
Programmable Conference Server

Henning Schulzrinne, Kundan Singh and Xiaotao Wu∗

Department of Computer Science, Columbia University
{hgs,kns10,xiaotaow}@cs.columbia.edu

Abstract

Conferencing services for Internet telephony and multimedia can be enhanced by the integration of other Internet
services, such as instant messaging, presence notification, directory lookups, location sensing, email and web. These
services require a service programming architecture that can easily incorporate new Internet services into the existing
conferencing functionalities, such as voice-enabled conference control. W3C has defined the Call Control eXtensible
Markup Language (CCXML), along with its VoiceXML, for telephony call control services in a point-to-point call.
However, it cannot handle other Internet service events such as presence enabled conferences. In this paper, we
propose an architecture combining VoiceXML with our Language for End System Services (LESS) and the Common
Gateway Interface (CGI) for multi-party conference service programming that integrates existing Internet services.
VoiceXML provides the voice interface to LESS and CGI scripts. Our architecture enables many novel services such
as conference setup based on participant location and presence status. We give some examples of the new services
and describe our on-going implementation.

Keywords: multi-party conferencing; service programming; CGI; VoiceXML; CCXML; LESS

1 Introduction

Most existing multi-party conference servers offer only limited functionalities, such as dial-in authentication and dial-
out lists. Conferences have to occur at a pre-determined time or when manually created. Conference participants have
to be pre-defined and usually only call control events get handled.

In today’s Internet telephony systems, many other Internet service events besides call control events, such as pres-
ence status, location changes and stock price changes, can help to trigger a conference. The creation and membership
of a conference can be dynamic and programmable by end users or conference administrators. For example, a con-
ference server invites the conference participants only when all the essential conference members are online or in
close geographic proximity. A conference server can automatically start a conference among the CEO and VPs of a
company when the company’s stock price drops by a threshold. The new services require a dynamic programmable
service creation architecture that can incorporate new Internet services into the existing conference functionalities. We
are building such a programmable conference server. As far as we know, this is the only such system.

The challenges in designing such services involve (1) defining a service programming language that can integrate
existing Internet services, (2) providing a voice interface for input and output, and (3) extending the existing confer-
encing services. We divide a conference server into two parts: acore serverimplementing the basic functions and
providing an interface over which thehigher layercan build new services. Our main focus is on thehigher layer.

For telephony applications, W3C has defined the XML-based languages, VoiceXML [5, 11] and Call Control XML
(CCXML [13]), to program user interactions and point-to-point call control respectively. The VoiceXML interpreter
and the CCXML interpreter can be co-located within a conference server and work together. However, CCXML
has some limitations such as being too low level to be programed by non-specialists and, more importantly, the ab-
sence of non-telephony events such as presence indication. We are developing the Language for End System Services
(LESS [15]), which provides a high-level control that supports telephony, presence and user interaction for an IP tele-
phony endpoint. In this paper, we propose an architecture combining VoiceXML with LESS and Common Gateway
Interface (CGI) for multi-party conference service programming. The integration is non-trivial because LESS is asyn-
chronous event-based where as VoiceXML is a synchronous programming language. We extend LESS to incorporate
voice interaction using VoiceXML and to provide association among multiple call dialogs in a conference.

∗All authors have contributed equally to this work

1

We present some examples of advanced conferencing services in Section 2. Then we describe LESS in conjunction
with VoiceXML to provide these services in Section 3, using illustrations. We describe two different models for using
asynchronous event-based LESS with synchronous VoiceXML for integrating user interactions with call control. The
models differ in their complexity and functionality as illustrated by an example of presence-enabled conferencing in
Section 4. We describe our existing implementation in Section 5. We compare and contrast LESS and CCXML in
Section 6. Finally, Section 7 presents the conclusion and future work.

2 Programmable services

There are two types of conference events: those external to the conference server such as user location changes or
presence, and those generated by the conference itself such as when a person joins or leaves. These events can trigger
certain programmable actions by the conference server, e.g., “call the manager when five people are in the room”.
We motivate our work on the event-driven programmable conference server architecture by the following two types
of services:automated conference creationbased on presence or location information andconference control and
indicationvia touch-tone keys.

2.1 Automated conference creation

Presence-enabled conference: For a conference that requires the presence of several essential participants, the confer-
ence server should check the presence status of these participants and start the conference only when all of them are
online. This reduces the waiting time for people to join in a conference. When the first essential participant is online,
the presence notification event will invoke an action to check all the other essential participants’ presence status. If
all the essential participants are online, the event handling action invites all the available participants to the confer-
ence and also continues to check the optional participants’ presence status. Once the conference starts, the presence
notification event of an optional participant will invoke an outgoing call invitation to that participant.

Location-based conferencing: When a group of people meet in a conference room, the location update event can invoke
an action to automatically place them in a conference. These participants can see the slides being discussed, follow the
web sites being visited and are placed in a common chat room with a common conference floor. External participants
can also be invited into the meeting.

The presence and location-based conferences are examples of event-driven conferencing. Use of a generic event
notification system can allow extending such architecture to other event-based conferencing, such as “put the board of
directors of a company in a conference when the stock price suddenly drops” or “invite all office staff into a conference
for an automatic emergency announcement”.

2.2 Conference control and notification

Conference control via telephone: The conference moderator should be able to control who can speak, who should be
invited to or kicked out of the conference and what media are allowed from which participant. The control can be via
telephone touch-tone keys.

Custom announcements: When new participants join or leave, the conference server can send announcements indi-
cating so. It can also convert the received text-based instant message (IM) to voice and send it to the voice-only
participants such as the telephone users.

If all such features are built-in into the conference server, it becomes rigid and hard to modify or create new related
features. Alternatively, if the features are programmable, the conference service provider or the moderator can create
new features or customize the existing ones. Thecore serverprovides the basic features and interface to thehigher
layer to build additional services as shown in Fig. 1. Such division of functions have been used in other related fields
such as interactive voice response (IVR) systems based on VoiceXML [5], where the voice interpreter presents the
voice dialogues to the telephone user, whereas the actual application logic such as voice mail access or tele-banking
can be built on the back-end web server using the Common Gateway Interface (CGI [1]) or Java servlets [3].

Next, we identify the primitive functions needed in the core server, and define the programming interface to
the higher layer applications. From the telephony signaling perspective the conference server acts like an endpoint
receiving the calls from the participants, or making out-bound calls in the case of a dial-out conference. Besides the

2

(protocol stack)
Core server

(service logic)
Application

Signaling Media

Events Actions

Figure 1: Division of conference server functions

basic call control, the server should be able to authenticate the participants, assign special privileges to participants
or control media traffic. The media control includes audio mixing, transcoding, video forwarding, audio volume
balancing and so on. Table 1 lists only the basic signaling functions needed by the core server.

Table 1: Core server signaling functions

Name Description
Make call Make an outgoing call to a participant.
Accept Accept an incoming call from a participant.
Reject Reject an incoming call from a participant.
Transfer Transfer an existing call to a new destination.
Authenticate Authenticate an incoming call.
Join Add a participant to the conference.
Unjoin Remove an existing participant from the con-

ference.
Subscribe Subscribe to receive the presence or location

information of a participant.
unsubscribe Un-subscribe a previous subscription.

The server can also receive events such as presence indication or result of an out-bound call attempt. These events
need to be handled asynchronously as and when they arrive.

We describe the programming models to design and implement such interfaces in the next section.

3 Programming models

There can be different programming models depending on the complexity and level of details covered. Putting ev-
erything that the conference server can do in the programming interface will make the higher layer applications more
complex. On the other hand, having very high level interface functions will limit the functionality of the higher layer
applications.

3.1 VoiceXML

VoiceXML [5] works similar to web programming model. It is designed to facilitate IVR where a VoiceXML inter-
preter running on an Internet host or a telephony gateway interacts with the telephone user. The interpreter fetches the
initial VoiceXML page from the web server. The page contains instructions to generate prompts or receive user input
via spoken audio or touch-tone keys. The input may be submitted to the next server-side script that generates another
VoiceXML page for subsequent dialogue with the telephone user. VoiceXML interpreter is the web browser substitute
to a telephone user.

VoiceXML is rich in user interaction but has limited call control functions, as onlycall disconnectandtransfer
can be invoked. To complement VoiceXML, usually another call control language is needed.

3

3.2 LESS

LESS [15] is an example of a call control language. We have designed it for IP telephony endpoints to perform
advanced functions such as “make a call when the user is online”. It is extended from the Call Processing Language
(CPL [4]) and inherits its advantages of being simple, safe, extensible and easily editable by graphical clients.

Although conference servers usually reside in the network, they can perform many services that are designed for
end-user-operated endpoints, such as “automatically accepting incoming calls” or “initiating outgoing calls”.

LESS
engine

message

ui

media

general

event

Figure 2: LESS packages

LESS uses packages for extensibility (Fig. 2). Thegeneral package contains the basic call handling functions
such as accepting a call or making an outgoing call. Theui package handles user dialogs. Theevent package deals
with the event notification, which includes presence indication. Themedia package performs media handling such
as copying the media information from one session to another. Themessage package is for instant messages. The
design of the LESS schema [15] allows easily adding a new packages.

The packages make LESS good for many innovative services. For example, with theevent package, a conference
server can check online status of all the essential participants. Once all the essential participants are online, the
conference server can start the conference by inviting all the available participants to join.

3.3 Combining LESS with VoiceXML

In this paper we extend LESS to use existing voice-based user dialogs. LESS does not define its own method to handle
voice inputs because VoiceXML already exists for this. There are two ways to combine LESS with VoiceXML. In the
first approach, LESS is the main controller and uses VoiceXML for voice interaction. In the second, both VoiceXML
and LESS are interpreted for basic dialogues and call control functions whereas the complexity, state management and
control logic are moved to the web server scripts. We describe and compare both these methods in this section.

3.3.1 VoiceXML as a user interface component

VoiceXML
engine

LESS
engine

Core
Server

voice

Service Logic

Conference
Server

EventsActions

Figure 3: VoiceXML as a voice interface

In Fig. 3, all service logics exist in the LESS script, whereas the VoiceXML engine acts as the user interface
component similar to the existing graphical or abstract user interface notions in LESS. An example service for this
architecture isauto-callout conference servicein which an event can trigger a conference. For example, when the
first participant joins a conference, the conference server automatically calls all the other intended participants. Fig. 4
shows the outline of a LESS script for implementing this feature. The LESS module handles the main call control and

4

invokes the VoiceXML script,checkPin.vxml , which in turn calls the VoiceXML interpreter to prompt the user
for her personal identification number (PIN). The return value of the VoiceXML script is saved invoicexml.return for
further processing in the LESS script.

<less>
<CPL:incoming>

<accept>
<VoiceXML:form url="file:///checkPin.vxml">

<VoiceXML:completed>
<Conference:conference id="voicexml.return">

<Conference:join>
<Conference:success>

<CPL:lookup source="participants">
<call />

</CPL:lookup>
...

Figure 4: LESS script for the auto-callout service

Treating VoiceXML script as a user interface component makes the LESS control logic visible to the user and
easier to understand and modify the services by graphical tools. However, since LESS is designed to be simple and
safe, it is intentionally limited in its capabilities. For services requiring more complex logic, we need to move the
complexity to the web server scripts as described below.

3.3.2 Moving complexity to web server scripts

voice

Web server scripts
Service

Logic

Core Server

LESS engine VoiceXML engineConference
Server

EventsActions

Figure 5: Moving complexity to web scripts

In Fig. 5, all service logics exist in the web server scripts such as CGI scripts or Java servlets. The VoiceXML
engine serves as a voice interface to users, and the LESS engine serves as a functional module. The server-side
program generates the scripts in LESS or VoiceXML which are interpreted by the appropriate interpreters running on
the conference server.

Suppose the LESS module receives the incoming call indication, and needs to prompt the user to enter PIN. The
LESS script can have a<submit next="http://.../login.cgi" /> tag in the incoming call processing.
This causes thelogin.cgi script to run on the web server and generate the next page. The next page is a VoiceXML
page which prompts the user to enter PIN and collects the user digits. The VoiceXML page then calls<submit
next="http://... /auth.cgi" namelist="pin" /> which invokes the scriptauth.cgi with pa-
rameter “pin”. This script validates whether the user PIN is correct and identifies the user. It generates the next
VoiceXML page to indicate incorrect PIN or a LESS page to join this call to the pre-established conference. The con-
trol passes back and forth between the LESS and VoiceXML interpreters. All the service logic is built using the CGI
scripts, whereas simple call control functions (Table 1) such as “accept the call”, “transfer” or “join to a conference”
are done using LESS. The CGI scripts should be well designed and verified to prevent loops.

New extensions in LESS are needed to dynamically create new events such asevent=auth-complete, and new
commands such assubmit. It also changes the model from areactiveto anactiveone because invoking a LESS script
can now trigger actions without external stimulus. This model does not need the program control flow constructs such
asif-then-else or switch-case in LESS, but can be done in CGI. However, using CGI means that the service creation

5

can not be done with the simple graphical tools, and requires additional programming knowledge. This is similar to
the web CGI programming model.

LESS

VoiceXML

. . .

the conference
connected to
You are being

conference
Join all in the
Call all users.

user is online

Enter conference

Notification

other participants
subscribe to all

PIN. Collect digits

accept
OnIncomingCall

Figure 6: Presence-enabled auto-callout service

The CGI-model is shown in Fig. 6. An initial LESS script accepts the call and invokes a VoiceXML page to prompt
for conference identifier. The VoiceXML interpreter collects the user input (DTMF digits) and submits them to the
next CGI script. This script finds out all the needed participants for this conference from the database and generates a
LESS script to subscribe for presence status of all the other participants. This LESS script is installed as a handler for
notification. When it detects that an user is online, it invokes the CGI script with the parameters containing the current
list of online users. The CGI script finds out if all the users are online or not. If not, then it goes back to waiting for
further notifications. If all the users are online, it generates a new LESS script to place new out-bound calls to those
users, and to connect all the users in the conference. It then invokes the VoiceXML pages for notifying every user that
they are being connected to the conference.

Alternatively, the participants can be invited to the conference as and when they become online, instead of waiting
for all of them to become online. Advanced scripts can wait for the essential participants to be online, and add the
optional participants as they come.

We extend LESS to identify a particular call for generating the final prompts specific for each call by defining a
session tag as follows:

<session id="22134">
<submit next="prompt.vxml" />

</session>

One important difference in the two models is that the CGI-model must be allowed only by the trusted users or
administrators so that the web server scripts have restricted access, whereasVoiceXML-as-user-interfacemodel is
more safe and can be allowed for ordinary users of the system.

4 Presence-enabled conferencing

In a presence-enabled conference, the conference server detects the presence status of all the essential participants
and start the conference only when all are online. We start by describing the LESS script and then propose a way to
perform event aggregation, which is required to detect multiple presence status.

6

4.1 Using LESS for presence-enabled conferencing

<less>
<timer dtstart="09012003T090000"

dtend="09012003T110000">
<CPL:location url="sip:conf-pa@foo.com">

<EVENT:subscribe package="aggregation"
expires="7200" content=’......’>

<EVENT:success>
<EVENT:notification>

<EVENT:event-switch>
<EVENT:event package="aggregation"

is="match">
<CPL:lookup source="participants">

<CPL:success>
<call/>

...

Figure 7: Presence-enabled conferencing script

Fig. 7 shows a LESS script for the presence-enabled conference. The script is invoked by atimer event. The start
time of thetimer event can be set to the scheduled conference start time. Inside the script, it first tries tosubscribe
to the presence status [7] of several essential participants. The content of the subscription is shown in Fig. 8 and
discussed in detail in Section 4.2. If the subscription gets accepted, the LESS script engine waits for the notifications.
The presence agent checks the presence status of the essential participants. Once the status matches the one requested
in the subscription, the presence agent sends a notification to the conference server. The conference server checks the
event and makes calls to all those participants.

4.2 Presence aggregation

<trigger>
<all>

<match contact="sip:tom@example.com"
package="presence" status="open"/>

<match contact="sip:bob@example.com"
package="presence" status="open"/>

<any>
<match contact="sip:alice@foo.com"

package="presence" status="open"/>
<match contact="sip:steve@foo.com"

package="presence" status="open"/>
</any>

</all>
</trigger>

Figure 8: Simple event aggregation script

It is easy for LESS to check one person’s presence status and perform actions. However, it is difficult to check
multiple presence status simultaneously and to trigger actions based on the combined status. This requires aggregation
of all the presence status subscriptions. To keep the service logic easier to implement and understand, we suggest that
the aggregation be handled in a separate presence agent. The conference server handles the service logic only on the
aggregated event. For example, if a conference server wants to wait until Tom and Bob fromexamples.com , and
one of Alice and Steve fromfoo.com are online to start a conference, it can simply put the script shown in Fig. 8 as
the content of the subscription.

7

The aggregation can be more complex if more conditions such as time, callee’s capabilities, and language prefer-
ences are considered. For example, if Tom serves as the moderator of a conference, a PSTN phone is not convenient
for him to perform conference control functions. The presence aggregation may check the URI (Universal Resource
Identifier) information of Tom’s user agent. For a SIP user agent, if theuser=phone parameter is present in Tom’s
contact URI, the presence agent should not consider this contact as a match for the presence event aggregation. Further
details on the presence aggregation specification are outside the scope of this paper.

The presence agent performs the aggregation by de-coupling the aggregated subscription and sending the individual
subscriptions to the corresponding parties.

An alternative to event aggregation is to define an aggregated presentity such asmy-group@domain , and define
rules such as “my-group is online when all of its participants are online”. Rules can be simple logical AND or OR,
or a more complex function of individual events. For simple cases such as a room, the entity can be defined naturally,
e.g.,room460@columbia.edu .

4.3 Presence aggregation with location-based services

The presence aggregation can further interact with location-based services. Suppose Tom, Bob and Alice would like
to have a conference. Their user agents can know their physical locations by infrared location sensors, Bluetooth
beacons or DHCP options [8]. The user agents will publish the location information to their presence agents. The
presence agents will notify the conference server which subscribes to their physical location information [6]. The
conference server discovers that Tom and Bob are in the same building, whereas Alice is away. With Service Location
Protocol (SLP [2]), the server may find that “room 460” is close to both Tom and Bob and has good communication
capabilities. The conference server sends instant messages to Tom and Bob asking them to go to that room. When the
server discovers that both Tom and Bob are in that room, it starts a conference, and invites the devices in “room 460”,
such as the room speakers and video projectors, to the conference. It also invites Alice to the same conference. By
this way, Tom and Bob can talk to each other face-to-face, and tele-conference with Alice.

5 Implementation

Web server

HTTP client

Service
creation

XML parser
environment

& DTMF
txt2speech

RTP

(GUI for
creating
scripts)

conference server
Programmable

HTTP

Core server
Mixer interface

Signaling
 (SIP)

Media

LESS engine
VoiceXML

engine

scripts)

(LESS or
VoiceXML

.cgi

.cgiscript
LESS

Vxml

LESS

Figure 9: Design of our programmable conference server

The design of our programmable conference server is shown in Fig. 9. We have already implemented a SIP-based
centralized conference server [10] and a VoiceXML interpreter [11] in our Columbia InterNet Extensible Multimedia
Architecture [9, 12], which is an infrastructure for enterprise multimedia collaboration. We also have LESS support in
our IP telephony user agent [14]. We have implemented a CPL engine for our SIP proxy server. Since LESS is based
on CPL, the existing CPL engine can be extended to a LESS engine and be integrated with our conference server.

The modules and interfaces that are still incomplete are shown with dotted lines in Fig. 9. The architecture is
designed to support both the ways of combining LESS with VoiceXML. The core server provides the SIP signaling
stack, Real-time Transport Protocol (RTP) stack, media codecs and conference mixing interface to the higher layer.
The service logic consists of the LESS and VoiceXML engines. Text-to-speech and DTMF is used by the VoiceXML

8

engine. We use external XML parser to parse the scripts, and HTTP client to fetch the scripts from remote server.
The service creation environment (SCE) provides a Tcl/Tk-based GUI to create LESS scripts that are uploaded to the
conference service logic module.

The back end server side application logic is implemented using CGI scripts written in the Tool Command Lan-
guage (Tcl). The LESS or VoiceXML engine can use the internal HTTP client to fetch the dynamically generated
LESS or VoiceXML scripts from the web server. We have written a Tcl library to facilitate generation of VoiceXML
pages so that the script is easy to modify and understand. We plan to extend this to support LESS as well. An example
script fragment is shown in Fig. 10.

voicexml {
vxml_form {

vxml_field name=pin {
vxml_prompt {

puts "Enter your PIN."
}

}
vxml_block {

vxml_submit next=auth.cgi namelist=pin
}

}
}

Figure 10: Tcl code fragment to generate a VoiceXML page

6 Related work

CCXML [13] is a W3C standard. It is designed to provide telephony call control support for dialog systems, making it
suitable for only a subset of the Internet end systems such as voice-only endpoints. The conference servers in Internet
telephony systems can potentially handle the non-telephony events, such as presence indication, and perform actions in
addition to the telephony calls, such as instant message, shared web browsing and desktop sharing. LESS is designed
for IP telephony end systems and is able to handle the non-telephony functions. For example, LESS may instruct a SIP
user agent to send instant messages, or based on presence information to start a conference. Unlike LESS, CCXML
does not contain the functions for other Internet services.

The states and events for CCXML is in a lower level abstraction than those for LESS and CPL. For example, in
CCXML, the call event is represented as sub-events such ascall.CALL CONNECTED, call.CALL ACTIVE,
connection.CONNECTION ALERTING. Such signaling-derived events are too low-level to be programmed by
non-technical users.

7 Conclusions and future work

Advanced conference services such as presence and location-based conferences can be implemented by separating the
core server functions from the service logic. The service logic can be programmed using call control language such as
CCXML and LESS, and voice dialog language such as VoiceXML. This allows various event-based services as well
as voice-based conference control and indications.

In this paper, we propose to use VoiceXML with our LESS to perform event-driven conference services. We
describe and compare several programming models for conference services. The VoiceXML as a user interface com-
ponent in LESS model is easy to program and understand, and is sufficient for simple applications. On the other hand,
moving the service logic to the web server script model is good for complex services. We further describe the on-going
implementation of a programmable SIP conference server in our CINEMA collaboration framework. In addition, we

9

provide a user friendly service creation interface so that users can create, modify or customize their conference ser-
vices easily. We are extending it to be web based where the web server is co-located with the conference server so the
created services can be stored in the conference server directly.

8 Acknowledgments

The research described here is supported by a grant from SIPquest, Inc.

References

[1] Common gateway interface. http://hoohoo.ncsa.uiuc.edu/cgi/interface.html.

[2] E. Guttman, C. E. Perkins, J. Veizades, and M. Day. Service location protocol, version 2. RFC 2608, Internet
Engineering Task Force, June 1999.

[3] JAIN. Sip servlet api. http://jcp.org/jsr/detail/116.jsp.

[4] J. Lennox, X. Wu, and H. Schulzrinne. CPL: a language for user control of Internet telephony services. Internet
draft, Internet Engineering Task Force, Aug. 2003. Work in progress.

[5] S. McGlashan, D. Burnett, J. Carter, S. Tryphonas, J. Ferrans, A. Hunt, B. Lucas, and B. Porter. Voice extensible
markup language (voicexml) version 2.0. Technical report, World Wide Web Consortium (W3C), Feb. 2003.
http://www.w3.org/TR/voicexml20/.

[6] J. Peterson. A presence-based GEOPRIV location object format. Internet Draft draft-ietf-geopriv-pidf-lo-01,
Internet Engineering Task Force, Feb. 2004. Work in progress.

[7] A. B. Roach. Session initiation protocol (sip)-specific event notification. RFC 3265, Internet Engineering Task
Force, June 2002.

[8] H. Schulzrinne. DHCP option for civil location. Internet draft, Internet Engineering Task Force, July 2003. Work
in progress.

[9] K. Singh, W. Jiang, J. Lennox, S. Narayanan, and H. Schulzrinne. CINEMA: columbia internet extensible
multimedia architecture. technical report CUCS-011-02, Department of Computer Science, Columbia University,
New York, New York, May 2002.

[10] K. Singh, G. Nair, and H. Schulzrinne. Centralized conferencing using SIP. InInternet Telephony Workshop,
New York, Apr. 2001.

[11] K. Singh, A. Nambi, and H. Schulzrinne. Integrating VoiceXML with SIP services. InConference Record of the
International Conference on Communications (ICC), May 2003.

[12] K. Singh, X. Wu, J. Lennox, and H. Schulzrinne. Comprehensive multi-platform collaboration. InSPIE Confer-
ence on Multimedia Computing and Networking (MMCN 2004), Santa Clara, CA, Jan 2004.

[13] W3C. Voice browser call control: Ccxml version 1.0. http://www.w3.org/TR/ccxml.

[14] X. Wu. Columbia university sip user agent (sipc). http://www.cs.columbia.edu/IRT/sipc.

[15] X. Wu and H. Schulzrinne. Programmable end system services using SIP. InConference Record of the Interna-
tional Conference on Communications (ICC), May 2003.

10

