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Abstract

We present an implementation of the generalized minimal residual (gmr) algorithm for
finding an eigenpair of a large symmetric matrix. We report some numerical results for this
algorithm and compare them with the results obtained for the Lanczos algorithm. A Fortran
implementation of the gmr algorithm is included. The input of this subroutine is a matrix
which has been partially reduced to tridiagonal form. Such a form can be obtained by the
Lanczos process. The Fortran subroutine is also available via anonymous FTP as

"pub/gmrval® on Columbia.edu [128.59.16.1] on the Arpanet.
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1. Introduction

The usual procedure for finding an eigenpair of a large symmetric matrix A is to
approximsate eigenpairs of A from its behaviour in a given subspace o'f small dimension. rThe
most popular method of this type is the Lanczos algorithm which gives approximations of
eigenvectors in the Krylov subspace. It is known, see Parlett [80], that the Lanczos
algorithm does not produce an approximate eigenpair of A with minimal residual. The
generalized minimal residual algorithm (the gmr algorithm) was introduced in Kuczyhski [85).
It finds the eigenpair with minmimal residual in a Krylov subspace. The gmr algorithm
enjoys certain theoretical optimality properties. The residuals of the gmr algorithm are never
greater than the residuals of the Lanczos algorithm and sometimes they are much ‘smaller.

Since the cost of both algorithms is essentially the same the gmr algorithm seems preferable.

In this paper we present an implementation of the gmr algorithm for-real symmetric
matrices. Applying k steps of the Lanczos process, a symmetric matrix A is partially reduced
to tridiagonal form, i.e., Q“ITAQk—Dk, where Q, is an nxk matrix with orthonormal
columns and D, is (k+1)xk tridiagonal matrix. We assume that coefficients of the matrix D,
have been already computed. We present a Fortran implementation of the gmr algorithm for

given coefficients of D,.

The implementation was tested for many matrices. We report results for matrices with
specifically chosen coefficients as well as for random matrices. Numerical tests confirm the
theoretical advantages of '.h? gmr algorithm over the Lanczos algorithm. For all matrices the
computed residuals of the gmr algorithm are never greater than the corresponding residuals
of the Lanczos algorithm and sometimes they are much smaller. The sequences of residuals
generated by the gmr algorithm are always nonincreasing, while the sequences produced by

the Lanczos algorithm do not enjoy this property. Often the Lanczos algorithm significantly




increases the residuals from one step to the next.

For matrices with specifically chosen coefficients, the gmr algorithm is significantly more

efficient than the Lanczos algorithm. For random matrices the gmr algorithm is only slightly

better than the Lanczos algorithm.




2. The gmr algorithm

In this section we define the gmr algorithm and introduce some of its properties which are

useful for implementation.

Let A be an nxn real symmetric matrix. For s given vector beR®, ||bl|=1, (]| [[=[| [},).
consider the k-th Krylov subspace

K, == span(b,Ab,..,.A¥'b) , k > 0.

Let
E, = { (xp: x €Ky, [Ix]| =1, p€R }.

Define the (k+1) real numbers ¢’p,c”),....c°,., and p° as

I(A - p°1) (c’gb+c’ | Ab+...4c", | A¥Ib|| = min{ ||(A - pl)x”: (x,p) € Ek }. -

The gmr algorithm produces-a pair (x,,p,) given by

x, = ¢ gb+ec’ Ab+. +c”, A¥b,  p = p"

In other words, the gmr algorithm finds the normalized vector x_ from the subspace K,

and the real number p, for which the residual

r, = min{ ||[Ax - px||: (x.p) € By } = ||Ax, - px,| , (2.1)

is as small as possible,

We now present the properties of the gmr algorithm which are useful for its
implementation. Without loss of generality, assume that the vectors b,Ab,..,Akb are linearly
independent. Let q,,q,,...qp,, be an orthonormal basis, the so called Lanczos basis, of the

subspace K, such that

Aq = Bq, ,taq+8, q,, , i=12..k, where




ai == (AQilqi) ' ﬁi == “Aqi = alqi - ﬂi.[qi.l” ' i=1121"‘yk ' ﬁo = .

Let Q; = [q,,9;,...,.q] and ¢, == [0,...,01]T. Then the (k+1)xk matrix D,

A h
0
B a,
Hk
Dy = Qu4,TAQ, = -— (2.2)
e e o7 .
Pea oy
0
- By
is tridiagonal.
k
For x € Ky, we thus have x ==

| |

¢q ¢; €ER. Setting ¢, = Chd1 ™ Cpyo ™= 0 we get

k+1 K

r?, = min{ ; (e By +ei; - cp+Bc;.)0% p € R, ¢, € R, ; c? = 1}
= min{ mio{ |[Dy(p)c|(% |lc|| = 1}:pe R}
= min{ X\..(D,T(p)D,(p)) : p € R }, (2.3)

where D;(p) = D, - pl, D, is defined by (2.2) and A, (X) denotes the smallest eigenvalue
of the matrix X. Hence at the k-th step of the gmr algorithm we want to find a number P’
for which the smallest eigenvalue of the matrix D,T(p)D(p) is minimal. Let ¢* ==
[c;“...,c ¢|T be the corresponding eigenvector of D, T(¢")D,(p°). Then the vector x* =

C.iqi is a unit vector from K, for which the minimum in (2.3) is attained.
l=m |



In order to find the smallest eigenvalue of D T(p)D (p) we proceed as follows.

Let H(p) == H, - pl, where H, is defined by (2.2). Then

DgT(P)Dk(P) — sz(p) + ﬁk%kekT_ (2.4)

Thus we want to find the smallest eigenvalue of the matrix H, ¥p) modified by the very
special rank one perturbation S %e,e,T. We shall use Golub's theorem about the eigenvalues

of a matrix which is perturbed by a rank one matrix.

Theorem (Golub [73])

Let G == diag(g), i = 1.2,..,0 and z = [z,,...2]T, [lz]]| = 1 , G = G+azzT. If the g
are distinet, a is nonzero and all components of the vector z are ponzero then the

eigenvalues of G are the zeros of

X(t) =1+ a ) 27 - ).

(1}

Let Hy(p) = U (A, - pI)U.T be the spectral decomposition of the matrix H(p) A, =

diag(X;), where X; are eigenvalues of H,. From (2.4) we have

D,T(pIDy(p) = Uy [ (4 - pI? + B,*U,Te,e,TU, | U,T.

Let z == [z,,..,5]T = U,Te,. Then z is the last row of the matrix U,. It is well known,
see Parlett |80, p. 129 and 124, that if §, #= 0, i == 1,..k-1, then all elements of the
vector ¢ are momsero and all the A, i == 1...k, are distinct. Assume also that §, % 0 and
p is chosen in such s way that (), - pf? = (N - pP? for i s= j. Applying Golub’s theorem
to the matrix (A, - pI)? and to the vector z we get that the eigenvalues of the matrix

D,T(p)D,(p) are the zeros of the function X pr
k

Xo(t) = 1+ B2 Y 22N - P - .

jum] .

~




If we denote by ¢(p) the smallest zero of the function X, then (2.3) yields

2

n? = min { dp) : peR } .

Thus in order to find the minimal residual it is sufficient to compute the global minimum

of the function ¢. The implementation of the gmr algorithm presented in the next section is

based on this property.




3. Implementation of the gmr algorithm

The implementation of the gmr algorithm is described as follows.

Having matrix D, defined by (2.2) we compute the global minimum of the function ¢ by

performing the steps:

(a) compute all eigenvalues X ,\,..,A\, of the tridiagonal matrix H, and the last

components z,,2,...,2y of all its eigenvectors. Order them such that A, < A, < .. < A,

(b) define k intervals I; I, == (-c0, (A+X,)/2), I, == ((A,+X,)/2, (A;+Xy)/2),..., I, =
(At h e /20 e #A/2), Ty = (A +2)/2, +).

(c) calculate the limits of the function ¢ at the endpoints of I,

li - (A - N, )2 4, 1= 1..k-1
iy o g 80 = Ous N/

(d) for each interval I, find the infimurm of the function &, i=-1..k

(¢) take as the global minimum of ¢, the smallest value among numbers obtained in (c)

and (d); take p, as the argument of the global minimum. .
We now briefly discuss the steps of the above algorithm.

To perform step (a) we can use technique described by Golub and Welsch [89]. Since we
are interested in eigenvalues and only in the last components of the eigenvectors we can

calculate them i cost proportional to k2.

Steps (b), (c) and (e) are simple and they do not require the explanation. The cost of

performing each of them is proportional to k.

Let us now discuss step (d). In order to find the minimum of the function ¢ in I, we




w

propose using the iterative parubola method. It is known that ¢ satisfies a Lipschitz
condition with constant 4||A|| and is analytic in a neighbourhood of a minimum point.
Having computed values s‘(pﬁ'z)), (), ), construct an interpolating polynomial w of

the second degree (parabola) such that

w(pl)) = (pl)) for j = i-2, i-l, i

Assume that w' is not a constant. Then take p{i+!) as the unique zero of w’,

w(p*+)) = 0, i = 0,1,2,..

It is well known that if starting points f?), pt'1), pl®) are sufficiently close to the point p,
in which function ¢ attains its minimum and ¢’(p,) #= O then the sequence {p)} produced

by the parabola method converges with order 1.32 to the point p,.

Consider now the i-th interval I, == (A, +X)/2, (\+X,,)/2) and let p € [ .. Then it is
easy to see that the smallest zero of t.he‘ function X, lies in the interval J; . Here ‘Jl = ((X,
CoR (g - AR I = (N - PR min(hyy - PR (gy - PP im kel By = (O - AR
My - p)?). Note that the endpoints of the intervals J;, i == 1,2,..k, are the smallest two
arguments for which the function X, has poles. In order to find the smallest zero of the
function X, we use bisection on the equation xp(t) == 0, One can also use other methods
safeguarded with bisection. To find the minimum of the function ¢ in the interval [, we
perform a few (up to 8) steps of the parabola iterative method starting from X; and two
other points chosen close to A, If at any step of the parabola method, we obtain the point
outside of 1, then we terminate and take as the minimum the smallest computed value of
¢(p) in the L. It is easy to see that the cost of this step is proportional to k2. Thus the cost

of performing all the steps (a), (b), (¢), (d) and (e) is of order k2.

Having values p, and Mmis(Dy T(2)D\(p,)) we can perform one step of the Wielandt
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algorithm to get the corresponding eigenvector ¢’ = [c'l,...,c'k]T of D,T(p,)D,(p,). Some

technical tricks for performing one step of Wielandt’s method without computing

D, T(p,)D(py) effectively are given in Appendix A. Using this technique we can calculate the

corresponding eigenvector ¢’ performing O(k) arithmetic operations. The cost of computing
k

vector x, =e E ¢,q; is of order nk operations.

=1

We end this section by the following remark. We have assumed that we were given the
coefficients of the matrix D, and we dealt only with this matrix. If the coefficients a,,..,0
and f,,..,0, are not known, they and the orthonormal basis q,,q,....,.9,4, can be found using
the Lanczos process applied to the Krylov subspace, ie., to the vectors b,Ab,..Ak+ib,
Formulas for a;, B, and q given in the previous section are, in gemeral, very sensitive to
roundoff errors and some reorthogonalization process is necessary. We will not discuss this
subject “here. The reader is referred to the book of Parlett [80], where the detailed
description of the selective reothogonalization technique can be found. 'We stress that the
cost of cons'tructing basis q),q,,.-,qy4, 3nd coefficients a; and B; is proportional to nk, which

is much more than k? for k << n.
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4. Numerical results and comparison with the Lanczos algorithm

In this section we present some numerical results for the gmr algorithm and compare them
with the results obtained for the Lanczos algorithm. This algorithm, see Parlett [80,p.257],
also uses the Krylov information

N,(A,b) = [b,Ab,...,Ab].

The Lanczos algorithm, in fact, disregards the last codiagonal element G, in (2.2) since B,
is only used to estimate the accuracy of the approximations. It deals with the resulting kxk
matrix Hy. The algorithm produces pairs (Q,u,};), i = 1,2,..k, where (u,)), i = 1,2,k
are all eigenpairs of the matrix H,, as approximations of eigenpsirs of A. The cost of the
Lanczos algorithm is essentially the same as the cost of the gmr algorithm. It is known that
the smallest residual r,“ of the Lanczos algorithm satisfies

re = min{ [[AQuu; - \Quujll: 1 < i < k}
= 18] min{ Jugk 1 € i < &} < [,

where u; is the last, k-th, component of the vector u,

It is also known that

r, = min{ V[|Ax][? - (Ax,x)}*: x € K, [[x]| = 1, (A - (Axx)Ix LK}.

The residual of the k-th step of the gmr algorithm is given by
r,d = min{/TAX[[? - (Axx : x € K,, [|x|]| = 1}.

It is easy to see that r,@ < r,l. Moreover it is known that r,C = rland r® = rl =
0. This and similarity of the formulas for residuals might suggest that rk" should be close to
rkG for k = 1,2,...n. This intuition is incorrect. As shown in Kuczynski [85] the small

difference in the formulas leads to completely different values for the residuals of the two




algorithms. See Example 4.1.

For all examples, both the gmr and Lanczos algorithm are tested for k = 12,...n and
their residuals are compared. Without loss of generality we confine ourselves to tridiagonal
matrices. For simplicity we set the vector b = [1,0,...,0)T. Numerical tests were performed
on a DEC-20 computer with 8 decimal accuracy at the Computer Science Department of
Columbia University. Some tests were also performed on DEC-20 computer at the Computer
Science Department of the University of Utah in Salt Lake City and on VAX 750 computer
at AT&T Bell Laboratory in Murray Hill. We first report the results for the following

matrix.
Example 4.1

Let ; = 0, | = 1,2,.,,101, §; = 0.5, i = 1,2,..,100, i %= 1,11,21,..91 and §, = f§,, =
By = .. = f, = 0.05. The sequence of residuals of the gmr algorithm is strictly
decreasing, while the sequence of residuals of the Lanczos algorithm does not have this
property. In fact, only the subsequence {rLQk_l}, for k > 10, of the Lanczos residuals is
nonincreasing. The gmr residuals r9,, | are 2 or 3 times smaller than rl,, .. Both algorithms
terminate at the 71-st step by reaching residuals smaller than 10°8: For even indices larger
than 18, the .Lanczos algorithm does not take full advantage of the available information and
produced large residuals. For instance rly, = 4.2,,-4, rly, = 3.9 4, rly, = 50,4, by =
1.2,,-3, while rby, == rly, == rby, = rl, = 49 8. This means that at the 83-th step the
Lanczos algorithm guarantees 7 correct decimal digits, while at the next step only 3. The
Lanczos algorithm increases the residual more than 24000 times in the 70-th step. By
contrast, we stress that the residuals of the gmr algorithm are r,, = 2.8,,.8 > S, >

G
9 2 19 2 19, 2 19,y = 2.0,,:8.
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Example 4.2

Let a;, = 0 and /3i = If2 for i = 1,2..n for 0 > 800. For this matrix both algorithms
produce decreasing sequences of residuals. Table 4.1 shows how many steps one has to
perform using the gmr (G) and Lanczos (L) algorithms to get residuals not greater than e.

The gmr algorithm uses significantly fewer steps.

€ 5,01 lo-1 5,0°2 1,52 5,03 1,53 5,04 14
#L 1 7 12 36 58 170 270 780
# G 1 8 9 21 30 69 98 221
Table 4.1
Example 4.3

The increase of the Lanczos residuals observed in Example 4.1 occurs quite often. For
instance, for a tridiagonal matrix of dimension 100 defined as follows: a, = a, = 1/3, a,
= a, = - 1f3 ag = a = 1/3,..., a5 = a0 = - 1/3 and B, = (-1)*'1/3, | =
1,2,...,99, the Lanczos algorithm increases the residual error at every fourth step and the
increase is very large. For instance rlyy = 1.8,,-3, rly, = 1.8,4-3, rly, = 1.4,,3, by, =

1.3,4-3, while all other residuals from the step 49 to 81 vary between 4.5,,-7 and 2.2,,-8.

Example 4.4

One of the goals of testing is to establish empirically how fast residuals of the gmr and
Lanczos algorithms converge for symmetric matrices. For the gmr algorithm Kuczydski [85]

proves that for any symmetric matrix A and k < n

nd < [lAll/k




it

and for any k < o, there exists a real symmetric matrix A for which

rS > IIAll/2k -

Similarly, for the Lanczos algorithm, the bounds are

e < AN/~

and for any k < b, there exists a symmetric matrix A for which

nt 2 [AI/(VE+ 1)

We want to find out how sharp these bounds are for specific matrices with norm bounded
by unity. In order to measure the speed of convergence define the sequences {p, G}, {p '} as
G\-4 Ly-4
rnC = (kph) , = (kpk ) , k=23..0-1.
From theory we know that p,¢ > 1 and p,* > 1/2. We computed p,® and p,l for many
tridiagonal matrices with norm bounded by unity. The smallest values of p,© and p  were
obtained far matrices with zeros on the main diagonal and with slighty increasing codiagonal

elements. We report three examples of such matrices.

(i) For the matrix of dimension 501 with codiagonal elements B, equal to i/(2(n-1)), the
gmr residuals decrease at every second step, while the Lanczos residuals do not decrease at
all. Both slgorithms begin from the same residuals equal to 1,,-3 and at the 500-th step
they reach: rlgy = 1.1,,-2 and 19, = 3.8,,-4. The sequences p and p,C decrease very
slowly for k > 50. For the Lanczos algorithm we obtain ply, == 0.79, pl,e, = 0.74, ply,

= 0.72. For the gmr algorithm we get: pS, = 1.33, pQ,,, = 1.29, pG,, = 1.27.

(i) We also tested the 201x201 matrix with codiagonal elements S, =\i/(o-1)' /2, | =

1,2,...200. The gmr residuals decrease very slowly at every step. For instance, r,8 = 3.5,,-2,




G - G 3 G — 43 .
e = 17,03, t¥ 0 = 5.5,5-3, 19y = 45,3, 900 = 3.9)0-3. the Lanczos residuals are

constant for all 200 steps, r\ = r)l = . =L = 35 .2 The sequences p,- and p, @

are both decreasing. For the Lanczos algorithm we obtain: plyy = 112 ply, = 0.83, pt 0
- ¥ - ’ x

= 0.73, pl\y, = 0.67, pl ;5 = 0.85, pb,, = 0.831; while for the gmr algorithm p%,, =

148, pO = 1.24, pS 0 = 1.13, p%,, = 1.08, pC ;; = 1.08, pC,, = 1.048.

(iii) The small values of p, and p,C are also obtained for the 200x200 matrix with B, =
log(i+1)/(2log(n)), i == 1,2,...,199, on the codiagonal. A few results for both algorithms are

shown in Table 4.2

k| 25 50 75 100 125 150 175 | 180 190 199

el 151,92 [3.9,5-2(3.3,-213.0,4-2 [2.7,5-2 (2.5,,-212.3,5-2 (2.3,,-2[2.3,5-2 2.2, -2

1, 2.1,5-2(1.3,5-2(9.5,5-3{ 7.4,-3(6.2,4-3|5.3,,-3|4.6,,-3|4.5,,-34.3,;-3| 4.1,4-3

pkl‘ 093 | 083 |0.79 076 | 0.75 | 0.74 | 0.728 | 0.725 '}0.721 10.719

ka 1.21 | L.11 | 1.08 1.08 ( 1.05§ | 1.05 | 1.042) 1.041 { 1.039 [1.038

Table 4.2

For large k, the sequence p,C is quite close to 1. We believe that for larger dimension n,
the sequence p, @ would be even closer to one. Observe that for the last two matrices the
Lanczos sequence p, b is relatively close to 1/2. We believe that there exists a symmetric

matrix for which the sequence p  approaches 1/2.

For the same matrix as before, Table 4.3 shows how many steps are needed to reduce the

first residual rlG - rl" = 8.5,,-2 by a factor of q using the Lanczos or gmr algorithms.
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q| 23 4 5 8 7 8 9 10 11} 12 1314|151 18

4L|78 |200 | 200 {200 {200 |200 |200 |200 | 200 |200 {200 {200 |200 |200 {200

#G[10| 23| 38| 51| 83 77| 89 [104| 117 | 130 | 144 | 158 172 (186 {200

Table 4.3

Example 4.5 Random matrices

We tested mapy tridiagonal matrices with coefficients generated pseudo randomly with
uniform distribution in the interval [-1/3, 1/3]. We do not observe large differences between
residuals of both algorithms. However very often the sequence of Lanczos residuals is not
strict]y'.&crcasing, though the increase is rather small. In general, the k-th residual 'rkL does
not exceed the (k-1)}st residual multiplied by 3 or 4. However, for a few matrices r,l = 20

L ;
., for some x.

Both algorithms were efficient. For random matrices of dimension 201 they computed the
residuals smaller than 4,,-8 after about 25 steps. Fast convergence of both algorithms for
random matrices can be easily explained. Indeed, the sequence of numbers generated pseudo
randomly from the interval [-1/3, 1/3] are unlikely to be increasing, and almost surely some
codiagonal elements are small. These two properties make the residuals of both algorithms

small.

Both algorithms were tested for 80 random 201x201 matrices. For each matrix the gmr
residuals are smaller than the corresponding Lanczos residuals. The differences between them
are usually insignificant. For each of eighty matrices we compute the number of steps
needed to.make the residual less than ¢. Table 4.4 presents the average number of steps

needed by the Lanczos and gmr algorithms for a few values of e.




€ Lol | Lo [1g3 L4 | 1005 [ 1,8 [110-77

Average [ L 2.1 394 110.09 | 15.1 1823 | 20.98 | 24.04

aumber

of steps| G | 2.08 5.44 |9.16 (13.88 1795 | 2079 | 238
Table 4.4

These tests suggest that for random matrices the efficiency of both algorithms is nearly the

same.
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5. Appendix A

We describe how to perform one step of the Wielandt algorithm in order to find the
eigeavector of the matrix D, T(p)D,(p) corresponding to the smallest eigeavalue. Assume that
we have a sufficiently good approximation A\, A > 0, of the smallest eigenvalue of the
matrix D, T(p)D,(p). We must solve the system of linear equations

(D T(p)Dy(p) - A)u = w for given w € RE,
which appears in the Wielandt algorithm.

Assume that the matrices H %(p) - Al and D, T(p)D,(p) - Al are nonsingular. Then from the
formula of Sherman, Morrison and Woodbury

(A+uvTy! = A"l . 1/(14vTAl4) A-luvTAY?

applied to the matrix A == H,*(p) - Al and the vectors u == v = ¢,, we obtain

(D, T(p)Dy(p) - NIJ' = (H,Kp) - Al+B, e e, T)!
= [l - 1/(1+w,) BA(H p) - M)'ere, ] (H2(p) - AIYY,
where w, = (.2, T(H,%(p) - N)yle,.

Let s = (H.%(p) - AJ'w = (H,(p - M) (H(p)+ Aly'w . Then

ﬂkekT(sz(P) - AMylw == ﬂkekTs = f3 s, where s = (va-"'sk)T'

Thus we have

(D T(pDy(p) - AW = s - %, /(1+w) (H¥p) - AJle,.

Denote t == (t,,...t,)T = (H,T(p) - MJ')e,. It is easy to calculate that w, = B, and

u = (D T(p)D(p) - NIY'w = s - 3%, /(1+8,,) t,




s

where
s = (Hy(p) - M) (Hy(p)+XI)'

v o= (H(p) - MJ' (Hi(p}+AI) ey,

To solve systems of equations with matrices H (p)+Xl and H(p) - M we can use any

numerically stable method (we use Gaussian elimination with partial pivoting) for solving

systems of linear equations.




6. Appendix B
00100 C
00200 C
00300 C SUBROUTINE GMRVAL
00400 C
0000 C
00600 SUBROUTINE GMRVAL(K,ALFA,BETA,Z1,VAL,WL,IERR)
00700 C .
00800 C SUBROUTINE GMRVAL MPLEMENTS THE GENERALIZED MINIMAL RE:SIDUAL
00000 C ALGORITHM FOR THE REAL SYMMETRIC EIGENPROBLEM DESCRIBED IN [1).
01000 C FINDS AN APPROXIMATION OF AN EIGENPAIR OF A REAL SYMMETRIC MA Rl‘( A
01100 C OF DIMENSION N USING PARTIAL INFORMATION OF A . INFORMATION OF
01200 C THE MATRIX A IS GIVEN BY THE (K+1:ST KRYLOV SUBSPACE, L.E.,
01300 C BY ‘I'HE I-TH POWER OF A ON THE NONZERO VECTOR B, I=0,1,....K,
01400 C , ASSUME THAT WE HAVE THE ORTHONORMAL BASIS
01500 C Qlﬂ'?' +Q[K+1| OF THIS SUBSPACE, THE SO CALLED LANCZOS BASIS,
01600 C \JHJI 1ALLY REDUCES THE MATRIX A TO THE TRIDIAGONAL FORM,
01700 C LE., THE (K+1)XX MATR
01800 C
01000 C ,
02000 C Dwx(Q[1].Q[2].....QMK+1}) A (Q[1).Q[2]....Q[K])m=
02100 C — g
02200 C XX
02300 C XXX o0
02400 C XXX
02 c v
02600 C - cen
02700 C -
02800 C 0 XXX
02 c XX
03000 C X
03100 C — -~
03200 C
03300 C IS TRIDIAGONAL. HAVING THIS TRIDIAGONAL RECTANGULAR MATRIX THE
03400 C SUBROQUTINE GMRVAL FINDS A NORMALIZED VECTOR Z1 FROM THE K-TH
03500 C KRYLOV SUBSPACE AND A REAL NUMBER VAL FOR WHICH THE NORM OF THE
03600 C RESIDUAL fB8A Z1 - VAL Z148 IS AS SMALL AS POSSIBLE. THE USER IS
03700 C SUPPOSED TO SUPPLY THE DIMENSION, K, AND COEFFICIENTS OF THE
03800 C TRIDIAGONAL MATRIX D . THE SUBROUTINE GIVES THE NORM OF THE
03900 C RESIDUAL, AN APPROXIMATION OF AN E:IGENVALUE AND COEFFICIENTS OF THE
04000 C EIGENVECTOR IN THE BASIS ?_Hq[zl R(
04100 C  THE COEFFICIENTS OF THE TRIDIAGONAL MATRIX D CAN BE COMPUTED
04200 C BY THE LANCZOS ALGORITHM WITH SELECTIVE REORTHOGONALIZATION APPL!ED
04300 C TO THE VECTORS GENERATING THE KRYLOV INFORMATION SEE ,p
04400 C COST OF THE SUBROUTINE GMRVAL IS PROPOR’NONAL TO HE cos1'
04500 C OF PRODUCING ORTHONORMAL BASIS Q[I] AND TRIDIAGONAL MA‘I‘RIX D IS
04600 C USUALLY MUCH LARGER. SINCE IT IS PROPORTIONAL TO N*K . TH
04700 C DETAILED DESCRIPTION OF THE ALGORITHM WHICH FINDS THE VECTOR Z1
04800 C AND THE NUMBER VAL MAY BE FOUND IN [1].
04900 C
05000 C
05100 C  INPUT PARAMETERS
05200 C
05300 C
05400 C K INTEGER VARIABLE WHICH IS THE DIMENSION OF THE KRYLOV
ogggg g SUBSPACE; K MUST BE POSITIVE BUT NOT GREATER THAN 1000 .
0
05700 C ALFA ONE DIMENSIONAL REAL ARRAY OF SIZE K WHICH CONTAINS
ggg& 8 DIAGONAL ELEMENTS OF THE RECTANGULAR (K+1)XK MATRIX D.
06000 C BETA ONE DIMENSIONAL REAL ARRAY OF SIZE K WHICH CONTAINS
06100 g CODIAGONAL ELEMENTS OF THE MATRIX D.
06200
06300 C THE sxacu‘nou OF THE SUBROUTINE DOES NOT CHANGE THE ELEMENTS OF
06400 C THE MATRIX
06500 C
068800 C
06700 C  OUTPUT PARAMETERS
08800 C
06000 C
07000 C IERR INTEGER VARIABLE SIGNALING HOW THE CALCULATIONS WERE
07100 C TERMINATED; IF |ERR [S EQUAL TO ZERO THEN THE BEST
07200 C APPROXIMATION OF AN EIGENPAIR WAS FOUND. OUR SUBROUTINE
7300 C REQUIRES THE COMPUTATION OF EIGENVALUES AND LAST COMPONENTS
07400 C QF EIGENVECTORS OF THE KXK TRIDIAGONAL SUBMATRIX. IN ORDER
07500 C TO COMPUTE THEM WE USE A SLIGHTLY MODIFIED SUBROUTINE
07800 C IMTQL2 FROM (3] . IF THIS SUBROUTINE DOES NOT GIVE DESIRED
07700 C EIGENELEMENTS AFTER 30 STEPS OF THE QL ALGORTIHM THEN
07800 C COMPUTATIONS ARE TERMINATED. THE VARIABLE [ERR IS THEN
O;ooo g SET TO ONE. IN THIS CASE, NO RESULTS HAVE BEEN COMPUTED.
000




08100
08200
08300
08400
08500
08600
08700
08800
08200

00100
09200
08300
00400
00500

08700
00800

10100

QQ000000000000000000a000000

aqa

21

21 ONE DNENSIONAL REAL ARRAY OF SIZE K ;I!F |[ERRwm0 |T
CONTAINS THE COMPONENTS OF THE BEST POSSIBLE APPROXIMATION
OF THE NORMALI7ED EIGENVECTOR IN THE K-TH KRYLOV SUBSPACE

IN THE BASIS Q[1}.Q!]....Q[K] .

VAL REAL VARIABLE; ¥ IFR==0 IT CONTAINS AN APPROXIMATION OF
AN EIGENVALUE.

WL REAL VARIABLE; [F IERR=«0 IT CONTAINS THE NORM OF THE
RESIDUAL 88A Z1- VAL Z168.
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INTEGER LIERR.I1,J,K,K1,K2,M1
REAL A,B,BK,C,TO,TOL.TOLO,VAL,WL,W0,W 1, W2,X,XL,X0,X1,X2
DIMENSION ALFA(K).BETA(K).Z1(K)

DIMENSION sr-:'rm(moo) U(nooo) WW(1000)

REAL ABS,AMAX1,AMINI,SQRT

LOGICAL CHECK

IERRw=(0
VALmeALFA(1)

A Wayt T ——
FRES RETUEN

COMPUTE MACHINE PRECISION

TOLm|,
10 IF (1. 0+TOL EQ 1.0) GO TO 20

Tou-rou/z

GOTO!

c 20 TOL-?.O‘TOL

DO 30 =2 K
Z1{1)==0.0

30 CONTINUE
C

C
C

[2191910]

C
C

CHECK IF THE CODIAGONAL, BETA, CONTAINS A SMALL ELEMENT

MlmK.{
DJO 4[0 [am], M1
IF (ABS(BETA(1)).LE.TOL*{ABS(ALFA(1))+ABS{ALFA(l+1 GO TO 50
LA G r} ). {ABS( ())+ABS( (1+1))))
Jmjp]
50 Klmm}
IF (K1.EQ.1) RETURN

COMPUTE ALL EIGENVALUES AND LAST COMPONENTS OF THE EIGEWBCTORS OF
THE LEADING SUBMATRIX, I.E., COMPUTE WW(l) AND U(l) FOR lm1,.

MimK]-1
DO 80 l—l Ml

B TAL = BE T
(BJETAI(I)—BE A1)
60 C TINUE
;(—l 0
t 1)m=ALFA( K\J
QRVAL{KI,WW,BETA1,U,IERR,TOL)
CHECK [F THE MODIFIED EISPACK'S ROUTINE FOUND DESIRED EIGENELEMENTS
IF {IERR.NE.0O) RETURN

BK-BETA(K?“?
IF (ABS(BETA(K1)).GT.TOL*AMAX 1(ABS(WW(1)),ABS(WW(K1)))) GO TO 70
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24700 BETAI1()mBETA(I)
24800 180 CONTINUE
24000 CALL sows{xx WW,BETA1.21,U,TOL)

25000 B0
25100 BK-BK‘ZI(KI)/(I 0+BK U(K1))

252 DO 190 ==

25300 21(1 m_ég K'U(I)

25400

25500 190 com

25600

25700 c NORMALIZE THE COMPUTED EIGENVECTOR 21
25800 C

25000 B-SQRT(B)

26000 DO 200 Imm1, K1}

28100 zun—zuxé‘/e

26200 200 CONTIN

26300 RETURN

20400 END

2 e

26800 C

26700 C

28800 C AUXILIARY SUBROUTINES

20900 C

27000 C

27100 C

27200 c SUBROUTINE READY(X.K,|,WW,W,WL,XL,U,BK,TOL)
27300

27400 C SUBROUTINE READY FINDS THE MINIMAL NORM OF THE RESIDUAL
27500 C A8 A X.ROXff FOR FIXED RO.

27600 C

27700 INTEGER 1,11,J,K

27800 REAL A,A1,A2.B,BK,C,F.TOL, T1,T2,W WLXXL
27900 DIMENSION U{1000), W W(1000)

28000 REAL ABS 1,SQRT

28100 C

28200 T1m=8.0°TOL

28300 T2=TOL*TOL0.8

28400 Alm{WW(I)}-X)**

28500 IF (LNE.1)GO TO 10

28800 A2#WW(2)-X)"2

28700 GO TO %0

28800 10 IF (LNE.K) GO TO 20

28900 A2s1§wwu<.1)-xr°z

2 GO

eoé% 20 A2m AMINI((WW(l-1)-X)**2,(WW(I4+1}X)**2)
20

28300 30 IF‘ {A2-A1).LE.T1°A2.0R.A2.LE. T2) GO TO &0
20400 - AH-A2) 0.5

29500 r

20800 B—SQRT(A)

29700 DO 40'11m=1,K

29800 Jm[}

29000 CamWW

30000 c- c- c+s

30100 (o} o‘r GO TO 38

30200 lF‘ . EQ J GOT

30300

30400 35 F-F+U Q/c
30500 40 CONTIN
306800 c Fmm].04+BK*F

30700

30800 IF (F.GT.0.0) GO TO 80
30000 45 AlmmA

31000 GO TO %0

31100 C

312 50 A2wmA
31300 c GO TO 80

31500 60 WemA2
31600 WLam AMIN1(WL, W)
31700 IF %Lm ) XLomX

31800
31000 END
32000 C
32100 C
32200 C
:35233 c SUBROUTINE QRVAL(N,D,E,2,IERR,TOL)
24
32 C SUBROUTINE QRVAL FINDS ALL EIGENVALUES AND LAST COMPONENTS OF ALL
32600 C EIGENVECTORS QF A TRIDIAGONAL MATRIX. THIS IS A MODIFICATION OF
32700 g SUBROUTINE IMTQL FROM (3].

32000 INTEGER LIERR,ILJ,K,L,M,MOML, N
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40800
49700
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50100

50300
50400

50700
50000

A=
I

RETURN

Y==TOL1 21K
HeGRERHIL

I? (u.mo) RETURN
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