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0. Abstract

The computational complexity of constructing the imbeddings of a given graph into surfaces
of different genus is not well-understood. In this paper, topological methods and a reduction to
lincar matroid parity are uscd to develop a polynomial-time algorithm to find a maximum-genus
cellular imbedding. This scems to be the first imbedding algorithin for which the rmuning time i3

not exporential in the genus of the imbedding surface.

1. Introductioﬁ

Lower-dimensional topology has long been approached ‘combinatorially. For most questions
about imbcddings,. there exist cxhaustive algorithms. Since the number of combinatorial equiva-
lence classes of graph imbeddings is a super-exponential .function of the number of vertices, such
exhaustive algorithms are computationally infeasible. .

There have been several algorithimnic achievemients. Hoperoft and Tarjan [HT] obtained a
linear-time algorithm to test planarity of graphs, while Gross and Rosen [GR| showed how to
test planarity of 2-complexes. Filotti [F] found a polynomial-time algorithm to determine if a
cubic graph can be imbedded in the torus, and Filotti, Miller, and Reif [FMR] generalized this
work with an algorithm to imbed a graph in a surface of minimum genus G in time O(vP(3)),

All these algorithms are based on extending partially iimbedded graphs, and they all produce an
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imbedding whenever it exists. Reif [R79] showed that there are limits to this approach by proving
that the problem of deciding whether @ partial imbedding in some surface can be extended to a
full imbedding in that surface is NP-complete.

Our present concern is the determination of the “maximum genus” of a graph. There 13 no
litnit to the number (;f handles one inight add to a surface in which a graph is already imbedded.
For the concept of maximum genns to be meaningful, one must stipulate that every region of the
itnbedding be cellular - that is, the interior of Lhe region mast be homeomorphic to an open disk.
Such a restriction is in no way artificial. It corresponds to restricting handles to be “cssential”.

Maximum-genus imbeddings, and the related notion of upper-imbeddable graphs, have re-
ccived counsiderable attention in recent years. A graph is called upper-tnbeddable if it has a
maximun-genus iinbedding with one or two faces. Nordhaus, lStownrt, and White [NSW], Ringeisen
[R70,R72], and Zaks [Z] showcd that various classes of graphs were upper-imbeddable. Nebesky
[N] and Jungerman [J] described combinatorial invariants of upper-imbeddable graphs. Xuong
[X79b] showed that all graphs with two disjoint spanning trecs, such as 4-edge connected graphs,
are upper-imbeddable.

We consider the computational complexity of obtaining a maximum-genus irnbcd(ling.. Our
starting point is the combinatorial characterization by Xuong {X79a} of the maximum genus of
a graph. This involves the consideration of all spanning trecs of a graph, of which there can be
exponentially many. We improve the obvious exponential-time algorithm to a polynomial-time

algorithm.

2. Preliminaries about Topological Graph Theory

In topological graph theory, a “graph” is defined to be a (possibly) non-simplicial 1-complex.
In other words, multiple adjacencics and self-loops are permitted. There are many reasons for
this generality. In particular, the most powerful presently-known way to construct an imbedding
of a large simplicial graph into a large-genus surface is to derive it as a branched covering of an
imbedding of a smaller, non-simplicial graph — ideally with one vertex and many self-loops — into
a smaller-genus surface. (See Gross and Tucker [GT| or White [W].)

In this paper, we consider only simplicial (simple) graphs: those without self-loops or multiple
adjacencies. Any graph containing self-loops and multiple adjaccncies can be transformed into a
simplicial graph by inserting one or more vertices in the intecrior of these edges. Moreover, the
resulting graph is homeomorphic to the original graph, and accordingly, it has the same maximum

genus. This enables us to simplify the notation.



2.1. Graph tcrmir:}-ology An (undirected stmplicial) yraph (¢ = (V. U) has a finite set of
vertices V and a finite set of edges 2, and an edge may be represeuted as an nnordered pair of
vertices (v,w), Le. its endpoints. An edge is said to be netdent on its endpoints. Two distinet
cdges are said to be adjacent if they are tncident on a comumon vertex.

The degree of a v;‘rtox ix the number of edges incident on it A path from vertex v to vertex w
is a sequence of edges (v, uy), (ug,ua), ..., (e, w) in E, such that the vertices v, uy, ug, ..., Uk,
and w are distinct. However, if the starting point » is the same as the linal point w, the sequence
is called a cyele. A graph is connecled if there is a path between every pair of its vertices. A
connected, acyclic graph is called a tree. By a spanning tree of graph (¢, we mean a subgraph that
is a tree and contains cvery vertex.

The notation G + e is an abbreviation for the graph (V, EU {e}), and the notation G — e i3 an
abbreviation for the graph (V, E — {e}).

A graph is directed if cach cdge is thought to have a beginning and an end. We represent a
directed cdge as an ordered pair. Unless it is otherwise obvious fro'm context, the graphs discussed

will be connected and undirected.

2.2. Surfaces Our terminology is compatible with that of Gross and Tucker [GT] and of White
[W].

The topological spaces of intcrest here are all homcomorphic to subspaces of E3. A homeomor-
phism between two topological spaces is a continuous bijective mapping with a continuous inverse.
A connected topological space is a surface if every point has a neighborhood that is lomcomorphic
to the closed unit disk. A surface S is orientable if it does not contain a Mdbius band.

We deal only with closed orientable surfaces. Evefy such surface § is homeomorphic to a
generalized torus. The number of handles is denoted 4(S) and is called the genus of the surface. A
sphere, for cxample, is a surface of genus 0, a torus is a surface of genus 1, and a 2-handled torus

is a surface of genus 2.

2.3. Graph imbeddings and faces Although a graph is an abstract combinatorial object,
there is a topological representation of it: in Euclidean 3-space, we represent each vertex by a
distinct point and each edge by a distinct curve between the two endpoints, where a curve means
a homeomorphic image of the unit interval (0,1]. We require that the interior of an edge intersect
no other edge or vertex of the graph. When referring to a graph in a topological setting, we mean

such a representation.



An smbedding ¢ - S of a graph G in the surface § i a continuons one-to-one mapping. The
components of § ~ G are called regions. If cach vegion is homeomorphic to an open disk, the
imbedding is cellulur, and the regious are called faces. All our iinbeddings are ecllular. The set of
faces of an imbedding is denoted F.

A muzimum-ycnu:n imbedding of a connected graph is a cellular imbedding of the graph in an
orientable surface having maximuun genus amnong all such imbedding surfaces. The Euler polyhedral

cquation

VI |E| +|F| =2 - 29(S)

holds for all cellular imnbeddings. Thus, a maximum-genus imbedding is the same thing as a

minimum-facecount iinbedding.

2.4. Rotation systems A rotation at a vertex v is a cyclic perinutation of the cdges incident

on it. Since our graphs arc simplicial, we may specify a rotation at v in the format
v. Ujug ... U4

where the vertices uy, ..., uq are the opposite endpoints of the edges incident on v. It follows that
a vertex v with degree d admits (d — 1)! different rotations.

A list of rotations, one for each vertex, is call a rotation system for the graph. This conéopt is
due to Hcffter [H|. Starting with a graph imbedding in an oriented surface, there corresponds an
obvious rotation system, namely, the one in which the rotation at each vertex is consistent with
the cyclic order of the neighboring vertices in that imbedding.

Edmonds [E] was first to call attention explicitly to a method for inverting tlfat correspondence.
To each oricnted edge (u, v), one assigns the oriented edge (v, w) such that vertex w is the immediate
successor of vertex u in the rotation at vertex v. The result is a permutation on the set of oriented
edges, that is, on the set in which each undirected edge appears twice, once with each possible
direction. In each edge-orbit under this permutation, the consecutive oriented edges line up head
to tail, from which it follows that they form a directed cycle in the graph. We observe that it is
possible for both orientations of the same edge to appear twice in the same edge-orbit. If there are
n oriented edges in the orbit, then an n-sided polygon éaﬁ be fitted into it. Fitting a polygon to
every such edge-orbit results in a polygon on both sides of each edge, and collectively the polygons
form a surface in which the graph is cellularly imbedded.

Sometimes one describes the rotation system of a graph pictorially, as in Figure 2.1. The graph

is drawn in the plane so that the incidence of edges at each vertex is consistent with the rotation
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systeni. Obvionsly, unﬂrx.ﬂ the rotation system happens to correspornd to a planar ibedding, there
will be edge-crossings in the (lrawing; Such a drawing peemits one to trace along the edge-orbits,
as illustrated. Since the graph shown has 6 vertices and 10 edges, and since the rotation systemn
has 2 edge-orbits, the imbedding surface has Buler characteristic 6 — 10+ 2, which equals =2, from

which it follows that the imbedding surface has genus two.

Figure 2.1. A graph with two edge-orbits in its rotation system.

The existence of the bijective correspondence betwecen the cellular imbeddings of a graph
and the rotation systems enables us to reformulate the problem-of finding the maximum genus
of the graph as a problem of finding a rotation systern with the minimum number of edge-orbits.
Since edge-orbits correspond to boundary-walks of faces, this is equivaleut to seeking a minimum-
facecount imbedding.

We can depict the boundary-walk of each face of an imbedding as a directed graph with one
directed edge for each traversal of the undcrlying undirected edge, and multiple copies of each
vertex; the boundary-walks for the rotation system of Figure 2.1 are shown in Figure 2.2. Any
closed boundary-walk can also be written as an alternating (cyclic) sequence of vertices and edges
viejvges...exv;. A subsequence e;ve;,| of a walk is called a corner, corresponding in an obvious

way to the geometric corner of a face of a polygonal itnbedding.

2.5. Adding and deleting cdges If an edge is added to, or deleted from, an imbedded graph,
then all faces in the imbedding are unchanged except thosc incident on that edge. Furthermore,

either two faces are merged or one face is split into two faces.
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Figure 2.2. The boundary-walks of the imbedding in Figure 2.1.

Suppose that an cdge e = (u,v) is added to a graph and its imbedding, so that its ends are
inserted between two corners of one face. If the b(nmgl:u'y-walk around the original face was of
the form vajwaqv, where a; is a subwalk, then as illustrated by Figure 2.3, the new edge splits
the old boundary-walk into two walks: vajwe;v and wagvegw.. Similarly, if an cdge e that is
commnion to two faces is deleted from an imbedding, then two boundary-walks are merged and the

new imbcedding has onc less face.

'.---------,'

Figure 2.3. Adding an cdge across a face.

If an edge is added to a graph and its ends are inserted between corners of two different faces,
then both those faces are merged into one larger face. In particular, suppose that new edge e runs
from the corner of v in boundary-walk va;v to the corner of w in boundary-walk waaw. Then a
merged face results. with boundary-walk ve,wasweza,v, as depicted in Figure 2.4. Likewise, the

deletion of an edge e occurring twice on one boundary-walk splits the corresponding face into two
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Figurc 2.4. Adding an cdge between two faces.
sinaller faces.
3. Maximum-Genus Imbeddings

We now direct our attention to the problem of constructing a maximum-genus imbedding.

Xuong [X79a] proved that calculating the maximum genus of a graph is reducible to calculating

_ the value of a combinatorial invariant which he called its deficiency.

The deficiency £(G,T) of o spanning tree T in a graph G is dcfined to be the number of
connected components of G — T that contain an odd number of edges. The deficiency £(G) of
6 graph G is defined to be the minimum tree deficiency over all spanning trees T of G. We call
a spanuing tree that realizes £(G) a Xuong tree. Figure 3.1 shows a graph and one of its Xuong
trees. Since the complement of the Xuong trec has two o;i(l cpmponents, it follows that the graph

has deficiency two.

Figure 3.1. A spanning tree (solid edges) with minimum deficiency.
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The edge ('()lxl[)lorl-i(-lxl‘ (¢ = T of any tree T is called o cotree. Tree T s a spiuming tree if
and ouly if ¢ = T is a minimum cotree. The unmber of edges in any minimum cotree i equal to
|E| = V] + 1, and it is called the eyele rank (sometimes the Belti number) of G and denoted 8(6).

By an adjacency matching in a subgraph of (7, we mean a matching siuch that each edge in
the subgraph is paired with an adjacent edge. For example, one maximum adjacency matehing in
the cotree of Figure 3.1 contains pairs (1, ¢) and (b, d), with cotree edges ¢ and [ being unpaired.

The following reorganization of Xuong's methods and rederivation of his results is needed for

our coustruction of a maxinuun-genus algorithm.

LEMMA 3.1. If a graph (0 has a completely-paired minitnum cotree, then G has a one-face imbed-

ding.

Proof. By induction on k, the number of edge pairs in the minimum cotree.

BASIE CASE: k = 0. In this case the graph G is a tree, and cvery imbedding lias exactly one
face.

INDUCTIVE CASE: k > 0. As an induction hypothesis, assume that a graph with k—1 pairs of
edges in a minimum cotrce has a one-face imbedding. We now arguc that we can add a new pair of
adjacent cdges e = (v, w) and f = (w, z) to the onec-face imbedded graph in the following manner.
First insert edge e into the one face in any way between vertices v and w, thercby splitting the
single face in two. Note that vertex w now has corners on both faces. Then insert cdge f between
some corner of z and a corner of w that lies on a different face (see Figure 3.2). This merges the

two faces, thereby resulting in a one-face imbedding of G + e + f. [

Figure 3.2. Adding adjacent edges e and f to a one-face imbedding.

LEMMA 3.2. If a graph G has a minimum cotree with k unpaired edges, then G has an imbedding
with at most k + 1 faces.




Proof. Obtain a one-fice imbedding of the spanning tree edges and paired cotree edges of ¢ by
the construction in Lemma 3.1, Add ecach of the & unpaired edges to thal nnbedding, ereating at

most one new face for each edge. O

Lemmas 3.1 and 3.2 are constructive, and given a maximum adjacency mabehing for a minimum
cotree, any reasonable implementation of the construction will mn in polynomial-time. A naive

“upper bound on the runuing time for a graph with e edges is O(e?) .

LiMMA 3.3. If a graph G has a one-face imnbedding, then it has a completely-paired minimum

cotree.

Proof. By induction on the number of edges, k, in G.

BASE CASE I: k = |V| — L. In this case, the graph G is a spanning tree for itself, the cotree
is emnpty, and triv-ially all edges are paired. _

BASE CASE II: k = |[V]. In this case, the graph G is a spanning trce plus one extra edge. A
spanning tree can only be imbedded with one face, and the addition of the cxtra edge to such a
one-face imbedding must break the face in two. Thus, the graph G can only be imbedded with
two faces, and the lemnma holds vacuously.

INDUCTIVE CASE I: k > |V, and G has a vertex v of degree one. Consider the graph G’
obtained by deleting v and its incident edge e = (v, w) from G. Since G has a one-face imbedding,
we can readily construct a onc-face imbedding of G’ by starting with the one-face imbedding for
G and dcleting e and v. By induction hypothesis, the graph G' has a minimum cotree C with all
its edges paired. Since the edge e must be m any spanning tree of G, C is a completely-paired
minimum cotree of G.

INDUCTIVE CASE II: k > |V], and G has no vertex of degree one. Consider the boundary-
walk around the single face. There must be an edge r = (u, v) whose two appearances in the walk
occur as closely together as the two appearances of any other edge. Give the two appearances
of r the labels ¥ and ‘7, so as to minimize the length of subwalk a from 7 to 7. Subwalk
a must contain of at least one edge other than r, or else G would have a vertex of degree one,
a contradiction. Similarly, if 3" is the edge following 7’, then a can not also contain ‘3, since
the two appearances of edge s would then be closer together than those of edge r. Therefore, the
boundary-walk around G’s face must be of the form 4 7 v 3 wa v'7 uasw’s vazu, where s = (v, w)
is an edge adjacent to r in G, and «), aj, and a3 are subwalks. See Figure 3.3.

Delete edges r and s from G to obtain the graph G'. Vertices u and v are connected in G' by

edges that appeared in subwalk a3, and vertices v and w are connected by edges that appeared in
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Figurc 3.3. Boundary-walk of G before deleting edges r and s.

-subwalk a;. Every other vertex in G' appeared in @y, @z or ag and is thus connected to u, v, or
w by edges in (. Since those three vertices are all connected, it follows that G’ is connected.

By the induction hypothesis G' has a cotree C that is completely paired. Clearly the tree
G' — C is also a spanning trec of G. Edges r and s can be paired and added to C to form a

completely-paired minitnum cotrec of G. [

LEMMA 3.4. If a graph G has a (k + 1)-face imbedding, then it has a minimum colree with at

most k unpaired edges in its mazimum adjacency matching.

Proof. By induction on the number k.

BASE CASE: k = 0. This follows froin the previons lemma.

INDUCTIVE CASE: k > 1. Let e be an edge in G that lies on two different faces in some
(k + 1)-face imbedding. The graph G — e is connected, for otherwise e would lie on only one face,
and it has a k-face imbedding when cdge e is deleted from the (k + 1)-face imbedding of G. By
the induction hypothesis, the graph G — e has a minimum cotree C with at most k — 1 unpaired

edges. Thus C + e is a minimum cotree of G with at most k unpaired edges. (J ‘

A Xuong cotree of graph G is any minimum cotrce of G that admits an adjacency rnatching
with number of paired edges maximized (over all minimum cotrees). The number of unpaired edges
in such a cotree is denoted U(G).

Although Xuong seemed to be little concerned with algorithms, Theorem 3.5 is essentially
contained in [X79a]. Theorem 3.6, which relates maximu'm- genus to deficicncy, is generally regarded

as Xuong’s main result.

THEOREM 3.5. [X79A] A connected graph G has mazimum genus

8(6) - U(G)

T™M(G) = 3
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Frurthermore, given « Xuong colree C and a mazimurmn adjuceney malching of C, un anbedding

of G that minimizes fucccount {and therehy mazimizes yenus) can be found i polynomial-time.

Lroof. Follow the construction in Lemma 3.2 to obtain, from amaxiimm adjaceney matehing of a
Xuony cotree of 7, an imbedding with I7(¢7) 4 | faces. Lemma 3.4 shows that sineh an imbedding
minitizes the nuber of faces, Therefove, this is o maximum-genus imbedding in which, by Eulee’s

polyhedral equation, ya0 () = (A(¢?) - U(G))/2. O

THROREM 3.6. [X79A] Let G be a connected yraph. The mazimnum genus of G i3 given by the

Jormula
_ B(G) - €(G)

Tm(G) 5

.

Proof. Any Xuong cotree must contain at least as many odd components as £(G). Since cvery
odd component must contain at least one unpaired edge, it follows that U(G) > €(G). Conversely,
a maximum adjacency matching in the complement C of a Xuong tree must leave at least U(G)
edges unpaired. The even components of C are completely pairable, and the odd components are
pairable except for onc cdge left over, thercfore it follows that ¢(G) > U(G). Thus €(G) = U(G),
from which Xuong’s equation follows. Morcover, we sce that Xuong trecs and Xuong cotrecey, as

defined here, are indced complementary objects, O

4. Reduction of Maximum Genus to Linear Matroid Parity

In order to determine the maximmum genus and find a maximum imbedding for an arbitrary
graph G in polynomial-time, we have shown that it suffices to show-how to find a Xuong cotree
and a maximun a.djacencylma.tching of its edges in polynomial time. This problem resembles what
is known as the wmatroid parity problem for cograplic matroids. We use the definitions relating to
matroid parity that are found in Stallman and Gabow's paper on linear matroid parity [SGJ.

A matroid M = (E,I) consists of a finite ground set E and a family I of “independent”
subsets of I satisfying the following axioms: )

1. A€l and BC A, then B e .

2. If A,Be€ ] and [A| = |B| + 1, then there exists a € A such that B+a € [.
The matroid parity problem [La7l] is the following. Given a matroid M = (F,I) and a perfect
pairing of the elements of the ground set E, find an optimum subset of E such that an element is
in the subset if and only if its paired edge is in the subset. Optimum means cither a largest snbset
(the cardinality parity problem) or a maximum weighted subset (the weighted parity problem). Both

can be solved in polynomial time for a large class of matroids known as linear (or matric) matroids
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[Lo.SG,0GUV 4§ Tlx(z:xllx)st ellicient. known algorithin for the cardinality pacity problem on general
linear malroids tuns in O(nm3) time, wheve m = [B] and n s the size of the optinum subset,
Matroid parity is a generalization of two well-known problems:  graph matching and matroid
intersection,

For any graph (}A= (V. I2), there ix a linear matroid M = (E, I'), called the cographic matroid,
in which the ground set is the edge set of the graph and € C E is an independent set if and only
if G = C is connected. Maxinnin independent sets in cographic matroids are minimum cotrees of
the correspouding graph. For any perfect matehing of the edges of the graph, we have an instance
of the matroid parity problem ou cographic matroids, which we call the cotree parily problem. The
cardinality parity problems for both graphic (spauning tree) and cographic matroids are easier
than general lincar matroid parity, and can be solved in O(nm?) time [La76,SG|. Stallman and
 Gabow conjecture that this time bound can be reduced to O(mn log n).

If cach edge of a graph G were adjacent to exactly one other edge, then we could directly apply
an algorithm for cotree parity to graph G. Howcver, adjacency is not an unambiguous pairing rule
for most graphs. Therefore, in this section, we shall transform G into an auxiliary graph G’ with
unambiguous pairs. The auxiliary graph G’ is a subdivision of the graph G itself. Precisely, each
cdge of G is subdivided into as many cdges as its number of edge-ncighbors in G. TFigure 4.1

illustrates such a subdivision.

Figure 4.1. A graph G and a corresponding auxiliary graph G'.

As illustrated in Figure 4.1, we label cach edge of the subdivided graph G' by a label of the
form zy, where z is the name of the edge in G of which it is a segment and where y is the name of
some distinct neighbor of edge z in the original graph G. The choice of which segment of G is to
be labeled zy, for any particular adjacent edge y, is completely arbitrary, provided there is exactly

12



one segment of z |¢'|.l)(3lt:(l'9.']/.

We now consider edge zy to be paired with edge yz. Sinee this malching is anambiguous, we
can apply a cotree parity algorithm to ¢ and constriet- in polynomial time a4 minimum cotree
' with a maximum nmmber of paired edges.

Let T bLe the edge-complement of the cotree ¢! in the anxiliary graph ¢, Since T is a
spanniug tree for the auxiliary graph G, it contains cither all the segments or all but one of the
segments of every edge of the original graph G. We now associate with spauning teee TV in graph
G' a subgraph T in G, according to the rule that an cdge z of (¢ appears in T if and ouly if every
segment of z in G' ocenrs in T'. It is a consequence of the construction of G', 7" and T that T is
a spanning tree for G: T is acyclic and connected beeause 70 is acyclic and connected.

Let the edge-complement of spanuing tree T in the original graph G be called C. Then C s
a minimum cotrce. Two edges of C are matched if and only if they have matched segments in the
cotree C' of the auxiliary graph G'.

This adjacency matching of the edges of cotree C in G is a maximum matching among all
possible minimum cotrees of G, becausce there is a bijection from minimum cotrees of G to minimum
cotrees of G' such that the size of the maximum adjacency matching in the cotree of G equals the
size of the maximum labeled-edge pairing in G'.

Thus, we have constructed a Xuong cotree for G and a maxirﬁum adjacency pairing of its

edges in polynomial time.

5. The Algorithm
We now summarize and analyze the algorithin for.obtaining a maximum-genus imbedding.
Suppose graph G has v vertices, e cdges, and maximum degree d. The followi.ng steps are used.

1. Create auxiliary graph G' by subdividing edges in G. The new graph has ¢/ = Qed) edges
and v' = O(ed) vertices. This step runs in time O(ed).

2. Run the cotree parity algorithm on graph G'. Producing a maximum set of paired cotrce
edges requires at most O(e'(v')?) = 0(e3d3) time by the Stallman-Gabow algorithm [SG].
The edge set can be extended to a full minimum cotrce by greedily adding unpaired edges.
This requires O((e')?) = O(e?d?) time. l

3. For each cotree edge in G', label the corresponding edge in G as a cotree cdge. Pair the edges
in G which correspond to paired cdges in G'. This requires O(e') = O(ed) time.

4. Find a one-face imbedding of the spanning tree edges of G. This requires O(e) time.

5. Add the paired cotrce edges to the imbedding. The first edge of each pair can be added in
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constant time, but O(e) tune is required to find the two resulting faces and determine the
placement of the sccond edge relative Lo the first, This step requires atotal of O(€?) time.
Add unpaired cotree edges to the imbedding. This takes O(v) time, since there s at most one

nnpaired edge per vertex.

The cutire algorithm takes O(e3d®) time. We use the cotree parity algorithm on a speeial class

of graphs containing many vertices of degree two, henee the actual time cotmplexity of this algorithim

may be lower. Furthermore, Stallman and Gabow [SG| coujecture that the actual timne complexity

of their algorithm for general cotree parity is Oev log v), which would imply a O(e?d?log ed) time

bouud on our maximmum-genuy algorithin.

8.
1.

Open Problems

The fact that maxirnumn genus is reducible to linear matroid parity, which is a gencralization
of maximnm matching, suggests that the corresponding counting problemn may be provably
difficult. Is it possible that counting the number of ways a graph may be imbedded in a surface
of maximum genus is #P-complete?

Our algorithm for computing a maximum genus imbedding runs in time polynomial in the size
of the graph. This is the only algorithin we know of for constructing any kind of imbedding
that runs in time indcpendent of the genus. Is it possible to extend the algorithm to return

imbeddings in which the gcnus is a fixed constant less than the maximum?

. Reif [R79] showed that determining whether a partial imbedding of a graph can be extended

to a full imbedding in the same surface is NP-complete. Is the same true for determining
whether a partial imbedding can be extended to a one-face imbedding?

Suppose graphs G and H are non-isomorphic. One might ask how the non-isomorphism
shows up in the way the graphs may be imbedded in different surfaces. Knowing all the
“counting information” about how a graph imbeds in all surfaces is not a complete invariant for

isomorphism. It clearly isn’t a completc invariant for trees, which only have planar imbeddings,

~and we have examples of non-isomorphic, highly connected, graphs such that counting the

number of xmbeddmga in all surfaces does not distinguish them. However, randomly sampling
imbeddings and making cstimates of the number of ways different graphs imbed in different

surfaces may prove to be an interesting new isomorphism heuristic.
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