-dimensioned array
elements. The first *dimension® is represented by the sequence
number of the contributing binding set from the first relation
(level number one), and so forth. The *offset” calculation can
be performed efficiently by precomputing (in time linear in the
number of relations) a *dope vector® similar to that used by

: Note, however, that many sschitectures fAtting our model do :n fact aliow
for fast network.wide sums, making the heurtstic vizbie as presenied
We hope 10 clarify the need for such s mechanum through statstical
thvest:igations.



many pregramming languages for uray indexing. All sequence
numbers are multiplied {again in linear time) by the dope vector
elements corresponding to their level numbers prior to the com.
mencement of the join operation. Then when two binding sets
reconcile successfully, the sequence number for the new binding
set is the sum of the two contributing sequence numbers.

In addition to their contribution to the join ordering heuristic,
sequence numbers provide 3 method for ensuring a predictable
perusal of the proof space by our implementation. Altbough
from the point of view of pure theorem proving such predictabil-
ity is inessential, under some circumstances such as 1/0 and re-
cursion, it is crucial if the programming system is to be useful
for a more general class of programs, as is the case with Prolog.
Uafortunately, the sequeace numbers as described here do not
appear to provide an ordering that is easily comprehended or
‘well suited for many programming tasks, so that alternathes
must still be investigated.

4.4.2 Partition Of The Join Phase

For reasons that will become apparent in the upcoming discus-
sion of variable purging, it may be desirable to impose & global
constraint on the join phase ordering so that the relations aris-
ing from any single goal list contribution are fully joined among
themselves prior to any attempt at combining results from dif-
ferent contributiors. We adopt this strategy in the current LPS
algerithms by conducting the join phase in two steps. First, a
ssries of partial joins takes place in which each goal list contri-
bution is reduced to a single relation in the PE network. When
the partial joins have completed, a final join joins each of these
relations into a single relation representing the successors to the
goal list under consideration.

4.5 The Subltituiion Phase

The last task to be performed upon the discovery of & successful
prool is the composition of the various substitutions that were
generated along the way. As indicated in the abstract algo-
rithm, these substitutions are the constraint set reconciliations
computed to support the individual proof steps. Their compo-
sition is computed in the substitution phase of our algorithm.

As was briefly mentioned in the observations following the ab-
stract proof procedure, we have chosen in our current imple-
mentation to compute this composition incrementally as the
individual components are generated. Thus each time a pew
reconciliation is produced, we compute its composition with all
prior reconciliations in its proof path. Once this has been com-
puted, the individual reconciliation iteelf can be discarded.

In order to achieve this strategy, we store in the common liyer
of a binding set, not the individual reconciliation that produced
the binding set, but its composition with all prior reconcilia-
tions on its proof path. This is easily implemented because all
of the binding sets produced by a join pbase share & common
proof history, and the cumulative substitution representing that
histery is exactly the substitution stored in the common layer
of the complex binding set that gave rise to this proof step in
the first place.

In our LPS implementation, then, the substitution phase is ac-
complished by transmitting the prior reconciliation history to
‘the PE network following the join phase and computing in each
PE the composition of that substitution with any new reconcik
iations.

Three possible benefits derive from our incremental substitu-
tion strategy. First, composition computations are performed
in paraliel in the PE network rather than individually for each
reported solution by the CP. Second, debugging is casier be-

caure the progress represented by each binding set can be read
directly in terms of the original directive variables rather than
an obecure collection of created variables. Finally, we avoid a
bookkeeping chore in the CP which, depending upon whether
certain variants on the basic algorithms are chosen, may be ex-
tremely expensive in both time and space.

4.6 Managing Created Variables

In order to keep communication and processing costs to a min-
imum, it is desirable to discard bindings from oar binding sets
whenever they are no longer needed. In general the instantiator
stared in a rule layer of a binding set will contain a binding for
each variable appearing in the rule body, and no other bindings.
Thus rule layers are not a problem in this respect. The common
layer is more complicated.

In general there are two possible reasons for keeping a binding
in the common layer of a binding set:

o The binding will be required in order to con-
struct a solgtion, should the current proof path
succeed.

e The binding might interact with other bindings
to constrain the search space, so that discard-
ing the binding could lead to incorrect procfs.

If at any point a particular binding can be determined not to ful-
1] either of these conditions, we may freely discard the binding
and proceed with our proof.

When we report a solution, we limit the report to a display of
a minimal substitution that will traasform the directive into a
satisfiable goal list. In particular, the intermediate goal lists
are not displayed, in either their instantiated or uninstantiated
form. Recall that oar substitution phase is implermnented incre-
mentally, so that common layer substitutions always represent
the total accumulated current knowledge of the solution being
pursued. Thus we see that our first condition demands osly
that we not discard bindings for variables that appear in our
original directive (top-leve! varisbles).

Other bindings are required for their constraining effects. How.
ever, we observe that once a binding has been produced for a
variable, it is immediately used to remove all appearances of the
variable from the binding set. Aside from this instantiation, the
only way a binding can ever act to constrain the search space in
through reconciliation with another binding for the same vari
able. But by the instantiation itself, we are guaranteed never to
see the vanable in a future goal list along the same proof path,
so that oo future bindings for it will ever be produced. Thus
no further constraint by the variable is possible. We conclude

.that we need never maintain bindings for a variable (other than

a top-level variable) once a binding for it has appeared at the
end of a proof cycle.

We do not claim that the binding would not andergo further
changes were it to be maintained throughout the remainder of
the proof. For instance, if we produce the binding [-1/p(-3)]
we may later produce the binding [-2/a]. The overall proof
substitution would then include the binding [-1/p(a)]. How-
ever, the search constraints that are represented by this refine-
ment are accomplished by the construction and reconciliation
of bindings for _2; the refinement of _1's binding i3 a more or
less passive side-effect. Since _1 is not a top-level variable, we
have no interest in this side-effect, so there is really no point in
producing it in the first place.




We see, then, that when a binding set is reported to the CP
from the PE network its common layer should contain bindings
only for top-level variables. However, more can be said about
the other variables as well. In particular, we recall the join
phase partitioning strategy discussed earlier, in which the join
phase proceeds by a series of partial joins involving relations
produced by common goal list contributions, followed by a final
join of the partial join results. It turns out that many biadings
can be pruned from the binding sets before the final join takes
place, thus saving in communication costs during that join.

Recall that if a rule variable is not bound during unification the
resulting instantiator is augmented by binding that variable to
a new created variable. The created variable will thus appear
in exactly one of the goal list contributions represented by the
complete binding set, and hence in exactly one of the partial
join'result relations. Such a variable cannot constrain the final
join, and since it is not a top-level variable, it will be discarded
when the final join is complete. We can save communication
costs in the final join if we discard the variable prior to the final
join.

A Llist of such discardable variables may be computed easily by
the CP during instantiation of a rule body by gathering together
term sides of all variable/variable bindings in the instantiators.
For example, if the binding {_34/_468] appears in an instantia-
tor, we can safely discard all bindings for variable _48 prior to
the ensuing final join. '

We note here that if we are to discard bindings before the final
join takes place, we must account for the possibility that some of

our top-level variables are bound to terms that include discard-,

able variables. Thus the composition operation that constitutes
our substitution phase must in fact be performed prior to the
final join. We may apply the operation simultaneously to ali the
relations that will take part in that join by waiting until all the
partial joins have completed.

5 Alternative Unification Phase Strategies

We consider two strategies for the unification of goals in a goal
list, which we call asynchrosous and syachromous uaification.

5.1 Asynchronous Unification

In che asynchronous case, a goal list is broadcast as a single unit
to the PE network, and the PE's are instructed to go to work
unifying the entire list of goals. The CP waits until all PE's have
completed this task, at which point all possible unifications of
the goals have taken place, and the resulting binding sets are
resident in the PE network. This strategy allows overlapping
of goal anification among the individual PE’s. That is, each
PE moves on to the next goal as soon as it bas exhausted its
own local supply of literals with which to attempt unification of
the carrent goal, regardless of the state of progress in the other
PE's.

As an example, consider the following somewhat idealised sce-
nario:

Goals to be unified: a, b.
Literals resident in PE 1: a,.
Literals resident in PE 2: b, .

Tle following sequence of events results:

1. The CP broadcasts the goal list ‘{a, b}’ to the
PE network.

2. PE 1 begins onifying <a, a;>.

3. At the same time PE 2 begins unifying <a, b, >,
fails quickly and progresses to unify <b, b, >.

4. PE 1 completes unilying <a, a, 2, attempts to
anify <b, a, > and fails quickly.

5. PE 2 completes unifying <b, b, >.

6. PE 1 and PE 2 have completed the unification
phase.

As we see, unification of goal a in PE 1 is overlapped in time
with unification of goal b in PE 2. Beneficial overlapping occurs
for two reasons:

® A successful unification generally requires more
time than an unsuccessful attempt. Failure is
usually detected long before the two literals
have been completely scanned (indeed, failure
is immediate in the case of different predicate
symbols), whereas success is not recognised an-
til the scan is complete. Furthermore, addi-
tional work is required after a successful unifi-
cation, for the construction of 2 binding set.

e One PE may need to attempt anification of a
particular goal with more literals than another
PE. If we assume a very small sumber of lit-
erals resident in each PE (due to a large PE
aetwork), we can expect that most PE's will
be unable to unify most goals, so this will be
a high source of overlap. Even without this
assumption, various strategies for distributing
the literals and indexing each PE's local literal
pool by predicate symbol can increase the like-
lihood of this type of overlap.

Again assuming a very small number of literals resident in each
PE, we see that the entire unification phase takes time that is
linear in the sise of the broadcast goal list. Furthermore, we
expect the entire process to be exceptionally fast due to s small
constant factor in our linear complexity. Contributing compo-
nents are: (1) the time required to transmit the goal list, and
(2) the time required for the PE's to individually scan the goal
list and create binding sets for successful unifiers. The second
component is linear because the basic unification algorithm i
linear in the sise of the terms being matched, and the sum of
those sises is no larger than the sise of the entire goal list.

Generally, we would expect a single literal to unify with at most
one goal in a goal list, so that the constant facter in our lin-
ear time complexity will be heavily dominated by the time for
tailure, ratber than the time for successful unification. This ac-
counts for the high performance we expect from asynchronous
unification, since failure time is quite small.

5.2 Synchronous Unification

In the synchronous unification strategy the goals in & goal list
are broadcast one at a time rather than a3 a single unit. Unif-
eation of each goal is performed in the PE's before the next goal
is broadcast, so that none of the overlapping that we witness in
the asynchronous strategy can occur.

The synchronous strategy offers a potential benefit only in the
case of the failure of a single goal throughout the entire PE
network. ln this case, the entire goal list can be thrown out
immediasely without attempting upification of the remaining
goals.

Whether or not such oppertunities arise with a frequency that
merits adoption of a synchronous unification strategy is a ques-
tion that will be investigated through statistical analyses of Jogic




programs (13: Taylor et al. 1984). We hope also to develop
methods for identifying local characteristics of a search space
that may indicate an increased likelihood for global failare of
a single goal. If this can be done, a dynamic selection mecha-
nism may be implemented that is capable of asing asynchronous
or synchronous unification depending en the proof history and
current state.

A bybrid strategy may also be envisioned, in which the goal list
is partitioned according to some suitable heuristic, and each por-
tion is broadcast as a unit for asynchronous unification, while
unification of the overall goal list is synchronous among the por-
tions.

6 Alternative Join Phase Strategies

We note that our paralle! execution of a pair-wise relational join
results in a log{n) improvement in the time required for this op-
eration by a sequential algorithm (14: Taylor et al. 1984). Our
alternative join strategies investigate methods for minimising
the number of pair-wise joins required in a single join phase,
avoiding redundant computations, aad controlling depletion of
PE storage.

The reconciliation operation itselfl is performed as a series of re-
finements on a collection of bindings. The collection begins with
the union of the bindings found in the two component substitu-
tions. A refinement consists of identifying two bindings for the
same variable and replacing one of them with the unifier of the
two terms. When no such pair of bindings is left, reconciliation
is complete. .

Although p&thol&gicd cases can be constructed, we believe that
in practice the unification that takes place during reconcilistion

seldom produces new bindings for variables already bound. so
that (again recalling that unification iteelf is linenr in the sise of

the terms being combined) we will expect a performance that
is roughly linear in the sise of the component substitutions.
We intend to investigate the validity of our assumption through
statistical analysis.

6.1 Retaining Goals

It has been pointed out that our LPS implementation never
retains a goal from one goal list to its successor. [nstead, each
goal is either removed or expanded. We expect this strategy o
be quite beneficial in many applications, however there are at
least two potential pitfalls, which we call the big-small problem
and the cartesian product problem.

6.1.1 The Big - Small Problem

Consider the goal set {big(X), small(Y)}} where, as its name
saggests, big(X) is a goal that represents an extremaly lengthy
computation involving long chains of inference. Likewise,
small(Y) is a goal that is very quickly satufied, with malktiple
sclutions. It turns out that s strict policy of mon-retention of
goals will perform substantially more work in locating multiple
solutions of this directive than would a more Bexible approach.

To see this, consider the very Grst step in the solution of
our goal, and suppose that our database contains the two
facts small(Bea) and small(pebble). These two facts will
unify immediately and produce simple bindings (Y /flea] and
[Y/pebble], respectively. Meanwhile, big(X) anifies with s
rule head somewhere in the database, producing a complex binds
ing that represents a long computation in its infancy.

With these binding sets in place, our join phase will produce
two complex bindings, both containing the status of the just-
started big computation, and each containing one of the small

(bilfx)m{dl(Y)) big(X)amail(Y))

{X/.1.Y/Bas RL{Y/nuhg TR
{bigi(_1)) {bigi(_1)} (bi(l(-l).small(Y))
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Computation
i ] 1
i ] 1
{...amali(Y)}
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results in early branching causes deferred branching

Pigure 6-1: Goal retention postpones branching and
may result in considerable savings of efort in the big -
small problem

solutions. One of these complex bindings will be selected during
the next cycle, and that selection will begin the long computa
tion of big(X).

Meanwhile, the second complex binding will lie dormant in the
PE network awaiting selection but not benefiting from the oan-
going computation. When it is finally selected, the big com-
putation will be repeated almost in its entirety. This is the
duplication of eflort that we would like to avoid.

To see a possible way out, consider the behavior of this goal
in the standard sequential algorithm. Here the big(X) compu-
tation is carried out until a solution for it is achieved, all the
while retaining the original small(Y) goal in the goal list. It is
not until the big computation has terminated in a solution that
the amall goal s finally unified, resulting in its removal by the
fact small(flea). Next the algorithm backs up its compucation
to its last choice point, which was its choice of a unifying fact
for small(Y), and makes a new choice. This time the small
goal is removed by the fact mnall(pebble) without bavine to
-ecompute the current solution for big(X).!

“Thus we see that by retaining the small goal we have avoided a
large redundant computation.

It is instructive here to consider the tree of goal lists generated
by our proof procedure, in which the decision to retain a goal at
s certain point has the effect of postponing whatever branching
might be caused by the choice of clauses with which the goal
may unify. If each of the resulting branches gives rise to a deep
subtree, the postponement may turn out to be quite beneficial.
The case of our example is diagrammed in figure 6-1.

6.1.3 Cartesian Producta

One other possible benefit of goal retention is containment of
the potentially explosive growth .= the number of binding sets
resident in the PE network. As an example, suppose our goal

. list is {plentiful1{X), plentiful2(Y)}, where each goal unifies

with & very large fact base {(say M facts for plentifull and N
facts for plentiful2). Thus in one proof step we achieve two

9 Note that the Prolog algonithm wouid encounter the big-smail problem
f the goal list were reversad, as :n (small{Y),big{X))




large, independent relations, whose join is their complete cross
product consisting of M x N binding sets. In such a situation it
might be desirable (or even necessary) to limit the accumulation
of binding sets by generating only one “"slice® of the cartesian
product at a time.

This might be accomplished by retaining pleatiful2(Y) during
the frst cycle. The result will be M binding sets containing the
solutions for plentiful1(X), and each containing our retained
goal as well. These binding sets are selected one by one for
further elaboration, and each one gives rise to N bindings sets
that are reported and discarded in turn. The maximum number
of binding sets resident in the network is thus M + N - 1, rather
than M x N.

6.1.3 Implementation Of Goal Roundon'

Two problems need to be addressed if goal retention is to be
sccommodated in our algorithma:

1. The actual mechanisms for retaining goals must
be worked into the implementation. This re-
quires a slight modification of the binding set
representation so that actual goals can be rep-
resented, as well as mechanisms that allow the
CP to identify to the PE's which of the broad-
cast goals are to be retained.

2. The means by which goals are selected for re
teation must be decided. Possibilities include
automatic selection based om static and/or dy-
namic program snalysis; marking of proce
dures, rules, or even individual condition ele-
ments by the programmer; and combinations
of these two strategies. We prefer a completely
sutomatic mechanism, consistent with the phi-
losophy that logic programming offers oppor-
tunities for parallelism without burdening the
programmer with this goal.

6.1.4 Benefits Of A Non-Retention Policy

It should be noted bere that a policy of non-retention of goals
provides at least two potential benefita.

First, the total path length for any successful proof is minimised
by such a policy, generally translating into reduced effort for
a single prool. As the big-small problem illustrates, however,
situations may easily arise in which much greater benefits due
to commonality of proof paths are miseed by this eager strategy.

Second, a retained goal does mot constrain the search space un-
der consideration. One benefit of the reconciliation modei over
the depth-first search strategy of the Prolog algorithms is that
a much larger range of interactions are possible among the goals
in a single goal list. In the Proiog strategy, the effects of com-
putations on a goal may only propagate forward in the goal
list, whereas if several goals are unified in one step, constrain-
ing interactions are carried in both directions. The program
presented below is an example where the Prolog algorithma will
never terminate, whereas a non-retention strategy terminates
quite quickly. Here the second goal in the goal list constrains
the first goal s0 as to avoid the infinite search that the Erst goal
produces on its own. Since this *backward” comstraint is not
possible in the Prolog algorithm, we find the unconstrained firat
goal generating an infinite sequence of results, all bat the first
of which are disallowed by the second goal

Rule 1: append(cons{A,T1),L.cons(A,T2)) :-

append{T1,L,T2).
Fact 1: append(NIL,L,L).

Directive: append(X1,X2,Y1), append(Y1,Y2,NIL).

8.2 Single Feed Joins

The cartesian product problem mentioned in the last section ia
just one particularly severe case of the general problem that our
parallel execution model may tend to accumulate binding sets
that are waiting for selection. Goal retention was seen as one
strategy for alleviating this problem by expanding the search
space one “slice” at a time.

Another strategy is to perform our join operations in small steps
by broadcasting only ope feeder relation member to the con-
‘sumer relation at s time. The binding sets produced by that
single feeder are processed one by one until they run out, at
which point the next feeder from the suspended join is broad-
cast.

This single-feed strategy offers s second possible benefit aside
from containment of the binding set population. In many cases,
a query will be presented with the intention of producing only
s single solution, rather than pursuing all possible solutions. In
this case, much of the eflort that goes into our join operations
will be wasted since if a solution i encountered early in the
search space, a large percentage of the binding sets generated
from joins will be discarded. The single-feed strategy defers this
effort until it is required in order to continue the search.

1t is expected that the implementation of & single feed strategy
will require considerably more complicated control mechanisms
than are needed for the eager join strategy. At this point in time
no such implementation has been attempted, nor has careful
thought been given as to the exact control mechanisms that
would be required.

6.8 Redistribution of Binding Sets

One final approach to the problem of explosive growth in the
binding set population takes a more local view. Specifically,
what can be done about the case where binding sets begin ac-
cumalating at a few “hot spots”® in the PE network?

In such a situation it would be beneficial to have a mechanism
available whereby heavily loaded PE's could export some of their
binding sets to other PE's. Such a mechanism is difficult to
imagine in our computing mode!l since all communication mast
be funneled through the CP. U, however, some direct PE-PE
communication mechanism i provided!? efficient redistribution
might be realisable. We may even envision redistribution within
the PE network overlapping computational tasks within the CP,
such as the construction of a new goal list from & reported bind-
ing set.

6.4 Multiple Independent Joins

A particularly intriguing prospect for optimisation of the join
phase is the idea of performing two or more pair-wise joins in
unison in the PE network. Our standard join algorithms may be
adapted for this purpose by extending our model of computation
to include a facility for temporarily partitioning the PE network
into independently functioning subnetworks. One PE in each
subnetwork would act as CP for the subnetwork.!! With such a
facility, our pair-wise join may be migrated to the subnetworks,
so that several pairs of relations may be joined simultanecusly.
This strategy requires that the each subnetwork contain each
relation to'be joined, in its totality.

10 g, ch & mechaniam is available, for example, in the DADO binary tree ar-
chitecture, in which tree ne1ghbors may communicate without burderung
the CP (Stoifo and Shaw 1982, Stalfo et al. 1983)

1} The DADO architecturs (Stolfo and Shaw 1982, Stolfo et &l 1983), for
axample, silows for such 3 *multipls SIMD® exscution mode




As an example of how a multiple join strategy might be real
ized, and to illustrate the potential savings, we consider . ratlier
“brute force” approach. The PE network is divided mto two
subnetworks, and each fact and rule head is stored once in each
suboetwork.

The unification phase will produce twice as many binding sets
as in our standard model, each binding set appearing in both
subnetwarks. We note that the effort expended during the uni-
fication will be doubled in worst case, since the concentration of
literals in the PE's has doubled so that each PE’s scan of literals
will take twice as long.

The join phase proceeds in two stages. During the first stage,
one of the PE subnetworks joins half of the relations resuiting
from the nnification phase while the other subnetwork simulta-
necusly joins the other relations. The second phase is & single
pair-wise join performed by the CP in the standard fashion,
combining the results of the subnetwork joins. The total effort
required by the join phase starting with a relations is that re-
quired for n/2 pair-wise joins, a8 compared with a-1 pair-wise
joins if multiple independent joins are not utilised.

U we consider the overall savings realised by multiple joins in

the above scenario we see that while the time for unification has
been doubled in worst case, we bave halved the time required

in the join phase. In the case of communication costs, we see”

that there has been 0o increase during unification, whereas costs
bave been balved during the join phase. Further analysis may
be able to identify more intelligent partitioning strategies, pos-
sibly based on data dependency analyses similar to thoss under
. investigation by Ishida (Ishida 1984) in his work on paralle] ex-
ecution of production systems.

6.5 Rule Layer Caching

We discuss one other join phase variant in which rule layers are
stripped from binding sets whenever they pass through the CP
and are replaced-by unique tags. The rule layers are stored in
the CP and are retrievable via their tags. The advantage of this
scheme is reduced communication of feeder binding sets during
the pair-wise join operation. The strategy is justifable on the
basis that no use is made of rule layers except in the CP, so that
they are little more than “excess baggage” in the binding sets
during the join phase.

One major drawback of this scheme, however, is that it preclades
the removal of common layer bindings from binding sets during
the join. This is impossible because any common layer binding
might be needed in order to update the instantiators in the
binding set, and instantiators that are start out identical may
in this way end up differing in their final form. In order to ensure
correct updating of instantiatars before instantiation, then, the
common layer bindings must be fully maintained and reported
0 the CP along with the binding set.

In addition, such a scheme would probably require some method
for determining when a rule layer may be discarded by the CP
owing to all referencing binding sets having been reported and
elaborated. Such a mechanism seems feasible given the current
sequence number scheme.

The trade-offs involved bave not yet been studied, althoogh
there seems to be reason to suspect that overall communica-
tion costs will not be greatly aflected, the two effects largely
cancelling each other.

7 Alternative Substitution Phase Strategies

The only major alternative under consideration for the subatitu-
tion phase is the postponement of the composition of individgal
reconciliations in the proof path. Rather than keeping a com-

pletely updated reconciliation in each binding set, common lay-
ery would represent only the substitution required to complete
the last proof step. The overall substitution would be computed
by the CP whenever a solution was encountered.

The only substantial benefit that may be obtained from this
strategy is that the entire substitution history, along with a
history of goal sets that could also be maintained by the CP,
would allow the reconstruction of the entire proof for reporting
purposes. The drawbacks are several:

o The history mechanism required in the CP
appears substantially more complicated than
what is presently required. Binding sets would
need additional tagging information to Wdentify
depth in the search space, and the CP’s history
mechanism would have to monitor this informa-
tion in order to know whether to stack s new
component, replace the top component, or pop
the stack.

o The history mechanism would seem to pre-
vent much fexibility in the order of selection of
binding sets. A predictable arder of traversal
through the search space is potentially benefi-
cial to programmers. The history mechanism
would §t well into the ordering imposed by oar
current sequence number scheme, but as indi-
cated earlier, it is questionable whether this or-
dering is useful. We hope to be able to identify
a different ordering that Gts well into the algo-
rithms, but a history mechanism would severely
coustrain our options.

We would no longer be able to remove common
layer bindings prior to reporting the binding set
to the CP.

7.1 A Previous Implementation

Earlier pablished work on LPS described a substitution phase
that is substantially different from those currently under consid-
eration. In fact, in early implementations the substitution phase
was probably the most complex phase of the algorithm. The cur-
rent approach is a direct result of investigations prompted by
discontent with the earlier techniques. For historical completes
ness we briefly discuss this approach and relate it to current
work.

The task of the substitation phase can be regarded as push.
ing forward a froatier set of bindings. Prior to a proof cycle,
we are equipped with a collection of bindings that relate our
top-level variables to variables ix the rules about to be fired,
as well as various created vaniables. We call these variables
middle-level variables. As a result of unification and recon-
ciliation, we are left with another collection of bindings, this
time between middle-leve! variables and bottom-level variables,
which are variables from the facts and rule heads with which our
goals anified. The substitution phase must resolve these two col-
lections into a new collection of bindings relating the top-level
variables to the bottom-level variables. During the next proof
step, of course, those bottom-level variables play the role of the
middie-level variables, and the frontier set i advanced one more
level.

The innovation that has allowed us to discard our old substitu-
tion algorithm is the filling out of instantiators with *dummy
bindings® for unbound rule variables. As a result of this op-
eration, our new froatier set and instantiator fall directly out
of the composition procedure. Previously our approach was as
follows:




1. Classify bindings into five different categories,
as follows:

» Upper level variable bound to
lower level variable

e Upper level variable bound to
lowes level ground term

o Upper level variable bound to
lower level non-ground term

o Lower level variable bound to
upper level ground term

o Lower level variable bound to
upper level non-ground term

2. List all possible combinaticns of a top-to-
middle binding of one type and a middle-to-
bottom binding of another type. The resulting
set of twenty-five binding scenarios, along with
the fve cases where a top-to-middle binding i
left by itself (unpaired with a middle-to-bottom

binding) comprise all possible binding interac-
tions.

3. Consider each binding interaction in turn and
decide how it can be recognised and what con-
tributions it can make to the resulting binding
set.

4. Develop an algorithm to handle interactions ac-
. cording to the analysis just performed.

We do not intend to consider Lhis approach further.
8 Conclusions and Future Work

It has not yet been established that the pilot algorithmu pre-
sented in this paper can result in efficient interpreters for the
execution of logic programs under the parallel computing model
that we propose. A limited form of OR paralielism is achieved
through simultaaeous unification of individual goals with liter-
als that are distributed over a large maltiprocessor network, and
a limited form of AND parallelism is achieved by satisfying an
entire list of goals in a single algorithm cycle.

Our abstract proof procedure has provided a convenient basis
for the specification and analysis of several alternative execution
strategies. Although we have been able 1o identify some trade
offs, it is apparent that no single choice of strategies will be

optimal in all circumstances. Future research aims Lo further .

our understanding of these and other algorithma and to identify
characteristics of logic programs that may be used as a criterion
for strategy selection.

We are curreatly planning an implementation of a LPS inter-
preter on 3 prototype machine based on the DADO parallel
architecture. One such prototype comprising fifteen PE's is cur-
rently functioning; a 1023-node prototype is under construction.
Weisberg and Lerner are working on an implementation of a par-
allel version of Portable Standard Lisp for the DADO machine
(Weisberg et al. 1984). As our simulation software was writ.
ten in PSL, we expect that this effort will substantially simplify
our implementation task by allowing a simple recompilation of
large portions of the existing code for execution on the actual
machine.

Taylor (13: Taylor et al. 1984) describes various methods car-
reatly under development for statistical analysis of logic pro-
grams. These include static, dynamic, and data-8Bow analynes
intended to guide algorithmic decisions in the implementation of

LPS. It is hoped that these analyses will quantify the potential
for parallel execution, allow accurate performance estimates to
be made, and isolate various qualities of logic programs which
can be used in building intelligeat compilers and interpreters.

Many features must be added to the LPS language in order to
make it suitable for a wide range of applications. We intend
to investigate such features as nezated condition elements in
rules, evaluable predicates, and condition elements with side
eflects. Khabasa’s work (Khabasa 1984} appears promising as
a basis for the implementation of negation as failure in the LPS
framework. In addition, we will explore issues relating to concrol
of program execution, including a more useful ordering of the
solution set.
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